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Abstract 
In this paper, Von K~rmb.n's set of nonlinear equations for rectangular plates with 

large deflection is divided into several sets of linear equations by perturbation method, the 

dimensionless center deflection being taken as a perturbation parameter. These sets of  linear 

equations are solved by the spline finite-point (SFP) method'and by the spline J'mite 

element (SFE) method. 7"he solutions for rectangular plates having any length-to-width 

ratios under a uniformly distributed load and with various boundary conditions are 

presented, and the analytical formulas for displacements and deflections are given in the 

paper. The computer programs are worked out by ourselves. Comparison of  the results with 

those in other papers indicates that the results of this paper are satisfactorily better. 

I. I n t r o d u c t i o n  

Elastic thin plates are widely used in aviation, chemical industry and shipbuilding. If the 
transversal displacement, i.e. deflection, of a thin plate is far less than its thickness, the results 
calculated on the basis of the Kirchhoff's theory are considerably satisfactory, However, when a 
thin plate of metal is used, and the ratio of its deflection to thickness is nearly unity, even greater 
than unity, the calculated results certainly quite-differ from the parctical situation if the theory of 
small deflection is still used. Therefore, the formulas and charts for designing or checking this kind 
of metal thin plates in their engineering use must be derived from the theory of large deflection. 

The spline function method, as a method of numerical fitting, was first presented by I. J. 
Schoenberg, and up to now a great number of papers have been publishexl. Especially, the rapid 
development of electronic computers and numerical techniques, as powerful tools, has been greatly 
supporting the wide application of spline functions. 

II. C o n s t r u c t i o n  of  Spline Base  F u n c t i o n s  

A piecewise expression of cubic spline function is 

(x ' t -2)  s ( - - 2 ~ x ~ < - - l )  

~_{ (x+2)s-4(~+l) ' (-I<x<0) 
q~.(x)= ( 2 - - x ) 3 - - 4 ( 1 - - x )  s ( 0 < x ~ l )  

(2--x) s (l<x<2) 

0 (Ixl>:2) 
Suppose that the trial displacement function expressed in terms ofcubic spline base functions is 

429 



430 Pan Li-zhou and Chen Wei-zhong 

N §  

S ( x ) =  3--'. a,'~,(x) 

where a e arc coefficients to be determined and ~ ( x )  a set of base functions associated with cubic 
splines. In order to express boundary conditions in a simpler form, ~ ( x )  are defined in the 

interval [x0,xt~ ] with h . - - - - ( x s - x o ) / N  by the following functions: 

't'-,(x) =~~176 + I ) 

_ / X - - X o ~  4-/x-x~ �9 o ( X } = , p , L ~ / -  v , ,L~- , -J  ) 
t x - x 0  [ x - x 0  ~ x - x 0  

r (x) =~'.~ x--x0 
h. 2 ) 

" ~  ~o r - -  N + 2  ) \ h, 

1 _ N \  1 

�9 =,+, ( x ) - - - - - q T s ( ~ - - N - - t  ) 

With the base functions presented above, when x = x o, we have ~ (x~) = 0 (i ~ -- 1 ) ,  and 

~ ( x o ) = 0  (id:--19 0) ; when x= xN, wehave ~(x~v)~-0  ( i ~ . N + I )  ,and~(x~v)----0 
(';4:1V~ N + I )  Thus, functiofis ~ ( x )  make it very convenient to treat .displacement 

boundary conditions. For example, when an edge is free,we take all the functions tp~(x) ; when 
an edge is simply supported. ~ _ l ( ~ )  ( o r ~ §  to be deleted; when an edge is clamped or 
built in, ~ _ t ( x )  and ~0 (x )  (or tP~(x) and ~ v §  ) are to be deleted. 

HI. The Functional Form of Perturbation Equations 

A metal thin plate of length 2a,width 2b, and thickness h, as shown in Fig. 1, will produce its 
interior displacement, deformation and traction under the action of uniform transversal load q. 
U(x, y), V(x,.u) and W(x, y) represent the displacements of points of the mid-plane in x, 9. and z 
directions, respectively. The displacen.~ent in z direction is also referred to as deflection. These 
displacements arc functions of the coordinates x and y only, so they are independent of the 
coordinate z. 

Von K~irm~n's dimensionless equations for large deflection of a rectangular plate in terms of 
displaccment~ are 
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2at " J l  

2"- 
Fig. I 

0Zu . l__#)A~--~-z +(1-- --02o 
~.e, + ( t u ) ~ o-~ ~ 

. O w  / OZw , 2zO2w'~ - ( 1 - u ) - - ~ - k - - ~ - ' -  a--~-/ 

. 1+ i ,  o - o~  ~ a ~ { o ~ , ~ 2  I 

- 2  OZv . 92v  OZu 
2~ ~ ( l - - U )  ~ U  + (1 +U)a  050~ 

- - - O w  / O z w  . - 2 0 2 w \  

l+/~t O O w  2 z Ow 2 

O ' w  o,12 0 4 w  • ,~' 04W 
O~' + ' ' '  ~ T Orl" 

�9 O z w /  Ou _ Ov - - - 2 0 2 w / -  Ov  _ 8 u  \ 
= Q  + ~ r k - ~ - *  ua - ~ - )  *"  ~ k , - g C * u ~ U )  

O~w{,l Ou . Ov "X . 1 Oztu 
+ ~(1--~')  o ~ , - - g C + - ~ )  -~ 2 o~" 

+ aw ~ + ] d ( t _ u )  o.~ o~ a~oq 

(3.1) 

where: 

a x .U !2aU 12ag 
2=-b-- , ~=a-- ~ r/=-~-; u =  h z , v----- h' 

w :~4JT(1-~')qa '  
w = Z ~ " - 3 - T '  O = "  Eh" 

in which E is Young's modulus and # is Poisson's ratio of the material of the plate. 
The dimensionless center deflection of the rectangular plate is 

(s.z) 



432 Pan Li-zhou and Chen Wei-zhong 

wo=w(O,O):2~-'3-Wo/h (3 .3)  

Taking this center deflection as a perturbation parameter, we assume the following series 
expansions: 

O = = ~ = , - F a , w :  +a~=l  + " .  "~ 
u=s,(L,1)wl +s,(L,~)=l +. . .  
v=t,(~,,i)wl +/ , (L . )w l  +,-. (s .  4) 

w = w , ( L  rDw0 +w~(~,  r~) t~ 0' + --. 

where the coefficients in the expansion of w must satisfy the following conditions: 

,.,,,(o.o) = i ,  ~ , ( o , o )  =, , . , , (o,  o) . . . . .  o ( s . s )  

Substituting series expansions (3.4) into equations (3.1) and equating the coefficients of like 
powers of w, , we obtain the following successive sets of equations: 

I. The first set  o f  equat ion 

8~uli .l_ o2~ O'w~ + / l i ~ l  = czt (3 .6 )  

2. The second set  of  equat ions  

O's, . (1--#)~ '0 's '~  + (1--  "~ 0't,  

'+'- ' " r [ , , , , ,  
2 o f L ~ . - ~ - I  \ ,1 

2-z O:ti azt.~ . . . .  O=s2 tt --~'-"t" ( I - - /x ) - -~- i - - t "  ( 1-1" /x ) 'r ~ 

. . , , .  Owl [O~Wi _ ~ : O l w l ~  = - ( ~ - # j , , - ~ - k - ~ - c - , - , ,  - -~ , - /  

+~, l ~_~_r (. o,.,,, _y+ a, (. ow,_/,1 
" lit# L k T /  i T !  ] 

3. The th i rd  set  of  equat ions  

#lws~_ ~2  04wa 1,.~4w3 
O~' . . . .  ~ + "" Or# ~ 

, Ozmt/ as2 .: #t2 ~ . : ~  02wi/': Ot, -I- Os~ \ 

+ 1 a'z, u l [ [  Owl .~i ~=I awl \=-] 
T aa~-LtT/  +' ' "  t-~-~-) J 

1 j :  O~wlP/,tilOwi \~+ /Oral \z] 
-g -~G'-L k.-~-) vk--~-.)J 

..O~wl[. Os~ __ Oil N- - , ' ,  . ,,t~ 8Wt 

( 3 . 0  

Ow~ a'w, (3 .8)  
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and so on. 
We shall solve the first three sets of equations only, as they will give us the results with sufficient 

accuracy for engineering purposes. It is rather difficult to solve analytically these equations along 
with certain boundary conditions. In this paper, approximate solutions are carried out with the help 
of variational principles. To do this we transform these perturbation equations into corresponding 
functionals as" follows: 

1. The  f u n c t i o n a l  o f  t h e  f i r s t  o r d e r  

JT~-- ~' ( '  [ l /.@zws-~z -~ A' { O'uh'~" .1 . 8Swz " 

2. The  f u n c t i o n a l  o f  t h e  second  o r d e r  

L~, 8 ~ 1  - I - } C 1 - . ) ~ ' ( ~ ) '  

+ } ( 1  + # ) / , ( ~ - ~ -  +. ~t, . . . .  } 

1 at,  ' ~ p ( a t , ~ ,  + 

8w~ 8"w~ zOzw~ 1 

1 8 8uh 

3. The  f u n c t i o n a l  o f  t h e  t h i rd  o r d e r  

IV .  

( 3 . 9 )  

(3.10) 

n.=j,_j,_ 1 Iza 'w,V , a 'w."  
I T k e - - ~ / + a  (0 -~)  a , a'w. �9 

rSswll  Ost _ .~ 8is ~ j  . ~ w , l .  8t z _ 88, \ 

+r as, ~_ at, .~= z a '=ffl  aw, v 

. . I  Ow~ \"] _ 1 . ,  OSm~l'.,lOwl .~t l o w , \ 1  
fan 

8tl ~ 11 j 

These functionals require the trial displacement functions to 1~ of C a continuity only. 

Solution by the,Spline Finite-Point(SFP) Method  

The spline finite-point method is baseii on splines, orthogonal functions and variational 
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principles. The trial functions for deflections vai and vas are linear combinations of products of 
splines and orthogonal functions, which are taken from the mode functions of  a vibrating beam. 

And the trial displacement functions, s 2 and t 2, are linear combinations of products of  splines and 
trigonometric functions. 

Suppose tliat the trial displacement functions of the rectangular thin plate are 

va,(~,n)--- 5-I. X,,(~)Cg)(~)]{a},, 
11,-1 

s,(&,~) = E s.,(~) r o ( O  ]{b}., 
m,- - |  

t,(&,~) = ~ s . (~ )  Cr 

(4.1) 

w , ( ~ , n ) = ~  X . ( ~ ) [ O ( ~ ) ] { d } .  

where X,~(~) are mode functions of a vibrating beam, 

S, ,(~)are trigonometric functions, 

{a}. ,=Ea_,, .  ao,,. a,,., -.. a~,., a ~ . , . ]  T 
. . . I t .  

+ c3sh--~-- (I +~)+ c,ch -~-( I  +~) 

in which the parameter /~., and the coefficients c~, c 2, c~ and c 4 will be determined by boundary 

conditions. If we take S, , (8)  = s i n - ~ - ( l + 6 )  , then we have s~=t2=0 at ~ =  +1  

Substituting the expression vat from equation (4.1) into the functional (3.9), we obtain 

H,=2-'~a}T[G]{a}--al{a}~'{f} 
Taking the first variation of fhis functional, letting it be equa ! to zero, namely #H~/a{a}----.{ 0 } 

and considering the central condition va~ (0,0)= !, we can write the result in matrix form as 
follows: 

where: 

col o J  J=L i -' 

[.gl=CCg]~ Col, "" COI.], 
Cg] .=rx . , (o) r  x.,(O)Oo(O) ... x . , ( o )o .§  
{f}=[-{f}~ {f}r ... {f}r],, 

(4.2) 
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Lf'_, X,,(~)EOO1) ]rd~drl, 

{a].----E~a}~ .[a]., T ..- {a},r] ~', 

{a l . , , ,~Ea_ l , , , ,  ao , , ,  a , , , ,  . . .  a s + x , , , , ]  ~' 

[G] ----- G . ,  - - - -  AcFn + 2).ZBcB~ + 2'F~A~, 
f l  I t  I I A r  X,,X.d~, B e =  X,,X.d~, Fr X,,X,d~, 

-I I I 

A~---- [O"]rEO~']drl, B~= [~']T[O']drl, F~= [O]T[O]d~. 
l i - 1  
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Having formed matrix iG], we are to introduce boundary conditions in r/ direction. In doing 
this,we have to delete some related rows and columns. 

On solving the system of linear algebraic equations (4.2), we obtain the required coefficients {a} 
and the required load factor a~ . Hence we get the first order approximate solution w~ 

In like manner, we substitute the expressions s 2 and t 2 from equation (4.1), whose coefficients 
are to be determined, and the equation wtjust found into functional (3.10), and then we take the first 
variation of the resulting functional and ietit be equal to zero. A system of linear algebraic equations 
in unknowns {b} and {c}. is thus obtained. Solution of this system of equations will give us the 
required s:(~, r/) and t:(~, r/) hence the displacements u and v in the mid-plane of the plate to a 
second approximation. 

Substituting the fourth expression ws from equation (4. l) and the equations s 2, t 2 and wl just 
obtained above into functional (3.11), taking the first variation of  the resulting functional, letting it 
be equal to zero; and taking central condition w a ( 0 , 0 ) = 0  into account, we get a system of 
equations, whose unknowns are the coefficients {d} and the load factor as . The solution of this 
system will give us part of the deflection in third order ot'approximation, ws , and the load factor 
GS.. 

Substituting the load factors a~ and aa into the first expression of equation.(3.4), we obtain 
a nonlinear relationship between the center deflection w0 and the load O. 

V. So lu t ion  by  t h e  Spl ine  F in i t e  E l e m e n t  (SFE) M e t h o d  

The spline finite element method is based on cubic splines and variational principles. Trial 
displacement functions are made up of  linear combinations of.products of  cubic splines. 

Suppose that the trial displacement functions of the rectangular thin plate are 

N §  M + I  

 ,=EE 
I - - 1  1 - - 1  

[0]| 

N+I M+I 

i - - I  1 - - 1  
(,D = [r  | 

B+I K §  

t - - t  $ - - 1  

N+I M+I 

w,-- Y2. Y2. d , jo ,  
t l - - !  $ - - 1  

(5.1) 
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[q~]---[q~-i ~o ~l "'" q~s+,], 

[g/]  ----- [g / . i  ~o ~1 "'" g/H+1], 

4 A F - - - [ { o ~ [ ,  { o ~ .  ~ {aF,  ~ -." ~a~,+,] ~, 

{a}, -=[a , ,_ ,  a,,o a , , l  "'" a , , a+t ]  r ,  

e . l e . e  

The form of g/l is quite the same as that of q~, except that i has been changed into j ,  ~ into 
t/, he into ks , and N into M. {A}, {B}, {C}, and {D} are the same in their forms of construction. 

[~3  @ [g/] denotes the Kronecker product of the matrices [q~3 and i-g/] . 
In a similar way to those presented in the preceding section, we substitute the expressions of 

equation (5.1) suexcsively into their respective functionals. From the stationary conditions of the 
functionals together with the central conditions, we can determine the coefficients {A}, {B}, {C}, 

and {D} in the expressions for displacements and the load factors at and as . Thus we obtain 
once more the displacements u, v and the deflection w ,  and a nonlinear relationship between the 
load Q and center deflection w 0 

VI. Numerical  Examples  

(1) Square pla te  wi th  s imply  s u p p o r t e d  edges  ( /~=0.  316) 
Boundary conditions: 

U=V--_W.=OzW/Oxz=O , at x----q-a; 
U-_V----WffiOzW/OyZ---O , at y----+_a. 

The computed- results are shown in Tab. 1. 

Tab. i 

Ctl 

SFP method 

SFE method 

N ~ I O  

rm3 
I 

N~M=4 

N~M~s 

15.368122 

15.377132 

L5.sssses 

a9 

1.830996 

l.s2s241 

1.824830 

(2) R e c t a n g u l a r  p la tes  wi th  c l a m p e d  edges  (pffi 1/3)  
Boundary conditions: 

U~V..~W=cgI4Z/Ox~O, at x=--+_a 

U~ffiV,fW=aW/@y=,O~ at y~+_b.  

The computed results are shown in Tab. 2. 
(3) R e c t a n g u l a r  p la tes  wi th  s imply  s u p p o r t e d  edges  ( p = 0 . 3 1 8 )  
Boundary conditions: 
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Z O W  
U=V=W= Tx-r=O, 

- -W #*W U=V- :-6~=o, 

The computed results are shown in Tab. 3. 

Tab.  2 

at x = + a ;  

at y = - t - b .  

al 

GJ 

~=a 
�9 b 

! 
, 1 . 0  
I 
i 1.1 

1.2 P 

1.3 
t 

1.4 

i 1.5 

: ! .6 

! 1.7 

i 1.8 I 
! 1.9 

2.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

i .6  

1.7 

1.8 

1.9 

2.0 

SFE m e t h o d  

N = M = 6  

49.418480 

60.707962 

75.177101 

93.436333 

116.174629 

144.160263 

178.243362 

219.348343 

206.479995 

326.709623 

395.173431 

2.195729 

2.702238 

3.363337 

4.214519 

5.299982 

6.674306 

8.404319 

10.570469 

13.267498 

16.603344 

20.695934 

SFP m e t h o d  

N-----8, r = 2  

49.098549 

60.320473 

74.708984 

92.879036 

115.529626 

143.452316 

177.532410 

218.741913 

268.145050 

328.900360 

396.231903 

1.829208 

2.370961 

3.073061 

3.968555 

5.096636 

6.503717 

8.244557 

10.363200 

12.993663 

16.160093 

19.976143 

Rer. (7) 

49.611419 

60.951435 

75.498710 

93.868010 

116.752894 

144.923864 

179.231295 

220.602573 

270.039454 

328.613813 

397.462501 

2.001669 

2.463083 

3.084275 

3.896871 

4.940128 

6.265380 
7.939434 

10.044764 

12.675997 

15.933041 

19.913025 
i| 

Tab.  3 

~--b 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

SFP method ~/----~ M -----4 

15.377132 

18.784475 

22.926150 

27.916729 

33.082942 

40.963902 

(rs 

1.823241 

2.244918 

2.790858 

3.506788 

4.407320 

5.536526 

SFP method 

ax 

15.304720 

18.772064 

22.914030 

27.905188 

33.872201 

40.054395 

JV ---~4, r - -2  

(zll 

1.806377 

2.225749 

2.790524 

3.407758 

4.345628 

5.438225 
46.311134 

59.089729 

70.477333 

83.865421 

98.059383 
i i i 

6.938610 

6.684728 

10.773865 

13.333877 

10.422592 
T 

49.303204 

59.083546 

70.473366 

03.664003 

98.800779 

6.783527 

9.424104 

10.407569 

12.750236 

15.017929 
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( 4 )  In f luence  o f  d i f fe ren t  b o u n d a r y  cond i t i ons  on  t he  c e n t e r  de f l ec t ion  ( A = 1, 

t~ = l/3) 
The results computed by using SFE method ( I ~ - M  = 6) are shown in Fig. 2. 

2.0 

-~ t.6 

v J.2 

g o. 8 

o.4 

I �9 ' ,,,,s i / 
�9 / 

movable clamped / 

I J _  i l ! 
5 10 15 20 25 30 

p r ~ u t t  ( ~]~4 / E h  4 , 

Fig. 2 

(5) Square pla te  wi th  c l a m p e d  edges  (/L = 1/3) 
The results obtained with different divisions in using SFE method are shown in Tab. 4. 

Tab. 4 

N M oi 

4 4 4 9 , 5 5 8 3 2 3  

6 6 49 .418490  

8 8 49.401402 

12 12 49.396393 

n 

G $  

2 . 2 4 8 1 1 4  

2 . t 9 5 7 2 9  

2 . 1 8 7 9 4 1  

2 . 1 8 5 7 1 1  

VII. Conclus ions  

i. Through calculation, we see that the deflection of a plate is quite influenced by the 
displacements parallel to the mid:plane of the plate in the case of large deflection, although in the 

case of small deflection the influence is so little that it can be neglected. 
2. The spline finite-point method and the spline element method used for analysing various 

structures in regular domain are superior to the finite element method and the semi-analytical finite 
strip method in that the former has fewer degrees of freedom and more accuracy, needs less 

computing work and less preparation of  data, and givesus continuousvalues of stresses and bending 

m o m e n t s .  

3. The spline finite element method treats boundary conditions in a simpler maimer than the 
spline finite-point method does. It is especially suitable for free edges or movable edges. Since the 
spline finite element is a pieeewise polynomial, it can fit in more accurately with the displacement, 

and itscomputational accuracy is higher than the splino finite-point. 
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