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PROFILE MINIMIZATION PROBLEM 

FOR MATRICES AND GRAPHS't 

LIN YIXUN (Jf~@~) YUAN JINJIANG (j~-'~Z) 

( D~partm~ o/Mathematics, Zhe~zhou U~er~11, ~e~a~ou s~$0052, China) 

I. Introduction and Basic Results 

For a simple graph G with n vertices, a bijection (I-1 mapping) f : V -+ (1,2,---  ,n} 
will be called a numbering (or labelling) of G. For a numbering f ,  the profile width of vertex 
v is defined as 

t o / ( ~ ) = f ( v ) -  min .f(x}, ~EN'(u) 

where N*(v) = ( z  E V Ix  = v or (x,v) E E(G)}  is the closed neighbor set of v. The profile 
of numbering f for G is defined as 

• =~N'(v) vEV ~EV 

Finally, the profile of G is the minimum value 

e(G) = rain PI (G), 
! 

where f runs through all numberings of G. A numbering f that  attains the minimum will 
be called an optimal numbering. 

In the area of numerical analysis, a number of profile, as well as bandwidth, reduction 
algorithms have been developed[ l-a]. In graph theory, there has been a strong interest in 
the bandwidth problem [6'6], but less concern in the profile problem so far. 

A class of graphs, called the interval graphs, will play an important role in our study. Let 
J1, J 2 , " "  , J,~ be intervals on a line. We define a graph G with vertex set (J1, J % " "  , Jn) ,  
called an interval graph, by connecting two intervals if and only if they have a point in 
common. The characterization of interval graphs can be found in the literature (e.g. I7]). 
Here is one. 

T.emma 1.117]. A graph G is an interval graph if and only if it does not contain any 
of the following graphs as an induced subgraph. 
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(A) (s) (V) 

Fig. 1 

From this, it is easily seen that a tree T is an interval graph if and only if it is a 
caterpillar (i.e. a tree which yields a path when all its pendant vertices are removed). 

We have another characterization of interval graphs as follows. 
Lem~aa  1.2. A graph G is an interval graph if and only if there exists a numbering 

f such t ha t  i f  f (z)  < f(y) < f(z) and z z  e E(G) then ~/, z e E(G). 
T h e o r e m  1.3. For any graph G, P(G) >_ IE(G)I; and P(G) = IE(G)I if and only if 

G is an interval graph. 
C o r o l l a r y  1.3.1. For any tree T, P(T) >__ r~ - 1; and P(T) = n - 1 if and only if T 

is a caterpillar. 
T h e o r e m  1.4. For any graph G, P(G) is the minimum number of edges of an interval 

supergraph of G. 
This theorem leads to a problem of extremal graph theory determining the minimum 

number of edges of an interval supergraph. This is called ~the interval graph completion 
problem n, which is NP-complete in general (see [9, p.lg8]). However, in some special graphs, 
we can obtain exact solutions. 

2. Profile of Special Graphs 

In this section, we shall derive some lower bounds of the profile, and determine P(G) 
for special graphs. 

For a given numbering f ,  the profile width wf(u) -- f(,J) - min=~,v*(,) f ( z )  can be 
regarded as the weight of vertex u. Further, the weight of subgraph H of G can be defined 
a s  

,ev(u) 
Especial ly,  P I { G }  = w ; ( O ) .  

L e = m ~  2.1. Let P be a (=, ~)-path in C with f(=)  < f(~). Then 

w~(P) >-/(~) - / ( = )  + =S(=)" 
Proof. Suppose t ha t  P = uoul,,2" " u e  where uo = u, uk = u. From 

=I(~,)  = / ( ~ , )  - m" =eN'~.,~ f(=) ----/(~) - - / ( ~ - 1 ) ,  



No.1 PROFILE MINIMIZATION PROBLEM FOR MATRICES AND GRAPHS 109 

it follows that 

k k 

/----0 i----I 

-/C.o) + 

L e m m a  2.2.  For any vertex v E V ( G ) ,  P ( G  - v) ~ P(G) - d e ( v ) .  

T h e o r e m  2.3. If G is k-connected, then P ( G )  _> ~(2n - k - 1). 

Proof. For a given' numbering / ,  suppose that  /(Uo) = 1, f ( v l )  = n, / ( ~ )  = 
n -  1 , . . - ,  f(v~) = n -  k +  1. We add a new vertex v0 to G, and join vo to v l , t ~ , . ' -  ,vk. 
Since G is k-connected, so is G + v0. By Menger's theorem ([8], Theorem 11.7), there 
are k internally-disjoint (u0, v0)-paths in G + v0. Namely, we have (uo, v~)-paths p(O in 
G, i = 1 ,2 , . . -  ,k,  such that  they have only one vertex u0 in common. By Lemma 2.1, 

wl(P(O ) - w$(Uo) _> f ( v i )  - f ( u o )  = n - i, 1 ~ ~ ~ k. 

Noticing that  w1(Uo ) = 0, we have 

k k 

_ _ ~ { 2 n -  k -  1). 
i = l  i = 1  

C o r o l l a r y  2.3.1.  Let C,~ be a cycle with n vertices. Then P(C,~) = 2n - 3. 

C o r o l l a r y  2.3.2.  Let W~ be a wheel with n vertices. Then P(Wn) = 3n - 6. 
C o r o l l a r y  2.3.3.  For the complete bipartite graph K,,,,~, m ~ n, P ( K m , n )  = 

m n +  ~ r n ( r n -  1). 

This result can be generalized to a decomposition theorem as follows. The join G1 v G2 
of disjoint graphs G1 and G2 is a graph obtained from Gt U G2 by joining each vertex of Gt  
to each vertex of G2. 

T h e o r e m  2.4. If a -- GI v G2, [V(GI) i  -- m, iV(G2)i -- n~ then 

{ 1 1 } 
P(G) = rain P(G1) +mn + ~ n ( n  - 1), P(G2) + m n  + y m ( m  - 1) 

3. A Result on Trees with D(T)=4 

We consider a tree T with diameter 4, as shown in Figure 2. Here, deno~te the center of 
T by vo; and denote the other non-pendant vertices by ul, t~ , - - -  , vk (k _> 2). Each v~ and 
its neighbors constitute a star, called the vi-branch (relative to the center vo). Note that  
the pendant edges incident to vo will not be called branches. 

Let d(v~} be the degree of vi. Then there are d(v,) - 1 leaves (pendant vertices) in the 
vl-branch (1 < i < k). We may assume that  

d ( v l ) - > d ( v 2 ) > _ . . . - > d ( v k )  _>2. (1) 



II0 ACTA MATHEMATICAE APPLICATAE SINICA Vol.10 

Fig. 2 

T h e o r e m  3.1. For a tree T with diameter 4, 
k 

P ( T )  = I (T)I + - 1). (2) 
i-----3 

Proo/. When k -- 2, T is a caterpillar; by Corollary 1.3.1, the conclusion holds. 
Assume now that  k > 3. Let G be an interval supergraph of T with a minimum number of 
edges. Denote E* -~ E(G)\E(T) ,  the set of additional edges. By Lemma 1.1, G does not 
contain the forbidding graphs Ck (k ~ 4), A, B and D as an induced subgraph. Among 
them, the only one tree is A. For any subtree A of T, there must be some additional edges 
in the induced subgraph G[A]. 

Case  1. No additional edges cross two branches. In 'other words, every additional 
edge is from the center v0 to a leaf of some v~-branch. We can see that  there axe at least 
/~-2  branches in which all leaves are connected by additional edges. Otherwise, there would 
be a forbidding graph A in G. On the other hand, by the minimality of E*, there are exact 
/c - 2 branches having such a property. Also, by the minimality of E" and the assumption 
(1), the two exceptional branches must be those of vl and v2. Hence IE*I = ~'~=3 (d(v~)- 1). 

Case 2. There are additional edges crossing two branches. 
Case 2.1. An edge e E E* connects two leaves z, y of distinct branches, as shown in 

Figure 3(a) (the additional edges are depicted by dotted lines). 

I 
I \ 

Y 
z g x 

(,.) 

Fig. 3 

{b) 

Since Uk (k ~ 4) are forbidding graphs, there must be two chords in the cycle Vov~zyvjv0. 
That is, there are three additional edges within these two branches. We may change these 
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edges in (a) into the ones in (b). After this local transformation, the resulting graph G' is 
still an interval supergraph of T. This contradicts the minimality of G. Therefore, this case 
is impossible. 

Case 2,2. An edge e E E* joins some v~ and a leaf z of another branch, as shown in 
Figures 4(a). Similarly to the previous case, we may change (a) to (b) as follows. 

k° 
" "  " -  I 1 /v~ ~ \\'~ 

(~) (b) 

Fig. 4 

After that,  the resulting graph G t is still interval. And this reduces to Case 1. 

Case  2.3.  An edge e E E* joins some vi and ~y (1 < g < 3" - (k ) .  Suppose that  Case 
2.1 and 2.2 do not occur. We have the following situations: 

Vo 

i I 

(.-) 

/• 
UO 'v o 

/'Z__\ 

(b) (¢) 

Fig. 5 

In the cases of (a) and (b), the additional edge e = viu i can be deleted from G. It is easy to 
see that  G -  ¢ is still an interval graph (by Lemma 1.1). This contradicts the minimality of 
G. In the case of (c), there will be a forbidding graph D (of Figure 1) in G. Any way, Case 
2.3 is impossible. 
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