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Abstract 

In this paper, a problem of identifying possibly discontinuous diffusion coefficients in parabolic 

equations is considered. General theorems on existence axe proved in L I setting. A necessary 

condition is given for the solution of the parameter estimation problem. 
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1. I n t r o d u c t i o n  

We consider the following system: 

Tt 

o,,, - ~ O., (a(=)O.,.) = S ( = , t , ~ , ) ,  
i : l  

~,(=,o) = ~ , o ( = ) ,  

~(=, t) = 0, 

(=, t )  e Qr ,  

c E a ,  

(=,t) ~ st ,  

(i) 

where ft is a bounded domain in R "~ (n _> 1), T is a constant with 0 < T < co, QT ---- 
{(=,t) : z ~ n, t ~ (0,T)}, ST = {(z,t) : = ~ On, t ~ (0,r)}. We will assume that 
a(=) 6 L~(~), and moreover, a(z) E A,,a, 

A°d = {a(=) e L~(a) : 0 < vl < a(=) < v2 a.e. in a}. (2) 

The parameter estimation problem for (1)and (2) is to determine the coefficient a(x) in 
such a way that the solution u(x, t, a), which is the solution of the problem (1) corresponding 
to some a(x) E Aad, "matches" the observed information u*(x, t) of (1) in a prescribed sense 
(see [1-3] for general information). 

To be precise, we say that the coefficient a(x) E Ka~ C Aa~ solves the parameter 
estimation problem for the admissible set Kaa ff J0(~) = inf{J0(a) : a E K~d} where the 
cost function 

Jo(a) = [ _  l, ,(z, t, a) - ~,*(~, t)l ~' dzdt. (3) 
-'¢4 T 
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We also consider another cost function 

357 

(4) 

where u*(z, t), a*(x) are observed informations. 
It is known that in parameter estimation problems the solution of these problems does 

not always exist. There are relevant examples in [4], for example. 
A number of important physical identification problems fall within the above frame 

work. For example, the partial differential equation 

~ 0 ~  = 0 ~ ( a 0 ~ )  + 0~ (a0~)  + q 

is a basic model equation in oil reservoir simulation and ground water flow. The quantity u 
represents pressure or "piezometric head", q is a source term, and a,/~ are positive coefficients 
which are often referred to as the "transmissivity" and "storage coefficient", respectively. 
These coefficients are commonly taken as functions of the space coordinates x and yIS1. 

The identification of a and/~ using measured u and q values at well sites is an important 
inverse problem. In the papers [2, 3], in which the source term f in (1) is independent on 
u, for the set 

g=d = {a(x) • H i ( n ) :  O, vl <_ a(x), llallH, <_ const.} 

the parameter estimation problems are considered. In the paper [6], the author deals with 
the parameter identification problem of the system of geothermal reservoir exploitation, in 
which the set 

gad = {a(~) • c l+"[0,Xl ,  0 < vl < aCx), for any • • [0,x], II~il,+~ < v2} 

is considered. But the system of geothermal reservoir exploitation can be transformed into 
our system (1) (see [6] for details). Of course, the sufficient smoothness of the involved 
coefficients a(x) having been considered in the papers [2, 3, 6] is reasonable. However the 
subject of this paper is the identification of parameters in (1)-(3) that refer to a different 
physical situation. Suppose, for example, that f~ = (0,1) x (0,1), ~1 = (0, ½) × (0,1), and 
f~2 = (½,1) × (0,1), a(x) = 731 if x • ~1, and a(x) = v2 if z • f~2. Thus the medium 
consists of two regions with different permeabilities and we would like to develop a method 
for identification of discontinuous coefficients a(x) in 12. Therefore the admissible set K~d 
must include the coefficients of the type described above. However this coefficient a(z) does 
not belong to H 1 (f~) and therefore a different set Kad should be considered. 

2.  I n i t i a l - b o u n d a r y  V a l u e d  P r o b l e m  a n d  

F u n c t i o n a l  C o n t i n u i t y  R e s u l t s  

First of a~ we consider the linear initial-boundary value problem 

n 

0,~-  ~ 0.,  (a(x)0.,~) = s0(~,t) + ~ 0. ,s , (~,t) ,  
i : l  i = l  

~(x, 0) = ~o(~), 
~(~,t) = 0, 

(x, t) e QT. 

zE~2, 

(~,t) • ST. 

(5) 
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0 . _  _ 
We consider the (weak) solution of the problem (5) from the Banach space V~'°(QT) 

with norm [7, p.6] 

I'.I~,, = m ~  llu(+,t)ll2,n + IIV',+,,II+,Q+, 0<+<T 

where 

llu(=, t)ll~,n = f. lu(=, t)l ~ d=, 

T T i----I 

We say that function u(z, t) is the (weak) solution of the problem (5), if u(x, t) belongs 

to the Banach space ~'°(QT) ,  and satisfies the equation [7, p.136] 

J0'z[ " ] z = fo (x , t )g (x , t ) -  Z f i ( z , t )O~,g(z , t )  dxdt+ uo(x)g(z,O)dz 
i = 1  

(e) 

for ~U g(=,t) e ~¢],I(QT). 
If u0(=) • L2(n), /~(x, t) e L2(QT), i = 0, 1,- . -  ,n  and a(x) E A,d, then it is well 

known (see, e.g. [7, p.160]) that the system (5) has a unique (weak) solution u(z,t).  
In the following, we shall state that  under some assumptions on the data, the semilinear 

problem (1) for any a(x) • And has a unique (weak) solution. 
Assumption (H1) Function ](z , t ,u)  is measurable with respect to (x,t)  e QT for all 

u e R x = ( -oo ,  +¢x)), and f (x ,  t, O) e L2(QT), furthermore, f (x ,  t, u) satisfies uniformly the 
Lipschitz condition in u, that is, there exists a positive constant L, such that 

[ f ( x , t , u ) - f ( z , t , v ) l < L l u - v  ] for almost all (x,t) EQr .  

T h e o r e m  I (See [7, Chap. 3]). Suppose a(x) E And, uo(x) e L2(fl), f ( z , t ,  u) satisfies 
(H1). Then there exists a unique (weak) solution u(x,t ,a) to the semilineax Problem (1). 

T h e o r e m  2. Suppose uo e L~(fl), f satisfies (H1). Then the operator u : a ~-* u(a) =-- 
u(z, t, a), which is the solution of the semillneax Problem (1) corresponding to a(z) E A~d, 

takes strong convergence in L I ( a )  into strong convergence in ~I'°(QT). 
Proof. We consider a sequence (a,~) in And such that am --* a strongly in LI(~) .  Let 

u m =  u(am), ra = 1, 2 , . . . ,  u = u(a). Then the function fi,~ =- um - u is the solution of 
the following initial-boundary value problem 

atom - ~ a=, (amO=,~m) = az,[Cam - a)O=,u] -{- fCx,t,  urn) - fCx, t ,u) ,  
i~l i=l 

~m(x, 0) = 0, 
~m(~, t) = 0, 

(=, t) e Qr, 

=E~2, 

(~,t) e ST. 
(7) 

Since am, a E And, a=,u E L2(QT) and l f (z , f ,  u,~)-  f ( z ,  t, u) <_ Llum-u[, so (ara--a)O=,u E 
L~(QT), f ( z , t ,  um) -- f(z,~,u) E L2,1(QT), i.e. the coefficients and free terms of Problem 
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(7) satisfy all the assumptions (1.2)-(1.6) in [7, Chap. 3]. Therefore by virtue of the relation 
[7, p.142], we have 

1 t 
~ 'u'~12dx + fo ~ a'~(x)'Vf~'~'2dxdt 

t [f(x,t,u,~) f(z,t,u)]ft~dxdt+ (a am)ZOz, uO=,ftmdxdt 
i = 1  

Using ¥oung's inequality, we have 

l ~ l"ml2dx + vl ~t ~ 'V"ml2dxdt 
1 t t 

that is, 

i ~ leml2dz Jr vi ~ot ~ T tVe'i2dzdt 
t 1 t 

In particular, 

l~,,12dx < 2L if~,~12dxd t + 1 la - a,,~12jVul 2 dxdt. 

Using Gronwall's inequality [7, p.94], we obtain 

~ '~m'2dz < legLt fot f~ la - a'12 (9) 

On the right side of the inequality (8) we replace fa  t  12dz with ~he right side of (9), and 
we have 

o<m<axT fn lu,*12 dz + Vl fot ~ [V~,~' 2 dzdt 

< [~-l e2LT + l ] fo' ~ la--a,12lVul2dzdt. (10) 

Because a,,, ~ a strongly in Ll(12), it is easy to know that the sequence {a,~} converges in 
measure to a(z). At the same time, taking into consideration the fact that  

la,~ - al21Vu[ z < 4v]lVul 2, 

by Lebesgue's convergence theorem we obtain 

O. (11) 

From (10) and (11), we know 
lira la [qT = 0, 

which has proved Theorem 2. 
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3.  E x i s t e n c e  o f  t h e  O p t i m a l  C o e f f i c i e n t s  

From Theorem 2, we know that the mapping a ~-* u(a) is continuous from Ll(f/) to 

2 ~T). Therefore the cost function Jo(a) = .rot fc~ [U( z, t, a)- u* (z, t)12dzdt is continuous 
on Aad C L I (f/). Hence it attains its minimum on any compact set Kad C Aad. 

Remark i. If we let Koa = {a(z) E HI(f/) : 0 < vl _~ a(z), i~ C R ~, n - 
1, 2, 3, HaHHI _~ const.}, by the imbedding theorems K=d is compact in Ll(f/). Therefore, 
the functional Jo(a) attains a minimum on it (see [2, 3, 6]). 

Now we consider functions of bounded variation. Let f/be an open bounded set in R n 
with a Lipschitz continuous boundary 0f/. Following [8], define the variation fn [Dfl of a 
function f E LI(~) by 

~ [ D f l = s u p ( f a f d i v g d ~ :  g = ( g l , ' " , g , , ) E C ~ ( f ~ , R  "~) 

and Ig(z)l = 9~ < 1 for z e f /  , 

n 
where d ivg  = ~i=10=~gl.  

If the variation of f is finite, that  is, f• lDf[ < oo, we say that  f has a bounded 
variation. The space of all functions f E Ll(f / )  with bounded variation is denoted by 
B y ( n ) .  Under the norm II/ll~v = [I/IlL' + In ID/I, BY(f/)  is a Sanach space [8, Th.m2].  

R e m a r k  2. A lot of rather general discontinuous flmctions belong to BV(F~). For 
example, let f E Li(f / )  be continuously differentiable on f/i, i < i < p and can be contin- 
uously extended in every ~i,  where f/i C f/, f/i N f/i  = 0 for i ~ j and Ui=lf~ D f/, and 
the boundary 0f~, 0f/i are Lipschitz continuous and each f~i satisfies the conditions of the 
divergence (Ganss-Green) theorem. Then .f E BV(~)  (see [8] for details). 

T h e o r e m  3. The set Kc = {a(x) E Aaa : f~ IDa[ ~_ c} is compact in Ll(f / )  for any 
c > O .  

Proof. If f .  IDal < c, then llall v( ) _< c + v2lf/[. Thus Kc is precompact in LX(f/) 
by [8, Th.l.19]. If am --* a in Ll(12) as m --~ oo and ff~ IDa,,, I < c, then ffl IOal < e by [8, 
Th.l.9], so Ke is closed in Ll(f/) .  

According to Theorem 2 and Theorem 3, we obtain 
T h e o r e m  4. Suppose that  f (z , t ,u)  satisfies (Hz), uo(z) E L2(f/). Then the cost 

function Jo(a) attains a minimum on K~. 
It is obvious that  A=d = {a(z) E L°°(f/) : 0 < vz < a(z) < v2 a.e. in f/} is not 

a compact subset of Ll(f/) .  But it is a closed subset of LZ(fl). In order to obtain the 
existence theorem for the optimal control on AGd, we need the following well-known result. 

T h e o r e m  5 (See [9]). Let X be a reflexive Banach space, S a closed subset of X, and 
I : S -~ R 1 a functional bounded below and lower semicontinuous. Then the set of those 
of X for which there is a minimum on S of the functional z ~-~ I(z) + []z - ~11= is dense in 
X.  

T h e o r e m  6. For almost all a*(z) E L~(f/), u*(z,t) E L2(QT) and any ~ > 0, the 
cost function J,(a) attains a minimum on Aad. 

To prove Theorem 6, it is sufficient in the conditions of Theorem 5 to put X --- 
L2(f/), S = A=a, I(a) - ~[lu(z, t ,a)-  u*(z,t)ll~=(qr ). Because the topologies of LZ(f/) 
and L2(f/) coincide on Asd, therefore the functional I(a) is bounded below and is lower 
semicontinuous (even continuous). 
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and 

R e m a r k  3. Similarly, if we consider the functional 

Jo(a) = [ [u(z,T,a) - u*(z,T)l= d= 
Ja 

J~(a) = fa  lu(z,T,a) - u*(z,T)[2 dz + e f n  ia - a*12 dx 

we will have the same results as Theorems 4 and 6. 

4. The Necessary Condition of  the Optimal Control 

Now we consider the operator u :~-* u(a) - u(z, t, a), where a(z) e K, K = {a(=) e 
L~(G) : ~ < a(x) < 2v2 a.e. in f~}. For any 5a E LC~(~t), according to Theorem 2, we 
have 

~m )~(=,t,  a + s6a) - ~(=,t ,  ° ) )qT = 0, 
8--*0 

that  is, 

r max IluCz, t ,a + s6a) - uCz, t, .)ll=,n + I IW(= , t , .  + s6--) - WCx, t, a)ll2,~T] lira 0. 
s-~0 /0-<$<T J 

(12) 
In order to obtain a necessary condition of the optimal control, Let Us introduce the 

following hypothesis: 
(H2) Suppose f ( z , t , u )  satisfies (H1). Also assume f ( z , t , u )  has partial derivative 

O~f(z, t, u I and O=f(x, t, u) satisfies the Car~th~odory condition, that  is, 
1) for almost all (z, t) E QT, cO, f (z, t, u) is continuous in u; 
2) for any u ~ R 1, O=f(z,t ,u) is measurable in QT. 
T h e o r e m  7. Suppose f ( z , t , u )  satisfies (H2), u0(z) E L2(~). Then the, Gateaux 

derivative of u exists at a(x) e K and the Gateaux derivative u'(a)~a =- ~t(z, t) where fi(x, t) 
is the unique (weak) solution of the following linear problem: 

n 11, 

o,~-~a~,(~(=)a.,~)=a~S(Z,t,~(a))~+~o.,(6~o~,~(~)), (=,t) eQT, 
~=1 ~=1 (131 

~(z ,  0) = 0, z e ~, 
~(=,t) = 0, (= , t )  ~ s t ,  

where u(a)  ---- u(x, t, a). 
Proof. According to (H=), IlO.t'(=,t,")lln®(QT) <_ L. Therefore for any 8a E L¢¢(~), 

by using [7, Chap. 3 Th.4.2] there exists a unique (weak) solution fi of linear Problem (13). 
Let a(z) 6_ K, 6a E L~(~) .  If the real number s (s # 0) is sufficiently small, we have 

a(z) + s~a e g .  Then Ws = ~[u(a + s~a) - u(a)] satisfies 

i = l  

+ ~o~,(~o~,,~(~ + ~ ) ) ,  
i = l  

w . ( = ,  0) = 0, z e n ,  

w, (= ,  t) = 0, (=, t) s ST. 

(=, t) ~ Qr, 
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O. 
According to the definition of Gateamc derivative, we should prove lira,_.0 I W, -UIQT = 

Let ~ = W a  - ~. Then ~ satisfies 

n 

8 
i =1  

n 

- o~(.,~,~(o)1. + Z o., [~oo., (~(o + ~6o) - ~(o)1], (~,~) ~ QT, (14) 
i : l  

~(x ,  O) = O, x ~ ~, 
~(~, t) = o, (=, t) ~ ST. 

Since ,~(: + ~S~), ,~(:), ,~ a ~I'°(QT), and by (H2), 

lo,,/(=,t,~(~))al < LIaI, 

therefore, for any fixed s > O, 

[~(.,,,,,(~ +.~)) - ~( . ,~ , , , (~) ) ]  - o j ( ~ , ~ ,  ~(o))~ ~ ~2,1(QT), 

6a8,, (uCa + s6:) - uC:)) E L2(QT). 

Therefore the coefficients and free terms of Problem (14) satisfy all the assumptions (1.2)- 
(1.6) in [7, Chap. 3]. So linear Problem (14) has a unique solution by [7, Chap. 3, Th.4.2], 
and we can use the relation [7, p.142] to obtain 

1£,~,~+~,/o'/o T IWl ~ dxdt 

+ leal v (u(a + s6a) - u(a))l  IV~ I dzdt 

<I_ t 2 

1 t 1 t dmdt 
+~ i / .  '°'~'+ ~/o /~ "°" "(°(°+"°'-*))" 

"~/o'/. + T IV~I 2 dxdt, 

that  is, 
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+~IL L ,'°,~ - 1 ~ 
(15) 

Now we estimate the second integration on the right side of (15). First we let 

{ :(=,t,~@ + ~6~)) -/(=,t, ~@)) 
F(=, t, ~) = ~(~ + s~) - ~(a) 

a.f(=,t,u(a)), 

if (x,t) e {uix, t ,a + sSa) ~ u(x , t ,a)} ,  

if (x, t) E {u(x, t, a + s6a) ---- u(x, t, a)}. 

Then IF(=,t ,s) l  <_ L and 

[s @, ~,,,/,, +,~o)) - s(~,~,,,¢o))] 

=Fix ,  t, s) u(a + sba) - uia ) = F(x,  t, s)W,, (16) 
8 

= L '  L Ifi=,,,s). + [ri=,,,s)-Od(=,,,~(a))]~12d=dt 

Replacing the second integration of the right side of (15) by the right side of (17), we obtain 

Vl t 

<(1 + 2L 2) l~12dxdt + 2 Fix ,  t, s) - dxdt 

2 (18) 

In particular, we have 

2 t 

By Gronwall's inequality, 

L .~,'~ < ~<.+2~.,. [2/o. L i,~x, .~- ~,~x, o~o~ s~,~,~,x~ 

/o'L,'o,'l~° .,o~ o~o~1~,,] • + - -  + - 
?J1 
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Therefore, from (18) we have 

I~12 ~ + ~- IWl 2 dxdt 

<_ [(I + 2L')Te[I+2L']T + I] [2 fot Jn lF(z,t,s)-O=f(z,t,u(a))rl.12 dzdt 

According to the definition of F(x,  t, s) and the mean theorem, we have 

in which ~ is a function of variables (z , t , s )  with 0 < # < 1. Making use.of (12), we have 

i nm v[ucx, t,~ + s~.) uCx, t, ~)] ' - d~dt  = 0 (2o) 
$---*0 

and u(x, t, a + sSa) converges in measure to u(x, t, a) on QT as s --* 0. 
According to [10, Chap. 1 Lemma 1.3] and (H2), we know B,.f [x, t, u(a) + ~(u(z, t, a + 

sSa) - u(z, t, a))] converges in measure to O,f(x, t, u(a)) on QT as s --~ O. On the other 
hand, 

F(z,t,a) - O,f(z,t ,u(a)) I < 2L. 
I 

By virtue of Lebesgue's theorem, we obtain 

i'£ ~ I F ( ~ , t , s )  - O,J(~, t , ,~(a))121el '  d x d t  = O. (21) 

tJsing (20) and (21), from (19) we have 

which has proved Theorem 7. 
T h e o r e m  8. I f  the cost function Jo(a) at a0(x) attains a minimum on Kc, it is 

necessary that the variational inequalS~y be satisfied, 

J~o' ~ (a(~c) - ao(x))Vu(x,t, ao)Vz(x,t, ao)dxdt ~_ O, for any a(x) • g¢,  (22) 

where z(z, t, a) is the (weak) solution of the adjoint system 

- a~z - ~ a . ,  (=(~)a~, z) : a j ( x ,  t, u (a ) )z  - (uCa0) - u') ,  (~, t) • QT, 

~:~ (23) 
z(x,  T) = 0, x • fA, 

~(x, t) = 0, (x, t) • ST. 
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Proof. Let tl = T -  t, zl (x, t l)  = z(z,  T -  tl). Then Problem (23) is changed into the 
followil~g problem: 

Ot, zz - Z 0=, (a(x)O=,zz) = O=f(=, T - t:, u(a))z, - (u(ao) - u*), 
i = l  

zl (z, 0) = 0, 

z l ( z , h )  = O, 

(x,t) • QT, 

(=, tl) • St .  

By using [7, Chap.3 Th.4.2], the problem above has a unique (weak) solution zz(z, tz) E 
~ t  

~r~'°(QT). Therefore the adjoint System (23) has a unique (weak) solution z(z, t) • ~r~'°(QT). 
We introduce the notation 

1 ft+h 
Ph(z, t) = -~ JT P(z ,  v) d% h > 0 .  

From (13) and the relation [7, p.142], we have 

fo" f. [o,(~)g + (aw)hvg] d~dt 

(24) 

O.rl,O ((-~ ~, for any function g(=, t) from --2 ~¢t~) when tl  < T - h. 
In (24), taking g(z, t) = Zh(Z, t) we have 

f0 ~' ~ [o~(~)z~ + (aw)~wh] d=dt 

(25) 

Similarly from (23), we have 

(26) 

From (25) and (26), we obtain 

fot' fn Ot(zh~h) dzdt 
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that  is, 

t=~l 

azh•h dx t=o 

Let h tend to zero. This gives 

Because z(x , t ) ,  ~(x , t )  e ~'°(QT), we know tha t  z (z , t )  and ¢~(x,t) are continuous in t in 
the norm of L2(~).  According to the initial conditions of z(x,t) and ~(a~,t), it is easy to 

know ~=T 

z(x, t)~(X, t) dxlt=o ~ O. 

From (27), we obtain 

Now we will consider the necessary condition (22). It  is obvious that  the set Kc 
is a convex set. Therefore for any a • Ke, s • [0,1], a o + s ( a - a o )  • Kc. Since 
Jo(ao) = inf{J0(a)  : a(x) • K¢), the following (one-sided) directional derivative has to 
be nomaegative: 

lira Jo(ao + s(a - ao)) - Jo(ao) >_ 0 for any a(x) • K¢. 
8 - ~ 0  + 8 

Let ~b(s) = Jo(ao + s&a) where 6a = a - a0. Then ~b'(0 +) > 0 and this implies 

J0 Ko, 

where fi(x, t) is the solution of (13). According to (28), we obtain 

~ T ~ ( a - a o ) V u V z d x d t ~ O  for any a(x) e Ke, 

which is the inequality (22). 
Similarly, we have 
T h e o r e m  9. If the cost function J~(a) at  no(x) attains a minimum on A~a, it is 

necessary that  the following variational inequality be satisfied: 

I"£ £ 
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for any  a (x )  E Aad, where  z(x ,  t, a) is t he  (weak) so lu t ion  of  P r o b l e m  (23). 
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he lp  on  the  w o r k .  T h e  au tho r  is also g ra te fu l  to  the  referee for his careful  r ead ing  a n d  
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