Applied Mathematics and Mechanics Published by SUT,
(English Edition, Vol. 11, No. 5, May 1990) Shanghai, China

THE SOLUTION OF RECTANGULAR PLATES WITH LARGE
DEFLECTION BY SPLINE FUNCTIONS

Pan Li-zhou (%3 #) Chen Wei-zhong (BkJA)

(Shanghai University of Technology; Shanghai Institute
of Applied Mathematics and Mechanics, Shanghai)

(Received Sept. 20, 1989)

Abstract

In this paper, Von Karman’s set of nonlinear equations for rectangular plates with
large deﬂecti&n is divided into several sets of linear equations by perturbation method, the
dimensionless center deflection being taken as a perturbation parameter. These sets of linear
equations are solved by the spline finite-point (SFP) method and by the spline finite
element (SFE) method. The solutions for rectangular plates having any length-to-width
ratios under a uniformly distributed load and with various boundary conditions are
presented, and the analytical formulas for displacements and deflections are given in the
paper. The computer programs are worked out by ourselves. Comparison of the results with
those in other papers indicates that the results of this paper are satisfactorily better.

I. Introduction

Elastic thin plates are widely used in aviation, chemical industry and shipbuilding. If the
transversal displacement, i.e. deflection, of a thin plate is far less than its thickness, the results
calculated on the basis of the Kirchhoff’s theory are considerably satisfactory. However, when a
thin plate of metal is used, and the ratio of its deflection to thickness is nearly unity, even greater
than unity, the calculated results certainly quite-differ from the parctical situation if the theory of
small deflection is still used. Therefore, the formulas and charts for designing or checking this kind
of metal thin plates in their engineering use must be derived from the theory of large deflection.

The spline function method, as a method of numerical fitting, was first presented by I. J.
Schoenberg, and up to now a great number of papers have been published. Especially, the rapid
development of electronic computers and numerical techniques, as powerful tools, has been greatly
supporting the wide application of spline functions.

II. Construction of Spline Base Functions

A piecewise expression of cubic spline function is

(x+2)° (—2<lx<<~1)
(x4+2)—4(x+1)* (—1<2<K0)

w.(x)=é— Q=2 —4(1~%)*  (0<%<1)
(2—x)? (1<2<2)
0 (12]>2)

Suppose that the trial displacement function expressed in terms of cubic spline base functions is
429
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N+2

S(x)= Y, 0@«(x)

[t
where a, are coefficients to be determined and  @,(x) a set of base functions associated with cubic
splines. In order to express boundary conditions in a simpler form, @,(x) are defined in the
interval [x,,xy] with k= (xy—2x,)/N by the following functions:
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¢z(x)=fp.( x;_x" —2 )
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¢N(x)=¢a( x—;'xn - N)—4‘Pa( x-,;-'xo "N“l)

¢I+1(x)=¢s( x;’xn -N—1 )

With the base functions presented above, when x = x,, we have @,(x,)=0 (i#*—1),and

D! (2,)=0 (i#—1, 0); when x=x,, wehave D(xy)=0 (ixN+1),andd!(xy)==0

(:#N, N+1) Thus, functions d,(x) make it very convenient to treat displacement

boundary conditions. For example, when an edge is free,we take all the functions @,(x) ; when

an edge is simply suppoi'tcd. D_,(x) (or@y,,(x))is to be deleted; when an edge is clamped or
built in, @_,(x) and D,(x) (or Py(x) and Py,,(x) ) are to be deleted.

III. The Functional Form of Perturbation Equations

A metal thin plate of length 2a,width 2b,and thickness 4, as shown in Fig. 1, will produce its
interior displacement, deformation and traction under the action of uniform transversal load g.
U(x,y), V(x.y) and W(x, y) represent the displacements of points of the mid-plane in x, y, and z
directions, respectively. The displacement in z direction is also referred to as deflection. These
displacements are functions of the coordinates x and y only, so they are independent of the
coordinate z.

Von Kérman’s dimensionless equations for large deflection of a rectangular plate in terms of
displacements are



The Solution of Rectangular Plates by Spline Function

431

d*u _ 20U a
2587 +Q u)/l agan

8w\
= ( /l') 65 aéz + 26172 /

— ) (G

% v o%u
ZA’a—nz-—l- (1—u) ¥ + (14+wu)d 3Ean

)]

9w
aé-z +Az ,’2

Fi San ) (5 |

= — (1-p)A73 aw

a'w . O'w 9
aél 1‘65262.""'1 F)

77

*w ¢ ou
_o+a£2 a§+’1 )+,12 \/1 Pt ugg

3 9w
FA(I— ,u)aé_aq u )+; S

[(%%)“r“‘(%—’:)z] T S (o

w5 [ -G 5 e

where:

12aU 12aV
/1=—Z-y §=aiy ’I=%‘r‘ u= ;:z y U=z

O— 24~/ 3 (1—p*)ga*
= Ek‘

w
w =2~/§T’

in which E is Young's modulus and gz is Poisson’s ratio of the material of the plate.

The dimensionless center deflection of the rectangular plate is

y  (3.1)

(3.2)
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w,=w(0,0)=2"3W,/h (3.3)
Taking this center deflection as a perturbation parameter, we assume the following series
expansions:
Q=a,w,+aw} +awi + -

u=sl(§pn)w: +sc(£.7))w3 + ene

o=t(€,m)wi +1,(&, Ml + (.4
w=w,(§,Mw,+ws(§,n)ws +
where the coefficients in the expansion of w must satisfy the following conditions:
w,(0,0)=1, ws(0,0) =w5(0,0)="-+-=0 (3.5)

Substituting series expansions (3.4) into equations (3.1) and equating the coefficients of like
powers of w, , we obtain the following successive sets of equations:
1. The first set of equation

2w,

4
ok 2de T 4 3.6)
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2. The second set of equations
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and so on.

We shall solve the first three sets of equations only, as they will give us the results with sufficient
accuracy for engineering purposes. It is rather difficult to solve analytically these equations along
with certain boundary conditions. In this paper, approximate solutions are carried out with the help
of variational principles. To do this we transform these perturbation equations into corresponding
functionals as follows:

1. The functional of the first order

M 1 TG T S PR

2. The functional of the second order
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3. The functional of the third order
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3&an.
[a w, 88; #A%—)+l’azw’(/l as'
o e Y
+ult aw,‘) ]+—/1z at w][lg ow, ) (awl ) ]
+a-m Paﬂuﬁ’l i:;;l gggr;]wa}d&‘"' (3.11)

These functionals require the trial displacement functions to be of C? continuity only.
IV. Solution by the Spline Finite-Point (SFP) Method

The spline finite-point method is based on splines, orthogonal functions and variational
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principles. The trial functions for deflections w, and w, are linear combinations of products of
splines and orthogonal functions, which are taken from the mode functions of a vibrating beam.
And the trial displacement functions, s, and 1,, are linear combinations of products of splines and
trigonometric functions.

Suppose that the trial displacement functions of the rectangular thin plate are
N\

w (&, n)= Z Xn(E)EQ(U)J{a}n

m=~1

5,(6,1) =Y Sn(E)(P(n) b} m

mel

r 4.1
t,(£,7)=2_ Sn(5)[P(n)1{c}m

M=l

wy(£,n)= Z Xn(E)[DP(n)1{d}m

m=1 )

where X ,(£) are mode functions of a vibrating beam,
S»(£)are trigonometric functions,

(P()1=[D., D, D, ++» Py Dy,y],

{atm=0[0_1,m Go,m G1,m " ON,m Byy1,m]7

Xm(£)=c;sinL;—(] +£) +¢, cos "g (148)

+eishEP-(146) + cch £2-(1+8)
in which the parameter' ua and the coefficients €,, ¢, ¢, and ¢, will be determined by boundary
conditions. If we take S,(&)= sin%’i—(1+£) ,. then we have s,=t,=0 at f=+1}
Substituting the expression w, from equation (4.1) into the functional (3.9), we obtain
I1,=2"{a}?[Gl{a} ~a,{a}7{f}

Taking the first variation of this functional, letting it be equal to zero, namely @8/1,/8{a}=4{0}
and considering the central condition w, (0,0)=1, we can write the result in matrix form as

follows:
[G] —{f} {a} {0}
[ 1] o
(a1 0 a; 1

Lg]=(Cgl: Cgl: - [gleds
Cg}m=[Xn(0)¢-1(0A) Xm(o)éo(o) bk X.,(O)(p}“,;(())],
Y=L AT - 577,

where:
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fha= [ Xa®)r(m)17dgdn,
{a}=[{a} {a}7 - {a}7]7,

{atmn=[€-\,m Go,m G1,m al}'u.m]’

[Gl=Guu=AFo+24*BeBa+A*F s As,
rd! 1 1
Ag= | xrxudg, Be={ XiXide, Fi=| XaXudt,

ay= (" (00170 1dn, Bo={" (017007 1dn, Fos| 017002,
' Having formed matrix fG], we are to introduce boundary conditionsin 5 direction. In doing
this,we have to delete some related rows and columns.

Oni solving the system of linear algebraic equations (4.2), we obtain the required coefficients {a}
and the required load factor @, . Hence we get the first order approximate solution w; '

In like manner, we substitute the expressions s, and ¢, from equation (4.1), whose coefficients
are to be determined, and the equation w, just found into functional (3.10), and then we take the first
variation of the resulting functional and let.it be equal to zero. A system of linear algebraic equations
in unknowns {b} and {c} is thus obtained. Solution of this system of equations will give us the
required s,(£,n) and #,(£,n) hence the displacements u and v in the mid-plane of the plate to a
second approximation.

Substituting the fourth expression w; from equation (4.1) and the equations s,, ¢, and w, just
obtained above into functional (3.11), taking the first variation of the resulting functional, letting it
be equal to zero, and taking central condition w;(0,0)==0 into account, we get a system of
equations, whose unknowns are the coefficients {d} and the load factor a, . The solution of this
system will give us part of the deflection in third order of approximation, w, ,and the load factor
Qs..

Substituting the load factors @, and a; inte the first expression of equation.(3.4), we obtain
a nonlinear relationship between the center deflection w, and the load Q.

V. Solution by the Spline Finite Element (SFE) Method

The spline finite element method is based on cubic splines and variational principles. Trial
displacement functions are made up of linear combinations of products of cubic splines.
Suppose that the trial displacement functions of the rectangular thin plate are
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where:
(Ppl=[D., D, ¢l_ ~ Pyaly
[W]=[W.,, lpo wl wln];
{4t=[{a}I, {a}7 {a} - {a}§n.]",

{a}e=(ay, -1 Gi,q 5,1 *** G4, ma],

The form of ¥, is quite the same as that of ¢, except that i has been changed into j, £ into
7y hginto h, ,and Ninto M. {4}, {B}, {C}, and {D} are the same in their forms of construction.

(@] ® [(¥] denotes the Kronecker product of the matrices {D] and [¥] .

In a similar way to those presented in the preceding section, we substitute the expressions of
equation (5.1) succesively into their respective functionals. From the stationary conditions of the
functionals together with the central conditions, we can determine the coefficients {4}, {B}, {C},
and {D} in the expressions for displacements and the load factors @, and a; . Thus we obtain
once more the displacements u, vand the deflection w , and a nonlinear relationship between the
load Q and center deflection w,

V1. Numerical Examples
(1) Square plate with simply supported edges (u=0,316)
Boundary conditions:
U=V=W=0’W/ax"=0 y at x=+a 5
U=V=W=0W/[0y*=0 , at y==a,

The computed: results are shown in Tab. 1.

Tab. 1
a as
SFP method N=18 | 5 s6e122 | 1.830096
r=3
N=M=4| 15.311132 1.823241
SFE method -
N=M=26 15.383663 1.824830

(2) Rectangular plates with clamped edges (u=1/3)
Boundary conditions:

U=V=W=0W/0%=0, at x=Za;
U=V =W=0W/dy=0, at y==b,

The computed results are shown in Tab. 2.
(3) Rectangular plates with simply supported edges (u=0_316)
Boundary conditions:
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*W
U=sV=W=—-==0, at x=1a;
ax
W
U=V =W=""3=0, at y==1b,
ay
The computed results are shown in Tab. 3.
Tab. 2
‘ _a SFE method SFP method
P A=y N=M=s N=s, r=2 Ref. (7)
i 1.0 49 .418480 49098549 49611419
| 1.1 60,707862 80,320478 60.951435
: 1.2 75.177101 74.708984 75.498710
{ 1.3 93,436333 92879036 93.868010
! 1.4 116.174629 115.520626 116.752894
a ! 1.5 144.160283 143,452316 144923864
: 1.6 178,243362 177.532410 179,231295
f 1.7 219,348343 218,741913 220602573
I 1.8 268 ,479095 268,145050 270039454
! 1.9 326.709623 326.900360 328.613813
2.0 395,173434 396,231903 397,482601
1.0 2.186729 '1.829208 2.001669
1.1 2.702238 2,370981 2.463083
1.2 3.,363337 3.073061 3.084276
L.3 4.,214519 3.968555 3.806871
1.4 5.209982 . 5.096638 4.940128
as 1.5 6.674306 6.503717 6.265388
1.6 8.404319 8.244557 7.939434
1.7 10,570469 10,383200 10,044764
1.8 13,267498 12,993663 12675997
1.9 16.603344 16.160093 15,833041
2.0 20,695934 19,976143 19,913025
Tab. 3 N
SFP method N=M=4 SFP mcthod N =4, r=2
A= a as ay as
1.0 16.377132 1.823241 16.364720 1.808377
1.1 18.784475 2,244918 18.772064 2,225749
i.2 229261569 2.796858 22.914036 2,790524
1.3 27.916720 3.506788 27,905188 3.487758
1.4 33.882942 4.407320 33.872261 4,345628
1.5 40963002 5.538626 40,954395 5.438225
1.8 49 311134 6.938610 49,303204 6.783527
1.7 59,089729 8.684728 59,083546 8.424164
1.8 70.477333 10,773866 70.473366 10,407569
1.8 83.865421 13,333877 83.664063 12,786238
2.0 98,860383 16.617829

16 .422692

98.860779
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(4) Influence of different boundary conditions on the center deflection (=1,
B=1/3)
The results computed by using SFE method (N=M=6) are shown in Fig. 2.

2.0 L A Cal T T

.
—~ movable clamped
T L. 6} // clamped ]
£ 2 *
o 1.2k /
5 L // ]J
% 0. 8r /
b o 3
s 0.4f E
5t 1
| — ) L 1 )
0 5 10 15 20 25 30

pressure ( gat / ER*
Fig. 2

(5) Square plate with clamped edges ( 4 =1/3)
The results obtained with different divisions in using SFE method are shown in Tab. 4.

Tab. 4
N M o as
4 4 49,5568323 2.248114
) 6 49.418480 2.195729
49 ,401402 2.187941
12 12 49 ,396393 2.186711

VII. Conclusions

1. Through calculation, we see that the deflection of a plate is quite influenced by the
displacements parallel to the mid-plane of the plate in the case of large deflection, although in the
case of small deflection the influence is so little that it can be neglected.

2. The spline finite-point method and the spline element method used for analysing various
structures in regular domain are superior to the finite element method and the semi-analytical finite
strip method in that the former has fewer degrees of freedom and more accuracy, needs less
computing work and less preparation of data, and givesuscontinuousvalues of stresses and bending
moments,

3. The spline finite element method treats boundary conditions in a simpler manner than the
spline finite-point method does. It is especially suitable for free edges or movable edges. Since the
spline finite element is a piecewise polynomial, it can fit in more accurately with the displacement,
and itscomputational accuracy is higher than the spline finite-point.
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