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Abstract. 

We give improved solutions for the problem of generating the k smallest spanning trees in a graph and 
in the plane. Our algorithm for general graphs takes time O(m log/~(m, n) + k2); for planar graphs this 
bound can be improved to O(n + kZ). We also show that the k best spanning trees for a set of points in the 
plane can be computed in time O(min(k2n + n log n, k z + kn log(n/k))). The k best orthogonal spanning 
trees in the plane can be found in time O(n logn + kn log log(n/k) + k2). 

C.R. categories: F.1.3, F.2.2, G.2.2, L2.8. 

1. Introduction. 

One of the fundamental problems in graph theory is the computation of a mini- 

mum spanning tree (MST). Given an undirected graph G with weights on each edge, 
the MST of G is the tree spanning G having the minimum total edge weight among 
all possible spanning trees. This problem has been intensely studied, and good 
algorithms are known; currently the best known bound, by Gabow et al. [16], is 
O(m log fl(m, n)) for a graph with n vertices and m edges. Here fl(m, n) is defined to be 
min{illog~°n < m/n}, and log~°x denotes the log function iterated i times. This is 
extremely close to linear time. For  planar graphs, an MST can be found in linear 
time I-8]. 

Minimum spanning trees have applications in many areas, including network 
design, VLSI, and geometric optimization. Yet in many cases what is desired is not 
necessarily the best spanning tree, but rather a "good" tree with some other 
properties that may be difficult to quantify. For  instance, minimum spanning trees 
can be used to approximate a Euclidean travelling salesman tour, but it might be the 
case that some tree other than the minimum could yield a better tour. An approach 
to this difficulty is to generate a number of "good" trees, and then choose among 
them by whatever other criteria are desired. 

A natural formulation of this problem is to find the k least weight spanning trees, 
for some input parameter k. This problem is not so well known as the usual MST 
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problem, but it has been previously studied. It should be contrasted with the much 
harder problem of finding the k best possible spanning tree weights [19]. 

The main previous result, by Katoh et al. [18], is that the k best spanning trees can 
be found in time O(m log fl(m, n) + kin). This result improved several prior results by 
Burns and Haft [6], Camerini et al. [7], and Gabow [15]. Apparently, Dov Harel 
has discovered an O(m log fl(m, n) + kn log 2 n) time algorithm [13]; this is an im- 
provement for graphs that are not too sparse. 

Frederickson [13] considered the problem for small k, in particular k = O(x/m ). 
His algorithm uses a technique for maintaining an MST in a dynamically changing 
graph, and runs in time O(m log fl(m, n) + k2x/m). Frederickson also gave a version of 
his algorithm for planar graphs that runs in time O(n + k 2 log2n). Recently, 
Frederickson's technique for maintaining an MST in a dynamic planar graph has 
been improved [12, 17], leading to a bound for the k best spanning trees problem of 
O(n + k 2 log n); this improves the bound of [18] whenever k = O(n/log n). 

Another well known MST problem is that of finding the MST of a set of points in 
the plane, with the weight of an edge connecting points x and y being the Euclidean 
distance between the two. This can be solved in time O(n log n), using the fact that all 
MST edges must appear in the Delauney triangulation of the points [3]. Strangely, 
the problem of finding the k best minimum spanning trees of a set of points in the 
plane does not seem to have been studied; however it can clearly be solved in time 
O(kn 2) using the technique of [18] on the complete graph of all pairs of points. 

In this paper we again consider the problem of generating the k best spanning 
trees, both in a graph and in the plane, again for small k. We show that the k best 
spanning trees in any graph can be found in time O(m log fl(m, n) + k2); this is better 
than the previous O(m log fl(m, ~) + k 2 x/m) bound. For planar graphs, our algo- 
rithm can be made to run in time O(n + k2), improving the previous O(n + k 2 logn) 
bound. Both algorithms improve the O(m log fl(m, n) + km) bound of[18] whenever 
k = O(m). 

The general graph approach clearly leads to an O(n 2 + k 2) bound for the Euclid- 
ean k best spanning trees problem, which improves the previous O(kn 2) bound when 
k = O(n2). We describe two modifications to this technique. The first finds the k best 
spanning trees in time O(k2n + n log n); it is best when k = O(log n), and is O(n log n) 
for k = O(x/(log n)). The second achieves time O(k 2 + kn log(n/k)), and is better than 
O(n 2 + k 2) when k = O(n). We also consider alternate planar metrics; in particular 
we give an O(k 2 + kn log log(n/k) + n log n) algorithm to find the k best orthogonal 
spanning trees. 

The intuition behind our algorithms is as follows. Each of the k best trees (other 
than the MST) differs from a better tree by the deletion of a single edge and its 
replacement by another edge. Therefore in all the k best trees there are O(k) edges 
which are added to or removed from the MST. If we can quickly identify a superset 
of these edges, we can reduce the original k best spanning trees problem to a new 
problem the size of the superset; we can solve this reduced problem with previously 
known algorithms. 
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In more detail, the algorithm for finding spanning trees in graphs consists of three 
stages. First, we show that many edges of the MST must be contained in every one of 
the k best spanning trees; therefore, we can contract the input graph G to a new graph 
G' having only O(k) vertices. Then we show that many edges not in the MST can also 
not be in any of the k best spanning trees; therefore, we can remove them from the 
graph, leaving only O(k) edges. Finally, we apply the algorithm of [18], which takes 
time O(k 2) on the reduced graph. Our algorithms for geometric spanning trees 
similarly rely on reducing the problem to a small graph, but are more complicated. 

We have recently used the idea of removing and contracting edges in algorithms 
for the related problem of maintaining a minimum spanning tree in a changing 
graph, subject to an offline sequence of edge insertions and deletions, and for 
a similar dynamic geometric minimum spanning tree problem [10]. A recent paper 
of Frederickson 1-14] improves the k smallest spanning trees algorithm of [18], and 
again uses the reduction described here to improve some of our time bounds as well. 

Throughout this paper we allow graphs to have multiple edges between the same 
pair of vertices. Therefore we do not denote an edge by its adjacent vertices, but 
rather treat it as a separate entity. The presence of multiple adjacencies between two 
vertices cannot affect the MST of a graph, but may affect the outcome of the k best 
spanning trees computation. 

2. Contracting required edges. 

Given a graph G, and an edge e connecting vertices x and y in G, we define the 
contraction G" e to be the graph G' having as vertices V(G) - y, and edges ce(E(G)), 
where the function c~ throws away edges connecting x and y, substitutes for each 
edge e' connecting y and any vertex z # x a new edge e" connecting x and z, and 
leaves unchanged all remaining edges. The contraction function ce is defined to 
preserve the weight w(e) of each edge not thrown away. 

LEMMA 1. For any edge e in a spanning tree T of graph G, c,( T) is the MSTo f  G . e if 
and only if Tis the least weight spanning tree of G containing e. 

PROOF: Obvious from the definitions. 

The following characterization of MSTs is well known: 

LEMMA 2. (folklore) Let v be any vertex of G, and e be the least weight edge adjacent 
to v. Let T be the M S T o f  G.e. Then T+ e is the M S T o f  G. 

Now for any edge e in the spanning tree, disconnecting the tree into two com- 
ponents T1 and T2, define the replacement edge re(e) to be the least weight edge in G, 
other than e, between a vertex in T1 and one in T2. 
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LEMMA 3. (folklore) For any edge e in the M S T  T of  a graph G, such that G - e is 

connected, T - e + rG(e) is the M S T o f  G - e. 

PROOF: If G has only two vertices, the lemma is obvious. Otherwise, find some 
edge f # e that is a leaf in the MST Tof  G, and let the leaf vertex adjacent to f be x. 
Then by lemma 2, f is the least weight edge adjacent to x, or it would not be in T, and 
by lemma I, cs(T) is the MST of G. f .  Also, contracting f does not change the 
components T1 and T 2 formed by removing e, and therefore ro.s(e) = re(e). By 
induction cs(T) - e + r~(e) is the MST of(G" f )  -- e = (G - e). f, and using lemma 
1 again gives that T - e + r~(e) is the least weight spanning tree of G - e containing 
f. But by lemma 2, this must be the MST of G - e. • 

LEMMA 4. [21] Given an M S T  T of  a graph G, the replacements ra(e)for all edges 
e in Tcan be computed in time O(mc~(m, n)). 

This bound is never worse then the O(m log fl(m, n)) time required for constructing 
the MST of G. The following version of lemma 4 is given in [5]. 

LEMMA 5. Given an M S T  T of  a planar graph G, the replacements ra(e)for all edges 
e in Tcan be computed in time O(n). 

LEMMA 6. Given an M S T  T of  a graph G, and the values of  ra for each tree edge, in 
linear time we can compute a set S of  n - k tree edges that must be contained in all of  
the k best spanning trees for G. 

PROOF: For  each edge e, let w'(e) = w(r~(e)) - w(e). In other words, w' is the extra 
weight we have to add to the tree if we remove e from the graph. The values ofw' can 
be computed as above. Then find the edges with the (k - 1) smallest values of w', 
using a linear time selection algorithm [4]. Let S be all the remaining edges. 

Then for each edge e in S there are at least k - 1  edges e' with 
w(T - e' + r~(e')) < w(T - e + ro(e)), and therefore together with T there are at 
least k trees better than w(T - e + ro(e)), which is in turn (by lemma 3) better than 
any other spanning tree not containing e. Therefore all the k best spanning trees 
must contain e. • 

LEMMA 7. Given an M S T  T of  a graph G, in time O(m~(m, n)) we can find a set o f  
edges S and a graph G' having only k vertices, such that the k best spanning trees of  
G are exactly the k best spanning trees of  G' together with the edges of  S. In a planar 
graph this can be performed in linear time. 

PROOF: Let S be the set constructed in lemma 6, and let G' = G. S be the graph 
formed by contracting each of the edges in S. The contraction can easily be 
performed in linear time. • 
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3. Subtracting useless edges. 

241 

Just as each treeedge has a single non-tree replacement edge re(e), it turns out that 
each non-tree edge has a single tree replacement edge. In particular, define Re(e) for 
an edge e connecting vertices x and y to be that edge on the tree path between x and 
y having the highest weight. 

LEMMA 8. I f  Tis the M S T o f  a graph G, then ce(T - Re(e)) is the M S T o f  G.e. 

PROOF: We contract tree edges other than Re(e) one at a time, using lemma 1 to 
show that they must belong to both MTSs. • 

As before, Ra can be computed efficiently for all edges: 

LEMMA 9. [21] The replacement edges R~(e) for each edoe e in a graph G, given an 
M S T  of G, can be computed in time O(m~(m, n)). 

LEMMA 10. The replacement edges Ra(e) for each edge e in a planar graph G can be 
computed in linear time. 

PROOF: Since the minimum spanning tree of a planar graph is the complement of 
the maximum spanning tree of the dual [12], this follows from lemma 5. • 

As before, this lets us simplify the graph: 

LEMMA 1 1. Given a graph G and its MS T T, we can find a set S' of m - n - k 
non-tree edges such that none of the k best spanning trees contains any edge in S', in 
time O(m~(m, n)). 

PROOF: Define W(e) to be w(e) - w(RG(e)); then W(e) is the weight added by 
including e in a spanning tree. Let f be the non-tree edge having the (k - t)st 
smallest value of W; as before f can be found by a linear time selection algorithm. 
Then as before, for any e with W(e) > (f), there are at least k trees better than 
T - RG(e) + e, and therefore also better than any other tree containing e. Therefore 
e can never be included in any of the k best spanning trees for G. • 

Putting it all together, we have our result: 

THEOREM 1. The k least weight spanning trees of a graph can be found in time 
bounded by O(mlogfl(m, n)+ k2); for a planar graph they can be found in time 
O(n + k2). 

PROOF: By results of [ 16] and [8], the MST of the graph can be found in the given 
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bounds. We can use lemma 7 to reduce the graph to one in which there are k vertices, 
and therefore k - 1 tree edges. Then we can use lemma 11 to reduce the graph to one 
in which there are k - 1 non-tree edges. Therefore the total number of edges in the 
final reduced graph is O(k). Applying the algorithm of [18] gives the desired total 
bound. • 

4. Euclidean spanning trees. 

We now consider the Euclidean k best spanning trees problem. More precisely, 
given a set of n points in the plane, we can imagine forming the complete graph on 
these points, with the weight of an edge equal to the distance between the corre- 
sponding vertices. 

THEOREM 2. The k best spanning trees for a set of points in the plane can be found in 
time O(n 2 -b k2). 

PROOF: Simply form the graph described above, and use the algorithm of the 
previous sections. • 

To do better than this, we will need to remove many edges quickly from the 
complete graph, without explicitly constructing the graph. To do this, we will use the 
standard geometric technique of Voronoi diagrams. 

The order r Voronoi diagram is a subdivision of the plane into regions. Each region 
can be denoted v(S) for some set S containing exactly r of the input points (which in 
this context are called sites), and is the locus of points x for which all sites in S are 
closer to x than any site not in S. A set S corresponds to a Voronoi region v(S) exactly 
when there is a circle in the plane containing S and no other of the sites; then the 
center of the circle is one of the points in v(S). 

Lemma 12. If(x,  y) is an edge in one of the k best spanning trees, then x and y are 
both sites in some set S corresponding to a Voronoi region v(S) in the order (k + 1) 
Voronoi diagram of the input points. 

PROOF: Let x and y be two arbitrary input points. Let e in the MST Tof the points 
be R~((x, y)), and let the removal ofe  disconnect T into two components T1 and T2. 
Without loss of generality x e TI and y e T2. 

Consider the circle C for which line segment xy is diameter. For  each site z other 
than x and y in this circle, if z is in T2 then (x, z) connects T1 and T2, and is shorter 
than (x, y); therefore T -- e + (x, z) is a better spanning tree than T - e + (x, y). 
Similarly, if z is in T1 then T - e + ( z , y )  is better than T - e + ( x , y ) .  But 
T - e + (x, y) is the best spanning tree containing (x, y); therefore if(x, y) is in any of 
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the k best spanning trees, there can be at most k - 1 possible sites z, and C contains 
at most k + 1 sites including x and y. • 

LEMMA 13. [ 1, 2] There are O(rn) pairs of sites (x, y) that belong to a common region 
of an order r l/oronoi diagram. The diagram can be found, and all such pairs can be 
enumerated, in time O(r2n + n log n). 

THEOREM 3. The k best spanning trees for a set of points in the plane can be found in 
time O(kEn + n log n). 

PROOF: Lemmas 12 and 13 show that in the time bound we can reduce 
the problem to a graph problem in a graph with n vertices and O(kn) edges. 
Then by theorem 1 we can find the k best spanning trees in time 
O(knlogfl(kn, n) + k 2) = O(kn + nlogn + k 2) = O(k2n + n log n). • 

5. Faster Euclidean spanning tree construction. 

In theorem 3, we did not make much use of the results of the first two sections, 
wherein we showed how to reduce the number of edges that need be considered to 
find the k best spanning trees. Indeed, after the reduction to a graph with O(kn) edges, 
we could have used the algorithm of [ 18] instead of theorem 1, and still achieved the 
same final bound. Therefore it should not come as a great surprise that we can 
improve this bound for certain ranges of the parameters k and n. 

First, recall that the Euclidean MST of the points can be computed in time 
O(n log n). If we could compute r(e) for each edge e of the MST, then by lemma 6 we 
could show that all but k of the MST edges must remain in all the k best spanning 
trees. This may be done as follows. 

LEMMA 14. For each replacement edge r(e) connecting points x and y, it must be the 
case that x and y are part of a set S forming a region v(S) in the order-3 Voronoi diagram 
of the input points. 

PROOF: Let e divide the MST T into components Tt and T2, with x in T1 and y in 
T2. Construct the circle C with diameter xy. If C contains a site z which is neither x, y, 
nor and endpoint of e, then as in lemma 12 either T - e + (x, z) or T -- e + (z,y) is 
better than T - e + (x, y), contradicting the assumption that r(e) = (x,y). The only 
other way that C could contain four sites would be if they were x and y together with 
the two endpoints of e; but then again we would have a better replacement for e than 
(x, y). Therefore C contains at most three sites, and x and y belong to the Voronoi 
region containing the center of C. • 

COROLLARY 1. We can compute r(e) for each edge e in the MST, in time O(n log n). 
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PROOF: The order-3 Voronoi diagram can be constructed in this time bound. It 
contains O(n) pairs (x, y) sharing a Voronoi region; therefore by lemma 4 each value 
of r(e) can be computed in a total time bound of O(n~(n)) = O(n log n). • 

Now as before we can find a set S of all but k edges in the MST, such that the best 
k spanning trees each contain all the edges in S. Denote the remaining MST edges by 
el, e2 . . . . .  ek. Now we must show how to use this information to reduce the possible 
non-MST edges we must consider. 

If we were to follow the graph algorithm, we would want to compute, for each 
edge, the best replacement edge, and only choose the k edges minimizing the 
difference in costs between themselves and their replacements. However we do not 
have time to consider all edges in what is still almost the complete graph. Instead, we 
first note that any replacement edges considered must come from the k MST edges 
chosen above. We will find a set of O(k) vertices such that useful non-MST edges will 
have both endpoints in this set. These vertices are found by computing, for each 
vertex, the minimum difference between the costs ofa non-MST edge adjacent to the 
vertex and that edge's replacement, assuming that replacement is one of the k se- 
lected edges. We then show how the problem may be reduced to that of computing 
bichromatic nearest neighbors. 

Given a point x, and an MST edge e~, let ei divide the MST into components T1 
and T2 with x in T1; then we define f~(x) to be the nearest point to x in T2. We further 
define 

(1) F(x) = min w(x, fi(x)) - w(ei). 
i 

LEMMA 15. For each x, F(x) + w( T), where Tis the MST, gives the minimum weight 
of  a spanning tree containing all the edges in S and containing an edge not in S adjacent 
to x. 

PROOF: By lemma 8, the spanning tree defined by the lemma must be of the form 
T - ei + (x, y) for some i and y. But this is exactly what is minimized by F(x). • 

We now show how to compute F(x); this depends on the following well-known 
solution to the bichromatic nearest neighbor problem: 

LEMMA 16. Given a set of m red points, and a set of n blue points, we can compute for 
each blue point the nearest red point, in time O((n + m) log m). 

PROOF: We simply construct the Voronoi diagram of the set of red points, and use 
a planar point location procedure [20]. • 

LEMMA 17. All values ofF(x) can be computed in time O(nk log(n/k)). 
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PROOF: Removing the edges el divides the MST T into k + 1 components T~. We 
first compute, for each input point, the nearest point in each component. This takes 
time O(n ~ log I Td); the sum in this bound is maximized when all T/are equal in size, 
and the bound then becomes O(nk log(n/k)). 

The components T~, connected by the edges ei, can be imagined as forming a tree 
with (k + 1) vertices; there are 2k subtrees that can be formed by removing any edge 
of the tree. For each point, we find the nearest point to it in each of those subtrees; 
this may easily be done in time O(k) per point by dynamic programming. Therefore 
this step takes time O(nk). 

At this point we have computed f~(x) for each i and x, as the nearest point to x in 
the subtree not containing x of the two formed by removing edge e~ from the 
component tree. From this F(x) may be computed directly from formula 1, in time 
O(nk). • 

THEOREM 4. The k best spannin9 trees for a set of points in the plane can be 
computed in time O(k 2 q- kn log(n/k)). 

PROOF: The algorithm of corollary 1 takes time O(nlogn), which is always 
dominated by the O(kn log(n/k)) time to compute F(x). By lemma 11, the k best 
spanning trees together contain only k edges not already in the MST, and (counting 
the MST edges not in S) 2k edges not in S. Therefore only the 4k points having the 
lowest values of F(x) may be endpoints of those edges. By using lemma 17 and 
a linear time selection algorithm [4] we may find those 4k points in time 
O(kn log(n/k)). These points determine O(k 2) possible non-MST edges. Therefore, 
the problem becomes one of finding the k best spanning trees in a graph with O(k 2) 
edges and O(k) vertices; this can be solved in time O(k2). • 

6. Alternate metrics. 

All the algorithms described above depend only on some simple properties of the 
Voronoi diagram, and therefore work just as well for alternate metrics in the plane. 
However, the fastest construction of the order r Voronoi diagram that works for 
general metrics takes time O(k2n log n), and therefore theorem 3 ne,,er leads to 
a better time than the O(k 2 + kn log n) bound of theorem 4. 

However in certain cases we can do better. In particular, for the L 1 (equivalently, 
L~) metric, corresponding to the important case of orthogonal spanning trees, we 
can achieve a time bound of O(k 2 + kn log log n + n log n); this is always at least as 
fast as our algorithms for the usual L2 metric. 

The algorithm we use is essentially the same as that of theorem 4. The key 
difference is in the computation of f~(x), which was the only step in that theorem 
requiring time O(kn log n). Recall that this can be considered to be O(k) computa- 
tions of the bichromatic nearest neighbor problem. We now give an improved 
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solution to this problem for the L, metric, after an O(n log n) time preprocessing 
(sorting) stage. This leads to a speedup of our spanning tree algorithm. 

Recall that the LI distance between points (x,y) and (x',y') is simply 
Ix - x'l + l Y - Y'I. We will solve the following simplified version of the problem: 

LEMMA 18. Given a set of  m red points, and n blue points, sorted by their values of  
x (x'), and within the same value o f x  in order by y, we can compute for each blue point 
(x, y) the nearest red point (x', y') with x' < x and y' <_ y, in time O((n + m) log log m). 

PROOF: We process the points in the sorted order. The preprocessing stage 
consists of simply sorting the points in this order. At any stage in the processing, 
corresponding to some particular value of x, we maintain a data structure listing, for 
each value of y, the nearest red point (x', y') with x' < x and y' < y. This point must 
already have been processed by the order of processing. Then to find the nearest 
neighbor of an input point, we perform a lookup in the data structure; to process 
a red point, we update the data structure. 

Each red point (x', y') nearest to any blue point must correspond to some interval 
1-y',y] in the data structure; this is because if some other red point is nearer to 
a particular value of(x, y) it will be nearer to all blue points with greater values ofy. 
We may represent this collection of intervals using thef la t  tree integer searching 
data structure of van Emde Boas [22], indexed by the m possible y coordinates of the 
points in A. Computing these indices for the n input points can be done by a linear 
time sweep of the points ordered by their y coordinates. 

Then finding the nearest red neighbor of a blue point (x, y) simply consists of 
looking up y in the data structure to find which interval contains it. Processing a red 
point (x', y') consists of again'finding the interval containing y', then splitting that 
interval at y' to create a new interval for that point, and while each succeeding 
interval corresponds to a point (x", y") farther from (x', y'), deleting those succeeding 
intervals and merging them into the new interval for (x', y'). 

All these data structure operations can be performed in time O(log log m) each. 
A deletion can be charged to its corresponding insertion, so processing each point 
requires a constant amortized number of data structure operations. Therefore the 
whole operation take time O(n log log m). • 

This algorithm is essentially identical to one used by Eppstein et al. [11] to 
compute RNA secondary structure predictions; they also used a more complicated 
version of the algorithm as part of a method of computing optimal sequence 
alignments. Our algorithm should also be compared with that of Chew and Fortune 
I-9] which computes the orthogonal Voronoi diagram of a set of points in 
O(n log log n) time; our algorithm differs in simultaneously performing point loca- 
tion within the constructed Voronoi diagram. 
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THEOREM 5. The k best orthogonal spanning trees for a set of n points in the plane 
can be found in time O(k 2 d- kn log log(n/k) + n log n). 

PROOF: The algorithm oflemma t8 may be repeated four times, in four different 
directions, to solve the L1 bichromatic nearest neighbor problem. This problem in 
turn is solved k times as in theorem 4. The points need be sorted only four times, for 
the four different directions; the same sorted are used in each of the k bichromatic 
nearest neighbor problems. All other steps are the same as in lemma 17 and theorem 
4, using the bound of lemma 18 instead of that of lemma 16. • 
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