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A b s t r a c t  

Artificial neural network techniques have been introduced into the area of optimization in the 
recent decade. Some neural network models he~ve been suggested to solve linear and quadratic 
programming problems. The Kennedy and Chua model [5] is one of these networks. In this 
paper results about the convergence of the model are obtained. Another related problem is how 
to choose a parameter value 5 so that the equilibrium point of the network immediately and 
properly approximates the original solution. Such an estimation for the parameter is given in a 
closed form when the network is used to solve linear programming. 
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1. I n t r o d u c t i o n  

Artificial neural network techniques have been introduced into the area of optimization 
in the past ten years as a promising new methodology. It  is the parallel and collective 
computational property of the neural network that  makes its application to mathemati-  
cal programming significant. Hopfield and Tank's works[I-31] greatly enhanced the ANN 
application in optimization. Among others, application in Linear Programming (LP) and 
Quadratic Programming (QP) has been given extra at tention by many authors [3,5-13]. Non- 
linear network with integrators as the basic components to solve nonlinear programming was 
developed by Chua and Lin in [4]. 

Compared with the ANN optimization model construction efforts, the mathematical 
analysis of the suggested ANN models is in the state of unsatisfactoriness. At least, it is 
necessary to compare the neural network applications to mathematical programming with 
the existing mature theory in the field of nonlinear programming algorithms in order to 
incorporate and improve the existing ANN analysis techniques and results. In [8], Maa 
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and Shanblat t  initiated such a research where traditional energy function research of ANN 
was then connected and compared with exterior penalty function method in mathemati-  
cal programming. Secondary relationship between the equilibrium points (solutions of the 
equilibrium equations with different parameters) and the solution of given LP or QP was 
studied. 

It should be noted that  the penalty function method is not designed for solving LP 
or QP, it is preferably used to solve nonlinear programming problems with nonlinear con- 
straints. LP and QP problems have much more efficient algorithms. It then suggests to us 
tha t  when using penal ty function method to solve LP or QP problems the assumptions or 
conditions for guaranteeing the convergence could be simplified or relieved, and the conver- 
gence mechanics would be clearer. It is the purpose of this paper to reorganize the results 
in [8] and present new convergence properties of the ANN models for solving LP or QP. 

In Section 2 the related mathematical concepts and theorems for both in mathematical  
programming and ANN are given in a succinct way. Section 3 discusses the convergence 
proper ty  of the networks suggested by several authors [5-s] when they are applied to linear 
programming. Section 4 then deals with the quadratic programming. Some detailed proofs 
are put  in the last section, an appendix. 

2 .  P r e l i m i n a r i e s  

A general nonlinear programming problem (NLP) takes the following form: 

rain f ( x ) , 
(1) 

subject to g~(x) < 0, i E I = {1, 2,---  , m}, 

where x 6 R n and f ,  g~, i E I ,  hk, k E K are real functions defined on R n. Let the feasible 
set of the above problem be X.  The Lagrange function is 

L(x,  A) = f (x )  q- ATg(x),  (2) 

where g(x)  = ( g l ( x ) , " "  , gin(x)) T, and A E JR "r' is the so-called Lagrange multiplier vector. 
For ~ 6 X,  let I (~)  = {i : i E I and gi(5) = 0}. For i e I (5) ,  gi(x) is said to be active at 
• . We make two assumptions: 

A s s n m p t i o n  1. f ,  gi, i 6 I are differentiable. 
A s s u m p t i o n  2 ( R e g u l a r i t y  A s s u m p t i o n ) .  At the solution x* of the problem, 

{Vgi(x*),  i 6 I (x*)}  is an independent set. 
The  following theorem is a well known result in nonlinear programming: 
T h e o r e m  1. Under Assumptions 1 and 2, a necessary condition for x* to be a local 

minimum solution of problem (1) is that  there exists A* 6 R m such that  x*, A* satisfy: 

V~L(x , )O = V f ( x )  + Vg(x)A = 0, 

V L(x, = g(x) < 0, 

A > 0 ,  

VAL(a:, A)T A --- AT g(x) = O. 

(3) 
(4) 
(5) 
(6) 

The set of conditions (3)-(6) is given by H. kuhn and A. Tucker, and hence called the 
K-T  conditions. A* is called the optimal Lagrange multiplier. When f and gi are convex 
functions, these conditions are also sufficient and any local minimal solution is a global 
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minimal solution. When f, g~ and hk are all linear functions, then (NLP) is reduced to a 
linear programming problem: 

rain f ( x )  -~ a r  x,  (7) 

s.t. g(x)  = D x  - b < 0, 

where D is an m x n matrix (rn >_ n),  a , x  E R "~, b E R m. In this case Theorem 1 can be 
rewritten as: 

Coro l la ry  1. If gi, i E I, of problem (1) are linear functions, Assumption 2 can be 
dropped and Theorem 1 is still valid. 

A proof of this corollary is given in Appendix. In this paper we also consider the 
following QP: 

min f ( x )  = x T Q x / 2  + qTx,  (8) 

s.t. g(x)  = D x  - b < O, 

where Q is an n x n symmetric matrix and q E R ~. 
The penalty and barrier function methods in nonlinear programming theory are algo- 

rithms for approximating a constrained NLP by a sequence of unconstrained NLP's. In 
the case of penalty methods the approximation is accomplished by adding to the objective 
function a term that prescribes a high penalty for violation of the constraints. According to 
the theory, problem (7) can be approximated by a sequence of unconstrained minimization 
problems: 

m 

m i n  F i ( x ,  sk) = aT x Jr sk E ( g t ( x ) )  2, (9) 
i----1 

where g+(x)  ---- max(0,gi(x)} -- max(0, d i x -  bi}. And problem (8) can be solved by 
treating the following sequence of unconstrained minimization problems: 

m 

rain F2(x,  s~) = x T Q x / 2  ÷ qTx  + s~ E ( g  + (X)) 2. (10) 
i=i  

R e m a r k  1. Noticing that max{0, d~x - b~) is a convex function of x, then Fl (x ,  sk), 
F2(x, sk) (if Q is positive semi-definite) are convex functions of x. So the solution of problem 
(9) is simply given by equation 

V Fl(x, = a + g,+ = 0, 
i-----1 

ill) 

and the solution of problem (10) is given by 

V f (x, = Qx  + q + sk g+( )Xr = 0. (12) 

R e m a r k  2. Any limit point of the sequence of solutions (x~}, produced by (11) or 
(12), is a solution of the respective original problem if the following Assumptions 3 and 4 
are satisfied (a part of Assumption 4 is automatically met here by Remark 1). 

Assumpt ion  3. f i x )  ---* oo as I]xl[ --* oo, or, X~ is compact, where 

Xe = (x :  gi(x) < e, i =  1,-. .  ,m} 



4 ACTA MATHEMATICAE APPLICATAE SINICA Vol.12 

for a given e > 0. 
A s s u m p t i o n  4. Fi(x, s), i = 1, 2 is a convex function of x for a fixed s. 
Now we turn  to the ANN model that  solves LP and QP problems. The Kennedy and 

Chua model can be described by the following dynamic system: 

= C - I {  - V f ( x )  - sVg(x)g +(x) }, (13) 

where C is an n x n diagonal matrix with positive elements (without loss of generality we 

take C = I in the following discussion), Vg(x) = D T and g+(x) = (g+(x),... ,g+(x)) T. 
When using this model to solve LP or QP, the energy function of the network, 

m 

E(x) = f(x) + s Z (g+(X)) 2 (14) 
i = l  

is a quadratic function and has been shown to be a Lyapunov function for the network 
represented by (13), tha t  is, 

d__E.E = { V f ( x )  + sVg(x)g+(x)}T~. = --~Tc~ < 0, (15) 
dt 
dE 
d-'t- = 0 -' ;. ~ = - V f ( x )  - sVg(x)g+(x) = 0. (16) 

It is noted by Man and Shanblatt that  the energy function (14) is exactly the objective 
function of the unconstrained minimization problem in penal ty method. Comparing (16) 
with (11) and (12) we can restate the discussion in their paper  in terms of neural networks 
as follows: 

R e m a r k  3. If f(x) is a convex function(in the case of QP, provided Q is positive 
semi-definite), the solution of (16) is a stable point tha t  minimizes the energy function of 
the Kennedy-Chua model. The original solution can be obtained when the parameter  s in 
(13) is infinite. But  it is not practical to do that .  Then  how to estimate a proper s is an 
open and significant problem. To avoid this difficulty, Rodriguez-Vasquez et al.[6] proposed 
a network model which is formed by two mutually exclusive sub-networks. The shortcoming 
of their model is discussed by Man and Shanblatt  [91. 

3 .  L i n e a r  P r o g r a m m i n g  

In this paper  we deal with LP problems of form (7) where rank(D) = n. (7) is in the 
dual form of an LP. The corresponding equations (3)-(6) are 

m 
a + Z AidiT ---- 0, 

i----1 

a~z - bi < O, 

~i  ~ O, 

Ai(dix - bi) = 0, 

Equations (17) and (20) could be combined into 

a +  

(17) 

= i , . . . ,  m ,  ( i s )  

i---- 1 , - - - , m ,  (19) 

i = 1,---  , m. (20) 

~ A~ T = O, (21) 
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where 
1(x) = {i: d'x - b, = 0} (22) 

Now we discuss the convergence property when the Kennedy and Chua model is applied 
to problem (7). According to Remarks 1-3, we immediately have 

Theorem 2. If the feasible set X of problem (7) is bounded, then for an increasing 
sequence {sk}, the network produces a sequence of approximate solutions x k in the meaning 
that any limit point of it is a solution x* of (7). 

Remark 4. If problem (7) has a unique solution x*, then the sequence of equilibrium 
points produced by the network with increasing s~ will converge to the solution. 

Remark 5. If the set X is not bounded, then it is possible that there is no limit point 
existing. Then,  the energy function value Fl(x k, sk) gives a lower bound of f(x*), where x k 
is the equilibrium point at s = sk, i.e., fix*) >_ Fl(xk, sk) > f(x~). 

The assumption of a bounded X is obviously excessive, a somewhat reasonable assump- 
tion is that  the solution set X,  

"X-- {z: aTx < aTy for any y E Z} ,  (23) 

is bounded. 
L e m m a  1. If problem (7)'s solution set X is bounded, then Fl(x, sk) in (9) satisfies 

Assumption 3, i.e., Fl(X, Sk) --+ c~ as HxH--+ oo. 
See the proof of this lemma in Appendix. 
T h e o r e m  3. If the solution set X of problem (7) is bounded, then Theorem 2 and 

Remarks 4, 5 are still true. 
This theorem covers the main result, Theorem 3, in [8], but  in their paper  Assumption 

2 is needed. For most practical LP problems, there is a unique optimal solution, then the 
assumption of Theorem 2 is met and the successive equilibrium points of the network with 
increasing sk converge to the solution. Hence a related problem is how to choose a parameter  
~" so that  the equilibrium point given by the network with this determined g approximates 
the original solution properly. 

There are different criteria to describe the accuracy of an approximation to the solution, 
such as, (a) Given an e > 0, to find an ~" such that  there is an optimal solution x*, for 
s > ~', and the equilibrium point 5 of the network satisfies lit - x*ll ~ e; (b) Given an 
e > 0, to find an g such that  for ~ > ~', If(T) - f(x*)l < ~; (c) To find an g such that  for 
s > L  

J(5) = I(x*), (24) 

where 
J(~)  = { i :  g,(~) = d ' ~ -  b, > 0}.  (25) 

Criteria (a) and (b) are easy to understand. But  for (c), a little discussion is needed. 
Recall the Lagrange function (2) and the equilibrium equation (16). Let 5 -- 5(s) be a 
solution of (16) for a given s and compare 

VFI(5 ,  s) = V f ( ~ )  % Vg(5){sg+(5)} = 0 (26) 

with the gradient of L(x, A) at 5: 

V~L(~, ~) = v/(~) + vg(~)~. (2r) 

If we set 
~ = ~ ( s ,  ~) = sg+(~)  > 0, i = 1 , . . . ,  m, (2s) 
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then 5 is an equilibrium point of L(x,  A(s, x)) which is the energy function FI(x,  s). When 
A(s, z) _> O, n (x, ~(s,  z)) is a convex function of x, so 5 is a minimum point of L (x, A(s, x)) 
but  is not necessarily a solution of the original problem. This is because A defined in (28) 
does not necessarily satisfy equation (6), i.e., for some i,-A(s,-£)igi(~) = s(g+(5))2  ~ 0. In 
other words, A is not the optimal multiplier. But  one can conceive that  if A is approaching 
the optimal multiplier A*, the solution ~ will be approaching the solution x*. Equation 
(24) then is a condition to force A to approach A* in the meaning that if i ~ I(x*),  then 
-Aigi(~) = O. Geometrically, (24) says that  5 only violates the constraints that  are active at 

Without  loss of generality we suppose in the following discussion that  all elements of 
D, b, a are integers. Let d = max {[dij[}, b = max {]bl]} and - =  m x{lo, I} 

L e r n m a  2. If the linear programming problem is neither degenerate nor dual- 
degenerate at its optimal solution x*, there exists a sufficiently large ~'~ such that for any 
s _> s'x, the unique equilibrium point ~ of the network is given by the system 

s(dlx - bi) = A*, i E I* = I(x*), (29) 

where A*'s are the optimal multipliers. 
Proof. First it can be proved that there exists an Sl such that  for s > sl  the equilibrium 

equation 

+ Z = o (30) 

has a unique solution. Since problem (7) has a unique solution x*, 

x* = D~.lbt. ,  (31) 

where Dr- is the optimal basis, an n x n sub-matrix of D corresponding to the index set 
I*, II*[ = n, [Dr. I ~ 0. And its corresponding optimal multiplier satisfies one of the K-T 
conditions, (20), and A$ = 0, if i ~ I*. Now set 

d ~ -zA. } 
~ 2 = m a x ~  D I. / .  , i ~ I * ;  1 . (32) 

[ bi - d~Di . bi* 

Then for an s > Yl = max{~l,~2}, we assert that  the solution of system (30), 

= DT.'C~}./s + b~.) (33) 

is the solution of (21). Furthermore, 5, the solution of system (29), is the equilibrium point. 
L e m m a  3. Let a, h i, i E I,  E R n, Ilhi[I _> 1, {h i, i e I}  be an independent set and 

a = ~ i E i ~ h  i. Then la, I _< Ilatl < V ~ / 2 ,  where ~ =  max {la, l}. 
The proof is simple, and hence is omitted. It  is easy to see that  the denominator, 

bi -diD~.lbz*,  of (32) is larger than zero. By integrality, the denominator is of value at least 
1. The numerator can be estimated as follows: For i ~ I*, let d i = ~ jex*  ~J dj = ~ TDx'° 
Using Lemma 3, we have 

d'D~.I A;. = flT D x. DI.X A~. = ~T A~. <_ n 2 ~ / 4 .  (34) 

Combining Lemma 2 and (34), we have the following theorem. 
T h e o r e m  4. With  the same assumption of Lemma 2, if s > S'l, the equilibrium point 

of the network has property (24), i.e., J (~)  = I(z*).  And n2"d'd/4 is an estimate of ~1, 
that  is, the initial value of ~1 could be taken as n2-dd/4. 
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The assumption of this theorem can be weakened. In fact, only the assumption of 
bounded optimal solution set X is needed to obtain a similar result. The extension induces 
more mathematical  analysis than is described by Theorem A in Appendix, where a concrete 
estimation for Y is no longer existing. Theorem 4 is a quantitative description of the criterion 
(c). If Criterion (a) is adopted, we have the following theorem. 

T h e o r e m  5. Under the same assumption of Theorem 4, for s > s'2 = n2( m - 

1)! ~,~-1/~, the equilibrium point 5 has property 

I1~ - :~*11 < ~. (35) 

Proof.  If s > Yl, according to (31) and (33), 

I1~-  x* l l  = I IDT' -LXI- I I /s -  

Note that  each element of D/ .  1 is, by definition of the inverse, equal to an (m - 1) × (m - 1) 
determinant divided by a nonzero m × m determinant. By integrahty, the denominator is 
of absolute value at least one. The determinant of the numerator is the sum of (m - 1)! 

elements of D. Therefore it has an absolute value not greater than (m - 1)!d -~-1. Using 
Lemma 3, we have 

I1~-  z*ll <__ • 2 ( m -  1 ) ! ~ - l / s  < ~; 

then taking 
~2 = n 2 ( m  - 1)!ad~n-i/¢ ( > >  ~2) (36) 

will satisfy the requirement of the theorem. 
The estimation for ~2 in (36) is not a tight one, and hence is not practical. In fact (36) 

is an upper bound for an estimation of the value of s such that  the property (35) is valid. 
But  when Criterion (b) is adopted, we would have a more practical estimation for Y. 

T h e o r e m  6. Under the same assumption of Theorem 4, for s > Y3 where 

~3 = (n~)~/~, (37) 

the equilibrium point 5 satisfies 
] a T Z _  aT  x * ] < ~. 

Proof. According to (31), (33), 

ar(-~ -- x*) = a T D I . I A ~ . / s  = AI.* Dx .  D z.-1Ar . ./s = I IA*l l2 / s  _< n2-a2/s < ~, 

which implies (37). 

(3s)  

4 .  Q u a d r a t i c  P r o g r a m m i n g  

Now we consider using the Kennedy and Chua model for solving problem (8) with a 
positive semi-definite Q. The corresponding equations (3)-(6) for problem (8) are 

Q x  + q + ~ ~id  iT -~ O, 

{--1 

d~z - bi < 0, 

Ai >_ 0, 

Ai(dix - b~) = 0, 

(39) 

i = 1 , . . .  , , ~ ,  (40) 

i = 1 , . . . ,  m ,  (41) 

i = 1 , . . .  , m .  (42) 
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Equation (39) and (42) can be combined into 

Q x + q +  Z Aid iT=o ,  
iex(x) 

(43) 

w h e n  I (x)  = { i :  dix  - bl ---- 0}. The equilibrium equation (16) now is 

- Q z  - q = s Z (dix  - bi)diT' 
ieJ(:¢) 

where J ( x )  = {i  : d ix  - bl > 0}, or 

ieJ(~) ~ej(~) 

According to Remarks 1-3, we have 
T h e o r e m  7. If the feasible set X of problem (8) is bounded, then for an increasing 

sequence {s~}, the network produces a sequence of approximate solutions z ~ in the meaning 
that  any limit point of it is a solution x* of (8). 

Furthermore, conclusions similar to Remarks 4 and 5 in Section 3 are still valid. The 
assumption of a bounded X can also be removed by the following lemma that  is similar to 
Lemma 1. 

L e m m a  4. If  problem (8)'s solution set X is bounded, then F2(x, sk) in (10) satisfies 
Assumption 3, i.e., F2(x,  sk) --* oo as l[x]t --* oo. 

See the proof of the lemma in Appendix. 
T h e o r e m  8. If the solution set X of problem (8) is bounded, then Theorem 7 and 

similar conclusions of Remarks 4, 5 are still true. 
This theorem covers another main result, Theorem 4, in [8] where the regularity as- 

sumption is needed. For quadratic problems, there is no closed form for a parameter ~ as 
discussed in Theorems 4, 5 and 6 such that  the equilibrium point given by the network with 
tha t  determined ~ properly approximates the original solution. 

5. Appendix 

i) Proof of Corollary 1 

Farkas' Theorem [14' p.4a]. Let B be an m × n matrix and q E R'L Then exactly 
one of L~_ ~ following two inequality systems has a solution: 

Bx _< 0, qTx  ~> 0, x E R n, (al) 

B T y  = q, y >_ 0, y E R m. (a2) 

Proo f  o f  Corollary 1. Consider problem (7), let ~ be a local minimum solution. We 
assert that  the system of variable z: 

V f ( ~ ) T z  < O, d~z <~ 0, i e I(~) = {i : dix  - bi = O) 

has no solution. Otherwise suppose that  ~ is a solution; then there exists a sufficiently small 
constant ~ > 0, such tha t  for every & _< ~, 5 + &~ satisfies 

di(~ + &5) < b~ for every i E I ,  i.e., 5 + &~ E X. 
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But  one finds that  I ( ~  + 65) = f (5 )  + 6Vf(5)T '5  + o(6) < f('~) if 6 is small sufficiently. 
This contradicts the assumption that  5 is a local minimum solution. 

Now set B -- Dx(~), q = - V  f (5) ,  according to Farkas' Theorem, the system 

D~(.~)Au--- - V  f (5 ) ,  A > 0 (a4) 

has a solution. (a4) verifies equations (3) and (5). Equations (4) and (6) are obviously 
satisfied. 

2) P r o o f  o f  L e m m a  1 a n d  4 

We need only to prove Lemma 4, because Lemma 1 is a direct inference of Lemma 4. 
Proof. Suppose the lemma is not true. Then there exists a sequence {x I`} such that  

Ilx ll oo, b u t  

i E J  

where M is a large positive number, J = J (x  k) = {i : dix k - bl > 0}. Without  loss of 
generality J is assumed to be independent of k, otherwise, a subsequence of {x ~} can be 
found to meet this requirement. Also we assume 5k = xk/llxkll _~ 5, 115] l = 1. (a5) can be 
writ ten as 

+ qr lltxkll + - b, lll kll) < M/II= <II (a6) 
iEJ  

which implies di5 = O, i E J and Q5 = 0 by noticing tha t  Q is a positive semi-definite 
matrix. For i ~ J, dix k <_ bi, then di~ < O. 

Now let 5 E X and x* = 5 +  A5 for )~ > 0; we have dix * = di5 + ~di5 < bi for any 
i E I ,  so x* E X for any A > 0. Furthermore, according to  (43), one can find 

x . T Q x .  + qTx.  =-~TQ- Z + qT.~ + ~qT 5 

=-~T Q5 + qT-~ + A E Aidi x 
iEl(~) 

<_.ZT Q.~ + qT-~. 

Hence x* is an optimal solution for any A > 0 which leads to a contradiction to the bound- 
edness of the optimal solution set. 

3) E x t e n s i o n  o f  T h e o r e m  4 

T h e o r e m  A*. If the solution set X of problem (7) is bounded, and a sequence 
of equilibrium points x k converges to a solution x*, then  there exists an ~" such that  for 
s~ > ~', x k satisfies J(x  k) = I(x*). 

Proo£ There are four cases: (i) The problem is both  p r ima/and  dual non-degenerate, 
the result in this case has been proved in Theorem 4; (ii) The problem is not degenerate 
but  is primal degenerate; (iii) The problem is degenerate bu t  is not prima/-degenerate; (iv) 
The  problem is both  p r ima/and  dua/-degenerate. 

Case (ii). If {x ~} -+ x*, x* is a basic solution, then the proof is the same as tha t  in 
Theorem 4; If  x* is not a basic solution, in this case we have a lemma that  is similar to 
Lemma 2. 

L e ~ m a  A1.  In the case of (ii), for a sequence {x k} -* x*, x* is not a basic solution, 

there exists a sufficiently large k such that  for any k > k, the equilibrium points x ~ of the 
network with s -- s~ are given by the system 

- = i e I *  = (aT) 
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where A~'s are the optimal multipliers, ll(x*)l < n. 
Lemma A1 says that in case (ii) there is an infinite number of equilibrium points for a 

fixed sk. To prove the lemma, note that there exists a k such that for i ~ I(x*), k > k, 

b~ - d~x k -- b~ - dix * -}- d/(x * - x k) < 0. (aS) 

T h e n  the  solutions of  (a7) are the  solutions o f  the equil ibrium equat ion (20) by the  same 
reasoning as in T h e o r e m  4. (a7) and (a8) imply  tha t  J ( x  ~) -- I (x*) .  

Case (iii). I n  this case problem (7) has a unique solution and  ]I(x*)] > n. By Corol lary 
1 in Section 2, x* still satisfies the K-T  condi t ion (20). But  now there are infinitely m a n y  
sets of  op t imal  multipliers A*'s and it is not  necessary t h a t  for any set of  A~'s, (a7) has a 
solution.  So a result  similar to  L e m m a  2 now is not  available. Bu t  because the  solution of  
(20) does exist for a sufficiently large k such t h a t  for i ~ I ( x * )  and  k > k, (aS) is valid, so 
we have J ( x  k) C_ I ( x* ) .  

Case (iv). W h e n  {x k} --* x*, x* is no t  a basic solution, then  condit ion "the problem 
is prima~ degenerate"  works. This sub-case can  be reduced to  Case (ii). W h e n  x* is a 
basic solution,  then  condi t ion "the problem is degenerate"  works and the discussion can be  
reduced  to  t h a t  of  Case (Hi). 
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