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Algorithms for simulation and verification 
of Numerically Controlled (NC) machin- 
ing programs are presented. Compared to 
NC simulation based on conventional so- 
lid modeling systems, these models are de- 
signed to give approximate results, but  
with a substantial decrease in computer 
time. The surfaces of the part are discre- 
tized into a Surface Point Set (SPS) with 
a point spacing dependent on cutting tool 
size and shape, local surface curvature and 
the desired accuracy of the approximate 
simulation. The surface-surface intersec- 
tion calculations of the solid modeling ap- 
proach are replaced by the intersection of 
the surface of the tool movement envelope 
with straight lines emanating from the sur- 
face points. The methods are applicable 
to both 3 and 5 axis machining. Samples 
test cases are presented, and implementa- 
tion and efficiency issues are discussed. 
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1 Introduct ion 

An NC program consists of a series of cutter tool 
movements which remove material from a piece 
of raw stock to create a prototype part, mold or 
stamping die. In this process the production engi- 
neer uses a high level language like APT to define 
the geometry and cutter sequence, calculate cutter 
offsets and produce a Cutter Location Data  
(CLDATA) File. The C L D A T A  file must then be 
postprocessed into a Machine Control Data  
(MCD) file which contains the instructions to con- 
trol a specific machine tool. The next step, an often 
time consuming and costly one, is the validation 
of the NC program to eliminate any errors. This 
step is often accomplished by machining plastic, 
wax or wooden models. Manufacturers, who are 
under constant pressure to shorten the product de- 
velopment process, could benefit greatly from a 
method which produced error free NC programs. 
It is the goal of our project to move the validation 
process into software and thereby eliminate errors 
before any machining is attempted. 
In order to better understand the various aspects 
of the validation process we define three important 
terms: simulation, verification and correction. Simu- 
lation of the geometric aspects of material removal 
requires modeling of the swept volume of each tool 
movement in the C L D A T A  file and modification 
of a geometric model of the workpiece to keep 
track of the material removal process. The verifica- 
tion process requires a comparison between the fi- 
nal workpiece model and a geometric model of 
the part. If the two models are properly oriented 
then a boolean difference operation will yield the 
null set if they the same. Unfortunately, from the 
standpoint of manufacturing practice, exact corre- 
spondence is not really the issue. The real question 
is whether the machined part is "close enough" 
to the nominal part geometry, i.e. will it fall within 
the allowable tolerance zone? This is a much more 
difficult question to answer, but  an answer is essen- 
tial if the validation process is to have practical 
value. For  example, in the sculptured surface die 
production which provided the impetus for our 
work, the nominal part and the machined part are 
almost never in exact correspondence. The ma- 
chined part may, however, be perfectly acceptable 
if the deviations do not exceed the specified toler- 
ance. Finally, correction of the C L D A T A  file can 
only be achieved if there is a means in the valida- 
tion model to relate unacceptable deviations to a 
tool movement. Our method reveals which tool 
movements caused the error and thereby aids the 
NC programmer in fixing the error. We are also 
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working on methods which automatically correct 
the CLDATA file. 
Some currently available commercial systems can 
do verification without simulation by detecting in- 
terference between the tool and the part model. 
However, there is no simulation of the cutting be- 
cause there is no model of the workpiece geometry 
and therefore it is impossible to determine if there 
is excess unremoved material. It is also possible 
to perform simulation without verification. Some 
commercial NC controllers actually display, for 
21/2 D parts, a graphic image of the part produced 
by the NC program. Since the system does not 
have access to nominal part geometry it can't make 
the required comparison to perform verification. 
Although the details of these methods are not in 
the public domain it is probably a variation of 
the view-based methods which will be described 
later in this paper. 
Some desirable characteristics of an NC program 
validation system are summarized: 
1. Capable of detecting both gouges and areas of 

excess material which deviate from the nominal 
part geometry by more than a specified toler- 
ance. 

2. Able to relate cutting errors to a specific tool 
movement for subsequent correction. 

3. Sufficient precision to find errors even though 
the ratio of the nominal size to tolerance devia- 
tion can be greater than 10000: 1. 

4. Determine volume of material being removed 
at any given time in order to select optimum 
machining conditions. 

5. Visual display of machined part with color 
coded display of errors. 

2 Background 

An early example of NC simulation and verifica- 
tion is the work by Gossard at MIT who developed 
a method based on set theory for turning opera- 
tions (Gossard and Tsuchiya 1978). The use of solid 
modeling was first investigated by Voelcker and 
Hunt  who did an exploratory study of the feasibili- 
ty of using the PADL Constructive Solid Geometry 
(CSG) modeling system for simulation of NC pro- 
grams (Voelcker and Hunt  1981; Hunt  and 
Voelcker 1982). Solid geometry modeling systems 

offer the possibility of doing both simulation and 
verification (Wallis and Woodwark 1984). The sim- 
ulation is achieved by boolean subtraction of the 
tool movement volume from the workpiece model. 
Verification is achieved by performing boolean dif- 
ferences between the model of the workpiece and 
the desired part. Fridshal at General Dynamics 
modified the TIPS solid modeling package to do 
NC simulation (Fridshal et al. 1982). The problem 
with using the solid modeling approach is that it 
is computationally expensive. The cost of simula- 
tion using the CSG approach is reported to be 
O (N4), where N is the number of tool movements 
(Voelcker 1981). A complex NC program might 
contain ten thousand movements, making the com- 
putation intractable. 
In order to increase efficiency, a number of approx- 
imate simulation methods have been devised 
(Chappel 1983; Wang 1985; Wang and Wang 
1986a, b; Oliver 1986; Oliver and Goodman 1986; 
Van Hook 1986; Jerard et al, 1986; Atherton et al. 
1987). These approximate methods are O(N); i.e. 
the simulation time grows only linearly with the 
number of tool movements. A more complete dis- 
cussion of these methods may be found in a pre- 
vious paper (Jerard et al. 1988). In all of these tech- 
niques machining simulation is approximated by 
finding the intersection of the tool movements with 
straight lines. For example, in Chappel's method 
the surface of the part is approximated by a set 
of points. Vectors are created normal to the surface 
at each point. A vector extends until it reaches 
the boundary of the original stock or intersects 
with another surface of the part. During the simula- 
tion the length of a vector is reduced if it intersects 
the tool movement envelope. An analogy can be 
made to mowing a field of grass. Each vector in 
the simulation corresponds to a blade of grass 
"growing" from the desired object. As the simula- 
tion progresses the blades are "mowed down". The 
final length of the vectors correspond to the 
amount of excess material (if above the surface) 
or the depth of the gouge (if below the surface) 
at that point. 
A somewhat different approach is the "view based" 
methods characterized by the independent work 
of several researchers (Wang 1985; Wang and 
Wang 1986a, b; Van Hook 1986; Atherton et al. 
1987). They use a variation of the standard Z depth 
buffer hidden surface algorithm. A vector normal 
to the plane of the graphics screen is drawn at 
each pixel. In Wang's approach, intersections of 
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these lines with tool path envelopes are calculated 
with a scan line algorithm. For each pixel an ex- 
tended Z buffer is maintained that contains the 
Z depth of all the entries and exits of the work- 
piece. The workpiece Z buffer is modified by per- 
forming boolean difference operations with the Z 
buffer of the tool movement swept volume. In such 
image space methods, errors which are not visible 
in the chosen viewing direction are undetected 
and generating another view of the part requires 
rerunning the entire simulation. Furthermore, 
small machining errors (e.g. less than 0.1 mm) are 
unlikely to be detected by a visual inspection of 
the computer graphics image. As Oliver (1986) 
points out, the critical issue in machining verifica- 
tion is whether the machined part features fall with- 
in a specified tolerance zone. The very large ratio 
between the nominal dimensions and the tolerance 
dimensions (10000:1 is not unusual) makes it un- 
likely that an image based simulation will be ade- 
quate. 
Despite their limitations the view based methods 
do have several advantages. They are the best ap- 
proximate method for determining how much ma- 
terial is being removed by any given tool move- 
ment. This is important for setting optimum values 
for feedrates. Each pixel can represent a volume 
of material, and material removal can be approxi- 
mated with an accuracy dependent on the num- 
ber of pixels and the size of the object. Another 
advantage is that since the simulations can be run 
without any information about the model of the 
nominal part it is relatively easy to make a general 
system. Both Wang and Atherton have produced 
commercial products based on their methods. 
However, if nominal part information is not used 
then verification is not possible. 
Of the validation methods discussed, the solid 
modeling approach is, in theory, the most desir- 
able because it is an exact representation of the 
geometry of the machining. In practice, however, 
the process can introduce errors dependent on the 
internal model representation. If, for example, a 
faceted representation of a curved surface of the 
part or of the tool envelope is used then accuracy 
may be compromised. For asmall number of tool 
movements the solid modeling method may work 
well for simulation. However, the difference opera- 
tion required to perform verification can be very 
expensive computationally and it still leaves unan- 
swered the primary question of whether the work- 
piece falls within the acceptable tolerance zone. 

3 Description of algorithms 

The approaches of Chappel, Oliver and the authors 
provide the necessary elements for a simulation, 
verification and correction method which is both 
accurate and efficient. In these methods material 
removal is simulated by modification of the vector 
length and verification is trivially accomplished by 
a comparison between the final vector length and 
the allowable tolerance variation of the surface. 
The algorithms work in object space and graphical 
display is a post simulation process. Our approach 
(Jerard et al. 1986, 1988, 1989; Drysdale and Jerard 
1987; Drysdale et al. 1989) shares characteristics 
of the methods of Chappel and Oliver, but it also 
contains several novel features that improve effi- 
ciency and allow the user to make informed trade- 
offs between the accuracy of the approximate simu- 
lation and the CPU time. 
In order to realize a practical sytem it was neces- 
sary to concentrate on three key aspects, discretiza- 
tion, localization and intersections. In the discretiza- 
tion phase, a Surface Points Set (SPS) is calculated 
to approximate the surface of the part with a spac- 
ing between points that depends on the size and 
shape of the cutting tool, local surface curvature 
and the desired accuracy of the simulation. The 
methods for surface discretization are described in 
detail in the above references and are not repeated 
here. Two alternative approaches for extending the 
method to five axis machining are also explained. 

4 Localization 

Figure 1 a shows a surface with a set of points and 
associated direction vectors normal to the surface. 
As each tool movement is processed the intersec- 
tion of the direction vectors with the tool envelope 
can be calculated. It would be computationally ex- 
pensive to calculate the intersection of all the direc- 
tion vectors for each tool movement. It is therefore 
desirable to localize the calculations by eliminating 
from consideration the vectors which have no pos- 
sibility of intersecting the tool movement envelope. 
If we restrict the generality of the method of the 
common case of three axis machining, and assume 
that the surface has only one z value for any given 
x - y  location (i.e., no undercuts) we can choose 
direction vectors to be parallel to the long axis 
(z axis) of the cutting tool (see Fig. 1 b). Therefore, 
a vector can only be intersected if it lies directly 
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Fig. 1. a Tool path envelopes intersected with normal 
vectors, b Tool path envelopes intersected with z 
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Fig. 2. Surface points can be hashed into buckets 
according to x - y  locations 
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Fig. 3. Intersection calculations are performed only on 
points in buckets under the tool path shadow 

under the tool path. This means that the points 
can be hashed into "buckets"  as shown in Fig. 2. 
Localization is achieved by finding the set of buck- 
ets which lie under the shadow of the tool and 
examining only the points in those buckets (see 
Fig. 3). Only a small percentage of all the points 
are examined for each tool movement. 
By choosing direction vectors in the z direction 
there is also an improvement in the efficiency of 
the intersection calculations (Jerard et al. 1988). 
The calculations are simplified by the fact that the 
x and y components of the direction vector are 
zero and also by the fact that we are only cutting 
on the bot tom of the tool, so no intersection calcu- 
lations need to be done for the sides of the tool. 
Another advantage of choosing vectors in the Z 
direction is that it is possible to simulate approxi- 
mate material removal rates in a manner similar 
to the previously described view based methods. 

5 Post simulation error analysis 
for three axis machining 

The cutting error is related to the length of the 
direction vector after all tool paths have been pro- 
cessed. Choosing all vectors in the z direction intro- 
duces a potential problem whenever the surface 
normal deviates from the z direction. The problem 
becomes most apparent for nearly vertical surfaces 
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as shown in Fig. 4. The uncorrected estimate of 
the cutting error is the vertical distance between 
the surface point P, and the cut point P'. This effect 
causes the errors to be overestimated. No errors 
will be missed but points will be reported to be 
out of tolerance when in fact they are not. In order 
to remedy this problem it was necessary to imple- 
ment a post simulation error analysis. We present 
two methods for addressing this problem: a quick 
but less accurate approach based on finding the 
component of the vertical error in the direction 
normal to the surface (the Dot-Product method) 
and the Point-Triangle-Distance (PTD) method 
which is slower but more accurate. 
The question of how to esimate the actual error 
is not quite as simple as it might seem. The error 
could be estimated by measuring the distance: 1. 
From the machined point P' to the closest point 
on the design surface, 2. From the design surface 
point P to the closest point on the machined sur: 
face or, 3. From the design surface to the machined 
surface in the normal direction. These methods will 
yield different results under certain conditions. In 
practice, if the length of the trimmed direction vec- 
tor is small (e.g. 0.1 mm) compared to the local 
radius of curvature (typically 10 to 1000 mm) then 
the surface may be considered to be essentially flat. 
Under  these conditions it can be shown that there 
is little difference between these methods. The first 
option was the most straightforward one to imple- 
ment with our simulation method. This method 
is accurate as long as the length of the trimmed 
direction vector does not greatly exceed the toler- 
ance dimension. But under these conditions, the 
NC programmer knows that there is a problem 
needing correction, and the actual magnitude of 
the error is unimportant. Therefore care must be 
used only if the tolerances become significant rela- 
tive to the dimensions of the object, a rather rare 
occurrence. 
The Dot-Product method is illustrated in Fig. 5. 
Consider a point P(x, y, z) on the design surface. 
The corresponding point on the machined surface 
will be P' (x, y, zcut). If N is the normal to the design 
surface at P, the cutting error at this point is closely 
approximated by the length of the projection of 
the vector PP '  on the normal. The vector PP '  is 
the vector from the point on the design surface 
to its corresponding point on the machined sur- 
face. 
This method works well for all points interior to 
a surface as long as the length of PP '  is small rela- 
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Fig. 4. Estimates of errors on nearly vertical surfaces 
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Fig. 5. Dot-Product method for vertical surface 
correction 

tive the local radius of curvature as described 
above. This method will not work when: 
1. Point P is very close to the boundary of a sur- 

face. As shown in Fig. 6, the closest distance 
from the machined point P' to the design surface 
point P is greater than the error estimated by 
the dot-product method. 

2. Point P' is closer to some other part of the de- 
sign surface as illustrated in Fig. 7. 

The advantage of the dot-product method is that 
it is very fast, simple to implement, and in most 
cases, it results in a substantial improvement in 
accuracy over just using the vertical distance. 
It would be more desirable to find the actual dis- 
tance between each machined point P' and the de- 
sign surface. For  parametric surfaces this can be 
an extremely time consuming calculation requiring 
iterative methods. To simplify and accelerate the 
surface-to-point distance calculations the design 
surface is replaced by a polyhedral approximation. 
Inherent in our surface discretization scheme is the 
criterion that the deviations in this approx imat ion  
be bounded by a tolerance (Drysdale et al. 1989). 
Thus the errors in surface-to-point distance calcu- 
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Fig. 8. Triangles close to point P' are examined for 
closest distance calculation 

lations incurred by replacing the design surface 
with the polyhedral approximation are also 
bounded by this discretization tolerance. Since the 
polyhedron is described by triangular faces the 
problem is reduced to finding the distance from 
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the machined point P' to the triangles of this sur- 
face. 
The number of triangles on the surface is typically 
of the same order as the number of points. So, 
one cannot look at every triangle for every point 
P'. It would be too slow (for example, in our trials 
139 cpu min compared to 2 rain for the method 
described below). There are many ways one could 
select the triangles that are nearest to the point 
P'. Only those triangles less than the length IPP'I 
from P' need to be considered when determining 
the error at a given point. 
Our approach consists of hashing all the triangles 
based on their centroid into an X Ygrid. After the 
hashing is completed, each hash table entry will 
be a linked list of triangles. The size of the X Y  
grid is determined using the length of the longest 
edge on the surface (max_edge_length). Note that 
max_edge_length is the longest edge of any triangle 
in the entire polyhedral approximation to the sur- 
face. The surface discretization method that we use 
also attempts to keep the size of the edges of the 
triangles at about the same length, a feature which 
helps to make the hashing more efficient. 

x or ~y = max_edge_length/i/3 minimum 6 

For a given point P(x, y, z), the candidate triangles 
will be given by each of the hash boxes in the rect- 
angular grid that lies under the circles around P, 

with radius = I PP'I + max-edge-length/l//~. This is 
illustrated in Fig. 8. It can be verified that every 
triangle that is close enough to be considered is 
selected. However, in an average, case, there are 
still many times more triangles selected than are 
really needed. 
The structure of the algorithm is given below. 

For each point P on the surface: 
If need to correct error at this point: 

Find the corresponding machined point P' 
Get list of triangles in the vicinity. 
Corrected Error at P' equals minimum 

distance from P' to any triangle in the 
vicinity 

The details of the Point-Triangle-Distance calcula- 
tions and Point-Edge calculations may be found 
in Appendix A, and in more detail in reference 
(Hussaini and Jerard 1988). Results from a test case 
are presented in Table 1. The table shows CPU 
times for simulations performed with and without 
error correction. The parabolic tool movements are 
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Fig. 9. Shaded image of air intake portion of a bumper 

Fig. 10. Surface Point Set of bumper 

Fig. 11. Cutting errors without post simulation analysis shows excess 
material on vertical sides 

Fig. 12. With post simulation correction. Note that overestimation of 
excess material on nearly vertical sides is corrected 

Fig. 13. Errors expanded by a factor of 50 show 0.1 mm cusps clearly 
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Table 1. Cutting simulation system performance for two test cases. Results show the number  of CPU minutes on a DEC VAX 
8650 for two different user-specified accuracies with three types of post simulation error analysis: I. no error correction; 2. Dot  
product method;  3. Point-Triangle-Distance method 

Tool movements Maximum simulation error - mm (in.) 

2.5 (0.1) 0.75 (0.03) 

Parabolic Linear Points 1 2 3 Points 1 2 3 

Trunk 3,500 18,855 3,064 3.00 3.02 3.48 10,761 10.15 10.20 12.02 

Bumper 8,100 45,411 7,348 5.43 5.47 7.58 16,789 11.53 11.58 17.16 

14 

15 

Fig. 14. Wireframe picture of area where two surfaces 
overlap 

Fig. 15. Errors are indicated in red on surfaces without 
post simulation correction 

Fig. 16. Post simulation correction eliminates effect of 
overlap 
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broken up into the number of linear tool move- 
ments indicated. The maximum simulation error 
indicates the largest possible gouge that could pos- 
sibly be missed. The Dot-Product  method causes 
almost no discernible increase in CPU time while 
the PTD method causes an average increase of 
about  30%. 
Figures 9-13 shows the results of simulation. The 
shaded image of the bumper test case is shown 
in Fig. 9. The surface point set used to perform 
the simulation is shown in Fig. 10. In Fig. 11 the 
uncorrected cutting errors are shown. Blue indi- 
cates excess material of 0.1 mm and red shows 
gouges of 0.1 mm with the color spectrum interpo- 
lating intermediate values. The corrected errors are 
shown in Fig. 12. The excess material was overesti- 
mated in Fig. 11 because of the nearly vertical sur- 
faces, indicated by the darker blue lines. In Fig. 13 
we magnified the errors by a factor of 50 to show 
qualitatively the cusps between the tool paths. The 
height of these cusps is a good indicator of the 
amount of expensive hand finishing required after 
machining. In addition to the post simulation 
graphical display it is possible to output a list of 
machined surface points which lie outside a given 
tolerance. We also output the tool paths which last 
cut the given point. 
We also discovered an unexpected benefit when 
we implemented the Point-Triangle-Distance 
(PTD) method. The three dimensional complexity 
of sculptured surfaces makes it difficult to model 
them with current solid modeling systems. One 
problem with surface-based descriptions of parts 
is that topological consistency is not guaranteed 
(in contrast to solid modeling methods where it 
is). In the test cases provided by our industrial 
sponsor we occasionally find overlapping surfaces. 
The surfaces are actually some small distance from 
each other. Only one of the surfaces can be the 
drive surface for the NC program. This creates the 
possibility of large but irrelevant errors on the 
other surface. The points associated with one sur- 
face may be cut very accurately while the points 
on the other surface may be either severely gouged 
or show excess material. The simulation results can 
be quite confusing in cases like this. However, if 
we search for the closest distance between the ma- 
chined surface point and all nearby surfaces (PTD 
method) then the inconsistency is eliminated and 
errors are only reported if the machined point is 
outside the tolerance zone of both surfaces. In Fig- 
ures 14-16, the bumper case illustrates an area 

where two surfaces overlap. The simulation results 
shown in Fig. 15 indicate an area that has a 0.2 mm 
deep gouge. The size of the area is diminished sig- 
nificantly in Fig. 16 where the PTD method has 
been applied to eliminate the artifact produced by 
the two overlapping surfaces. 

6 Five axis machining 

In five axis machining the cutting tool has two 
additional degrees of freedom which control its an- 
gular orientation. The cutter can be placed at any 
cartesian coordinate with its direction cosines cho- 
sen to place it at a favorable orientation relative 
to the surface being machined. Typically, in sculp- 
tured surface face milling the tool is oriented nor- 
mal to the surface with a tilt of a few degrees in 
the direction of movement. The large diameter flat- 
end or fillet-end cutter can remove material at a 
much faster rate than the three axis ball end cutter 
and smooth surfaces requiring a minimum of hand 
finishing can be machined efficiently. Despite the 
advantages of five axis machining it is not widely 
used because of the difficulty of programming the 
complex tool paths and avoiding interference be- 
tween the cutting tool and the adjacent surfaces. 
Traditional methods for finding program errors, 
such as plotting the tool path, are not effective 
at showing both tool position and angular orienta- 
tion. The development of a five axis simulation and 
verification capability would greatly aid in the ef- 
fective utilization of five axis machining capaci- 
ties. 
During our investigation several important facts 
became evident: 
1. The surface discretization method that we use 

is equally applicable to three or five axis simula- 
tion and no modifications to these algorithms 
are necessary, thus the inherent advantages of 
using a minimum point set with bounds on the 
simulation error is retained. However, in five 
axis machining the tool shape is usually a flat- 
end or fillet-end cutter, a factor which greatly 
increases the number of points required for a 
given level of user specified accuracy (Drysdale 
et al. 1989). 

2. The localization method used for three axis sim- 
ulation is no longer applicable. The versatility 
of five axis machining allows it to machine sur- 
faces with multiple z values and the simplicity 
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of having all direction vectors pointing in the 
same direction is no longer possible. 

3. The intersection calculations are complicated by 
both the more complex nature of the tool path 
envelopes and the fact that the surface vectors 
will not all be in the same direction. 

7 Five axis localization 

We have investigated two methods for localizing 
the calculations; the first is based on using surface 
normals of short length (short normal method), and 
the other on a concept of using average normal 
vectors (average normal method). With the first ap- 
proach we limit the length of the direction vectors 
to a value which is small relative to the overall 
dimensions of the part but very large relative to 
the magnitude of the part tolerances. The long 
"blades of grass" which protruded from the surface 
in Fig. I have now become short "stubble". By 
limiting the length of the vectors it is possible to 
easily localize the calculations with a bucketing 
method which varies only slightly from the ap- 
proach used for three axis localization. The length 
of the short normals is selected based on the surface 
tolerance. For example, if the surface tolerance is 
0.1 mm, then a normal length of 1 mm is more 
than adequate to detect errors in the range of the 
interest. In our simulations the vector protruded 
3 mm both into and out of the surface. 
The points are still sorted into buckets but points 
in some buckets outside the shadow of the tool 
must also be examined as illustrated in Fig. 17. It 
is only necessary to expand the shadow of the tool 
envelope by the length of the direction vector to 
insure that all candidate points are examined. The 
points in the buckets are also sorted by Z value 
and therefore the Z extents of the tool movement 
are used to further localize the calculations. This 
method is similar in many respects to that used 
by (Oliver 1986; Oliver and Goodman 1986). 
The alternate approach (average normal) consists 
of choosing the direction vector for each point from 
the predefined set of direction vectors. We have 
one bucket set for each direction vector and points 
are assigned to the bucket set whose direction vec- 
tor most closely matches the point's normal vector. 
In general we would expect the direction vector 
for a given bucket set to be close to the average 
of all the normals of points in that set. If the angle 
between the average normal vector and any point 

surface 

" ~  =iv.....- Normal vector length = m 

Z typical m = 3 mm 

Y 

~ Needto expand 
~,,,,,,~-'-_ -- ~ , , , , ,~  j t  shadow of tool 

Fig. 17. Five axis localization using short normal 
approach 

in its set is small then errors of the type discussed 
in Sect. 5 will also be small. Each of the bucket 
sets can be treated exactly the same as the three 
axis case. 
In both of these approaches (short normal and av- 
erage normal) the ability to simulate material re- 
moval has been lost. Based on our definitions of 
simulation and verification in Sect. 1 we are now 
doing verification without simulation. However, 
unlike most other verification methods we are able 
to detect not only gouging but also areas where 
excess material has been left. 
As a simple example of a bucket set based on aver- 
age normals imagine a cube with a direction vector 
associated with each face. Our predefined set of 
direction vectors consists of the vectors in the fol- 
lowing directions; up, down, left, right, front, and 
rear. Thus when the normal vector of a point on 
the surface is generally to the left, we will use the 
left vector as our direction vector for that point 
and so on. 
Thus in the example above, we can simulate the 
cutting six times. Note that, since each point only 
resides in one bucket set, this does not imply that 
there will be six times as many intersection calcula- 
tions; indeed the number of intersection calcula- 
tions should not be significantly larger than with 
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Fig. 18a, b. Five axis localization using average 
normal approach 

the short approach. We can simulate cutting for 
the points whose direction vectors are up, as we 
did in the 3 axis machining (see Fig. 18a). For  
points whose direction vector is to the right, we 
rotate the workpiece so that the right direction vec- 
tor is vertical (see Fig. 18b). Now for each tool 
movement, we rotate the tool positions by the same 
rotation used on the workpiece and simulate cut- 
ting on those points with a right direction vector. 
Notice that the direction vector associated with 
these points is now vertical. 
Now localization can be achieved. When a direc- 
tion vector is chosen for a point, the rotations re- 
quired to make the direction vector Vertical and 
the set of buckets that the point goes in are known. 
Thus when a direction vector is chosen, we can 
assign the point to a set of buckets, compute the 
rotated coordinates of the point, and store the 
point in a bucket within the chosen set of buckets 
based on the rotated x and y coordinates of the 

point. In other words, we are able to localize for 
each of our 6 directions. 
In general, we may have more than the 6 predefined 
direction vectors in this example and increasing 
this number decreases the difference between the 
true normal at each point and the chosen direction 
vector, thus decreasing the magnitude of the errors 
of the type described in Sect. 5. This means that 
the average normal approach could also be used 
to simulate three axis machining and eliminate the 
need for the post simulation analysis described in 
that section. 

8 Five axis intersection 
calculations 

The intersection calculations were accomplished in 
almost the same manner for both the "short  nor- 
mal" and the "average normal" approach. The ob- 
jective of these calculations is to determine the 
points of intersection between the tool path enve- 
lope and the direction vectors. When all the points 
have been assigned to a bucket using either the 
single bucket set of the "short  normal" approach 
or into one of the multiple bucket sets for the "av- 
erage normal"  approach, we can proceed with the 
cutting simulation. In the case of the average nor- 
mal method the rotated coordinates of each point 
have been precomputed, so for each tool move- 
ment, we rotate the tool and generate the tool enve- 
lope in the rotated coordinate system. Now that 
we have the tool envelope, we can determine which 
buckets to examine and proceed in a manner close- 
ly analogous to the method used for three axis 
machining. For  the short normal method we deter- 
mine the intersection between the tool path enve- 
lope and the direction vector associated with each 
surface point. For  the average normal method the 
intersection calculations are similar, except the di- 
rection vector is always vertical (in the rotated co- 
ordinate system). Intersection calculations should 
determine the points where the direction vector 
enters and exits the tool envelope. The sign of the 
entry and exit distances indicate whether the inter- 
sections are outside (positive) or inside (negative) 
the surface. 

Phantom gouges 

For a five axis tool movement it is possible for 
the direction vector to have multiple sets of entry- 
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exit pairs. We treat each of these pairs independent- 
ly and, except for one special case, the length of 
the direction vector is changed whenever the entry 
value is less than the previous length. However, 
if both the entry and exit distances of a particular 
entry-exit pair are negative we ignore that pair. 
Two things could have happened in this case. The 
point could have actually been gouged or the tool 
could have passed below the point but still be out- 
side the surface. We label the latter case a "phan- 
tom gouge" since the tool has not really penetrated 
the surface and is simply machining on another 
surface which happens to lie below the point of 
interest. If the tool actually protruded far enough 
into the surface so that both entry and exit values 
are negative then our surface subdivision method 
guarantees that another point must have been 
gouged and the error will be detected even though 
this particular point will not report the error. 

Tool movement envelopes 

The difficulty of the intersection calculation de- 
pends on both the tool type and the complexity 
of the tool movement envelope. In general, there 
has been very little published research (Wang and 
Wang 1986b) on the problem of defining the exact 
mathematical description of envelopes of tool 
movements, and a complete discussion of this sub- 
ject is beyond the scope of this paper. Three axis 
tool movements may be handled in a straightfor- 
ward manner (Jerard et al. 1988) but five axis enve- 
lopes are much more difficult. The tip of the tool 
translates in a straight line while the angle between 
the long axis of the tool at the starting and end 
locations is linearly interpolated. The resulting en- 
velope surfaces are quite complex. Our current ap- 
proach approximates the envelope with a number 
of simpler movements in which the angular orien- 

tation of the cutting tool is assumed constant. This 
introduces both computational inefficiency and the 
possibility of additional simulation error. We are 
presently working to quantify the magnitude of this 
error and also develop more efficient representa- 
tions of the envelope. 
The intersection calculations for the envelope of 
a flat-end cutter with no rotational change are de- 
scribed in Appendix B. The flat-end cutter and fil- 
let-end cutters are the most commonly used tool 
shapes for five axis machining. The derivation for 
a ball-end cutter is quite straightforward but of 
limited usefulness since this shape is not used very 
often in five axis cutting. The fillet-end cutter is 
commonly used but it is also more complex, and 
we are still working on good representations for 
this case. This problem reduces to finding the swept 
envelope of a torus translating and rotating 
through space; we believe this to be a rather chal- 
lenging problem. 

Results 

The results of simulating the five axis machining 
of a stamping die for a door are shown in Fig. 19- 
21. The shaded image of the door is shown in 
Fig. 19, the discretized surface in Fig. 20, and a col- 
or coded image of the results of the simulation 
in Fig. 21. There was significant gouging of about 
0.025 inches (0.6ram - note that English units are 
used since the door units were in inches and the 
color scale on the figure is in inches). Table 2 shows 
the CPU times for twelve different simulations of 
the door using both the short normal and average 
normal localization methods. 
Using the methods described in our previous work 
(Drysdale et al. 1989) the maximum simulation er- 
ror was determined to be 23.2 mm for the 3,035 
point case, 11.4 mm for the 6,012 point case and 

Table 2. CPU minutes on a DEC VAX 8650 for five axis cutting simulation performance for door die machining program. Short 
normal and averge normal localization methods were used for three different user specified levels of accuracy with 3,035, 6,012 
and 12,047 points. Short normal vectors were 6 mm long. The original 38,964 five axis tool movements were subdivided into 
85,786 and 97,275 movements such that the angle between the starting and the ending tool orientations was always less than 
0.6 degrees and 0.4 degrees respectively 

Angle Divided 3,035 Points 6,012 Points 12,047 Points 
tolerance movements 

Short Average Short Average Short Average 

0.6 85,786 35 46 63 68 120 115 
0.4 97,275 40 50 69 78 136 136 
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21 

Fig. 19. Shaded image of door 

Fig. 20. Surface Points set (SPS) for door 

Fig. 21. Machining from five axis NC simulation program 

6.3 mm for the 12,047 point case. The maximum 
simulation error refers to the maximum depth 
gouge that could have been undetected by the sim- 
ulation if the tool plunges in between the points 
in the SPS. Even though these numbers seem very 
large compared to the errors of interest it must 
be remembered that they represent worst case situ- 
ations. As a practical matter all three test cases 
were equally effective at finding the NC program 
errors. 
The results shown in Table 2 are preliminary and 
we anticipate that the times will decrease when bet- 
ter methods for representing the envelope are de- 
veloped. We approximate the changing orientation 
of the tool by subdividing the tool movement into 
smaller movements in which the angular orienta- 
tion does not change by more than a specified tol- 
erance. This tolerance was set to 0.4 and 0.6 degrees 
for the test cases given in Table 2. The smaller tol- 
erance results in more envelope intersection calcu- 
lations and longer CPU times, but the error caused 
by approximating five axis tool movements with 
three axis movements is decreased. 

9 Discussion 

Methods for simulation and verification of Numer- 
ically Controlled machining have been presented. 
The methods are based on a discretization of the 
surface into a set of points. Cutting is simulated 
by calculating the intersection of vectors which 
pass through the surface points with tool path en- 
velopes. Three axis machining can be simulated 
in a particularly simple manner by choosing the 
direction of the vectors to be the same everywhere, 
parallel to the long axis of the tool. Calculations 
are localized by hashing the points according to 
their x - y  coordinates into a set of "buckets".  Lo- 
calization for five axis machining was accom- 
plished by two alternative methods, "short  nor- 
mals" and "average normals". In general, the short 
normal approach yielded somewhat faster CPU 
times but  the advantage diminishes as the number 
of points increases, and in one of the cases the 
average normal approach is actually faster. This 
is true despite the fact that it was necessary to 
rotate both points and tool movements into the 
various coordinate systems. The amount of time 
necessary to perform these rotations seems to be 
quite small compared to the time spent doing the 
intersection calculations, and the intersection cal- 
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culations for the average normal case were simpli- 
fied by taking advantage of the fact that the direc- 
tion vectors are always the same once the rotation 
has taken place. It would appear that the amount 
of time spent on coordinate transformations be- 
comes proportionately less when the number of 
points is increased. 
The average normal approach has the advantage 
that the magnitude of errors of arbitrary size can 
be determined, while in the short normal approach 
only the magnitude of errors less than the length 
of the vectors can be discriminated. The existence 
of errors larger than the normal length will, of 
course, be detected but the actual magnitude of 
the errors will be unknown. In our specific imple- 
mentation of the short normal approach the mag- 
nitude of any errors larger than 3.0mm was un- 
known. Since any errors larger than 0.1ram will 
require a revision of the NC program then any 
error larger than 3.0mm will also require rev- 
ision. 
In our original three axis implementation we are 
able to calculate approximate volumes of material 
removal since all the direction vectors are in the 
z direction. This is not possible for either of our 
five axis methods. The view based extended Z 
buffer methods discussed in the text appear to be 
the best method for approximating material re- 
moval rates. On the other hand, the object space 
methods presented in our paper appear to offer 
the best method for determining if the machined 
object and the nominal part geometry are within 
a specified tolerance of each other. 
Better methods for representing the tool movement 
envelopes should substantially decrease CPU times 
for both the three and five axis methods. In sculp- 
tured surface machining, the tool movements tend 
to be very short. For example, in our five axis simu- 
lations each tool movement was about  2-3 mm in 
length. Our current method of doing three axis ap- 
proximations to the five axis movements requires 
that we do further subdivision. Since the tool diam- 
eter was around 100 mm the length of the motion 
is rather small compared to the size of the cutting 
tool extents. We always look at all points falling 
within the tool extents for each tool movement. 
This means that each point will be examined for 
a possible intersection many times before the tool 
has completely passed over it. We found that, on 
the average, each point's direction vector required 
35 intersection calculations. Our current research 
is directed toward finding ways of geometrically 

modeling the surfaces of a series of five axis tool 
movements so that each point only needs to be 
examined once for those movements. The complex- 
ity of this problem is exacerbated by the need to 
find models that will work for a variety of cutting 
tool shapes. Our preliminary results using the enve- 
lope of a five axis flat end cutter decreased the 
total simulation times shown in Table 2 by over 
5O%. 
One interesting question that was raised by review- 
ers of this paper was whether the methods used 
for five axis machining could be used for three axis 
verification and thereby eliminate the need for the 
error correction schemes described in Sect. 5. At 
the present time we have not done enough experi- 
mentation to make a fair comparison, but some 
preliminary work indicates that this is a fruitful 
area to investigate. We intend to report complete 
results in a future paper. 
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Appendix A 

Point-triangle and point-edge distance 
Calculations 

To implement the PTD method described in Sect. 5 
it is necessary to determine the distance of a point 
from triangle (see Fig. 22) 

pl ,  p2, p3 are the vertices of the triangle 
n is the unit normal to this triangle 
q is the point of intersection of the per- 

pendicular from p with the plane con- 
taining the triangle 

t is the parameter along the line joining 
q and p. t = 0  at p 

u is the parameter along the line joining 
p2 and pl .  u = 0  at pl ,  u = l  at p2. 

w is the parameter along the line joining 
p3 and pl.  w = 0  at pl ,  w = l  at p3. 

First step is to find q and t: 

q = p - t n  (A.1) 

also 

q = p l  +u(p2-pl)+w(p3--pl) (A.2) 

==~pl - -p= --tn--u(p2--pl)--w(p3--pl) (A.3) 

Take dot product with n on either side of (A.3): 

t = ( p - p l ) . n  (A,4) 

Once t is determined we can use (A.I) to get q. 
From (A.2) we get: 

( p 3 - p l )  x ( q - p l )  
u = ( p 3 -  p I) x ( p 2 -  p I) (A.5) 

and 

( p 2 - p l )  x ( q - p l )  
w - ( A . 6 )  

( p 2 - p l )  x (p3- -p l )  

To calculate u and w from above equations, we 
just consider either the x or y or z components 
(preferably the component with the largest magni- 
tude in the denominator) of the cross products. 
Using u and w we can determine if q is inside the 
triangle or outside. If q is inside the triangle, then 
the distance of p from the triangle is given by t. 
Also, if t > 0, the point p is above the triangle and 
the sign of the distance will be positive. If q is 
not inside the triangle, we determine on which side 
of the triangle it is. The closest distance of the point 
from the triangle is then given by the distance of 
the point from the nearest edge of vertex. Similar 
conditions from the nearest edge can be found. 

W 

u , o /  l,"--o u,o 
~ !1 w ,o  

w / ~ r  f .''u +w=1 u 

/ I 
7 / 

w<0/ 

Fig. 22. Point-triangle distance calculation 
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q is inside if u>O,w>O, andu+w<_l 
p is closest to p 1 if u < 0, and w < 0 
p is closest to p 2 if u > 1, and w < 0 
p is closest to p3 ifu < 0, and w > 1 

If two vertices of the triangle coincide, the problem 
reduces to finding the distance from an edge. Simi- 
larly, if all three vertices coincide we find the dis- 
tance of the point under consideration from one 
of the vertices. 
For  points which lie closest to the edge of a surlace 
it is necessary to find the distance of a point p 
from an edge e. Refer to Fig. 23 for an illustra- 
tion. 

pl ,  p2 are the two end points of the edge e. 
q is the point of the intersection of the per- 

q = p l + t ( p 2 - - p l )  

( q - - p ) . ( p 2 - p l ) = 0  

substituting (A.7) in (A.8): 

[ (pl .p)  + t ( p 2 - p l ) ]  . ( p 2 - p l ) = 0  

on expanding this equation we get: 

t =  ( p - p l ) ' ( p 2 - p l )  
I p 2 - p l l  2 

If t_<0 
else if t < 1 
else 

pendicular from p with the line joining 
p2 and pl ,  that is, the edge e. 

is the parameter along the line joining p2 
and p 1. t = 0 at p 1, and t = 1 at p 2. 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

distance = distance of p from p 1. 
distance = distance ofp  from p2. 
distance = distance of p from q, 
where q is given by Eq. A.7. 

Appendix B 

Five Axis intersection calculations 

In this appendix we derive the intersection calcula- 
tions for the special case of a five axis flat-end tool 
movement in which the angular orientation of the 
tool is constant. 
In the Fig. 24, the tool is shown at its begining 
and end positions. Ci and Cz are the initial and 
final locations of the center of the tool bottom. 
Ai and A I give the corresponding orientations of 
the axis of the tool. Since the tool undergoes no 
rotations Ai and A l are parallel. Ci, A~, Cr and 
A~ completely describe a tool path. Po is the point 
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P2 q t 

e d g e ' ~ t  __ 1 

t=0 
Fig. 23. Point-edge distance calculation 

Fig. 24. Intersections with the tool path envelope 
generated by a translation of the tool 

on the design surface which has a vector V (which 
is normal to the surface at Po) projected from it. 
We need to determine the points of intersection 
between the vector V and the envelope generated 
by the tool path. Note that in the average normal 
case the equations that follow are simplified some- 
what by the fact that V is always (0, 0, 1) resulting 
in slightly faster intersection calculations. 
The envelope surface can be broken down to fol- 
lowing parts: 
(a) A cylindrical surface in the beginning of tool 

path, 
(b) A flat plane in the front, 
(c) The surface generated by sweeping a circle from 

Ci to C~, 
(d) Another flat plane in the rear, and 
(e) A cylindrical surface at the end of the tool path. 
Intersecting the vector V with each of the above 
surfaces will yield a series of intersection points. 
If we use a parameter v along the vector V and 



determine the v's for each of these points, the mini- 
mum and maximum values of v correspond to the 
entry and exit points of intersection of V with the 
envelope. 

In the figures: 
D gives the direction of tool movement 
N is the normal to the plane parallel to tool move- 

ment 
R is the radius of the tool 
L is the length of the tool 
x is the distance through which the tool moves 

is a parameter along D. ~ = 0 at C~, ,~ = x at 
C:  

g is a parameter along the tool axis. g = 0  at the 
tool bottom, g = L at the top. 

v is the parameter along V. v = 0 at P0. 
E is a point on the bot tom edge of the envelope 
F is a point on the top edge of the envelope. 
p is any point on the surfaces mentioned earlier. 
C is the center of the tool bot tom at an intermedi- 

ate position of tool 
A is the axis of tool at C. 

The following equations define the relationships 
between some of these parameters: 

C = C ~ + u D  

A = A/= A:  

x 

D = [[ C : -  C~ II 
N =  IlDxA~{{ 

A, A~, A: ,  D, and N are unit vectors. 

(B.1) 
(B.2) 
(]3.3) 
(B.4) 
(]3.5) 

Intersection with front and rear planes 

As the tool moves from [Ci, Ai] to [C: ,  Af], it 
sweeps out two flat surfaces at the front and rear. 
These surfaces are parallel to the plane of the 
Fig. 25, and lie as distances R and - R  from it. 
E is a point along the bot tom edge of these surfaces, 
and F is on the top edge. Consider an intermediate 
position of the tool I-C, A]. The corresponding 
point E at this position will be: 

E = C + _ R N  (B.6) 

plus for the front plane, and minus for the rear 
plane. 
A line at E which is parallel to A lies on the front 
on rear planes. This line is given by any point p 

u 
Cf 

Fig. 25. Some of the tool path parameters 

, \  

Fig. 26. Cross section of the envelope at [C, A] 

Ci-RB-RI~ 
C i-RB+RN 

Fig. 27. Tool path extent calculation 

such that: 

p = E + g A  (B.7) 

Equations (B.1) through (B.7) completely define the 
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two planes at the front and rear. To determine 
the intersections with V of these planes, we add 
another equation: 

P = Po + v V  (B.8) 

The above equations can be solved for v, ~ and 
g. The results are given below: 

[ C f -  Po + R N ] - [ D  xA,] 
v = (B.9) 

V. [D xAi] 

[C~ - Po + RN-I. [-A~ xV] 
~ =  (B.10) 

D. [-Ai x V] 

[ C , -  Po +- RN].  [D xV] 
g =  (B.11) 

Ai. [D xV] 

It is a valid intersection only if u e [0, x] and g e [0, 
L]. Any other intersections must be ignored. 

Intersection with surface swept 
by tool bottom 

The tool bottom is circular. The surface swept by 
the bottom is therefore the same as that obtained 
by sweeping a circle linearly through space. For 
arbitrary position [C, A] of the tool, a point p 
on the circular edge at the tool-bottom is defined 
by the following equations: 

( p - - C ) . A = 0  (B.12) 

Ip -CI  = R  (B.13) 

If the vector V intersects this circle: 

P = Po + v V  (B. 14) 

Substituting for C and A in (B.12): 

(Po - -  Ci  + ~ V  - ~ D ) "  A~ = 0 

or 

(Po -C i ) .  Ai + vV. A i - ~ D  .Ai=O 
D - A i  (Po -  C 0 " A i  

=*'v = ~ (B. 15) 
V" A i V. Ai 

Similarly from Eq. (B.13) we obtain: 

(p - -C) . (p - -C)=R 2 

i.e. 

(Po - C~ + v V  - -  a D ) .  (Po - -  v V  --  a D )  = R 2 

=>(Po -- C,). (Po - C,) + v 2 + a 2 + 2v(Po - Ci). V 

- 2 a v V .  D - -  2 a ( P o  - -  Cf) .  D = R 2. (B. 16) 
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Applying the following substitutions: 

a=lPo-Cil e=V'Ai 
b = ( P o - C i ) . A  / f = V . D  
c = ( P o -  Ci).D g = D - A i  
d = ( P o - C , ) . V  

(B.15) and (B.16) can be rewritten as: 

v=g/e~-b/e (B.17) 
aZ+vZ+~Z+2dv-2f~v-2ca=R z (B.18) 

Substituting for v in (B.18) and rearranging terms 
we get: 

hi H2 - 2hz - + h 3  =0  

where 

hl=e2 +g2-2efg 
hz=ceZ + b g - d e g - b e f  
h3 =aZ e 2 -  RZ e a + b2- 2bde 

Solving for u: 

a=h2 +_V(h2-hl h3) 
hi (B.19) 

We can determine v by substituting the magnitude 
o f ~  in (B.17). 

Intersection with a cylinder 

The only remaining tool-path envelope surfaces are 
the cylindrical surfaces at the beginning and end 
of the tool path. Following is a discussion of the 
analysis of intersections with a cylindrical surface. 
The cylinder bottom is centered at C and the axis 
is oriented along the unit vector A. Substitute [Ci, 
A~] for [C, Al to intersect with the initial tool posi- 
tion and [Cf,  Af] for the final position. 
The cylindrical surface of the tool can be generated 
by rotating a line (which is at a distance R from 
C, and parallel to A) through 360 ~ about A. A 
point p on this line is given by: 

p = E + l A  (B.20) 

where E is a point on the bottom edge of the cylin- 
der. E is defined by the following set of equations: 

[ E - C I  = R  (B.21) 

(E - C)- A = 0 (B.22) 

For a valid intersection, g e [0, L]. R is the radius 
of the cylinder and L its length. If there is an inter- 



section, the point p is also on the vector V" 

p = P o + v V  (B.23) 

From (B.20) and (B.23) we get: 

E = P o + v V - - g A  (B.24) 

Substituting for E in (B.22): 

( P o - C + v V - g A ) . A = 0  

= ~ g = ( P o - C ) . A + v V . A  (B.25) 

Similarly from (B.21): 

(Po-- C ) . ( P o -  C) + v2 + g2 + 2 v ( P o -  C).V 

- 2 v / V .  A -  2 g (Po - C). A = R 2 (B.26) 

Making the following substitutions: 

a = l P o - C I  

b = ( P o - C ) . A  

c = (Vo- c).  v 

d = V . A  

we get: 

g = b  + v d  (B.27) 
aZ +v2 + g2 + 2 c v - 2 d v g - 2 b g = R  2 ( B . 2 8 )  

Substituting for g in (B.27): 

(1 --  d 2) z 2  _ 2 (b d - c) v + ( a  2 - b 2 - -  R 2) = 0 ~ v  

(b d - c) + ~[ (b  d -  c) 2 - (1 - d 2)(a 2 _ b 2 _ R2)] 
(1 - d  2) 

(B.29) 

For  either v de te rmine / ;  make sure 0_<g_<L; the 
lower (in magnitude) value of v gives the intersec- 
tion closer to Po. 
If the two values of g happen to lie on either side 
of zero such that the value corresponding to lower 
v is negative, then the vector V also intersects the 
bot tom face of the cylinder. We need to determine 
this intersection. The next section deals with such 
a case. 
If ( I - d 2 ) = 0 ,  it implies that d =  +1,  that is, V is 
parallel to A. The intersection can only be with 
the bot tom face of the cylinder. The distance from 
Po of the point of intersection on the plane of bot- 
tom face is given by: 

v = -- bid 

This is a valid intersection only if this point occurs 
within the circular patch of radius R around C. 

i.e, 

I p - C I ~ R  2 

o r  

a2 +v2 + 2 c v < R  2 

I n t e r s e c t i o n s  w i t h  a c i r c u l a r  p a t c h  

Consider a plane circular patch of radius R cen- 
tered at C. M is a unit vector perpendicular to 
the plane of the patch. Every point in this circular 
patch is defined by: 

I p - C I  < R  ~ (B.30)  

and 

( p -  C ) - M  = 0 (B.31)  

If there is an intersection with V: 

P = Po + vV (B.32) 

On solving for v, we obtain: 

(Po - C) .  M 
v = V. M (B.33) 

We have a special situation for V. M = 0, i.e. V is 
parallel to the plane containing the circular patch. 
Intersections exist only if the point Po is in the 
plane" 

(Po - C). M = 0 (B.34) 

Also the intersections will only be at the boundary 
of the patch, which is a circle. So: 

I p - C I  = R  (B.35) 

where p is a point of intersection. 
Solving (B.32), (B.34), and (B.35) simultaneously for 
v, we obtain: 

v = - -  b -I- V ( b  2 - a 2 + N 2) ( B . 3 6 )  

where 

a = l P o - C J  and 

b = ( P o - C ) . V  

T o o l  p a t h  e x t e n t s  

In order to find the buckets which fall under the 
shadow of the tool path it is necessary to find the 
extents of the tool path envelope. 

3 4 7  



For a given tool path [Ci, AJ  ~ ICy, Ay], calculate 
the three unit vectors D, N, and B. 
D is a unit vector from C~ to C I : 

D =  I l e y - c ~ [ I  

N is perpendicular to the plane containing D, Ai, 
and Ay : 

N =  IlOxAiL] 

B is perpendicular to Af and N. 

B = Ai x N  

Now consider C~, the center of tool bot tom at the 
initial position. Extents of the circular patch at Ci 
can be stated in terms of the four points: 

Ci - R B  - R N  

C ~ - R B + R N  

C~ + R B -  R N  

and 

C ~ + R B + R N  

In a similar way we can find four points defining 
the extents of the circular face of tool at the top. 
Center of the top in the initial position can be 
given as: 

Ci, top = Ci + LA~ 

where L is the length of the tool. 
Determine the corresponding extent points for the 
final position of the tool. Look at the x, y, z coordi- 
nates of these 16 points to determine the x rain, 
x max, y min, and y max for the entire tool path. 
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