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Abstract

In this paper, a problem of identifying possibly discontinuous diffusion coefficients in parabolic
equations is considered. General theorems on existence are proved in A setting. A necessary
condition is given for the solution of the parameter estimation problem.
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1. Introduction

We consider the following system:

Oyu — Zé‘z‘. (a(z)8z,u) = f(z,t,u), (z,t) € Qr,

i=1
u(x, 0) = uo(z), cefl, M
u(z,t) =0, (z,t) € ST,

where (2 is a bounded domain in R™ (n > 1), T is a constant with 0 < T < o0, @Qp =
{=z,t):z€, te (0,7}, Sr = {(z,t) iz €09, t € (0,T)}. We will assume that
a(z) € L*=(), and moreover, a(z) € Aqq,

Asa = {a(z) e L®(Q) : 0 < v < az) < vz ae. in Q}. (2)

The parameter estimation problem for (1)-and (2) is to determine the coefficient a(z) in
such a way that the solution u(z,t, a), which is the solution of the problem (1) corresponding
to some a(x) € Agyq4, “matches” the observed information u*(z,t) of (1) in a prescribed sense
(see [1-3] for general information).

To be precise, we say that the coefficient d(x) € Kpq C Aqq solves the parameter
estimation problem for the admissible set K,g if Jo(@) = inf{Jo(a) : a € K,q} where the
cost function

Jo(a) = /Q lu(z, t,0) — u*(z, )| dedt. 3)
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We also consider another cost function
Ju(a) = / lu(z,t, @) — u*(z, 8)|? dedt + € / la(z) - a* ()| dz, (4)
Qr Q

where u*(z,t), a*(z) are observed informations.

It is known that in parameter estimation problems the solution of these problems does
not always exist. There are relevant examples in [4], for example.

A number of important physical identification problems fall within the above frame
work. For example, the partial differential equation

BOyu = 8. (adzu) + By(adyu) + ¢

is a basic model equation in oil reservoir simulation and ground water flow. The quantity u
represents pressure or “piezometric head”, g is a source term, and o,  are positive coefficients
which are often referred to as the “transmissivity” and “storage coefficient”, respectively.
These coefficients are commonly taken as functions of the space coordinates z and ¥l

The identification of & and /3 using measured u and ¢ values at well sites is an important
inverse problem. In the papers [2, 3], in which the source term f in (1) is independent on
u, for the set

Koa = {a(z) € HY(Q): 0, v; < a(z), llaljm < const. }

the parameter estimation problems are considered. In the paper [6], the author deals with
the parameter identification problem of the system of geothermal reservoir exploitation, in
which the set

Kaa = {a(z) € C**°[0,X], 0 < vy < a(z), for any z € [0,X], llafli4+a < vz}

is considered. But the system of geothermal reservoir exploitation can be transformed into
our system (1) (see [6] for details). Of course, the sufficient smoothness of the involved
coefficients a(x) having been considered in the papers (2, 3, 6] is reasonable. However the
subject of this paper is the identification of parameters in (1)~(3) that refer to a different
physical situation. Suppose, for example, that @ = (0,1) x (0,1), & = (0, 3) % (0,1), and
Qp = (%,1) x (0,1), a(z) = v; if £ € @, and a(z) = v if £ € Q3. Thus the medium
consists of two regions with different permeabilities and we would like to develop a method
for identification of discontinuous coefficients a(z) in Q. Therefore the admissible set Kaq
must include the coefficients of the type described above. However this coefficient a(z) does
not belong to H'(Q) and therefore a different set K 4 should be considered.

2. Initial-boundary Valued Problem and
Functional Continuity Results

First of all we consider the linear initial-boundary value problem

Byu — Z ., (a(2)8z,u) = fo(=,t) + E 8. fi(z,t),  (2,t) € Qr.
u(z,0) = uo(2), ) zeq, ®)

u(z,t) =0, (z,t) € S7.
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0
We consider the (weak) solution of the problem (5) from the Banach space v3°(Qr)
with norm {7, p.6]

[ulor = max (@, Ollaa + Vel

where
mwmﬂm=mewﬁu,

"
IVull o = / [Vul? dzdt = / Z |8z,ul° dzdt.
Qr Q

T g==x1
We say that function u(z,t) is the (weak) solution of the problem (5), if u(z,) belongs
0
to the Banach space Vé’o(Qr), and satisfies the equation [7, p.136]

Lu(z,t)g(z,t)dx—-fot‘/(]u(z,t)atg(x,t) d:cdt+AtLa(z)zn:B,iuaxigdzdt

i

t n
=/0 /(;[fo(z,t)!l(m,t)*-’z:;fi(z,t)am,-g(z,t)] dzdt+Lm(z)g(m,0) dz (6)

0

for all g(z,t) € W3 (Qr).

If uo(z) € L2(R), fi(z,t) € L*Qr), i = 0,1,--- ,n and a(z) € Asqg, then it is well
known (see, e.g. [7, p.160]) that the system (5) has a unique (weak) solution u(z,1).

In the following, we shall state that under some assumptions on the data, the semilinear
problem (1) for any a(z) € A,q has a unique (weak) solution.

Assumption (H;) Function f(z,t,u) is measurable with respect to (z,t) € Q for all
u € R! = (~o0, +00), and f(z,t,0) € L*(Qr), furthermore, f(z,,u) satisfies uniformly the
Lipschitz condition in u, that is, there exists a positive constant L, such that

If(:t, t,u) — f(a:,t,v)l < Lju ~ v for almost all (z,t) € Qr.

Theorem 1 (See {7, Chap. 3]). Suppose a(z) € Aqq, uo(z) € L*(Q), f(z,t,u) satisfies
(H,). Then there exists a unique (weak) solution u(z,t,a) to the semilinear Problem (1).

Theorem 2. Suppose ug € LZ(Q), f satisfies (H;). Then the operator u : a — u(a) =
u(z, t,a), which is the solution of the semilinear Problem (1) corresponding to a(z) € Aad,

takes strong convergence in L*(f) into strong convergence in IO/;’O(QT).

Proof. We consider a sequence {@.,} in A.q4 such that a,, — a strongly in LY(). Let
Um = u(@m), m = 1,2,---, u = u(a). Then the function @m = tm —u is the solution of
the following initial-boundary value problem

atﬁm - Z azi (ama::iﬁm) = Z az; [(am - a)az,-u] + f(m; t, um) - f(x1t9 ’U.), (.’B, t) € QT)
i=1 =1
m(2,0) = 0, =€,
ﬁm(z’ t) =0, (z, t) € Sp.
9
Since am, @ € Aad, 92,u € L2(Qr) and | f(2,t, um)—f(z,t,4) < Llum—ul, s0 (am—a)0z,u €
L¥(Qr), f(z,t,um) — f(z,t,u) € Ls1(Qr), ie. the coefficients and free terms of Problem
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(7) satisfy all the assumptions (1.2)—(1.6) in {7, Chap. 3]. Therefore by virtue of the relation
[7, p.142], we have

3 [[tondet [ [ an(eVinltazat

t 13 n
=/o L [f(,t,um) — f(2,t,u)] G dzdt + /0 /Q(a ~ Gm) Y Oz, u, T dadt

=1
t t
<L / / [ ? ddt + / / la = am| [Vau| [V dudt.
0 JO2 0 Ja

Using Young’s inequality, we have

4
: / [tim|?dz + vy / / |V, |2dedt
2 Ja 0 Ja
t 1 t v t
SL/ / !ﬂm|2dxdt+——/ /la—am]2]Vu]2da:dt+—/ /IVﬁmlzdzdt,
o JO 2v1 Jo Ja 2 Jo Ja

that is,
1 t
z / G |2dz + 2 / / |V |2dzdt
2 Jq 2 Jo Ja

t t
SL/ / |G |2dzdt + L f / |a@ = am|? |Vul? dzdt. (8)
0o JQ 2u; Jo Ja

In particular,

% t
f @ [2de < 2L / / | 2t + — / f la — am 2| Vuf? dodt.
Q 0 JQ Y1 Jo Ja

Using Gronwall’s inequality [7, p.94], we obtain

t
] (|2 < €2l / / la — am|? |V dzdt. (©)
9} V1 0 Jo

On the right side of the inequality (8) we replace [, |m|?dz with the right side of (9), and
we have

¢
o2 =12
OxéltanTLIuml da:+v1/; /;IIVu,,J dzdt

t
< [ﬂe”ﬂ? + -}-] f / la — am|?|Vul?dzdt. (10)
0o Jo

U1 1

Because a,, — a strongly in L(Q), it is easy to know that the sequence {a,} converges in
measure to a(z). At the same time, taking into consideration the fact that

|am — al?|Vul? < 403 Vul?,

by Lebesgue’s convergence theorem we obtain

: 4
lim / / lam — af2|Vul?dzdt = 0. (11)
0 JQ

MO0

From (10) and (11), we know
mh:flw Em|Qr =0,

which has proved Theorem 2.
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3. Existence of the Optimal Coefficients

From Theorem 2, we know that the mapping a +— u(a) is continuous from L(Q2) to

Xofé’o(QT). Therefore the cost function Jp(a) = f(;‘r Jo lu(z,t, ) —u*(z,t)|*dzdt is continuous
on Agq C L}(Q). Hence it attains its minimum on any compact set Kog C Aqd-

Remark 1. If we let Kog = {a(z) € H() : 0< v; L afz), QR C R*, n =
1,2,3, llallg: < const.}, by the imbedding theorems K,q4 is compact in L(2). Therefore,
the functional Jy(a) attains a minimum on it (see [2, 3, 6]).

Now we consider functions of bounded variation. Let {2 be an open bounded set in R™
with a Lipschitz continuous boundary 8. Following [8], define the variation [, |Df| of a
function f € L*(Q) by

/lDfl=sup{ffdiV9dz: g=1(91,"" ,9n) € C3(}, R™)
Q ¢

n
and lg(z)l = lZg? <lforze Q},
i=1
where divg = Y I, 8z,9:.

If the variation of f is finite, that is, f‘] |Df] < oo, we say that f has a bounded
variation. The space of all functions f € L*(R2) with bounded variation is denoted by
BV (Q). Under the norm ||f||gy = ||fllz: + fo |Dfl, BV(R) is a Banach space (8, Th.1.12].

- Remark 2. A lot of rather general discontinuous functions belong to BV (Q). For
example, let f € L*(£2) be continuously differentiable on ;, 1 < i < p and can be contin-
uously extended in every Q;, where &; C Q, ;N Q; = @ for i # j and UZ_; % D Q, and
the boundary 9%, 95); are Lipschitz continuous and each ; satisfies the conditions of the
divergence (Gauss-Green) theorem. Then f € BV (Q2) (see [8] for details).

Theorem 3. The set K. = {a(2) € Aga: [ |Da| < c} is compact in L*(f2) for any
c>0.

Proof. If f,|Dal < ¢, then |lallsy(a) < ¢+ v2|€2]. Thus K, is precompact in L*(£2)
by [8, Th.1.19]. If @ — a in L}(Q2) as m — oo and [, |Dam| < ¢, then [, |Da| < c by [8,
Th.1.9], so K, is closed in L(Q).

According to Theorem 2 and Theorem 3, we obtain

Theorem 4. Suppose that f(z,t,u) satisfies (H,), uo(x) € L*(£2). Then the cost
function Jo{a) attains a minimum on K.

It is obvious that A.q = {a(z) € L*(0) : 0 < v; < a(z) < v; ae. in 0} is not
a compact subset of L'(R). But it is a closed subset of L!(2). In order to obtain the
existence theorem for the optimal control on A4q, we need the following well-known result.

Theorem 5 (See [9]). Let X be a reflexive Banach space, S a closed subset of X, and
I: S — R! a functional bounded below and lower semicontinuous. Then the set of those £
of X for which there is a minimum on § of the functional z — I(z) + [lo — £||; is dense in
X.

Theorem 6. For almost all a*(z) € L?(Q), u*(z,t) € L*(Qr) and any € > 0, the
cost function J.(a)} attains a minimum on A,4.

To prove Theorem 6, it is sufficient in the conditions of Theorem 5 to put X =
L%(Q), S = Aag, I(a) = Yu(z,t,a) - u*(2,t)[|32q,)- Because the topologies of L'(Q2)
and L?(f) coincide on Agg, therefore the functional I{a) is bounded below and is lower
semicontinuous (even continuous).
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Remark 3. Similarly, if we consider the functional

Jo(@) = [ Iu(z, T,0) - w (@ TP do
Q
and
J.(a) =/ lu(z, T, a) -u*(z,:r)|2dm+e/ lo — a*[2 do
Q ]
we will have the same results as Theorems 4 and 6.

4. The Necessary Condition of the Optimal Control

Now we consider the operator u :+ u(a) = u(z,t,a), where a(z) € K, K = {a(z) €
L=(Q) : ¥ < a(z) < 2v; ae. in 0}, For any §a € L*°(N), according to Theorem 2, we
have

11_13(1) |u(z,t,a + sba) — u(z,t, G){Qr =0,

that is,

lin(l) [o%lf&xr lu(z,t,a + sba) — u(z,t,a)||2,0 + || Vu(z, t, a + sba) — Vu(z,t,a)l|2,- | = 0.
o (12)

In order to obtain a necessary condition of the optimal control, let us introduce the
following hypothesis:

(Hz) Suppose f(z,t,u) satisfies (H;). Also assume f(z,t,u) has partial derivative
duf(z,t,u) and 8, f(x,t,u) satisfies the Carathéodory condition, that is,

1) for almost all (z,t) € Qr, 3, f(x,t,u) is continuous in u;

2) for any u € R, 8,f(z,t,u) is measurable in Q7.

Theorem 7. Suppose f(z,t,u) satisfies (Hp), ug(z) € L%(2). Then the Gateaux
derivative of u exists at a(z) € K and the Gateaux derivative u'(a)8a = i(z,t) where @(z,t)
is the unique (weak) solution of the following linear problem:

8t — i Oz, (a.(a:)(%.- ﬁ) =08.f (ai, t, u(a))'& + z": Oz, (5a63_.u(a)), (z,t) € Qr,
=1

i=1
4(z,0) =0, T€Q,
i{z,t) =0, (z,t) € Sr,

(13)

where u(a) = u(z, t,a).
Proof. According to (Hz), ||8uf(z,t,u)||L=(@r) < L. Therefore for any éa € L=(),
by using [7, Chap. 3 Th.4.2] there exists a unique (weak) solution @ of linear Problem (13).
Let a(z) € K, 6a € L*>°(RQ). If the real number s (s # 0) is sufficiently small, we have
a(z) + séa € K. Then W, = L{u(a + séa) — u(a)] satisfies

BW, — Y 0u,(a(2)0u W)= [£(2,, u(a + 560)) — f(z,t,u(@)]

i=1

+ f:’a,,.(aaa,,.u(a + sba)), (=,t) € Qr,

fe=1
W,(z,0) =0, z €1},
W,(:L',t) =0, (.’B,t) € St.
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According to the definition of Gateaux derivative, we should prove lim,_.o |W, —i|q, =

Let @ = W, — @. Then 4 satisfies
8% — Z 8z, (a(z)0s,8) = % [f(z, t,u(a + sba)) — f(z,t, u(a.))]
i=1
—0uf(z,t,u(a))d+ 28,,. [60.8,,‘. (u(a + sba) — u(a))] , (z,t) € Qr, (14)
i=1
4(z,0) =0, z €,
#(z,t) =0, (z,t) € Sp.

Since u(a + séa), u(a), @ € V;°(Qr), and by (Hs),

f(z,t,u(a + séa)) - f(a:,t,u(a))l < %Llu(a + séa) — u(a)l,
|0uf(z,t,u(a))a| < Lidl,
therefore, for any fixed s > 0,
1 .
5 [f (z,t,u(a + sba)) — f(z,t, u(a))] — 3uf(z,t,u(a))d € L21(Qr),
6ad;, (u(a + séa) — u(a)) € L*(Qr).
Therefore the coefficients and free terms of Problem (14) satisfy all the assumptions (1.2)-

(1.6) in [7, Chap. 3]. So linear Problem (14) has a unique solution by |7, Chap.3, Th.4.2],
and we can use the relation 7, p.142] to obtain

; /Q o do + 3 /0 t /ﬂ |Va[? dzdt
S/o /n %[f(a:, t,u(a + sba)) — f(z,t, u(a))] - 0uf(z,t,u(a))d
+ /0* /Q (60| |V (u(a + sba) ~ u(a)| V] dadt

|| dzdt

2
dzxdt

5-;—/;/{; ‘-}[f(z,t,u(a+36a)) -f(a:,t,u(a))] - 8.f(z,t,u(a))i
+ %‘/: _/r; |a)|? dedt + %/ot“/ﬂ |6al? |V(u(a,+ sba) — u(a))|2d9:dt

(41 ¢ 2
Lo / / |Val? dzdt,
4 Jo Ja
that is,

t
/}ﬁl’dz+ﬁ/ /|Vﬁ|2dzdt
Q 2 Jo Ja
2

S‘/(-)t/(;lﬁ"z dzdt + _/:/s; l%[f(z,t, u(a + séa)) — f(a:,t,u(a))] — Ouf(z,t,u(a))i| dedt
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+ v% /Ot /(; |6af? kV(u(a + sba) — u(a))l2 dzdt. (15)

Now we estimate the second integration on the right side of (15). First we let

u(a + séa) — u(a) ’

Flovts) = { f(=z,t,u(a + séa)) — f(z,t,u(a)) if (z,t) € {u(z,t,a + sba) # u(z,t,a)},
Oy f(z,t,u(a)), if (z,t) € {u(z,t,a + sba) = u(z,t,a)}.

Then |F(z,t,s)| < L and

~[# (et e + 6) - £ (2, t,u(a)]

_F(z,1,5) 0 3‘5‘:) ~ ) _ bz, )W, (16)
2
dzdt

/0 t /Q § [#(@t u(a + s80)) = £(2,t,0(@))] — Bt (2,8, (@)

- / ’ / F(:c,t,s)W,——3uf(a:,t,u(a))ﬂ[2dzdt
0 JQ

t 2
=/ / F(z,t,8)a+ [F(z,t,s) - 8 f(z,t, u(a))}ﬁi dxdt
0 JQ
t t 2
<2I? / / |a)? dedt + 2 / / lF(a:,t, s) — 8, f(z,t, u(a))i |42 dedt. (17)
0 Ja 0o Ja
Replacing the second integration of the right side of (15} by the right side of (17), we obtain
V1 ¢
/ |aj?dz + = / / |Va|? dedt
Q 2 Jo Ja
t i 2
<{(1+ 2L2)/ / |&)?dzdt + 2/ / ‘F(m,t, 3) — duf(z,t, u(a))l &) dedt
0 JQ 0 JQ
2 [t 2 2
+ —/ / {6al IV(u(a-*— séa) —-u(a)}l dzdt. (18)
U1 Jo Ja
In particular, we have
t t 2
/ [a]?dz < (1+ 2L2)/ / |a]? dzdt + 2/ / 1F($,t, s) — 8uf(z,t, u(a))‘ |a|? dzdt
Q o Ja 0 Ja
2 [t 2
+ —-/ / iéaile(u(a + sba) — u(a))l dzdt.
U1 Jo Ja
By Gronwall’s inequality,
t 2
/ |)2dz < el1+2L7) [2/ / ‘lF(m,t, 8) — 8uf(z,t, u(a)){ |4 dzdt
Q 0 Ja

+;}2: ‘/: /{; {6a{2tV(u(a + séa) — u(a)) !2 dxdt} .
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Therefore, from (18) we have

H
f|a|2dz+3-‘-/ /]Vﬁl’d:cdt
Q 2 Jo Ja

t 2
< [(1 +2L%) Tl +22°IT 1] [2 / / IF(z, t,8) — 8uf(z,1, u(a))l |%]? dzdt
o Ja
2 % 2
+ %/ / lV(u(a + sba) — u(a))l dmdt]. (19)
U1 o Ja
According to the definition of F(z,t,s) and the mean theorem, we have

F(z,t,8) =08, f [a:, t, u(z,t,a) + 9(u(z,t,a + sba) — u(z,t, a))] ,

in which ¥ is a function of variables (z,¢,s) with 0 < ¥ < 1. Making use.of (12), we have

lim /ot‘/s; ’V[u(:r,t,a + sba) — u(z,t,a)] |2 dzdt =0 (20)

s8—0

and u(z,t,a + séa) converges in measure to u(z,t,a) on Qr as s — 0.

According to [10, Chap. 1 Lemma 1.3] and (Hz), we know 8, f [z, t,u(a) + ¥(u(z, t,a +
séa) — u(z,t,a))] converges in measure to 9, f(z,t,u(a)) on Qr as s — 0. On the other
hand,

|F(a:,t, a) - 8, f (2,1, u(a))l <2L.

By virtue of Lebesgue’s theorem, we obtain

¢
i - T, t,u %|4)? dzdt = 0.
hmA /(;]F(:c,t,s) Buf(z,t,u(a))| |2} dzdt = 0 (21)

s—0
Using (20) and (21), from (19) we have
P_ﬁ% iﬁlQT =0,
which has proved Theorem 7.

Theorem 8. If the cost function Jo(a) at ao(z) attains a minimum on K, it is
necessary that the variational inequality be satisfied,

/t/n (a(:z:) - ao(z))Vu(z,t,ao)Vz(:c, t,aq) dzdt > 0, for any a(z) € K., (22)
0

where z(z,t,a) is the (weak) solution of the adjoint system

~ 8z =Y B, (a(2)dz,2) = 8uf(z,t,u(a))z — (u(ao) — '), (=) € Qr,

=1 (23)
z(“"’T) =0, z €,

2(z,t) =0, (z,t) € S7.
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Proof. Lett; =T —t, z(z,t1) = z(z,T —t;). Then Problem (23) is changed into the
following problem:

B,z — Z@z‘. (a(2)8s,21) = 8uf(z, T — t1,u(a))z: — (u(ao) —v*), (z,t) € Qr,

i=1
z(z,0) =0, z € Q,
zl(z,tl) =0, (z, tl) € St.

By using [7, Chap.3 Th.4.2], the problem above has a unique (weak) solution z;(z,t;) €

0 0
V3°(Qr). Therefore the adjoint System (23) has a unique (weak) solution z(z, t) € V3°(Qr).
We introduce the notation

1 t--h
Py(z,t) = 7 P(z,7)dr, h>0.
T

From (13) and the relation {7, p.142], we have

/ . / [8u(@n)g + (aV4)s V] deds
0 Q

- /0 " L (8uf (2, t, u(a))5), g dedt — /0 " /ﬂ (6aVu) Vg dadt (24)

0
for any function g{z,t) from Vé’o(Qtl) when ty < T — h.
In (24), taking g(z,t) = 2n(z,t) we have

/ . / [8e(@n)zn + (Vi) Vzp) dzdt
oh . 31
= / / (8uf(z,t,u(a)) &) nzn dxdt — / / (6aVu)pV 2, dzdt. (25)
o Ja g Ja
Similarly from (23), we have
ty
/ A [ - 6¢(z;.)&h + (GVZ)},,V'&;,] dzdt
otx ty )
= /0 /ﬂ (8uf(2,t,u(a))2) , in dzdt — /(; /ﬂ (u(ao) — u*), @t dadt. (26)

From (25) and (26), we obtain
/ " / 8,(zniin) dadt
ot1 Q
= /‘; /‘; [(a,, f(=z,t,u(a))d), 28 — (Buf(z,t, u(a))z) hﬁh] dzdt
+ /; " /n (u(ao) — u*), @i dzdt — jo‘ " ‘/n (6aVu)rVz, dzdt,
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that is,

[ zptp ala:]tit1

Q t=0

=/0 ' /ﬂ [(3uf(a:,t,u(a))ﬁ)hzh - (8uf(m,t,u(a))z)h&h] dadt
+ [) * /‘; (u(ao) - u’)hﬁh dzdt — /0 " /ﬂ (6aVu)nVz dadt.

Let h tend to zero. This gives

‘/f;zﬂdz!:: =----/‘0tl’/s;('u.(ag)——‘u.")ﬁ.rzimclt~/(;ltx L(&aVu)Vzdzdt. 27

0

Because z(z,t), 4(z,t) € Vi°(Qr), we know that z(z,t) and 4(z,t) are continuous in t in
the norm of L?(2). According to the initial conditions of z(z,t) and 4(z,t), it is easy to
know

t=T
t=

/ﬂ (e, )iz, ) da|_ =0,

From (27), we obtain

/OT /ﬂ 6aVuVzdzdt = /OT/S; (u(ao) — u*)d dzxdt. (28)

Now we will consider the necessary condition (22). It is obvious that the set K.
is a convex set. Therefore for any a € K., s € [0, 1], ao + s{a — ap) € K. Since
Jo(ao) = inf {Jo(a) : a(z) € K.}, the following (one-sided) directional derivative has to
be nonnegative:

fim Jo(ao + s(a — ag)) — Jo(ao)

50t 8

>0 for any a(z) € K.
Let ¢(s) = Jo(ao + sba) where 6a = a — ag. Then ¢'(0%) > 0 and this implies
T
/ / (u(ag) — u*)i(=,t)dzdt >0  for any a(z) € K,
o Ja
where 4i(z,t) is the solution of (13). According to (28), we obtain
T
/ /(a —ag)VuVzdzdt >0  for any a(z) € K,
o Ja

which is the inequality (22).

Similarly, we have

Theorem 9. If the cost function J.(a) at a¢(z) attains a minimum on A,q, it is
necessary that the following variational inequality be satisfied:

T
/ / (a - a0)Vu(ao) V(ao) dedt + ¢ / (a0 — a*)(a — ag) dz > 0
0 Q Q
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for any a(z) € Aqq, where 2(z,t,a) is the (weak) solution of Problem (23).
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