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Abstract. 

This paper studies partitioned linearly implicit Runge-Kutta methods as applied to approximate the 
smooth solution of a perturbed problem with stepsizes larger than the stiffness parameter e. Conditions 
are supplied for construction of methods of arbitrary order. The local and global error are analyzed and 
the limiting case e--* 0 considered yielding a partitioned linearly implicit Runge-Kutta method for 
differential-algebraic equations of index one. Finally, some numerical experiments demonstrate our 
theoretical results. 

Subject Classifications: AMS(MOS) 65L05; CR:G1.7. 

I. Introduction. 

Consider the singularly perturbed initial value problem 

(1.1a) ez'(t) = g(t,y,z), Z(to) = Zo, With0 < e ~ 1 

(1. lb) y'(t) = f(t ,  y, z), y(to) = Yo 

where g: [to, te] x ff~"-N x •N ~ ~N and f : [to, t e l  × ~n-N × [~N __~ [~n-N are suffi- 
ciently differentiable functions which may also depend smoothly on the small 
parameter e. We suppose that the stiffness appears only in (1. la). Furthermore, we 
assume that in a neighbourhood of the exact solution of (1.1) for a suitable inner 
product ( . , . )  the logarithmic norm of the Jacobian ~gfiOz is strictly negative, i.e. 

( ~O(t'Y'Z) ~)  < pjl~jl2 wi th# < po <O, ~ N  (1.2) ~' ~z - 

where Ilxl12:= (x, x>. It is known (see [8"1), that under the assumption (1.2) there 
exists a smooth solution of(1.1), i.e. all derivatives ofy(t), z(t) up to a sufficiently high 
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order are bounded independently of e. All neighbouring solutions approach the 
smooth solution in a very small time. We suppose that the initial values Y0 and Zo lie 
on the smooth solution. We will consider two cases: 
1. The class F~ of singularly perturbed systems (0 < 5 ~ 1), that forms an important 

subclass of nonlinearly stiff systems. 
2. The limiting case 5 ---, 0, i.e. the class Fo of the reduced systems 

0 = o(t, y, z), Z(to) = Zo 
(1.3) 

y'( t)  = f ( t ,  y ,  z), y( to)  = Yo 

where the initial values are consistent, i.e. 9(to, Yo, Zo) = O. 

Because of (1.2) this differential algebraic system is of index one. In (1.1) the stiff 
and nonstiffparts are separated, and we therefore use a partitioned linearly implicit 
Runge-Kutta method. This compound method consists of a customary explicit 
Runge-Kutta method for the nonstiffand of a linearly implicit Runge-Kutta method 
(see [12]) for the stiff subsystem. Therefore, at each integration step only systems of 
linear equations of dimension N must be solved. 

The aim of this paper is to give convergence results for the class of partitioned 
linearly implicit Runge-Kutta methods when applied to the approximation of the 
smooth solution of(1.1) with stepsizes larger than the stiffness parameter 5. Because 
the Lipschitz constant of system (1.1) is of size O(~-1) the classical convergence 
theory for one-step methods (see e.g. [6]) is not applicable. We give a direct 
estimation of the local and global error and derive conditions so that the global error 
of a partitioned linearly implicit Runge-Kutta method satisfies Ym - Y(tm) = O(h~), 

z , ,  - -  z( t , , )  = O(h q) for all 5 with 5 _< const" h. Here the constants in O(...) are inde- 
pendent of h, m and 5. These conditions enable us to construct methods of arbitrary 
order q > 1. 

During the last years the numerical treatment of differential-algebraic systems 
has gained much interest (see [2]). According to [1] we consider the limiting case 
e --+ 0. This yields a partitioned linearly implicit Runge-Kutta method for differen- 
tial-algebraic systems of index one. Order conditions are obtained from the condi- 
tions of the partitioned linearly implicit Runge-Kutta method for (1.1) putting e = 0. 
Finally, some numerical examples demonstrate our theoretical results. 

2. Partitioned linearly implicit Runge-Kutta methods for class F~. 

For a general stiff initial value problem 

u'(t) = q(t,  u(t)), t ~ [t o, tel q: [to, te] x R" --, ~" 

U(to) = Uo 

the class of s-stage linearly implicit Runge-Kutta methods is defined by (see [12]): 
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( 1 ) ,  
/.Ira+ i ~ U m 

i - I  

u '+i = + h Y, A,j(c hT)[qj- Tu  +d, i = 2(1)s 
(2.1) i=l 

j = l  

(j) = t m + h, with q1 = q(tm + cjh, Um+l). The vector um+l approximates u(t) at tm+ 1 
where h denotes the stepsize. R~ ) (~) are rational approximations to exp(~) for ~ ~ 0, 
A~(~) and Bj(~) are rational functions (coefficients of the method), c~ are real 
parameters (cl = 0) and Tis an arbitrary (n, n)-matrix (usually an approximation to 
the Jacobian ~q/au at (tin, urn)). Linearly implicit Runge-Kutta methods include the 
well known ROW- and W-methods and adaptive Runge-Kutta methods. 

With the special choice of the matrix 

(2.2) T : =  e \ 0  

where T1 is a (N, N)-matrix and T: a (N, n - N)-matrix (see [11]) we get from (2.1) the 
partitioned linearly implicit Runge-Kutta method 

(1) ~(1) Zm+l ~ Zm~ Ym+l = Ym 

Z(m/)+l = R(io)(Ci h T1)z m h , / h + h i-l  A i j ( c ih  T1)G j +ciTRO')~Ci~-~T1)Y2Ym Tj~=I 

+ h 2 [AiJ ¢i 7 1 -- aijI] 7 1 - 1  r 2 f  j 
j = l  

i - 1  

(2.3) Y~)+i = Y,. + h E aijfj 
j = l  

R~+l ) hR( ,+  1) h ' z, , ,+l= T1 z . ,+  e i Ti T z y , . + - ~  ~=I j -~Tl  G~ 

j = l  

Ym+l = ym + h ~ bjfj 
j = l  

with ai~ = Ao(O), b~ = B~{O) and 

t, ,,0) .(~ ~ O) -- Tzy~)+,, f~ = f ( t , .  + cjh, y~)+ z~)+ 1), Gj = g(tm + ~ j , . ,  y , .  + i ,  ~ .~  + i I  - -  7"1Z..  + i l ,  

I denotes the (N, N)-identity matrix and R(~)(~) is defined by 

(2.4) Rl(°(¢) = (R(~) (0 - 1)/~. 
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We symbolize the partitioned linearly implicit Runge-Kutta method by the 
tableau 

c2 

¢3 

Cs 

A21 
A31 

Asl 

A32 

A$,$- 1 

B 1 B, _ 1 B~ 

We assume 

@ 
(2.5) T 1 = ~ (t m, ym, Zm) + O(h) for h ~ 0. 

Note, that condition (1.2) guarantees the regularity of the matrix T~ for sufficiently 
small h. 

For  the choice of the matrix T: we consider two cases: 

(i) T 2 is an arbitrary (N, n - N)-matrix, especially T2 = 0. 
@ 

(2.6) (ii) T2 =--~y(tm, ym, Zm) + O(h)for h ~ O .  

3. Behaviour of  the local error on class F~. 

Assume that the stability functions R~I(4), i = 2(1)s + 1, and the coefficients 
Aij(~ ) and Bj(¢) of method (2.3) fulfil the following conditions (see [12]): 

(A1) The approximation order r i of R~ I (4) to exp( 0 for 4 --* 0 is sufficiently high, i.e. 
r i > p, where Pi denotes the classical order of the ith stage. 

(A2) R~ ) (4) has no pole for Re 4 -< 0 and IR~ ) (~)l < ~ .  
(m3) IZ~j(4)l, IBj(@ and 14hij(@, 14Bj(¢)l are uniformly bounded for Re 4 < 0. 

Further, we introduce the index-sets 

K , : =  {j: 1 < j < i - t,A~;(4) # 0} for i = 2(t)s, Ks+ 1 :=  {j:l < j  < s, Bj(O # 0} 

and define 

(3.1) Rl°+l (4) = (lRl°(O - 1)/4 f o r t =  1,2 . . . . .  

Next we give a lemma needed in the proofs of our results. 

LEMMA 3.1. (see [3]). Let ~ G ~ and let R(() be a rational function without poles in 
{4 G C, Re ~ < #} and let the (S,N)-matrix A satisfy 

<Ax, x> < #llxlt2 for all x e R  N. 
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T h e n  R(A)  ex is t s  and 

[IR(A)[[ < sup{IR(~)i, CsC,  R e ~  < tz}. 

THEOREM 3.1. Let  T2 be an arbi trary  (N,  n - N) -matr ix .  As sume  that method  (2.3) 
satisfies at the ith s t a l e  the condit ions 

i - 1  

I+1 oti) (ciO f o r  I = O(1)q~,i (3.2a) ~ A~j(ci~)c~ = ci --,+1 
j = l  

i - 1  

(3.2b) ~ a~jc~ -~ = l -~  c~ f o r  1 = l(l)Oy,~. 
j = l  

T h e n  the fo l lowin9  es t imates  f o r  the local error components  at the ith s tage hold f o r  

all h E (0, ho] 

z~)+ l - z(t,. + cih) = O(hq'"+l), Y~)+ I - y(tm + cih) = O(h q~'`+ l) (3.3) 

where  

q~,i: = min {q~,i + 1 ,qy ,~ ,G ,~ ,qy , i f o r j sK i }  

qya:= min {q=,j + 1,qr j  + 1, c l r , i f o r j ~ K i }  

with qz , j := qy,1 ~ (because " - m  = z(tm), .~1~ . • : OJ Zm + 1 Y m  + ~ = y(tm)). T h e  constants  sym-  
bolized in the 0 ( . . . )  terms and the max i m a l  s tepsize  h o which is to be suff iciently small  

are independent  o f  e. 

PROOF• With the mean value theorem for vector  functions we obtain 

(3,4) Gj =- Gj - g(t m + cih, y(t ~ + cjh),z(t , ,  + cjh)) + ez'(t m + cjh) 

= ez'( t , .  + cih) + [ M x  (tin + CjO -- T1]" [z~)+l -- Z(t~ + cjh)] 

-- TlZ(t m + cjh) + EM2 (tin + cjh) - 7"22" [y~+ 1 - Y(tm + cjh)] 

-- T2y(t,. + cjh) 

where 

M1 (tin + cjh) = _t] 9z (tin + cjh, y(t,. + cjh), z(t m + cjh) + O(z~)+l - z(t m -[- cjh))) dO 

fo M2( t , .  + cjh) = Or(tin + c~h, ~ t . ,  + cjh) + O(y~)+ l - y(tm + cjh)),z~)+ l)dO. 

With (2.5) we get M l ( t  m + c~h) - T 1 = O(h) and therefore 

G i = - T l z ( t . ,  + cjh) - r2y(t  m + cjh) + ez'(t m + cjh) + O(h ~'+2) + O(h ~,+I) 

with x z = min {q~j for j s K~} and ~y = min{qyj for j e Ki}.  
Analogously we obtain 



O N  E R R O R  B E H A V I O U R  O F  P A R T I T I O N E D  L I N E A R L Y  I M P L I C I T  R U N G E - K U T T A . . .  3 6 3  

(3.5) f j  = y'(tm + cjh) + O(h K~+I) + O(h~+l).  

Because of the regularity of the matr ix T 1 for all h e (0, h0] we get with lemma 3.1, 
with (2.4), (3.4), (3.5) and a s traightforward Taylor  expansion from (2.3) 

• I h~ ~h h i-l=l ~h l 
z~)+l - Z(tm + cih) = ci T,R(1 i' (ci T1) - --~ TI j~..= Aij (ci 7"1) [z(t.,) 

+ 7"1-1 TEy(t.,)] + Aijc}_ 1 _ h T1 ~, Aijc } _ c[ 
/ = I L  j=l ~ j = l  • 

I + l' Auc} - '  T 1 Auc ~ -  l ~ aor5 -1 T~- 'T2~ .ya) ( t , . )  
l=iL j=i ~ j=i j=i • 

+ O(hq,,, + 1). 

With (3.1) and (3.2) it follows 

z~+ l - z(tm + Ah) = O(h qz'' + l) for he(O, ho). 

For  the local error  of the nonstiff  components  we obtain 

i - 1  

Y~+ t - y(t,, + cih) = y(tm) + h ~ aiy'  (t,, + cjh) - y(t., + ci h) 
j=l  

+ O(h ~+2) + O(h~,+2). 

By Taylor  expansion and (3.2b) the statement follows. • 

For  case (ii) we can improve the estimates for qz,~ of theorem 3.1. 

THEOREM 3.2. Assume that the partitioned system (1.1) is autonomous. Let T2 be 
given by (2.6) and let (3.2) be fulfilled. Then (3.3) holds with 

q~,, = min {qzj + 1,qrj + 1,q-~,i,t]r,~}; q-~,~ = max (1, cT~,i). 
j~ki 

PROOF. With (3.1) we obtain from (2.3) 

(h) h (h) 
_(2) = z ( t~  + c2hR~ 2) c2-~ T1 z'(t,.) + c~-~-R~ 2~ c~T T, Tey'(t ~ .  ~ m + l  

Because of 

Txz'(t~) + T2y'(t~) = ~z"(tm) + O(h) 

and (3.1) we have 

za) - z(tm + c2h) = O(h2). m + l  

For  t]z,i = 0, i > 2, we get analogously qz.i = 1. With (2.6) we get 

M~(tm + c2h) - T2 = O(h) 
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Gj = - T l z ( t  m + cih ) - Tzy(t m + Qh) 4 ez'(tm + Qh) + O(h ~+2) + O(h~'+2). 

Now,  the p roof  is analogous to the proof  of theorem 3.1. • 

COROLLARY 3.1. Let method (2.3) satisfy 

(3.6a) ~ B,(~)c~ = Rl~++ll)(O, 
j = l  

(3.6b) ~ bjcZ- i = l-  1, 
j = l  

Then it holds for all h ~ (0, ho] 

(3.7) zm+~ - z(tm + h) = O(hq*+~), 

where 

and 

a) 

l -O(1 )qz  

I =  l(1)qr. 

Ym+l - -  y(tm + h) = O(h q'+l) 

qr = min {q~j + 1,q,,j + 1,qyforj~K~+l} 

b) 
q~ = min {q~d + 1,qrj, q~,[lrfor j e Ks+ l} for T 2 arbitrary, 
q~ = rain { q~,j + 1,qr J + 1,q-*z, q, for j e Ks+ l }, q~ = max (1, q~) for auton- 
omous systems and T2 given by (2.6). 

REMARK 3.1. Theorem 3.2 and corollary 3.1b) with q - ~ = ~  hold for 
n o n a u t o n o m o u s  systems (1.1), too. However ,  for the second stage we have only 
qz,2 = 0, q,,2 = 1 and for s = 1, qz = 0, q, = 1, respectively. 

It is well known that  for a nonstiff  system the condit ions (3.6b), the so called 
simplifying condi t ion B(qr), are necessary to obtain 

Ym+i - y(tm + h) = O(h ~+1) for he(0 ,ho] .  

LEMMA 3.2. For a partitioned linearly implicit Runge-Kutta method the conditions 
(3.6) are necessary to obtain (3.7) with 

qz = t]z, qy----c] r 

PROOF. We consider the model  problem 

ez'(t) = - z ( t )  + d(t) + ed'(t), z(O) = d(O), 0 < e ~ 1 

y'(t) = f ( t )  

with smooth  functions d(t), f ( t )  and with exact solution z(t) = d(t). With 7"1 = - 1, 
T2 = 0 and Ym = y(t~, zm = d(tm) we have from (2.3) 
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Zm+l = I  1 - h R ( ~ s + l ) ( - h ) +  h s 

+ h  ~ h t ht t ~- ,~=l[lj~=lnj(-h)cJ l-1 -~j~=lnJ(--~)cJl~d()(tm) 
h t 

Y,+I = Ym + ~ ~ bFJ -1 ( l -  1 ) - - - ~ .  ya'(t ')" 
t = l j = l  

A comparison with the exact solution yields with (3.1) the conditions (3.6). • 

4. Construction of methods with higher local error order on F~ 

Theorem 3.1, 3.2 and corollary 3.1 allow us to construct s-stage partitioned 
linearly implicit Runge-Kut ta  methods with high local error order q~ and qr on class 
F ,  We consider some examples. 
1. The parti t ioned linearly implicit Euler method,  

0 

R~ 2) 

fulfils condit ion (3.6a) only for l = 0 and condit ion (3.6b) only for I = 1. Therefore, 
from corollary 3.1 we get the local error order 

a) for case (i): qz = 0 and qy = 1, 
b) for au tonomous  systems and case (ii): qz = 1 and qy = 1. 

2. Two-stage formulas. 
F rom the conditions 

A2,(c20 = c2R(12)(c20, B,(~) + B2(~ ) = R(13)(~), c2B2(¢) = R(23)(~) 

we obtain the class of two-stage methods 

(4.1) 
c 2  c2R(12) 

R?' -- c21 R~ 3) c ; '  R~2 3) 

Corollary 3.1 yields the error order 

a) for case (i): qz = 1 and qr = 1 
b) for au tonomous  systems and case (ii): qz = 1 and qy = 2. 

3. Four-stage formulas. 
Let at the second stage (i = 2) the condition (3.2a) be fulfilled for I = 0, at the third 
stage (i = 3) for I = 0, 1 and at the fourth stage (i = 4) for I = 0, 1, 2. Furthermore,  let 
the condit ion (3.6a) be fulfilled for I = 0, 1, 2 and let B 2 = 0 hold. Then we obtain the 
following family of 4-stage partitioned linearly implicit Runge-Kut ta  methods 
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(4.2) 

¢2 

C3 

¢4 
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c2R~ 2) 

c 3 e ? )  - 3) 

A41 

c 2 c ;  1 R~2 a) 

A42 A43 

R~ 5) - 
,R(5) (c3+c4) z -R(3 5) 

C3C4 

c4R(2 5) - R(¢) 

cs(c, - c3) 
Rt3 5) - c3R(2 5) 

c , (c ,  - c 3 )  

with 

A41 = c4 R(4) - A42  --  A43 , A42 = 
c i caR~2 4) -- c4R~ 4) c 2 c4R~3 4) - -  c2R~2 4) 

, A43 = 
C2 C 3 --  C 2 C3 C 3 - -  C 2 

F r o m  theorem 3.1 and 3.2 we get for z~)+l and Y~)+ 1, i = 2,3,4, 

a) for case (i): 

i qz,i qy,i 

2 0 1 

3 1 1 

4 1 1 

b) for a u t o n o m o u s  systems and case (ii): 

qz,i qy,i 

1 1 
1 2 
2 2 

Now, we obtain from corollary 3.1 

a) for case (i): qz = 1. and qy = 2; 2 2 
b) for au tonomous  systems and case (ii): qz = 2 and qy = 2 if c4 ~ ~-. For  c4 = if ,  

i.e. b 3 = 0, we get qz = 2 and qr = 3. 

5. Analysis of  the global error on F,. 

(5.1) 

We rewrite the part i t ioned method  (2.3) in the form 

(1) . 
Zra+ l ~- Zm~ 

z~)+ 1 = ~(i) (tin, Ym, Zm; h), 

Zm+ 1 = ~P(tm, Ym, Zm; h), 

(1) 
m + l  ~ Ym 

Y~)+ 1 = Ym + hc~(o (tin, Ym, Zm'~ h) 

Ym+l  = Ym + hdP(tm, Ym, Zm;h). 

Obviously,  4~ satisfies a Lipschitz condi t ion with respect to y and z where the 
Lipschitz constants  are independent  of  e. 

Next, we give a lemma on differentiation of  rational expressions of  operator  
valued functions (for the p roof  see Hundsdorfer  I-7]). 

LEMMA 5.1. L e t  p(¢) = Po + Pl  ~ + . . .  + Pk~ k, q(~) = qo + ql  ~ + . . .  + qk~ k, 
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~ C, p j, qi ~ ~ (0 < j < k) and qk ~ O. Let  D be an open set in ~N and assume that T: 
~N ~ RN × N is continuously ( Gateaux-) differentiable on D, and q( 7(x)) is invertible for 
all x ~ D. Further, let R: R u ~ R N × N be defined by R(x) = q -  1 ( 7(x))p( 7(x)), x ~ R N. 
Then the function R is continuously (Gateaux-) differentiable on D and for all x ~ D, 
v ~ R N we have 

dx v =  ¢~(7(x)) vq'~(Tlx)). 
1=1 

Here 4)x, ~1 are rational Junctions, which can be written with denominator q and 
which satisfy ~bt(oo ) = Tz (~ )  = O for I = l(1)k. 

For  the proof of the following lemma see [4]. 

LEMMA 5.2. Let {urn}, {v,,} be two sequences of  non-negative numbers satisfyin9 

: )  (1 + O(h) O ( h ) " ] ( u , . )  ( ~ )  Urn + <: 

\v, ,+ - O(1) c~ + O ( h ) / \ v , , J  + M 

with 0 < ct < 1, M > 0. Then it holds for  h <_ ho and to + mh <_ te 

u,, <_ C(uo + hvo + M), v,, <_ C(u o + (h + c¢")v o + M). 

Now, we prove a lemma whixh we need in the proof of theorem 5.1. 

LEMMA 5.3, Let the linearly implicit Runge-Kut ta  method (2.3) be strongly A-stable 
(i.e. A-stable and IR~ + 1) ( oo )1 < 1) and let (3.2a) and (3.6a) be satisfied for at least I = O. 
Let  T1 be 9iven by T 1 = 9z(t, Y, z) + hA where A is a constant (N, N)-matrix and T 2 be 
continuously (Gateaux-) differentiable. Then it holds for e <_ C'h,  h <_ h o 

I[q/(t,y,z;h) - ~P(t,y,~;h)l[ <_ (~ + O(h))llz - Zll with ct < 1 

for all ( t , y , z ) , ( t , y , ~ e G , : =  {(t ,y ,z): to < t < te, ltY -- y(t)[f <-- 7, tlz - z(t)ff _< ~} 
where (y(t), z(t)) is the exact solution of(1.1). 

PROOF. We have 

~'(t, y, z; h) - tY(t, y, ~; h) = ~o 7t~(t' y' ~ + 0 (z + zO; h) (z - z')dO. 

From (2.3) and (5.1) we obtain 

(5.2) ~z(t, y(t), z(t); h)v = Q l(t, y(t), z(t); h) + (h/e) Q2(t, y(t), z(t); h) 

+ h Q3(t, y(t), z(t); h) 
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Q1 : =  R ~ + I ) (  h T 1 ) v +  az vz(t) 

Q2 T T1 T2) 0Bj T 1 
-- vy(t) + j=l c~z c3z j= 1 Oz 

j= 1 dz 

+ ~ B j (  cjh, y(j),z(j)) ~7) ilj~ , h T2~(zj)] v TI [ g z ( t  + - -  T1 - -  
j =  l-- \ ,] 

v f j -  ~ bj vfj 
8z ~: I ~z j=l  

with v : = z(t) - ~. By our  assumpt ions  we have 

z (jl = z(t) + O(h), y(:) = y(t) + O(h) for h ~ 0. 

Therefore  we get 

gj = ez' (t) + O(h), f j  = y'(t) + O(h) for h ---, 0. 

Condi t ion  (3.6a) for 1 = 0 yields 

~(nj( h Zl)Z2) (~(R(S+ 1) ( h Zl)Z2) 
± _ -  

j = ~ Oz Oz 

j = 1 Oz Oz 

vz(J) 

Obviously ,  ~ ) ( t ,  y(t), z(t); h), j = l(1)s, are bounded  and by induct ion we can 
show with l e m m a  5.1 that  ~ (t, y(t)z(t); h) are bounded,  too. Now,  we get with 
l emma  3.1 and l emma 5.1 f rom (5.2) the est imates 

(5.3) II 7t~(t, y(t), z(t); h)v I1 ~ (r + O(h)) II v[I for e < C'h, h ~ ho 

where 

r = sup {tR~+I~(~)I < l : R e ¢  < ~*}, 4" = t~o/C* < O. 
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Wih the assumpt ion  (1.2) it follows f rom (5.3) that  there exists a y so tha t  for all 
(t, y, z) e Gv it holds 

llT~=(t,y,z;h)vll < (ct + O(h))[Ivll with ct < 1. • 

LEMMA 5.4. Under the assumptions o f lemma 5.3 the increment function 7J(t, y, z; h) 
satisfies a Lipschitz condition with respect to y 

l l~(t ,y ,z;h)  - 7J(t,~,z;h)ll < LIly - Ytl, ( t , y , z ) , ( t ,~ , z ) eGr  

where the Lipschitz constant L is independent ore. 

PROOF. Analogous  to the p roof  of  l emma  5.3. 

THEOREM 5.1. Let  method (2.3) be strongly A-stable and let (3.7) hold for  the local 

error with qz >- q - 1 and qy = q, q >_ 1. Then for  e < C'h, h <_ ho, the following 
estimates for  the global error hold 

(5.4) z," -- z(t,") = O(hq), Ym -- y ( t ~  = O(h ~) 

where the constants symbolized in the 0( . . . )  terms and ho are independent of  e. 

PROOF. We consider the modif ied me thod  

z * + l  = ~( tm,  Y," ,zm;h),  Ym+l = 37,, + h~(tm, 37,",£,";h) 

with 

~'z~. for z~,e G~, z;  = z o 

~," = (Z(tm) + y (z*~ - z(t,"))/llz*~ - z(t,")ll for z•¢ G, 

37," analogous.  

Let  z~,+ 1, Y~,+ 1 be a numerical  solut ion obta ined  with T 1 = gz(tm, 37m, ira) + hA 
(A cons tan t  (N, N)-matrix),  and let ~ .  + 1,37., + 1 be a numerical  solution obta ined  with 

TI = gz(tm, ~,., ~,.) + hA star t ing from if," = Z(tm), ~," = y(t,"). We have 

Z~n+I - -  z( t  m + h) = z~,+x - Zm+: + Z~+l - Z(tm + h) 

Y~n + 1  - -  Y(tm dr- h) = Y*m + 1 --  37m + 1 3¢ 37m + 1  - -  y(t," + h). 

With the Lipschitz condi t ions  of  • and  7 t and  l emma  5.3 we get 

[Iz~,+l - ~,"+lll < (a + O(h))Ilim - ~,"ll + const.  []37m -- Yml[ 

and  by definition of  i,", 37,. 

[Iz~.+ 1 - Z~m+l [l < (~ + O(h))I[z~, - z(t.)[[ + const.  I[Ym -- }{t,")[[. 

A n a l o g o u s l y  w e  get  

IIY,.+I - -  Y,"+ 111 < c o n s t ,  h Ilz~. - z,"lJ + (1 + O(h))[lYe. - y, . l l .  
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Because of T1 = 9~(t,,, 27(t,,), Y(t,,)) + O(h) it holds 

IIz*+~ - Z(tr. + h)lI --< (c~ + O(h))IIz~, - z(t,.)ll + const, llY',, - y(t..)ll + O(h q) 

IlY*,,+ ~ -- y(t,, + h)It < const, h Ilz~ - z(t,,)ll + (1 + O(h)) IIY*~ - k~t,,)ll + O(hq+ ~). 

With lemma 5.2 and z o = Z(to), Yo = y(to) it follows 

(5.5) tlz;. - z(t,.)ll < const, h q, IIY~, - y(t.,)lt < const, h q 

for all to -< t,. _< t.. F rom (5.5) we see that  for all h < ho(7) z*.., y*sG~ for all m, i.e. 
Z m ~" Zm, y., = y,. and (5.4) holds. • 

REMARK 5.1. The estimate (5,4) holds for all e < C*h. Hairer /Lubich /Roche  (I-5]) 
show for Rosenbrock methods  applied to (1.1) by considerat ion of higher index 
problems of algebraic differential equat ions for methods  of classical order  p > 2 the 
following estimates for e < C'h: 

2 m - -  Z ( t m )  = O(h r) + O(eh), Y m  - -  y(t,,) = O(h ~) + O(eh 2) 

where r denotes the differential algebraic order. For  e ,~ h this yields for the stiff 
components  at most  z,, - z(ts) = O(h2). 

6. Partitioned linearly implicit Runge-Kutta methods for differential-algebraic 
equations. 

We consider for system (1.1) the limiting case e = O, i.e. the system of  differen- 
tial-algebraic equat ions (1.3). Using the abbreviat ions 

(6.1) r ( ° ' =  lira R~)(¢), ~,~:= lim ~A,~(~), f l j ;=  lim ~Bi(~ ) 

we get from method  (2.3) the part i t ioned linearly implicit Runge-Kut ta  method  for 
differential-algebraic equat ions 

m + l  ~ Zm~ Ym+l = Y m  

i - 1  i - 1  

Z(mi)+ 1 = t~(i)Zm + ( r  {/) - -  1) T[ t T2ym + c[ 1 2 eqG; -- h Z alj T[ 1 T2fi 
j = l  j = l  

i - 1  

(6.2) Y~+t = Ym + h ~ a,if~, i = 2(1)s 
j = l  

i - 1  i 
z~+t =r~S+l)zm+( r ls+l)-  1)T[1T2Ym + 2 fl jG~.-h bjTll lT2fj  

3=1 j = l  

Ym+l = Y~ + h i bjfj 
)=1 
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with G~:= Ti-~ 1 gi - z~+l - 7]-~ ~ T2y~)+ 1 • 
No te  that for the computa t ion  of z~+ ~, linear systems with the same coefficient 

matr ix  T1 have to be solved. By replacing Ki, Ks+ 1 by 

/(i = { j : l  < j < i -- 1,Tij ~ 0},i = 2(1)s;Ks+ 1 = {j: 1 <_j < s, flj ~ 0} 

and (3.2a) by 

i - 1  i - 1  

(6.3) ~ ~,j = c,(r " ) -  1); ~ ~,jc~ = "~'-CI +1, 1 =  1(1)~.., 
j = l  j = l  

we obtain analogous results to theorem 3.1 and theorem 3.2. Fur ther  we get for the 
local error  

THEOREM 6.1. Let the conditions (3.6b) be satisfied and let 

(6.4) ~ flj = r t ,+ l )_  1; ~ fljC 1 = - - 1 ,  l =  l(1)c]~. 
j = l  j = l  

Then it holds for the full local error the estimate (3.7) with qv = min {q~,j + 1, 

qrd + l ' q r '  j e / ( , + l }  

a) qz = min {qz3 + 1, qr,i, qz, qr, J ~/(s  + 1 } for T 2 an arbitrary matrix 
b) qz = min {qzj + 1,qyj + 1 , ~ ; , ~ r , j ~ g , + l } ,  q-~ = max (1, ?h) for autonomous sys- 

tems and 7"2 according to (2.6). 

The condit ions (6.3) and (6.4) are satisfied if the conditions (3.2a) and (3.6a) are 
fulfilled for the corresponding method  (2.3). Therefore,  we see from theorem 6.1 that  
qz and qy in the error  estimates of method  (6.2) are at least as large as those in the 
error  estimates of the corresponding method  (2.3). However ,  it is possible that  q~ and 
qy of method  (6.2) are larger than those of method  (2.3). 

EXAMPLE. Consider  the two-stage me thod  (4.1) with T 2 according to (2.6) for 
au tonomous  systems. In this case we have q~ = 1 and qr = 2 (see chapter  4). The 
corresponding two-stage method  for differential-algebraic equat ions is character-  
ized by the following tableau 

c 2  c 2 ( r  ~2) - -  1)  

r TM -- 1 + c ]  1 - c ]  1. 

For  the special choice c 2 = 1 the condit ions (6.4) are satisfied up to I = 2 and 
therefore, we get with theorem 6.1 qz = 2 and qy = 2. 

Because for e = 0 the assumption e < C*h is fulfilled for all h we get from lemma 
5.2 the estimate (5.3) with 

r = I r ~ ' + ' l  = I g ~ + ' ( ~ ) t .  
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Analogously to theorem 5.1 we get 

THEOREM 6.2. Le t  (3.7) hold for  the local error o f  method (6.2) with qz > q - 1, 

qy = q and let I/~+1)1 < 1. Then  it holds for  h < h o 

Zm - Z(tm) = O(hq), Ym - Y(tm) = O(h~), m > 0 ,  

i.e. the convergence order is q. 

REMARK 6.1. A convergence theorem for general one-step methods for differen- 
tial-algebraic equat ions is given in [1]. Roche [10] gives order  results for (nonpar-  
titioned) ROW-methods  derived directly for differential-algebraic systems. 

7. Numerical examples. 

In this section we give some numerical tests which confirm the estimates given in 
theorem 5.1 and 6.2. We used the methods:  

1 
(M1): method  (4.1) with c 2 -~- ~-  and the stability functions 

R ( o 2 ) ( C 2 ~ )  = 1 + (C 2 - -  y)~ Rto3)(~) = 1 + (1 -- 27)~ ~/2/2. 
1 - ~ , ~  ' ( 1 - y ~ ) 2  , y = l +  

1 2 
(M2): method  (4.2) with c 2 = -~, c 3 = 1, c4 = ~- and 

1 + (cl - 27)~ + (c2/2 - 2yci + y2)~2 
(1 -- yO 2 i = 2,3,4 

1 + (1 -- 3?)¢ + (1/2 - 37 + 3?2)42 
R(°5)(~) = (1 - ?4) 3 , ? = 0.4358665215084592. 

Both methods  are L-stable, i.e. r (~ + 1) = 0. Method  (M 1) has the classical order  
p = 2, method  (M2) the classical order  p = 3. 

REMARK 7.1. The condit ions (3.2a) and (3.6a) yield linearly implicit Runge-Kut ta  
methods  in the form of adaptive Runge-Kut ta  methods  (see [11]). For  stability 
functions with one multiple real pole these methods are closely related to 
W-methods. So, with respect to a general system of ordinary differential equations 
method  (M1) is equivalent to the 3-stage W-method 

(I - ?hT)k~ = q(t,n, um) 

(I - y h T ) k  2 = q(t,, + c2h, um + c2hkl)  - c2hTkl  

(I - ?hT)k  a = q(tm + c2h, um -1- c2hkl)  4" hT(?a lk l  + ?32k2) 

Urn+ I = l,l m "~ h(b lk l  + b 2 k 2  + bak3) 
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with 

(1/2 -- ~)(1 --  7/c2) (1/2 --  ~)7 
"~'al = ba - c2, ~32 - -  b3c2 

b l  = 1 - 1 / (2c2) ,b  2 = 1/(2c2) - b 3 and b a ~ 0 arb i t ra ry .  

The  me thods  (M1) and  (M2) have been app l ied  to 2 " tes t -problems":  

EXAMPLE 1. (for e = 0 due to [9]) 

ey'l = _ y 2  _ y~ + Y~/Yz  - ey3,  yx(O) = 1 

eY'2 = - Y 2  + Y~ - 2ey2, y2(0) = 1 

Y ;  = YX, y3(O)  = 0 

y~  = 1 , 0 . 2 5  
- -  ~ Y2 ' y4(0) ---- 1, 

EXACT SOLUTION: yx(t) = COS t, ya(t) = sin t 

Y2 (t) = e -  2t, y4( t  ) = e -° '5 ' .  

~ e [ 0 , 1 ] .  

E X A M P L E  2.  ey't = --(2 + YlY2)Y l  + c o s 2 t s i n t  + 2 c o s t  -- ey2, 

Y ~ = Y l  + Y 2 - - s i n t ,  

teE0,12. 

y~(O) = 1 

y2(O) = o 

EXACT SOLUTION: yx( t )  = COS t, y 2 ( t )  = sin t. 

The fol lowing tables  show the Eucl idean  no rm of the abso lu te  e r ror  err(h) and  

err  for var ious  ~ at  the endpo in t  te = 1 ob t a ined  with cons tan t  stepsize 

1 
h = -i-O0" Fur ther ,  we give the numer ica l ly  ob ta ined  o rde r  

for T2 = 9y(tm, Ym, Z,.) and  T2 = 0. 

qnum = I o g 2 - -  
err(h) 

F o r  ~ = 1 we get the classical  o rde r  (MI :  q.u,. ~ 2, M2: q.. , .  ~ 3). F o r  e < C*h we 

receive for a u t o n o m o u s  systems (example  1) and  with T 2 = gy(y,., z,.) q. . , .  ~ 2 and  

q.u.  ~ 3 for M1 and  M2, respectively.  Wi th  T 2 -- 0 we have on ly  q.., .  ~ 1 and 

q.. , .  ~ 2. F o r  the n o n a u t o n o m o u s  system (example 2) we a lways  get only  q..m ~ 1 

and  q.., .  g 2 for M1 and  M2, respectively. The er rors  for bo th  cases of T2 are 

comparab le .  
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m e t h o d  

M 1  

M 2  

1 . e + 0  

1.e - 3 

1.e - 6 

0 

1 . e + 0  

1 . e - -  3 

l . e  - -  6 

0 

K. STREHMEL, R. WEINER AND I. DANNEHL 

Table 7.1. Results for example 1. 

T2 = gy(Ym, z,~) 

e r r (h  e r r (  h ) 

3.7e - 4 9 .5e  - 5 

1.5e - 5 3,1e - 6 

2.8e - 5 6.8e - 6 

2 .8e  - 5 6.8e - 6 

9.4e - 8 1.2e - 8 

9 .6e  - 7 6.6e - 8 

2.2e - 6 2.8e - 7 

2,2e - 6 2 .8e  - 7 

q , . , ,  

1.97 
2.26 

2.02 

2.02 

3.00 

3.86 

2.98 

2.97 

~ = o  

(hi err(h)  e r r  -~ 

4 .6e  - 4 1.2e - 4 

3.5e - 3 1.9e - 3 

3.2e - 3 1.6e - 3 

3.2e - 3 1.6e - 3 

1.3e - 7 1.6e - 8 

6 .0e  - 5 1.1e - 5 

6 .9e  - 5 t .8e  - 5 

6.9e - 5 1.8e - 5 

q. . , .  

1.96 
0.91 

1.00 
1.00 

2.99 

2.39 

1.98 
1.98 

m e t h o d  

M 1  

M 2  

1 . e + O  

1 . e -  3 

1.e - -  6 

0 

1 . e + O  

1.e - 3 

1 . e - 6  

0 

Table 7.2. Results for example 2. 

T2 = g,(t., y,., z,.) 

1.5e - 4 3.9e - 5 

9 ,7e  - 4 4.8e - 4 

9 .9e  - 4 5.0e - 4 

9 .9e  - 4 5.0e - 4 

5.9e - 8 7.5e - 9 

4 .4e  - 6 9 .7e  - 7 

5 .0e  - -  6 1.3e - 6 

5 .0e  - 6 1,3e - 6 

q . . , .  

1.93 

1.02 
1.00 

1.00 

2.98 

2 .16 

2 .00  

2 .00  

~ = o  

err,h, orr( ) 
1.3e - 4 3.2e - 5 

3.0e - 3 1.5e - 3 

3.1e - 3 1.6e - 3 

3.1e - -  3 L 6 e  - 3 

1.2e - 7 1.5e - 8 

8 .0e  - 6 1.7e - 6 

9 .7e  - 6 2 .4e  - 6 

9 .7e  - 6 2 .4e  - 6 

q , , , ,  

1.97 
1,03 
1.00 
1.00 

3,00 

2 .22  

1,99 

1.99 

The numerical tests confirm our theoretical results on the behaviour of the global 
error of partitioned linearly implicit Runge-Kutta  methods on the classes F~ and F o. 
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