
BIT 30 (1990), 289-300 

R E L A X E D  O U T E R  P R O J E C T I O N S ,  W E I G H T E D  

A V E R A G E S  A N D  C O N V E X  F E A S I B I L I T Y  

Dep. of Economics, 
Univ. of Bergen, 
N-5008 Bergen, Norway 

SJUR D. FL/~M 1 and JOCHEM ZOWE 

Dep. of Mathematics, 
Univ. of Bayreuth, 

D-8580, BRD 

Abstract. 

A new algorithmic scheme is proposed for finding a common point of finitely many closed convex sets. 
The scheme uses weighted averages (convex combinations) of relaxed projections onto approximating 
halfspaces. By varying the weights we generalize Cimmino's and Auslender'smethods as well as more 
recent versions developed by lusem & De Pierro and Aharoni & Censor. Our approach offers great 
computational flexibility and encompasses a wide variety of known algorithms as special instances. Also, 
since it is "block-iterative', it lends itself to parallel processing. 
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1. Introduction. 

A convex  feasibi l i ty  problem can be cast in the form 

(CF): Find, if possible, at least one x ~ (~ Ci. 
i= l  

Here each Ci, a closed convex subset of R", reflects some prescribed constraint. 
Since problem (CF) is essentially geometrical, our discussion will be coached in 
corresponding terms [13]. It should not be forgotten however, that (CF) has an 
equivalent functional counterpart involving convex  inequalities 

(CI): Find, if possible, at least one x such that 

f i (x)  < Yi, i = 1 , . . . ,m ,  
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where each f~: R" ~ R is quasi-convex and lower semicontinuous. For the equival- 
ence of(CF) and (CI) note that, given f /and Yi, we can define Ci = {x: f/(x) < Yi}; and 
conversely, given Ci, we could fix Yi = 0, and let 

f /(x):= d(x, Ci):= inf{IIx - c11: ceCi}  

be the distance (function) to Ci. 

We remark that (CI) emerges in many situations of great practical importance, 
and is often naturally called an inversion problem. Then, for i =  1 . . . . .  m, y~ is 
typically a known output (measurement) of a controlled experiment, whose design is 
fixed via the function f/, and x is an unknown "model" which, in the sense of(CI), must 
conform with observed data. Censor [8] gives an account of such problems in image 
reconstruction or radiation therapy treatment planning. 

Not surprisingly, linear instances of problem (CI) have a long history starting with 
Kaczmarz [16], Cimmino [9], and continued with the work of Agmon [1], Motzkin 
and Schoenberg [18] on socalled relaxation methods. Later the treatment of 
nonlinear instances of(CI) has benefitted from developments in nonsmooth analysis, 
see [7], [10] and [23]. Now, the state of the art seems rather advanced, as already 
made clear in the review [5]. Nonetheless, the field continues to be very active with 
new impetus coming from techniques in decomposition [20], duality [24] and 
parallel processing [3], [17], [14], [15]. 

The purpose of this note is to provide an algorithm that subsumes a large variety 
of existing, well known iterative methods as special instances. We thus add to the 
flexibility of those methods and offer a unifying framework. 

For motivation it is appropriate to review briefly some of the established ap- 
proaches. 

Auslender [4] has generalized the classical method of Cimmino [9] employing 
weighted averages of simultaneous projections. Specifically, he uses weights 2i > 0 
(actually, 2i = 1/m), ~7'= 1 2i = 1, and constructs the algorithmic map A as follows: 

(1.1) x k+l : =  Axk:= ~,, 2iPi Xk, X 0 arbitrary, 
i=1 

where the orthogonal projection Pix k is the point in Ci which is closest to x k. 
This method can be seen as an instance of successive projections; namely, consider 

the closed convex subset C : =  Clx  . . . .  xCm of the m-fold product space (R") m, and 
endow the latter with inner product 

<x ,y> :=  2,<xl, yl> + . . . .  + 2,,<x,,,y,,> 

where x = (x~), y = (y~)e(~")". In this larger space (1.1) can be rephrased on the 
equivalent form: 

(1.1") x k+~ := PDPc xk, x ° arbitrary, 
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with Pa, Pc denoting the orthogonal projections onto the diagonal 
O : =  {d = (d . . . . .  d ) l d ~  R"} and the set C, respectively. For details see Pierra [20] 
who proved that the sequence in (1.1), or equivalently (1.1"), converges to some 
point x ~ c~C~, provided, of course, this intersection is nonempty. 

Moreover, if int c~C~ ¢ 0, then {x  k} converges with a geometric rate. 

A closely related method has been explored by De Pierro and h s e m  [21]. They let 

(1.2) x k+l = x k + ~k(AX k -- xk), X ° arbitrary, 

where ~k are relaxat ion parameters  contained in a compact subset of (0, 2), and A is 
the same operator as in (1.1). Actually, they deal only with the case when each Ci is 
a halfspace, but, as will be demonstrated below, (1.2) converges for all closed convex 
sets C~, i = 1,..., m, having nonempty intersection. 

To see the relation between (1. I) and (1.2) more clearly, let P be an orthogonal 
projection, and denote by 

R(,~) :=  I + ~ ( P -  I), 

an associated re laxed project ion with parameter ~t ~ (0, 2). Then (1.1), respectively 
(1.2), can be rewritten on the form 

(1.1') x k+l = ~. 2iRi(x  k,1), and 
i=1 

(1.2') x k + l = ~ ,~iRi(xk, gtk), 
i=1 

x ° being arbitrary in both cases. Evidently, algorithm (1.2') is more general, yielding 
(t. 1') when ~k = 1 for all k. 

We conclude our review by mentioning a method of Aharoni et al. [2] designed as 
follows: Suppose that in (1.2'), at iteration k, all weight is assigned to one set Ci(k), i.e., 

2j = 6i(k),j = otherwise. 

Here {i(k), k = 0, 1 . . . .  } is a so-called control  sequence in {1 . . . . .  m} governing 
which set is brought into consideration at stage k. Also, suppose that instead of 
projecting onto C,k)itself ,  we contend, i f x  k ¢ Ci(k), with projecting onto a hyperplane 
separating C,k~ from x k. Thus we arrive at the method 

(1.3) x k+l = R(k)(Xk, ak), X 0 arbitrary, 

where {~k} again is a sequence of relaxation parameters contained in a compact 
subset of (0, 2) and R(k ) denotes the relaxed projection onto a half-space which 
contains the currently regarded set Ci(k). It is required, i f x  k q~ Ci(k), that the halfspace 
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in question lies at a distance at least 

(1.4) flikd(x k, Ci{k)), flik~(O, 1], 

from x k. Also, every set must be picked up repetitively, i.e., 

(1.5) k = j  infinitely often for everyj  = 1 . . . . .  m. 

Clearly, choosing fl~k = 1 for all i, k in (1.4), and letting the weights vary according 
to the rule 2~ = ~,k~.~ we recover (1.2'). 

As mentioned we shall forge one single scheme that encompasses (1.1), (1.2) and 
(1.3) as particular implementations. It should, by now, not come as a surprise that we 
intend to use weights that may change from step to step. Such a strategy has also 
been investigated recently by Aharoni and Censor [3]. Their scheme, kindly 
brought to our attention during the revision of this paper, is, in one respect, not quite 
as general as ours: We contend with relaxed projections onto approximating 
halfspaces instead of using the sets C 1 . . . . .  C,~ themselves. This is a substantial 
advantage if the projection onto some Ci is hard to execute. 

Referring back to the successive projection method (1.1") of Pierra (op. cit.) one 
could say that our algorithm approximates, at each step, the product set C from the 
outside, and changes, via the weights, the inner product and possibly also the 
"dimension" of the product space. 

The paper is organized as follows. Section 2 introduces notations and states the 
algorithm. Convergence is established in Section 3. Section 4 elaborates on an 
interior points algorithm due to Aharoni et al. [2]. Section 5 concludes with some 
remarks. 

2. The algorithm 

It is convenient to introduce some notation. For a given closed convex set C c ~", 
and a point x outside C, let H(x) be the set of all hyperplanes H in R n which separates 
C from x. 

We follow Aharoni et al. [2] and define for each number ~ e [0, 2], a parametrized 
correspondence R(., ~) from the entire space R n to subsets of R ~ as follows: 

~{x} when x ~ C, 
(2.1) R(x, e) = [{x + ct[Pu(x ) - x]: n ~ n(x)} otherwise. 

Here Pn denotes the orthogonal projection onto the hyperplane H. In short, any 
element y e R(x, ~), different from x, is the result of relaxed projection, with par- 
ameter e, of x onto a hyperplane which separates C from x. 
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In the sequel we shall write Ri(x, ~) and de(x) to indicate that the set in question is 
C~. With this notation the algorithm may now be stated as follows: For arbitrary 
initial x °, choose iteratively. 

(2.2) xk+ 1 ~ ~ J.ikRi(xk, O:ik). 
i=1 

The right hand side of (2.2) is a weighted Minkowski sum of Ri(xk, O~ik) using 
weights 2ik. 

Clearly, if some set Ci drops out of attention at stage k, this corresponds to ).~k = 0. 
As will be seen, this makes no harm as long as Ci is not permanently ignored from 
some stage onwards. In fact, every set has to be considered from time to time. To 
formalize this concern we need the following 

ASSUMPTION (On weights). At stage k _> 0, weights 2~k > O, i = 1 . . . . .  m, 
E m= 1 "~ik ~--" 1, are assigned to the different sets subject to the following restrictions: 
Positive weights must exceed a threshold, i.e. for some )~ > 0, we have that 

(2.3) "~ik > 0 implies 2ik > 2. 

Also, every set is repetitively considered in the sense that 

(2.4) 2~k > 0 infinitely often for i = 1 . . . . .  m. 

Clearly, (2.3-4) are satisfied in (1.1-2). They are also satisfied in (1.3) provided (1.5) 
holds. In particular, following Aharoni et al. [2], one could use cyclic control: 

i(k) = k(mod m) + 1, 

or, more generally, almost cyclical control requiring that for some integer period 
p >_ m, we should have 

{1 . . . . .  m}c{ i (k )  . . . . .  i ( k + p - 1 ) }  for all k > 0 .  

As an alternative to (2.4) we could always consider some worst violation, meaning 
that 2ik > 0, for at least one index i such that d~(x k) > 0, is currently maximal. 

One might also require that only violated constraints be taken into account, i.e. that 
xRE Ci implies 2~k ---- 0, but we shall not do so. In any event, we regard conditions 
(2.3-4) as purely a matter of implementation and rather free choice. 

That last remark goes equally well for the following innocuous restrictions on 
relaxations, saying that we should avoid reflexions and invariably seek to advance at 
least somewhat towards a closest point. 

ASSUMPTION (On relaxation). Mirror images are forbidden, i.e., 

(2.5a) limsup~ik < 2 for i =  1 . . . . .  m, 
k-'~ c¢ 
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and some positive step must always be made, i.e., 

(2.5b) 0 < liminf~ik for i = 1 . . . . .  m. 
k~ao 

These conditions (2.5a-b) imply no real restriction on the design of the algorithm. 
By contrast, it is more diificult to ensure at stage k, when projecting onto a halfspace 
containing, say C~, that some definite progress towards C~ be made. This concern 
motivates the 

ASSUMPTION (On approximation). When x k ¢ Ci, denote by Hik ~ H(x k) the hyper- 
plane selected in (2.1) for use in (2.2), and define the quality of  approximation 

We require that 

(2.6) 

flik : = d( xk, Hik)/d(x, Ci) < 1. 

liminffli k > O  for each i =  1 . . . .  ,m. 
k-~oo 

3. Convergence. 

Throughout  this section we assume that (CI) is consistent, i.e., c~iC ~ =~ 0. Our main 
result is now easy to state. 

THEOREM 1. (Global convergence). Suppose the assumptions above concerning 
weights, relaxation, approximation and consistency are in force. Then every sequence 
{x k} generated according to algorithm (2.2) converges,for arbitrary initial point x °, to 
a point solving problem (CF). 

It simplifies the main argument to single out two auxiliary results. 

LEMMA 1. Suppose C is a closed convex non-empty subset of  some Hilbert space. Let  
P be the orthogonal projection onto C, and denote by 

R = I + = ( P - I ) ,  ~te[0,2], 

an associated relaxation. Then 

(3.1) a t l x -  Pxll 2 <_ t l x - c H  2 - l I R x - c H  2 fora l l  c e C ,  

where a = ot 2 when ~ [ 0 ,  1], and a = 1 - (I - -  ~)2 otherwise. 

PROOF. When ~t e [0, 1], we have 

(3.2) IIx - Rx[t 2 <- I[x - cH 2 - IIRx - cll 2 for all c e C .  

This Pythagoras type assertion is proven in Auslender [4,Thm. V:1.1] when 
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ct = 1. It  can also be shown to hold for ct ~ [0, 1]. The  left hand  side of  (3.2) equals 
~21Ix - Pxll  2 so that  (3.1) follows. In  general, R x  - P x  = (1 - =)(x - Px),  so that  

I[Rx - x[I 2 = IlRx - Pxl] 2 + 2 ( R x  - P x ,  P x  - c )  -4- [IPx - cl[ 2 

= (1 -- ~)2 ]Ix - PxH 2 + 2(1 - ~ ) ( x -  P x ,  P x  - c )  + I [ P x -  cll 2 

where ( x  - P x ,  P x  - c )  >_ 0 for all c ~ C. Thus,  ct > 1 implies 

(3 .3 )  [IRx - ct[ 2 _< (1 - ~)2 fix - ex i t  2 + llPx - cH 2 f o r  a l l  c ~ C .  

In  (3.2) we set ~ = 1, and add to (3.3). This  yields immedia te ly  the desired 
conclusion. • 

LEMMA 2 [2]. Le t  C be a closed convex  non-empty  subset  o f  some Hi lber t  space. 

Then  f o r  every  ct ~ [0, 2], c ~ C, and x q~ C, we have 

(3.4) {Ix' - c[l < [Ix - cl[ (1 - aflZd2(x, C)/2 [Ix - cl[2), 

where  x '  = x + ~ ( P n x -  x ) e R ( x , ~ )  f o r  some H e H ( x ) ;  a is defined in (3.1) and 

l~ = d(x, n) /d(x ,  C). 

PROOF. For  a rb i t ra ry  x ~ C, and  H ~ H(x) ,  a hyperplane  selected in (2.1), denote  by 
H -  the associated halfspace containing C. 

Note  that  

d(x, n - )  

Consequent ly ,  setting C = H - ,  

IIx' - c l l  2 -< Ilx - 

= I I x -  

= I L x -  

< ILx - 

= d(x, 14) = ~d(x, c).  

P = P n - ,  and  x'  = R x  in (3.1), we obta in  

cll 2 - a [Ix - PHxI[ 2 

cll 2 - ad2(x, H)  

cll 2 _ a[32d2(x, C), 

c[12[1 - afl2 d2(x, C)/2 llx - c112] 2. 

N o w  take the square roo t  on bo th  sides to get (3.4). • 

PROOF OF THEOREM 1. The assumpt ion  on relaxat ion (2.5) ensures that  we m a y  find 
a ~ (0, 1) such that,  apar t  f rom finitely m a n y  k, 

a < { ~ 2 k  if ~ i k ~ ( 0 , 1 ]  

- - (1 - ~ik) 2 otherwise. 

With  no loss of  generality, let us assume that  this inequali ty holds for all k. 

Similarly, by (2.6) we m a y  find fl > 0, such that  

flik>--fl for all i a n d k .  

Then  (3.1) implies 
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( 3 . 5 )  afl2d2(x k) < a f i x  k - -  P/kxkl l  2 < t l x  k - -  ell  2 - -  I I g ~ k x  k - -  ell 2 

for all c ~ C~, where P~k denotes the projection onto a halfspace containing C~, chosen 
according to the rule (2.1), and R~k is the associated relaxation. 

Now multiply (3.5) by 2/k, sum over i, and use the convexity of I1" - cll 2 t o  obtain 

(3,6)  aft 2 ~ ).ikd2(x k) <__ HX k -  C[[ 2 - - I [X k+I  - -C[I  2 
i=1 

for all cec~{Ci:  21k > 0}. 

(3.6) tells that the sequence { ]1 x k - c ]I } is monotone decreasing, thus convergent for  
every c e c~lC/. It also tells that {x k} is bounded, hence the sequence has at least one 
accumulation point x. Suppose, for the sake of the argument, that some such point 
x belongs to niCi. Then the monotonicity of(tlx g - xlI) implies tIx k - xH ~ 0, and 
the proof would be complete. 

Therefore, assume there exists an accumulation point x ¢ c~/Ci, henceforth ke/at 
fixed. To derive a contradiction also fix an arbitrary c e c~/Ci. We record, as follows 
from the monotonicity of(]lx k - c11}, that 

(3.7) IIx - cll -< IIx ~ - ell for all k > 0. 

Define the index set 1+ :=  { i l x E  C~}, and its complement 1- := {1 . . . . .  m } \ l  +. 
Choose a closed ball B centered at x such that B n C / =  0 for all i ~ I - .  For  each Ci, 
i ~ 1-,  we next underestimate the very last term in (3.4) by the number 

: = aft 2 (mini~t-y~nd(y, Ci))/(2 maxi~ I-, r~B II Y - c tl 2). 

Note that ¢ ~ (0, 1). Also, if xk~ B for some k, and x/k is selected according to the 
rule (2.1): 

x ik ~ Ri(x  k, O~ik), 

then by (3.4) and the definition of ~, 

~ I l x k - - c l I ( 1 - - ¢ )  if i ~ I - ,  and 
IIx/k - ell _< ( l l x  ~ _ cll  otherwise by (3.5). 

On such an occasion, when x k does indeed belong to B, multiply the last inequality 
by ~qk, and sum over i to obtain 

I I x  k + l  - ell  _< IIx k - cll ( ~ / ~ , ÷  ;t,k + (1 - -  ~ ) ~ , ~ X -  2,k}-  

In particular, if 2ik > 0, for at least one index i ~ 1- ,  then the last inequality gives, 
via (2.3), for such an i, 

I lx k + l  - ctt  < I lx k - ctl (1 - ~2i~)  _< t tx ~ - ctl  (1 - ¢ 2 )  < f ix - c l l .  
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provided the radius of B is small enough. However, this contradicts (3.7). Therefore, 
2~k = 0 whenever i ~ I -  and x k ~ B. This shows, upon invoking (3.6) with x in place of 
c, that 

xk ~ B =~. xk + l ~ B, 

and consequently, since the radius of B can be selected arbitrarily small, the entire 
sequence (x k} converges to x. By hypothesis di(x) > 0, for at least one i. Sum (3.6) 
over k, and use (2.3) to get, for such an i, the contradiction 

(3.8) + ~  = aft 2 ~ 2ikd2(x k) < Ilx ° -- eli 2. 
k=O 

Thus, we cannot maintain that an accumulation point x of {x k) falls outside c~C~. 
This completes the proof. • 

REMARK. If in algorithm (2.2) some worst violation is always considered (see the 
remark following the assumption on the weights), then the above proof can be 
substantially simplified. Indeed, before (3.7) we would note that (2.3) and (3.6) imply: 

af122maxidi(x k) < tlx k - c l l  2 - llx k+l - clt 2 for all cEc~iC i. 

Consequently, di(x k) ~ 0 for all i = 1 . . . . .  m, as k ~ ~ ,  and thus all accumulation 
points of {x k} must belong to n~C~. • 

Clearly, (2.3) and (2.4) imply that 

(3.9) ~, 2ik= + ~  for i = l  . . . . .  m. 
k=0 

We shall see that if n~C~ has non-empty interior, then (3.9) suffices for conver- 
gence. 

THEOREM 2. Suppose int n~Ci # 0, that (3.9) holds, and that the assumptions on 
relaxation and approximation are in vigour. Then every sequence {x k} generated by 
(2.2) converges, for arbitrary x °, to a point solving problem (CF). 

PROOF. For  arbitrary c e c~iC i, the monotonicity of { ]lXk -- CH }, see (3.6), ensures 
that any two accumulation points x, x' of {x k} satisfy Ilx - ell  = I Ix '  - clL. But 
int niC~ # 0, implies x = x', i.e., {x k} converges to some unique x. I fx  ~ C~ for some i, 
then sum (3.6) over k to have the contradiction (3.8) anew. • 

4. An interior point algorithm. 

This section aims at explaining how (2.2) may function in practice. In this 
endeavour we shall slightly generalize an algorithm of Aharoni et al. [2]. 
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Throughou t  this section assume that  int Ci ~ ~) for i = 1 . . . . .  m. 
This interior point  a lgori thm is executed as follows: 
Initialization: Choose  x ° ~ ~" and c ~ ~ int Ci, i = 1 . . . . .  m, arbitrary.  

DO for k = 0, 1 . . . .  until convergence the following 

l t era t ive  step: For  given x k, set x k+ 1 :=  0 and DO for i = 1 . . . . .  m, 
1) If 2ik > 0, go to 2; otherwise continue. 
2) If x k ~ Ci, go to 3; otherwise set x ik : = x k, and go to 4. 
3) Consider  the segment &k = Ci n [c i, xk]. Find a point  zik s [C i, xk]\ int  C~ such 

that  

(4.1) IIx k - z'kll -> a M ( x  k, S,0.  

where alk e [0, 1] is a given parameter .  Also find a hyperplane/ / ik  through Zig that 
separates Ci f rom x k. Finally, let x ik : = x k + Cqk(PH, x k -- xk), and go to 4. 

4) Set x k+ ~ :=  x k+ ~ + 2ik xik, and continue. 

THEOREM 2. Suppose  the assumpt ions  concerning weights,  re laxat ion and consist-  

ency  hold. Also  suppose that the parameters  ~Sik in (4.1) satisfy 

(4.2) liminf6ik > 0 f o r  i = 1 . . . . .  m. 
k~Go 

T h e n  the interior point  a lgori thm converges,  f o r  arbi trary  x °, to a solution o f  (CF). 

PROOF. It suffices to show that  the assumption (2.6) on approximat ion  is satisfied. 
If x k ~ Ci, then, by elementary geometry,  

fix ~ - pu,kxktl/ItX k - ziklt = lie i - Pn, cil[/llc i - zikll. 

Therefore,  by (4.1) 

flik = d(xk, nik)/d( xk, El) >- d(x k, n ik) /d(x  k, Slk)) > ]IX k -- P.,kxkll aik/ l lx  ~ -- z*kll 

= IIc*-- en, .cql  a , ~ / l l c * -  z*kll >_ d(c i, b d C i ) a , ~ / l l c , -  z*kll 

where bdC~ denotes the boundary  of Ci. Now the desired inequality (2.6) follows 
from (4.2), m i n i d ( c ~ , b d C i ) > O ,  and the fact that  m a x l s u p k l l c i - - z i k l t  > 0 ,  is 
bounded.  • 

This algori thm can often be made  more  amenable to implement.  For  that  purpose 
suppose Ci = {x I fi(x) -< Yi}, with f/: R" --+ R convex and f i(c i) < Yi for some c i, 

i = 1 . . . . .  m. Then the interior point  algori thm stated here above comes naturally in 
a more  concrete version. Namely,  step 3 goes as follows: 
3') When f i ( x  k) > Yi, and 2ik > 0, let c ik ~ [c/, x k] solve the equat ion f~(c ~k) = Yi, and 

find z ik ~ [c ik, X k'] such that  

fi(zig) >- Yi, and HX k - -  zikll _> aik IIx k - clkll. 
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where CSik ~ [0, 1] is a prescribed parameter. Choose a subgradient gig C= ~fi(zik), ~fi 
denoting here the subdifferential of f~, see [23], and let 

(gi~, zik _ xk~ 
xik = xk + ~l~ llglktl2 gig. 

5. Concluding remarks. 

Problem (1.1) can also be solved by well established methods of non-differentiable 
optimization. Granted c~iC i ~ ~), one chooses a convex function f: ~" ~ • such 
that 

(5.1) a rgminf  = (~ Ci, 
i = l  

and proceed to minimize f by, e.g., subgradient methods of Shor, Ermoliev and 
Polyak, see Shor [23]. Consult also Oettli [19]. Such methods have several advan- 
tages. 

First, the Slater condition int ~ Ci :~ ~, implies finite convergence. This is also 
i = l  

manifest in a method of De Pierro and Iusem [22] akin to Polyak's variant of the 
subgradient algorithm. 

Second, subgradient methods identify inconsistency fairly quickly. Third, since 
the optimal value inf(f) is often known in (5.1), one may rather solve a program: 

minj0(x) s.t. f ( x )  < inf(f), 

where the convex criterion f0 is chosen to identify solutions enjoying more desirable 
properties than just feasibility. 

By contrast, algorithm (2.2) may suffer from slow convergence even if int (] Ci 
i=1 

~). This phenomenon has been studied by Goffin [11, 12]. Roughly speaking, 
problem (1.1) is poorly conditioned for (2.2) if N}"= 1 Ci is "flat", i.e. if some tangent 
cone of this set has small solid angles. Also, inconsistency may be harder to detect, 
and no preference governs the choice of an x solving (1.1). 

These drawbacks should not however, make one overlook the computational 
efficiency of algorithm (2.2). One attractive feature of (2.2) is that only one or few 
constraints are considered at a time. In fact, this ability is the basic and great 
advantage of socalled "row-action" methods [6]. Admittedly, such methods may 
loose against other methods on small problems (CF), but they are attractive and 
compete very well for efficient solution of large scale, sparse instances. An addi- 
tional, important advantage is that different constraints may be handled by different 
parallel processors. As brought out in (3.5) such processors can, at stage k, perform 
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several relaxed projections before they hand their results over to a center that 
aggregates by means of weights 21k, as in (2.2). 
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