
Approximate
methods for
simulation and
verification of
numerically con-
trolled machining
programs

R.B. Jerard 1, S.Z. Hussaini 1,
R.L. Drysdale 2, and
B. Schaudt 2

1 Department of Mechanical Engineering,
University of New Hampshire, Durham,
NH 03824, USA
z Department of Mathematics and Computer
Science, Dartmouth College, Hanover,
NH 03755, USA

Algorithms for simulation and verification
of Numerically Controlled (NC) machin-
ing programs are presented. Compared to
NC simulation based on conventional so-
lid modeling systems, these models are de-
signed to give approximate results, but
with a substantial decrease in computer
time. The surfaces of the part are discre-
tized into a Surface Point Set (SPS) with
a point spacing dependent on cutting tool
size and shape, local surface curvature and
the desired accuracy of the approximate
simulation. The surface-surface intersec-
tion calculations of the solid modeling ap-
proach are replaced by the intersection of
the surface of the tool movement envelope
with straight lines emanating from the sur-
face points. The methods are applicable
to both 3 and 5 axis machining. Samples
test cases are presented, and implementa-
tion and efficiency issues are discussed.

Key words: Numerical control machining
- Simulation - Verification

1 Introduct ion

An NC program consists of a series of cutter tool
movements which remove material from a piece
of raw stock to create a prototype part, mold or
stamping die. In this process the production engi-
neer uses a high level language like APT to define
the geometry and cutter sequence, calculate cutter
offsets and produce a Cutter Location Data
(CLDATA) File. The C L D A T A file must then be
postprocessed into a Machine Control Data
(MCD) file which contains the instructions to con-
trol a specific machine tool. The next step, an often
time consuming and costly one, is the validation
of the NC program to eliminate any errors. This
step is often accomplished by machining plastic,
wax or wooden models. Manufacturers, who are
under constant pressure to shorten the product de-
velopment process, could benefit greatly from a
method which produced error free NC programs.
It is the goal of our project to move the validation
process into software and thereby eliminate errors
before any machining is attempted.
In order to better understand the various aspects
of the validation process we define three important
terms: simulation, verification and correction. Simu-
lation of the geometric aspects of material removal
requires modeling of the swept volume of each tool
movement in the C L D A T A file and modification
of a geometric model of the workpiece to keep
track of the material removal process. The verifica-
tion process requires a comparison between the fi-
nal workpiece model and a geometric model of
the part. If the two models are properly oriented
then a boolean difference operation will yield the
null set if they the same. Unfortunately, from the
standpoint of manufacturing practice, exact corre-
spondence is not really the issue. The real question
is whether the machined part is "close enough"
to the nominal part geometry, i.e. will it fall within
the allowable tolerance zone? This is a much more
difficult question to answer, but an answer is essen-
tial if the validation process is to have practical
value. For example, in the sculptured surface die
production which provided the impetus for our
work, the nominal part and the machined part are
almost never in exact correspondence. The ma-
chined part may, however, be perfectly acceptable
if the deviations do not exceed the specified toler-
ance. Finally, correction of the C L D A T A file can
only be achieved if there is a means in the valida-
tion model to relate unacceptable deviations to a
tool movement. Our method reveals which tool
movements caused the error and thereby aids the
NC programmer in fixing the error. We are also

The Visual Computer (1989) 5: 329-348
�9 Springer-Verlag 1989 3 2 9

working on methods which automatically correct
the CLDATA file.
Some currently available commercial systems can
do verification without simulation by detecting in-
terference between the tool and the part model.
However, there is no simulation of the cutting be-
cause there is no model of the workpiece geometry
and therefore it is impossible to determine if there
is excess unremoved material. It is also possible
to perform simulation without verification. Some
commercial NC controllers actually display, for
21/2 D parts, a graphic image of the part produced
by the NC program. Since the system does not
have access to nominal part geometry it can't make
the required comparison to perform verification.
Although the details of these methods are not in
the public domain it is probably a variation of
the view-based methods which will be described
later in this paper.
Some desirable characteristics of an NC program
validation system are summarized:
1. Capable of detecting both gouges and areas of

excess material which deviate from the nominal
part geometry by more than a specified toler-
ance.

2. Able to relate cutting errors to a specific tool
movement for subsequent correction.

3. Sufficient precision to find errors even though
the ratio of the nominal size to tolerance devia-
tion can be greater than 10000: 1.

4. Determine volume of material being removed
at any given time in order to select optimum
machining conditions.

5. Visual display of machined part with color
coded display of errors.

2 Background

An early example of NC simulation and verifica-
tion is the work by Gossard at MIT who developed
a method based on set theory for turning opera-
tions (Gossard and Tsuchiya 1978). The use of solid
modeling was first investigated by Voelcker and
Hunt who did an exploratory study of the feasibili-
ty of using the PADL Constructive Solid Geometry
(CSG) modeling system for simulation of NC pro-
grams (Voelcker and Hunt 1981; Hunt and
Voelcker 1982). Solid geometry modeling systems

offer the possibility of doing both simulation and
verification (Wallis and Woodwark 1984). The sim-
ulation is achieved by boolean subtraction of the
tool movement volume from the workpiece model.
Verification is achieved by performing boolean dif-
ferences between the model of the workpiece and
the desired part. Fridshal at General Dynamics
modified the TIPS solid modeling package to do
NC simulation (Fridshal et al. 1982). The problem
with using the solid modeling approach is that it
is computationally expensive. The cost of simula-
tion using the CSG approach is reported to be
O (N4), where N is the number of tool movements
(Voelcker 1981). A complex NC program might
contain ten thousand movements, making the com-
putation intractable.
In order to increase efficiency, a number of approx-
imate simulation methods have been devised
(Chappel 1983; Wang 1985; Wang and Wang
1986a, b; Oliver 1986; Oliver and Goodman 1986;
Van Hook 1986; Jerard et al, 1986; Atherton et al.
1987). These approximate methods are O(N); i.e.
the simulation time grows only linearly with the
number of tool movements. A more complete dis-
cussion of these methods may be found in a pre-
vious paper (Jerard et al. 1988). In all of these tech-
niques machining simulation is approximated by
finding the intersection of the tool movements with
straight lines. For example, in Chappel's method
the surface of the part is approximated by a set
of points. Vectors are created normal to the surface
at each point. A vector extends until it reaches
the boundary of the original stock or intersects
with another surface of the part. During the simula-
tion the length of a vector is reduced if it intersects
the tool movement envelope. An analogy can be
made to mowing a field of grass. Each vector in
the simulation corresponds to a blade of grass
"growing" from the desired object. As the simula-
tion progresses the blades are "mowed down". The
final length of the vectors correspond to the
amount of excess material (if above the surface)
or the depth of the gouge (if below the surface)
at that point.
A somewhat different approach is the "view based"
methods characterized by the independent work
of several researchers (Wang 1985; Wang and
Wang 1986a, b; Van Hook 1986; Atherton et al.
1987). They use a variation of the standard Z depth
buffer hidden surface algorithm. A vector normal
to the plane of the graphics screen is drawn at
each pixel. In Wang's approach, intersections of

330

these lines with tool path envelopes are calculated
with a scan line algorithm. For each pixel an ex-
tended Z buffer is maintained that contains the
Z depth of all the entries and exits of the work-
piece. The workpiece Z buffer is modified by per-
forming boolean difference operations with the Z
buffer of the tool movement swept volume. In such
image space methods, errors which are not visible
in the chosen viewing direction are undetected
and generating another view of the part requires
rerunning the entire simulation. Furthermore,
small machining errors (e.g. less than 0.1 mm) are
unlikely to be detected by a visual inspection of
the computer graphics image. As Oliver (1986)
points out, the critical issue in machining verifica-
tion is whether the machined part features fall with-
in a specified tolerance zone. The very large ratio
between the nominal dimensions and the tolerance
dimensions (10000:1 is not unusual) makes it un-
likely that an image based simulation will be ade-
quate.
Despite their limitations the view based methods
do have several advantages. They are the best ap-
proximate method for determining how much ma-
terial is being removed by any given tool move-
ment. This is important for setting optimum values
for feedrates. Each pixel can represent a volume
of material, and material removal can be approxi-
mated with an accuracy dependent on the num-
ber of pixels and the size of the object. Another
advantage is that since the simulations can be run
without any information about the model of the
nominal part it is relatively easy to make a general
system. Both Wang and Atherton have produced
commercial products based on their methods.
However, if nominal part information is not used
then verification is not possible.
Of the validation methods discussed, the solid
modeling approach is, in theory, the most desir-
able because it is an exact representation of the
geometry of the machining. In practice, however,
the process can introduce errors dependent on the
internal model representation. If, for example, a
faceted representation of a curved surface of the
part or of the tool envelope is used then accuracy
may be compromised. For asmall number of tool
movements the solid modeling method may work
well for simulation. However, the difference opera-
tion required to perform verification can be very
expensive computationally and it still leaves unan-
swered the primary question of whether the work-
piece falls within the acceptable tolerance zone.

3 Description of algorithms

The approaches of Chappel, Oliver and the authors
provide the necessary elements for a simulation,
verification and correction method which is both
accurate and efficient. In these methods material
removal is simulated by modification of the vector
length and verification is trivially accomplished by
a comparison between the final vector length and
the allowable tolerance variation of the surface.
The algorithms work in object space and graphical
display is a post simulation process. Our approach
(Jerard et al. 1986, 1988, 1989; Drysdale and Jerard
1987; Drysdale et al. 1989) shares characteristics
of the methods of Chappel and Oliver, but it also
contains several novel features that improve effi-
ciency and allow the user to make informed trade-
offs between the accuracy of the approximate simu-
lation and the CPU time.
In order to realize a practical sytem it was neces-
sary to concentrate on three key aspects, discretiza-
tion, localization and intersections. In the discretiza-
tion phase, a Surface Points Set (SPS) is calculated
to approximate the surface of the part with a spac-
ing between points that depends on the size and
shape of the cutting tool, local surface curvature
and the desired accuracy of the simulation. The
methods for surface discretization are described in
detail in the above references and are not repeated
here. Two alternative approaches for extending the
method to five axis machining are also explained.

4 Localization

Figure 1 a shows a surface with a set of points and
associated direction vectors normal to the surface.
As each tool movement is processed the intersec-
tion of the direction vectors with the tool envelope
can be calculated. It would be computationally ex-
pensive to calculate the intersection of all the direc-
tion vectors for each tool movement. It is therefore
desirable to localize the calculations by eliminating
from consideration the vectors which have no pos-
sibility of intersecting the tool movement envelope.
If we restrict the generality of the method of the
common case of three axis machining, and assume
that the surface has only one z value for any given
x - y location (i.e., no undercuts) we can choose
direction vectors to be parallel to the long axis
(z axis) of the cutting tool (see Fig. 1 b). Therefore,
a vector can only be intersected if it lies directly

331

Too[
Movement
Envelo~e~..~ J ~ Intersection

Direction ~, ~'" ~ J [. 0 Points

V = 0

;=2 z

V = 0
a

Tool
Movement
Envelope

' ' " ' ~ / ~ o Intersection
Points

t
V=0

U

u=0
b v=0

Fig. 1. a Tool path envelopes intersected with normal
vectors, b Tool path envelopes intersected with z
direction vectors

Buckets in X - Y
Plane

Fig. 2. Surface points can be hashed into buckets
according to x - y locations

ball-end

Buckets in X - Y
Plane

Fig. 3. Intersection calculations are performed only on
points in buckets under the tool path shadow

under the tool path. This means that the points
can be hashed into "buckets" as shown in Fig. 2.
Localization is achieved by finding the set of buck-
ets which lie under the shadow of the tool and
examining only the points in those buckets (see
Fig. 3). Only a small percentage of all the points
are examined for each tool movement.
By choosing direction vectors in the z direction
there is also an improvement in the efficiency of
the intersection calculations (Jerard et al. 1988).
The calculations are simplified by the fact that the
x and y components of the direction vector are
zero and also by the fact that we are only cutting
on the bot tom of the tool, so no intersection calcu-
lations need to be done for the sides of the tool.
Another advantage of choosing vectors in the Z
direction is that it is possible to simulate approxi-
mate material removal rates in a manner similar
to the previously described view based methods.

5 Post simulation error analysis
for three axis machining

The cutting error is related to the length of the
direction vector after all tool paths have been pro-
cessed. Choosing all vectors in the z direction intro-
duces a potential problem whenever the surface
normal deviates from the z direction. The problem
becomes most apparent for nearly vertical surfaces

332

as shown in Fig. 4. The uncorrected estimate of
the cutting error is the vertical distance between
the surface point P, and the cut point P'. This effect
causes the errors to be overestimated. No errors
will be missed but points will be reported to be
out of tolerance when in fact they are not. In order
to remedy this problem it was necessary to imple-
ment a post simulation error analysis. We present
two methods for addressing this problem: a quick
but less accurate approach based on finding the
component of the vertical error in the direction
normal to the surface (the Dot-Product method)
and the Point-Triangle-Distance (PTD) method
which is slower but more accurate.
The question of how to esimate the actual error
is not quite as simple as it might seem. The error
could be estimated by measuring the distance: 1.
From the machined point P' to the closest point
on the design surface, 2. From the design surface
point P to the closest point on the machined sur:
face or, 3. From the design surface to the machined
surface in the normal direction. These methods will
yield different results under certain conditions. In
practice, if the length of the trimmed direction vec-
tor is small (e.g. 0.1 mm) compared to the local
radius of curvature (typically 10 to 1000 mm) then
the surface may be considered to be essentially flat.
Under these conditions it can be shown that there
is little difference between these methods. The first
option was the most straightforward one to imple-
ment with our simulation method. This method
is accurate as long as the length of the trimmed
direction vector does not greatly exceed the toler-
ance dimension. But under these conditions, the
NC programmer knows that there is a problem
needing correction, and the actual magnitude of
the error is unimportant. Therefore care must be
used only if the tolerances become significant rela-
tive to the dimensions of the object, a rather rare
occurrence.
The Dot-Product method is illustrated in Fig. 5.
Consider a point P(x, y, z) on the design surface.
The corresponding point on the machined surface
will be P' (x, y, zcut). If N is the normal to the design
surface at P, the cutting error at this point is closely
approximated by the length of the projection of
the vector PP ' on the normal. The vector PP ' is
the vector from the point on the design surface
to its corresponding point on the machined sur-
face.
This method works well for all points interior to
a surface as long as the length of PP ' is small rela-

�9162
Uncorrected I "~//222~1X
Err~ at P l " ~ X

Error
atP'

Fig. 4. Estimates of errors on nearly vertical surfaces
are excessive

... cu ,

U nco rrected~'

~ ~ 2 / /C~rrected Error ~ '
~ e

Fig. 5. Dot-Product method for vertical surface
correction

tive the local radius of curvature as described
above. This method will not work when:
1. Point P is very close to the boundary of a sur-

face. As shown in Fig. 6, the closest distance
from the machined point P' to the design surface
point P is greater than the error estimated by
the dot-product method.

2. Point P' is closer to some other part of the de-
sign surface as illustrated in Fig. 7.

The advantage of the dot-product method is that
it is very fast, simple to implement, and in most
cases, it results in a substantial improvement in
accuracy over just using the vertical distance.
It would be more desirable to find the actual dis-
tance between each machined point P' and the de-
sign surface. For parametric surfaces this can be
an extremely time consuming calculation requiring
iterative methods. To simplify and accelerate the
surface-to-point distance calculations the design
surface is replaced by a polyhedral approximation.
Inherent in our surface discretization scheme is the
criterion that the deviations in this approx imat ion
be bounded by a tolerance (Drysdale et al. 1989).
Thus the errors in surface-to-point distance calcu-

333

a'U " p,

Actu ~ N e Error I I / wError
/ After app[icaticn atP ~ P L

I(of Dot Product
"// / /~4~ethod

Fig. 6, Dot-Product method is inaccurate near surface
boundaries

Correct _
e r r s

N P'

Error a f t i ~
application of ~ ~/////,///
Dot Product

Fig. 7, Dot-Product method is incorrect if point is
close to other surfaces

/
~ / " / c e n t r o i d !

Maxedge_length

Fig. 8. Triangles close to point P' are examined for
closest distance calculation

lations incurred by replacing the design surface
with the polyhedral approximation are also
bounded by this discretization tolerance. Since the
polyhedron is described by triangular faces the
problem is reduced to finding the distance from

334

the machined point P' to the triangles of this sur-
face.
The number of triangles on the surface is typically
of the same order as the number of points. So,
one cannot look at every triangle for every point
P'. It would be too slow (for example, in our trials
139 cpu min compared to 2 rain for the method
described below). There are many ways one could
select the triangles that are nearest to the point
P'. Only those triangles less than the length IPP'I
from P' need to be considered when determining
the error at a given point.
Our approach consists of hashing all the triangles
based on their centroid into an X Ygrid. After the
hashing is completed, each hash table entry will
be a linked list of triangles. The size of the X Y
grid is determined using the length of the longest
edge on the surface (max_edge_length). Note that
max_edge_length is the longest edge of any triangle
in the entire polyhedral approximation to the sur-
face. The surface discretization method that we use
also attempts to keep the size of the edges of the
triangles at about the same length, a feature which
helps to make the hashing more efficient.

x or ~y = max_edge_length/i/3 minimum 6

For a given point P(x, y, z), the candidate triangles
will be given by each of the hash boxes in the rect-
angular grid that lies under the circles around P,

with radius = I PP'I + max-edge-length/l//~. This is
illustrated in Fig. 8. It can be verified that every
triangle that is close enough to be considered is
selected. However, in an average, case, there are
still many times more triangles selected than are
really needed.
The structure of the algorithm is given below.

For each point P on the surface:
If need to correct error at this point:

Find the corresponding machined point P'
Get list of triangles in the vicinity.
Corrected Error at P' equals minimum

distance from P' to any triangle in the
vicinity

The details of the Point-Triangle-Distance calcula-
tions and Point-Edge calculations may be found
in Appendix A, and in more detail in reference
(Hussaini and Jerard 1988). Results from a test case
are presented in Table 1. The table shows CPU
times for simulations performed with and without
error correction. The parabolic tool movements are

_=01iIi Ir163

9

11

10

13

12

Fig. 9. Shaded image of air intake portion of a bumper

Fig. 10. Surface Point Set of bumper

Fig. 11. Cutting errors without post simulation analysis shows excess
material on vertical sides

Fig. 12. With post simulation correction. Note that overestimation of
excess material on nearly vertical sides is corrected

Fig. 13. Errors expanded by a factor of 50 show 0.1 mm cusps clearly

335

Table 1. Cutting simulation system performance for two test cases. Results show the number of CPU minutes on a DEC VAX
8650 for two different user-specified accuracies with three types of post simulation error analysis: I. no error correction; 2. Dot
product method; 3. Point-Triangle-Distance method

Tool movements Maximum simulation error - mm (in.)

2.5 (0.1) 0.75 (0.03)

Parabolic Linear Points 1 2 3 Points 1 2 3

Trunk 3,500 18,855 3,064 3.00 3.02 3.48 10,761 10.15 10.20 12.02

Bumper 8,100 45,411 7,348 5.43 5.47 7.58 16,789 11.53 11.58 17.16

14

15

Fig. 14. Wireframe picture of area where two surfaces
overlap

Fig. 15. Errors are indicated in red on surfaces without
post simulation correction

Fig. 16. Post simulation correction eliminates effect of
overlap

336

16

broken up into the number of linear tool move-
ments indicated. The maximum simulation error
indicates the largest possible gouge that could pos-
sibly be missed. The Dot-Product method causes
almost no discernible increase in CPU time while
the PTD method causes an average increase of
about 30%.
Figures 9-13 shows the results of simulation. The
shaded image of the bumper test case is shown
in Fig. 9. The surface point set used to perform
the simulation is shown in Fig. 10. In Fig. 11 the
uncorrected cutting errors are shown. Blue indi-
cates excess material of 0.1 mm and red shows
gouges of 0.1 mm with the color spectrum interpo-
lating intermediate values. The corrected errors are
shown in Fig. 12. The excess material was overesti-
mated in Fig. 11 because of the nearly vertical sur-
faces, indicated by the darker blue lines. In Fig. 13
we magnified the errors by a factor of 50 to show
qualitatively the cusps between the tool paths. The
height of these cusps is a good indicator of the
amount of expensive hand finishing required after
machining. In addition to the post simulation
graphical display it is possible to output a list of
machined surface points which lie outside a given
tolerance. We also output the tool paths which last
cut the given point.
We also discovered an unexpected benefit when
we implemented the Point-Triangle-Distance
(PTD) method. The three dimensional complexity
of sculptured surfaces makes it difficult to model
them with current solid modeling systems. One
problem with surface-based descriptions of parts
is that topological consistency is not guaranteed
(in contrast to solid modeling methods where it
is). In the test cases provided by our industrial
sponsor we occasionally find overlapping surfaces.
The surfaces are actually some small distance from
each other. Only one of the surfaces can be the
drive surface for the NC program. This creates the
possibility of large but irrelevant errors on the
other surface. The points associated with one sur-
face may be cut very accurately while the points
on the other surface may be either severely gouged
or show excess material. The simulation results can
be quite confusing in cases like this. However, if
we search for the closest distance between the ma-
chined surface point and all nearby surfaces (PTD
method) then the inconsistency is eliminated and
errors are only reported if the machined point is
outside the tolerance zone of both surfaces. In Fig-
ures 14-16, the bumper case illustrates an area

where two surfaces overlap. The simulation results
shown in Fig. 15 indicate an area that has a 0.2 mm
deep gouge. The size of the area is diminished sig-
nificantly in Fig. 16 where the PTD method has
been applied to eliminate the artifact produced by
the two overlapping surfaces.

6 Five axis machining

In five axis machining the cutting tool has two
additional degrees of freedom which control its an-
gular orientation. The cutter can be placed at any
cartesian coordinate with its direction cosines cho-
sen to place it at a favorable orientation relative
to the surface being machined. Typically, in sculp-
tured surface face milling the tool is oriented nor-
mal to the surface with a tilt of a few degrees in
the direction of movement. The large diameter flat-
end or fillet-end cutter can remove material at a
much faster rate than the three axis ball end cutter
and smooth surfaces requiring a minimum of hand
finishing can be machined efficiently. Despite the
advantages of five axis machining it is not widely
used because of the difficulty of programming the
complex tool paths and avoiding interference be-
tween the cutting tool and the adjacent surfaces.
Traditional methods for finding program errors,
such as plotting the tool path, are not effective
at showing both tool position and angular orienta-
tion. The development of a five axis simulation and
verification capability would greatly aid in the ef-
fective utilization of five axis machining capaci-
ties.
During our investigation several important facts
became evident:
1. The surface discretization method that we use

is equally applicable to three or five axis simula-
tion and no modifications to these algorithms
are necessary, thus the inherent advantages of
using a minimum point set with bounds on the
simulation error is retained. However, in five
axis machining the tool shape is usually a flat-
end or fillet-end cutter, a factor which greatly
increases the number of points required for a
given level of user specified accuracy (Drysdale
et al. 1989).

2. The localization method used for three axis sim-
ulation is no longer applicable. The versatility
of five axis machining allows it to machine sur-
faces with multiple z values and the simplicity

337

of having all direction vectors pointing in the
same direction is no longer possible.

3. The intersection calculations are complicated by
both the more complex nature of the tool path
envelopes and the fact that the surface vectors
will not all be in the same direction.

7 Five axis localization

We have investigated two methods for localizing
the calculations; the first is based on using surface
normals of short length (short normal method), and
the other on a concept of using average normal
vectors (average normal method). With the first ap-
proach we limit the length of the direction vectors
to a value which is small relative to the overall
dimensions of the part but very large relative to
the magnitude of the part tolerances. The long
"blades of grass" which protruded from the surface
in Fig. I have now become short "stubble". By
limiting the length of the vectors it is possible to
easily localize the calculations with a bucketing
method which varies only slightly from the ap-
proach used for three axis localization. The length
of the short normals is selected based on the surface
tolerance. For example, if the surface tolerance is
0.1 mm, then a normal length of 1 mm is more
than adequate to detect errors in the range of the
interest. In our simulations the vector protruded
3 mm both into and out of the surface.
The points are still sorted into buckets but points
in some buckets outside the shadow of the tool
must also be examined as illustrated in Fig. 17. It
is only necessary to expand the shadow of the tool
envelope by the length of the direction vector to
insure that all candidate points are examined. The
points in the buckets are also sorted by Z value
and therefore the Z extents of the tool movement
are used to further localize the calculations. This
method is similar in many respects to that used
by (Oliver 1986; Oliver and Goodman 1986).
The alternate approach (average normal) consists
of choosing the direction vector for each point from
the predefined set of direction vectors. We have
one bucket set for each direction vector and points
are assigned to the bucket set whose direction vec-
tor most closely matches the point's normal vector.
In general we would expect the direction vector
for a given bucket set to be close to the average
of all the normals of points in that set. If the angle
between the average normal vector and any point

surface

" ~ =iv.....- Normal vector length = m

Z typical m = 3 mm

Y

~ Needto expand
~,,,,,,~-'-_ -- ~ , , , , ,~ j t shadow of tool

Fig. 17. Five axis localization using short normal
approach

in its set is small then errors of the type discussed
in Sect. 5 will also be small. Each of the bucket
sets can be treated exactly the same as the three
axis case.
In both of these approaches (short normal and av-
erage normal) the ability to simulate material re-
moval has been lost. Based on our definitions of
simulation and verification in Sect. 1 we are now
doing verification without simulation. However,
unlike most other verification methods we are able
to detect not only gouging but also areas where
excess material has been left.
As a simple example of a bucket set based on aver-
age normals imagine a cube with a direction vector
associated with each face. Our predefined set of
direction vectors consists of the vectors in the fol-
lowing directions; up, down, left, right, front, and
rear. Thus when the normal vector of a point on
the surface is generally to the left, we will use the
left vector as our direction vector for that point
and so on.
Thus in the example above, we can simulate the
cutting six times. Note that, since each point only
resides in one bucket set, this does not imply that
there will be six times as many intersection calcula-
tions; indeed the number of intersection calcula-
tions should not be significantly larger than with

338

Surface of
workpiece

a

I nitial tool
position

Final tool
position

Initial tool
position [

"~ Final tool
J position "

Fig. 18a, b. Five axis localization using average
normal approach

the short approach. We can simulate cutting for
the points whose direction vectors are up, as we
did in the 3 axis machining (see Fig. 18a). For
points whose direction vector is to the right, we
rotate the workpiece so that the right direction vec-
tor is vertical (see Fig. 18b). Now for each tool
movement, we rotate the tool positions by the same
rotation used on the workpiece and simulate cut-
ting on those points with a right direction vector.
Notice that the direction vector associated with
these points is now vertical.
Now localization can be achieved. When a direc-
tion vector is chosen for a point, the rotations re-
quired to make the direction vector Vertical and
the set of buckets that the point goes in are known.
Thus when a direction vector is chosen, we can
assign the point to a set of buckets, compute the
rotated coordinates of the point, and store the
point in a bucket within the chosen set of buckets
based on the rotated x and y coordinates of the

point. In other words, we are able to localize for
each of our 6 directions.
In general, we may have more than the 6 predefined
direction vectors in this example and increasing
this number decreases the difference between the
true normal at each point and the chosen direction
vector, thus decreasing the magnitude of the errors
of the type described in Sect. 5. This means that
the average normal approach could also be used
to simulate three axis machining and eliminate the
need for the post simulation analysis described in
that section.

8 Five axis intersection
calculations

The intersection calculations were accomplished in
almost the same manner for both the "short nor-
mal" and the "average normal" approach. The ob-
jective of these calculations is to determine the
points of intersection between the tool path enve-
lope and the direction vectors. When all the points
have been assigned to a bucket using either the
single bucket set of the "short normal" approach
or into one of the multiple bucket sets for the "av-
erage normal" approach, we can proceed with the
cutting simulation. In the case of the average nor-
mal method the rotated coordinates of each point
have been precomputed, so for each tool move-
ment, we rotate the tool and generate the tool enve-
lope in the rotated coordinate system. Now that
we have the tool envelope, we can determine which
buckets to examine and proceed in a manner close-
ly analogous to the method used for three axis
machining. For the short normal method we deter-
mine the intersection between the tool path enve-
lope and the direction vector associated with each
surface point. For the average normal method the
intersection calculations are similar, except the di-
rection vector is always vertical (in the rotated co-
ordinate system). Intersection calculations should
determine the points where the direction vector
enters and exits the tool envelope. The sign of the
entry and exit distances indicate whether the inter-
sections are outside (positive) or inside (negative)
the surface.

Phantom gouges

For a five axis tool movement it is possible for
the direction vector to have multiple sets of entry-

339

exit pairs. We treat each of these pairs independent-
ly and, except for one special case, the length of
the direction vector is changed whenever the entry
value is less than the previous length. However,
if both the entry and exit distances of a particular
entry-exit pair are negative we ignore that pair.
Two things could have happened in this case. The
point could have actually been gouged or the tool
could have passed below the point but still be out-
side the surface. We label the latter case a "phan-
tom gouge" since the tool has not really penetrated
the surface and is simply machining on another
surface which happens to lie below the point of
interest. If the tool actually protruded far enough
into the surface so that both entry and exit values
are negative then our surface subdivision method
guarantees that another point must have been
gouged and the error will be detected even though
this particular point will not report the error.

Tool movement envelopes

The difficulty of the intersection calculation de-
pends on both the tool type and the complexity
of the tool movement envelope. In general, there
has been very little published research (Wang and
Wang 1986b) on the problem of defining the exact
mathematical description of envelopes of tool
movements, and a complete discussion of this sub-
ject is beyond the scope of this paper. Three axis
tool movements may be handled in a straightfor-
ward manner (Jerard et al. 1988) but five axis enve-
lopes are much more difficult. The tip of the tool
translates in a straight line while the angle between
the long axis of the tool at the starting and end
locations is linearly interpolated. The resulting en-
velope surfaces are quite complex. Our current ap-
proach approximates the envelope with a number
of simpler movements in which the angular orien-

tation of the cutting tool is assumed constant. This
introduces both computational inefficiency and the
possibility of additional simulation error. We are
presently working to quantify the magnitude of this
error and also develop more efficient representa-
tions of the envelope.
The intersection calculations for the envelope of
a flat-end cutter with no rotational change are de-
scribed in Appendix B. The flat-end cutter and fil-
let-end cutters are the most commonly used tool
shapes for five axis machining. The derivation for
a ball-end cutter is quite straightforward but of
limited usefulness since this shape is not used very
often in five axis cutting. The fillet-end cutter is
commonly used but it is also more complex, and
we are still working on good representations for
this case. This problem reduces to finding the swept
envelope of a torus translating and rotating
through space; we believe this to be a rather chal-
lenging problem.

Results

The results of simulating the five axis machining
of a stamping die for a door are shown in Fig. 19-
21. The shaded image of the door is shown in
Fig. 19, the discretized surface in Fig. 20, and a col-
or coded image of the results of the simulation
in Fig. 21. There was significant gouging of about
0.025 inches (0.6ram - note that English units are
used since the door units were in inches and the
color scale on the figure is in inches). Table 2 shows
the CPU times for twelve different simulations of
the door using both the short normal and average
normal localization methods.
Using the methods described in our previous work
(Drysdale et al. 1989) the maximum simulation er-
ror was determined to be 23.2 mm for the 3,035
point case, 11.4 mm for the 6,012 point case and

Table 2. CPU minutes on a DEC VAX 8650 for five axis cutting simulation performance for door die machining program. Short
normal and averge normal localization methods were used for three different user specified levels of accuracy with 3,035, 6,012
and 12,047 points. Short normal vectors were 6 mm long. The original 38,964 five axis tool movements were subdivided into
85,786 and 97,275 movements such that the angle between the starting and the ending tool orientations was always less than
0.6 degrees and 0.4 degrees respectively

Angle Divided 3,035 Points 6,012 Points 12,047 Points
tolerance movements

Short Average Short Average Short Average

0.6 85,786 35 46 63 68 120 115
0.4 97,275 40 50 69 78 136 136

340

19

20

21

Fig. 19. Shaded image of door

Fig. 20. Surface Points set (SPS) for door

Fig. 21. Machining from five axis NC simulation program

6.3 mm for the 12,047 point case. The maximum
simulation error refers to the maximum depth
gouge that could have been undetected by the sim-
ulation if the tool plunges in between the points
in the SPS. Even though these numbers seem very
large compared to the errors of interest it must
be remembered that they represent worst case situ-
ations. As a practical matter all three test cases
were equally effective at finding the NC program
errors.
The results shown in Table 2 are preliminary and
we anticipate that the times will decrease when bet-
ter methods for representing the envelope are de-
veloped. We approximate the changing orientation
of the tool by subdividing the tool movement into
smaller movements in which the angular orienta-
tion does not change by more than a specified tol-
erance. This tolerance was set to 0.4 and 0.6 degrees
for the test cases given in Table 2. The smaller tol-
erance results in more envelope intersection calcu-
lations and longer CPU times, but the error caused
by approximating five axis tool movements with
three axis movements is decreased.

9 Discussion

Methods for simulation and verification of Numer-
ically Controlled machining have been presented.
The methods are based on a discretization of the
surface into a set of points. Cutting is simulated
by calculating the intersection of vectors which
pass through the surface points with tool path en-
velopes. Three axis machining can be simulated
in a particularly simple manner by choosing the
direction of the vectors to be the same everywhere,
parallel to the long axis of the tool. Calculations
are localized by hashing the points according to
their x - y coordinates into a set of "buckets". Lo-
calization for five axis machining was accom-
plished by two alternative methods, "short nor-
mals" and "average normals". In general, the short
normal approach yielded somewhat faster CPU
times but the advantage diminishes as the number
of points increases, and in one of the cases the
average normal approach is actually faster. This
is true despite the fact that it was necessary to
rotate both points and tool movements into the
various coordinate systems. The amount of time
necessary to perform these rotations seems to be
quite small compared to the time spent doing the
intersection calculations, and the intersection cal-

341

culations for the average normal case were simpli-
fied by taking advantage of the fact that the direc-
tion vectors are always the same once the rotation
has taken place. It would appear that the amount
of time spent on coordinate transformations be-
comes proportionately less when the number of
points is increased.
The average normal approach has the advantage
that the magnitude of errors of arbitrary size can
be determined, while in the short normal approach
only the magnitude of errors less than the length
of the vectors can be discriminated. The existence
of errors larger than the normal length will, of
course, be detected but the actual magnitude of
the errors will be unknown. In our specific imple-
mentation of the short normal approach the mag-
nitude of any errors larger than 3.0mm was un-
known. Since any errors larger than 0.1ram will
require a revision of the NC program then any
error larger than 3.0mm will also require rev-
ision.
In our original three axis implementation we are
able to calculate approximate volumes of material
removal since all the direction vectors are in the
z direction. This is not possible for either of our
five axis methods. The view based extended Z
buffer methods discussed in the text appear to be
the best method for approximating material re-
moval rates. On the other hand, the object space
methods presented in our paper appear to offer
the best method for determining if the machined
object and the nominal part geometry are within
a specified tolerance of each other.
Better methods for representing the tool movement
envelopes should substantially decrease CPU times
for both the three and five axis methods. In sculp-
tured surface machining, the tool movements tend
to be very short. For example, in our five axis simu-
lations each tool movement was about 2-3 mm in
length. Our current method of doing three axis ap-
proximations to the five axis movements requires
that we do further subdivision. Since the tool diam-
eter was around 100 mm the length of the motion
is rather small compared to the size of the cutting
tool extents. We always look at all points falling
within the tool extents for each tool movement.
This means that each point will be examined for
a possible intersection many times before the tool
has completely passed over it. We found that, on
the average, each point's direction vector required
35 intersection calculations. Our current research
is directed toward finding ways of geometrically

modeling the surfaces of a series of five axis tool
movements so that each point only needs to be
examined once for those movements. The complex-
ity of this problem is exacerbated by the need to
find models that will work for a variety of cutting
tool shapes. Our preliminary results using the enve-
lope of a five axis flat end cutter decreased the
total simulation times shown in Table 2 by over
5O%.
One interesting question that was raised by review-
ers of this paper was whether the methods used
for five axis machining could be used for three axis
verification and thereby eliminate the need for the
error correction schemes described in Sect. 5. At
the present time we have not done enough experi-
mentation to make a fair comparison, but some
preliminary work indicates that this is a fruitful
area to investigate. We intend to report complete
results in a future paper.

Acknowledgements. This research supported in part by the Na-
tional Science Foundation under contracts DMC-851262,
DMC-8704147 and by the Ford Motor Company. The pro-
gramming efforts of Mr. Paul Leclerc and Mr. Ken Hauck are
also gratefully acknowledged.

References

Atherton PR, Earl C, Fred C (1987) A graphical simulation
system for dynamic five-axis NC verification. Proc Autofact,
SME, Dearborn, MI (November 1987), pp 2-1, 2-12

Chappel IT (1983) The use of vectors to simulate material re-
moved by numerically controlled milling. Computer Aided
Design 15(3): 156-158

Drysdale RL, Jerard RB (1987) Discrete simulation of NC ma-
chining. Proc 3rd Annual ACM Symposium on Computa-
tional Geometry (June 1987), pp 126-135

Drysdale RL, Jerard RB, Schaudt B, Hauck K (1989) Discrete
simulation of NC machining. Algorithmica 4(1):33-60

Fridshal R, Cheng KP, Duncan D, Zucker W (1982) Numerical
control part program verification system. Proc Conf CAD/
CAM Technology in Mechanical Engineering (March 1982)
MIT Press, pp 236-254

Gossard DC, Tsuchiya FS (1978) Application of set theory to
the verification of NC tapes. Proc North American Metal-
working Conf (April 1978)

Hunt WA, Voelcker HB (1982) An exploratory study of auto-
matic verification of programs for numerically controlled
machine tools. Production Automation Project Tech Memo
No 34, Univ Rochester (January 1982)

Hussaini SZ, Jerard RB (1988) Post simulation error analysis
of NC cutting simulation. Tech Memo 88-01, Dept Mechani-
cal Engineering, Univ New Hampshire (August 1988)

Jerard RB, Hauck K, Drysdale RL (1986) Simulation of numeri-
cal control machining of sculptured surfaces. 15th Int Sym-

342

posium on Automotive TechnolOgy and Automation
(ISATA), no 86057. Automotive Automation, Croydon,
UK, Flims, Switzerland (October 1986)

Jerard RB, Drysdale RL, Hauck K (1988) Geometric simulation
of numerical control machining, Proc ASME Int Computers
in Engineering Conf, San Francisco 2:129-136

Jerard RB, Drysdale RL, Hauck K, Schaudt B, Magewick J
(1989) Methods for detecting errors in sculptured surface
machining. IEEE Comput Graph Appl 9(1):26-39

Oliver JH (1986) Graphical verification of numerically con-
trolled milling programs for sculptured surface parts. Doc-
toral Dissertation, Michigan State Univ, E Lansing

Oliver JH, Goodman ED (1986) Color graphic verification of
N/C milling programs for sculptured surface parts. First
Symposium on Integrated Intelligent Manufacturing.
ASME Winter Annual Meeting, Anaheim, California

Van Hook T (1986) Real-time shaded NC milling display. Corn-
put Graph (Proc SIGGRAPH) 20(4): 15-20

Voelcker HB, Hunt WA (1981) The role of solid modeling in
machining - process modeling and NC verification. SAE
Tech Paper 810195

Wallis AF, Woodwark JR (1984) Creating large solid models
for NC toolpath verification. Proc CAD-84 Conf Brighton,
UK, Butterworths, pp 455-460

Wang WP (1985) Integration of solid modeling for computer-
ized process planning. ASME publication, PED 19:177-187

Wang WP, Wang KK (1986 a) Real-time verification of multiax-
is NC programs with raster graphics. IEEE Proc of 1986
Int Conf on Robotics and Automation, San Francisco,
(April 1986), pp 166-171

Wang WP, Wang KK (1986b) Geometric modeling for swept
volume of moving solids. IEEE Comput Graph Appl
6(12):8-17

Appendix A

Point-triangle and point-edge distance
Calculations

To implement the PTD method described in Sect. 5
it is necessary to determine the distance of a point
from triangle (see Fig. 22)

pl , p2, p3 are the vertices of the triangle
n is the unit normal to this triangle
q is the point of intersection of the per-

pendicular from p with the plane con-
taining the triangle

t is the parameter along the line joining
q and p. t = 0 at p

u is the parameter along the line joining
p2 and pl . u = 0 at pl , u = l at p2.

w is the parameter along the line joining
p3 and pl. w = 0 at pl , w = l at p3.

First step is to find q and t:

q = p - t n (A.1)

also

q = p l +u(p2-pl)+w(p3--pl) (A.2)

==~pl - -p= --tn--u(p2--pl)--w(p3--pl) (A.3)

Take dot product with n on either side of (A.3):

t = (p - p l) . n (A,4)

Once t is determined we can use (A.I) to get q.
From (A.2) we get:

(p 3 - p l) x (q - p l)
u = (p 3 - p I) x (p 2 - p I) (A.5)

and

(p 2 - p l) x (q - p l)
w - (A . 6)

(p 2 - p l) x (p3- -p l)

To calculate u and w from above equations, we
just consider either the x or y or z components
(preferably the component with the largest magni-
tude in the denominator) of the cross products.
Using u and w we can determine if q is inside the
triangle or outside. If q is inside the triangle, then
the distance of p from the triangle is given by t.
Also, if t > 0, the point p is above the triangle and
the sign of the distance will be positive. If q is
not inside the triangle, we determine on which side
of the triangle it is. The closest distance of the point
from the triangle is then given by the distance of
the point from the nearest edge of vertex. Similar
conditions from the nearest edge can be found.

W

u , o / l,"--o u,o
~ !1 w ,o

w / ~ r f .''u +w=1 u

/ I
7 /

w<0/

Fig. 22. Point-triangle distance calculation

343

q is inside if u>O,w>O, andu+w<_l
p is closest to p 1 if u < 0, and w < 0
p is closest to p 2 if u > 1, and w < 0
p is closest to p3 ifu < 0, and w > 1

If two vertices of the triangle coincide, the problem
reduces to finding the distance from an edge. Simi-
larly, if all three vertices coincide we find the dis-
tance of the point under consideration from one
of the vertices.
For points which lie closest to the edge of a surlace
it is necessary to find the distance of a point p
from an edge e. Refer to Fig. 23 for an illustra-
tion.

pl , p2 are the two end points of the edge e.
q is the point of the intersection of the per-

q = p l + t (p 2 - - p l)

(q - - p) . (p 2 - p l) = 0

substituting (A.7) in (A.8):

[(pl .p) + t (p 2 - p l)] . (p 2 - p l) = 0

on expanding this equation we get:

t = (p - p l) ' (p 2 - p l)
I p 2 - p l l 2

If t_<0
else if t < 1
else

pendicular from p with the line joining
p2 and pl , that is, the edge e.

is the parameter along the line joining p2
and p 1. t = 0 at p 1, and t = 1 at p 2.

(A.7)

(A.8)

(A.9)

(A.10)

distance = distance of p from p 1.
distance = distance ofp from p2.
distance = distance of p from q,
where q is given by Eq. A.7.

Appendix B

Five Axis intersection calculations

In this appendix we derive the intersection calcula-
tions for the special case of a five axis flat-end tool
movement in which the angular orientation of the
tool is constant.
In the Fig. 24, the tool is shown at its begining
and end positions. Ci and Cz are the initial and
final locations of the center of the tool bottom.
Ai and A I give the corresponding orientations of
the axis of the tool. Since the tool undergoes no
rotations Ai and A l are parallel. Ci, A~, Cr and
A~ completely describe a tool path. Po is the point

344

P2 q t

e d g e ' ~ t __ 1

t=0
Fig. 23. Point-edge distance calculation

Fig. 24. Intersections with the tool path envelope
generated by a translation of the tool

on the design surface which has a vector V (which
is normal to the surface at Po) projected from it.
We need to determine the points of intersection
between the vector V and the envelope generated
by the tool path. Note that in the average normal
case the equations that follow are simplified some-
what by the fact that V is always (0, 0, 1) resulting
in slightly faster intersection calculations.
The envelope surface can be broken down to fol-
lowing parts:
(a) A cylindrical surface in the beginning of tool

path,
(b) A flat plane in the front,
(c) The surface generated by sweeping a circle from

Ci to C~,
(d) Another flat plane in the rear, and
(e) A cylindrical surface at the end of the tool path.
Intersecting the vector V with each of the above
surfaces will yield a series of intersection points.
If we use a parameter v along the vector V and

determine the v's for each of these points, the mini-
mum and maximum values of v correspond to the
entry and exit points of intersection of V with the
envelope.

In the figures:
D gives the direction of tool movement
N is the normal to the plane parallel to tool move-

ment
R is the radius of the tool
L is the length of the tool
x is the distance through which the tool moves

is a parameter along D. ~ = 0 at C~, ,~ = x at
C:

g is a parameter along the tool axis. g = 0 at the
tool bottom, g = L at the top.

v is the parameter along V. v = 0 at P0.
E is a point on the bot tom edge of the envelope
F is a point on the top edge of the envelope.
p is any point on the surfaces mentioned earlier.
C is the center of the tool bot tom at an intermedi-

ate position of tool
A is the axis of tool at C.

The following equations define the relationships
between some of these parameters:

C = C ~ + u D

A = A/= A:

x

D = [[C : - C~ II
N = IlDxA~{{

A, A~, A: , D, and N are unit vectors.

(B.1)
(B.2)
(]3.3)
(B.4)
(]3.5)

Intersection with front and rear planes

As the tool moves from [Ci, Ai] to [C: , Af], it
sweeps out two flat surfaces at the front and rear.
These surfaces are parallel to the plane of the
Fig. 25, and lie as distances R and - R from it.
E is a point along the bot tom edge of these surfaces,
and F is on the top edge. Consider an intermediate
position of the tool I-C, A]. The corresponding
point E at this position will be:

E = C + _ R N (B.6)

plus for the front plane, and minus for the rear
plane.
A line at E which is parallel to A lies on the front
on rear planes. This line is given by any point p

u
Cf

Fig. 25. Some of the tool path parameters

, \

Fig. 26. Cross section of the envelope at [C, A]

Ci-RB-RI~
C i-RB+RN

Fig. 27. Tool path extent calculation

such that:

p = E + g A (B.7)

Equations (B.1) through (B.7) completely define the

3 4 5

two planes at the front and rear. To determine
the intersections with V of these planes, we add
another equation:

P = Po + v V (B.8)

The above equations can be solved for v, ~ and
g. The results are given below:

[C f - Po + R N] - [D xA,]
v = (B.9)

V. [D xAi]

[C~ - Po + RN-I. [-A~ xV]
~ = (B.10)

D. [-Ai x V]

[C , - Po +- RN]. [D xV]
g = (B.11)

Ai. [D xV]

It is a valid intersection only if u e [0, x] and g e [0,
L]. Any other intersections must be ignored.

Intersection with surface swept
by tool bottom

The tool bottom is circular. The surface swept by
the bottom is therefore the same as that obtained
by sweeping a circle linearly through space. For
arbitrary position [C, A] of the tool, a point p
on the circular edge at the tool-bottom is defined
by the following equations:

(p - - C) . A = 0 (B.12)

Ip -CI = R (B.13)

If the vector V intersects this circle:

P = Po + v V (B. 14)

Substituting for C and A in (B.12):

(Po - - Ci + ~ V - ~ D) " A~ = 0

or

(Po -C i) . Ai + vV. A i - ~ D .Ai=O
D - A i (Po - C 0 " A i

=*'v = ~ (B. 15)
V" A i V. Ai

Similarly from Eq. (B.13) we obtain:

(p - -C) . (p - -C)=R 2

i.e.

(Po - C~ + v V - - a D) . (Po - - v V -- a D) = R 2

=>(Po -- C,). (Po - C,) + v 2 + a 2 + 2v(Po - Ci). V

- 2 a v V . D - - 2 a (P o - - Cf) . D = R 2. (B. 16)

346

Applying the following substitutions:

a=lPo-Cil e=V'Ai
b = (P o - C i) . A / f = V . D
c = (P o - Ci).D g = D - A i
d = (P o - C ,) . V

(B.15) and (B.16) can be rewritten as:

v=g/e~-b/e (B.17)
aZ+vZ+~Z+2dv-2f~v-2ca=R z (B.18)

Substituting for v in (B.18) and rearranging terms
we get:

hi H2 - 2hz - + h 3 =0

where

hl=e2 +g2-2efg
hz=ceZ + b g - d e g - b e f
h3 =aZ e 2 - RZ e a + b2- 2bde

Solving for u:

a=h2 +_V(h2-hl h3)
hi (B.19)

We can determine v by substituting the magnitude
o f ~ in (B.17).

Intersection with a cylinder

The only remaining tool-path envelope surfaces are
the cylindrical surfaces at the beginning and end
of the tool path. Following is a discussion of the
analysis of intersections with a cylindrical surface.
The cylinder bottom is centered at C and the axis
is oriented along the unit vector A. Substitute [Ci,
A~] for [C, Al to intersect with the initial tool posi-
tion and [Cf, Af] for the final position.
The cylindrical surface of the tool can be generated
by rotating a line (which is at a distance R from
C, and parallel to A) through 360 ~ about A. A
point p on this line is given by:

p = E + l A (B.20)

where E is a point on the bottom edge of the cylin-
der. E is defined by the following set of equations:

[E - C I = R (B.21)

(E - C)- A = 0 (B.22)

For a valid intersection, g e [0, L]. R is the radius
of the cylinder and L its length. If there is an inter-

section, the point p is also on the vector V"

p = P o + v V (B.23)

From (B.20) and (B.23) we get:

E = P o + v V - - g A (B.24)

Substituting for E in (B.22):

(P o - C + v V - g A) . A = 0

= ~ g = (P o - C) . A + v V . A (B.25)

Similarly from (B.21):

(Po-- C) . (P o - C) + v2 + g2 + 2 v (P o - C).V

- 2 v / V . A - 2 g (Po - C). A = R 2 (B.26)

Making the following substitutions:

a = l P o - C I

b = (P o - C) . A

c = (Vo- c). v

d = V . A

we get:

g = b + v d (B.27)
aZ +v2 + g2 + 2 c v - 2 d v g - 2 b g = R 2 (B . 2 8)

Substituting for g in (B.27):

(1 -- d 2) z 2 _ 2 (b d - c) v + (a 2 - b 2 - - R 2) = 0 ~ v

(b d - c) + ~[(b d - c) 2 - (1 - d 2)(a 2 _ b 2 _ R2)]
(1 - d 2)

(B.29)

For either v de te rmine / ; make sure 0_<g_<L; the
lower (in magnitude) value of v gives the intersec-
tion closer to Po.
If the two values of g happen to lie on either side
of zero such that the value corresponding to lower
v is negative, then the vector V also intersects the
bot tom face of the cylinder. We need to determine
this intersection. The next section deals with such
a case.
If (I - d 2) = 0 , it implies that d = +1, that is, V is
parallel to A. The intersection can only be with
the bot tom face of the cylinder. The distance from
Po of the point of intersection on the plane of bot-
tom face is given by:

v = -- bid

This is a valid intersection only if this point occurs
within the circular patch of radius R around C.

i.e,

I p - C I ~ R 2

o r

a2 +v2 + 2 c v < R 2

I n t e r s e c t i o n s w i t h a c i r c u l a r p a t c h

Consider a plane circular patch of radius R cen-
tered at C. M is a unit vector perpendicular to
the plane of the patch. Every point in this circular
patch is defined by:

I p - C I < R ~ (B.30)

and

(p - C) - M = 0 (B.31)

If there is an intersection with V:

P = Po + vV (B.32)

On solving for v, we obtain:

(Po - C) . M
v = V. M (B.33)

We have a special situation for V. M = 0, i.e. V is
parallel to the plane containing the circular patch.
Intersections exist only if the point Po is in the
plane"

(Po - C). M = 0 (B.34)

Also the intersections will only be at the boundary
of the patch, which is a circle. So:

I p - C I = R (B.35)

where p is a point of intersection.
Solving (B.32), (B.34), and (B.35) simultaneously for
v, we obtain:

v = - - b -I- V (b 2 - a 2 + N 2) (B . 3 6)

where

a = l P o - C J and

b = (P o - C) . V

T o o l p a t h e x t e n t s

In order to find the buckets which fall under the
shadow of the tool path it is necessary to find the
extents of the tool path envelope.

3 4 7

For a given tool path [Ci, AJ ~ ICy, Ay], calculate
the three unit vectors D, N, and B.
D is a unit vector from C~ to C I :

D = I l e y - c ~ [I

N is perpendicular to the plane containing D, Ai,
and Ay :

N = IlOxAiL]

B is perpendicular to Af and N.

B = Ai x N

Now consider C~, the center of tool bot tom at the
initial position. Extents of the circular patch at Ci
can be stated in terms of the four points:

Ci - R B - R N

C ~ - R B + R N

C~ + R B - R N

and

C ~ + R B + R N

In a similar way we can find four points defining
the extents of the circular face of tool at the top.
Center of the top in the initial position can be
given as:

Ci, top = Ci + LA~

where L is the length of the tool.
Determine the corresponding extent points for the
final position of the tool. Look at the x, y, z coordi-
nates of these 16 points to determine the x rain,
x max, y min, and y max for the entire tool path.

ROBERT B. JERARD is an as-
sociate professor of mechanical
engineering at the University of
New Hampshire. His research
interests are in simulation and
automatic generation of numer-
ically controlled machining
programs. He has also held fac-
ulty positions at Dartmouth
College, the University of Con-
necticut, and Boston Universi-
ty's overseas program in Ram-
stein, West Germany.

Jerard has a BS from the Uni-
versity of Vermont, SM from
MIT, and PhD from the Uni-

versity of Utah. He is a member of IEEE Computer Society,
ASME, SME, and ASEE.

ROBERT L. (SCOT) DRYS-
DALE, III is an associate pro-
fessor of computer science and
mathematics at Dartmouth
College, where he has taught
since 1978. His primary re-
search area has been algo-
rithms, with special emphasis
on computational geometry.

Drysdale received a BA in
mathematics from Knox Col-
lege in 1973 and MS and PhD
degrees in computer science
from Stanford in 1975 and 1979.
He is a member of IEEE Com-
puter Society, ACM and SI-

GACT, SIGGRAPH, and SIGCSE.

BARRY SCHAUDT is a grad-
uate student in computer sci-
ence at Dartmouth College. His
research interests include the
design and analysis of algo-
rithms, data structures, and
computational geometry.

Schaudt received an MS and
BS in mathematics from the
University of Michigan. He is
a member of ACM.

348

SYEO (ZAFAR) HUSSAINI is a graduate student in mechani-
cal engineering at the University of New Hampshire. His re-
search interests are in computer aided design and manufactur-
ing, mechanical design and computer graphics.

Hussaini received his BS in mechanical engineering from the
Indian Institute of Technology in Madras and a masters from
Dartmouth College. He is a member of ASME.

