
BIT32 (1992), 237-248.

F I N D I N G T H E k S M A L L E S T S P A N N I N G T R E E S

DAVID EPPSTEIN

Department of lnformation and Computer Science
University of California, lrvine, CA 92717, USA

Abstract.

We give improved solutions for the problem of generating the k smallest spanning trees in a graph and
in the plane. Our algorithm for general graphs takes time O(m log/~(m, n) + k2); for planar graphs this
bound can be improved to O(n + kZ). We also show that the k best spanning trees for a set of points in the
plane can be computed in time O(min(k2n + n log n, k z + kn log(n/k))). The k best orthogonal spanning
trees in the plane can be found in time O(n logn + kn log log(n/k) + k2).

C.R. categories: F.1.3, F.2.2, G.2.2, L2.8.

1. Introduction.

One of the fundamental problems in graph theory is the computation of a mini-

mum spanning tree (MST). Given an undirected graph G with weights on each edge,
the MST of G is the tree spanning G having the minimum total edge weight among
all possible spanning trees. This problem has been intensely studied, and good
algorithms are known; currently the best known bound, by Gabow et al. [16], is
O(m log fl(m, n)) for a graph with n vertices and m edges. Here fl(m, n) is defined to be
min{illog~°n < m/n}, and log~°x denotes the log function iterated i times. This is
extremely close to linear time. For planar graphs, an MST can be found in linear
time I-8].

Minimum spanning trees have applications in many areas, including network
design, VLSI, and geometric optimization. Yet in many cases what is desired is not
necessarily the best spanning tree, but rather a "good" tree with some other
properties that may be difficult to quantify. For instance, minimum spanning trees
can be used to approximate a Euclidean travelling salesman tour, but it might be the
case that some tree other than the minimum could yield a better tour. An approach
to this difficulty is to generate a number of "good" trees, and then choose among
them by whatever other criteria are desired.

A natural formulation of this problem is to find the k least weight spanning trees,
for some input parameter k. This problem is not so well known as the usual MST

Received September 1990. Revised August 1991.

238 DAVID EPPSTEIN

problem, but it has been previously studied. It should be contrasted with the much
harder problem of finding the k best possible spanning tree weights [19].

The main previous result, by Katoh et al. [18], is that the k best spanning trees can
be found in time O(m log fl(m, n) + kin). This result improved several prior results by
Burns and Haft [6], Camerini et al. [7], and Gabow [15]. Apparently, Dov Harel
has discovered an O(m log fl(m, n) + kn log 2 n) time algorithm [13]; this is an im-
provement for graphs that are not too sparse.

Frederickson [13] considered the problem for small k, in particular k = O(x/m).
His algorithm uses a technique for maintaining an MST in a dynamically changing
graph, and runs in time O(m log fl(m, n) + k2x/m). Frederickson also gave a version of
his algorithm for planar graphs that runs in time O(n + k 2 log2n). Recently,
Frederickson's technique for maintaining an MST in a dynamic planar graph has
been improved [12, 17], leading to a bound for the k best spanning trees problem of
O(n + k 2 log n); this improves the bound of [18] whenever k = O(n/log n).

Another well known MST problem is that of finding the MST of a set of points in
the plane, with the weight of an edge connecting points x and y being the Euclidean
distance between the two. This can be solved in time O(n log n), using the fact that all
MST edges must appear in the Delauney triangulation of the points [3]. Strangely,
the problem of finding the k best minimum spanning trees of a set of points in the
plane does not seem to have been studied; however it can clearly be solved in time
O(kn 2) using the technique of [18] on the complete graph of all pairs of points.

In this paper we again consider the problem of generating the k best spanning
trees, both in a graph and in the plane, again for small k. We show that the k best
spanning trees in any graph can be found in time O(m log fl(m, n) + k2); this is better
than the previous O(m log fl(m, ~) + k 2 x/m) bound. For planar graphs, our algo-
rithm can be made to run in time O(n + k2), improving the previous O(n + k 2 logn)
bound. Both algorithms improve the O(m log fl(m, n) + km) bound of[18] whenever
k = O(m).

The general graph approach clearly leads to an O(n 2 + k 2) bound for the Euclid-
ean k best spanning trees problem, which improves the previous O(kn 2) bound when
k = O(n2). We describe two modifications to this technique. The first finds the k best
spanning trees in time O(k2n + n log n); it is best when k = O(log n), and is O(n log n)
for k = O(x/(log n)). The second achieves time O(k 2 + kn log(n/k)), and is better than
O(n 2 + k 2) when k = O(n). We also consider alternate planar metrics; in particular
we give an O(k 2 + kn log log(n/k) + n log n) algorithm to find the k best orthogonal
spanning trees.

The intuition behind our algorithms is as follows. Each of the k best trees (other
than the MST) differs from a better tree by the deletion of a single edge and its
replacement by another edge. Therefore in all the k best trees there are O(k) edges
which are added to or removed from the MST. If we can quickly identify a superset
of these edges, we can reduce the original k best spanning trees problem to a new
problem the size of the superset; we can solve this reduced problem with previously
known algorithms.

FINDING THE k SMALLEST SPANNING TREES 239

In more detail, the algorithm for finding spanning trees in graphs consists of three
stages. First, we show that many edges of the MST must be contained in every one of
the k best spanning trees; therefore, we can contract the input graph G to a new graph
G' having only O(k) vertices. Then we show that many edges not in the MST can also
not be in any of the k best spanning trees; therefore, we can remove them from the
graph, leaving only O(k) edges. Finally, we apply the algorithm of [18], which takes
time O(k 2) on the reduced graph. Our algorithms for geometric spanning trees
similarly rely on reducing the problem to a small graph, but are more complicated.

We have recently used the idea of removing and contracting edges in algorithms
for the related problem of maintaining a minimum spanning tree in a changing
graph, subject to an offline sequence of edge insertions and deletions, and for
a similar dynamic geometric minimum spanning tree problem [10]. A recent paper
of Frederickson 1-14] improves the k smallest spanning trees algorithm of [18], and
again uses the reduction described here to improve some of our time bounds as well.

Throughout this paper we allow graphs to have multiple edges between the same
pair of vertices. Therefore we do not denote an edge by its adjacent vertices, but
rather treat it as a separate entity. The presence of multiple adjacencies between two
vertices cannot affect the MST of a graph, but may affect the outcome of the k best
spanning trees computation.

2. Contracting required edges.

Given a graph G, and an edge e connecting vertices x and y in G, we define the
contraction G" e to be the graph G' having as vertices V(G) - y, and edges ce(E(G)),
where the function c~ throws away edges connecting x and y, substitutes for each
edge e' connecting y and any vertex z # x a new edge e" connecting x and z, and
leaves unchanged all remaining edges. The contraction function ce is defined to
preserve the weight w(e) of each edge not thrown away.

LEMMA 1. For any edge e in a spanning tree T of graph G, c,(T) is the MSTo f G . e if
and only if Tis the least weight spanning tree of G containing e.

PROOF: Obvious from the definitions.

The following characterization of MSTs is well known:

LEMMA 2. (folklore) Let v be any vertex of G, and e be the least weight edge adjacent
to v. Let T be the M S T o f G.e. Then T+ e is the M S T o f G.

Now for any edge e in the spanning tree, disconnecting the tree into two com-
ponents T1 and T2, define the replacement edge re(e) to be the least weight edge in G,
other than e, between a vertex in T1 and one in T2.

240 DAVID EPPSTEIN

LEMMA 3. (folklore) For any edge e in the M S T T of a graph G, such that G - e is

connected, T - e + rG(e) is the M S T o f G - e.

PROOF: If G has only two vertices, the lemma is obvious. Otherwise, find some
edge f # e that is a leaf in the MST Tof G, and let the leaf vertex adjacent to f be x.
Then by lemma 2, f is the least weight edge adjacent to x, or it would not be in T, and
by lemma I, cs(T) is the MST of G. f . Also, contracting f does not change the
components T1 and T 2 formed by removing e, and therefore ro.s(e) = re(e). By
induction cs(T) - e + r~(e) is the MST of(G" f) -- e = (G - e). f, and using lemma
1 again gives that T - e + r~(e) is the least weight spanning tree of G - e containing
f. But by lemma 2, this must be the MST of G - e. •

LEMMA 4. [21] Given an M S T T of a graph G, the replacements ra(e)for all edges
e in Tcan be computed in time O(mc~(m, n)).

This bound is never worse then the O(m log fl(m, n)) time required for constructing
the MST of G. The following version of lemma 4 is given in [5].

LEMMA 5. Given an M S T T of a planar graph G, the replacements ra(e)for all edges
e in Tcan be computed in time O(n).

LEMMA 6. Given an M S T T of a graph G, and the values of ra for each tree edge, in
linear time we can compute a set S of n - k tree edges that must be contained in all of
the k best spanning trees for G.

PROOF: For each edge e, let w'(e) = w(r~(e)) - w(e). In other words, w' is the extra
weight we have to add to the tree if we remove e from the graph. The values ofw' can
be computed as above. Then find the edges with the (k - 1) smallest values of w',
using a linear time selection algorithm [4]. Let S be all the remaining edges.

Then for each edge e in S there are at least k - 1 edges e' with
w(T - e' + r~(e')) < w(T - e + ro(e)), and therefore together with T there are at
least k trees better than w(T - e + ro(e)), which is in turn (by lemma 3) better than
any other spanning tree not containing e. Therefore all the k best spanning trees
must contain e. •

LEMMA 7. Given an M S T T of a graph G, in time O(m~(m, n)) we can find a set o f
edges S and a graph G' having only k vertices, such that the k best spanning trees of
G are exactly the k best spanning trees of G' together with the edges of S. In a planar
graph this can be performed in linear time.

PROOF: Let S be the set constructed in lemma 6, and let G' = G. S be the graph
formed by contracting each of the edges in S. The contraction can easily be
performed in linear time. •

FINDING THE k SMALLEST SPANNING TREES

3. Subtracting useless edges.

241

Just as each treeedge has a single non-tree replacement edge re(e), it turns out that
each non-tree edge has a single tree replacement edge. In particular, define Re(e) for
an edge e connecting vertices x and y to be that edge on the tree path between x and
y having the highest weight.

LEMMA 8. I f Tis the M S T o f a graph G, then ce(T - Re(e)) is the M S T o f G.e.

PROOF: We contract tree edges other than Re(e) one at a time, using lemma 1 to
show that they must belong to both MTSs. •

As before, Ra can be computed efficiently for all edges:

LEMMA 9. [21] The replacement edges R~(e) for each edoe e in a graph G, given an
M S T of G, can be computed in time O(m~(m, n)).

LEMMA 10. The replacement edges Ra(e) for each edge e in a planar graph G can be
computed in linear time.

PROOF: Since the minimum spanning tree of a planar graph is the complement of
the maximum spanning tree of the dual [12], this follows from lemma 5. •

As before, this lets us simplify the graph:

LEMMA 1 1. Given a graph G and its MS T T, we can find a set S' of m - n - k
non-tree edges such that none of the k best spanning trees contains any edge in S', in
time O(m~(m, n)).

PROOF: Define W(e) to be w(e) - w(RG(e)); then W(e) is the weight added by
including e in a spanning tree. Let f be the non-tree edge having the (k - t)st
smallest value of W; as before f can be found by a linear time selection algorithm.
Then as before, for any e with W(e) > (f), there are at least k trees better than
T - RG(e) + e, and therefore also better than any other tree containing e. Therefore
e can never be included in any of the k best spanning trees for G. •

Putting it all together, we have our result:

THEOREM 1. The k least weight spanning trees of a graph can be found in time
bounded by O(mlogfl(m, n)+ k2); for a planar graph they can be found in time
O(n + k2).

PROOF: By results of [16] and [8], the MST of the graph can be found in the given

242 DAVID EPPSTEIN

bounds. We can use lemma 7 to reduce the graph to one in which there are k vertices,
and therefore k - 1 tree edges. Then we can use lemma 11 to reduce the graph to one
in which there are k - 1 non-tree edges. Therefore the total number of edges in the
final reduced graph is O(k). Applying the algorithm of [18] gives the desired total
bound. •

4. Euclidean spanning trees.

We now consider the Euclidean k best spanning trees problem. More precisely,
given a set of n points in the plane, we can imagine forming the complete graph on
these points, with the weight of an edge equal to the distance between the corre-
sponding vertices.

THEOREM 2. The k best spanning trees for a set of points in the plane can be found in
time O(n 2 -b k2).

PROOF: Simply form the graph described above, and use the algorithm of the
previous sections. •

To do better than this, we will need to remove many edges quickly from the
complete graph, without explicitly constructing the graph. To do this, we will use the
standard geometric technique of Voronoi diagrams.

The order r Voronoi diagram is a subdivision of the plane into regions. Each region
can be denoted v(S) for some set S containing exactly r of the input points (which in
this context are called sites), and is the locus of points x for which all sites in S are
closer to x than any site not in S. A set S corresponds to a Voronoi region v(S) exactly
when there is a circle in the plane containing S and no other of the sites; then the
center of the circle is one of the points in v(S).

Lemma 12. If(x, y) is an edge in one of the k best spanning trees, then x and y are
both sites in some set S corresponding to a Voronoi region v(S) in the order (k + 1)
Voronoi diagram of the input points.

PROOF: Let x and y be two arbitrary input points. Let e in the MST Tof the points
be R~((x, y)), and let the removal ofe disconnect T into two components T1 and T2.
Without loss of generality x e TI and y e T2.

Consider the circle C for which line segment xy is diameter. For each site z other
than x and y in this circle, if z is in T2 then (x, z) connects T1 and T2, and is shorter
than (x, y); therefore T -- e + (x, z) is a better spanning tree than T - e + (x, y).
Similarly, if z is in T1 then T - e + (z , y) is better than T - e + (x , y) . But
T - e + (x, y) is the best spanning tree containing (x, y); therefore if(x, y) is in any of

FINDING THE k SMALLEST SPANNING TREES 243

the k best spanning trees, there can be at most k - 1 possible sites z, and C contains
at most k + 1 sites including x and y. •

LEMMA 13. [1, 2] There are O(rn) pairs of sites (x, y) that belong to a common region
of an order r l/oronoi diagram. The diagram can be found, and all such pairs can be
enumerated, in time O(r2n + n log n).

THEOREM 3. The k best spanning trees for a set of points in the plane can be found in
time O(kEn + n log n).

PROOF: Lemmas 12 and 13 show that in the time bound we can reduce
the problem to a graph problem in a graph with n vertices and O(kn) edges.
Then by theorem 1 we can find the k best spanning trees in time
O(knlogfl(kn, n) + k 2) = O(kn + nlogn + k 2) = O(k2n + n log n). •

5. Faster Euclidean spanning tree construction.

In theorem 3, we did not make much use of the results of the first two sections,
wherein we showed how to reduce the number of edges that need be considered to
find the k best spanning trees. Indeed, after the reduction to a graph with O(kn) edges,
we could have used the algorithm of [18] instead of theorem 1, and still achieved the
same final bound. Therefore it should not come as a great surprise that we can
improve this bound for certain ranges of the parameters k and n.

First, recall that the Euclidean MST of the points can be computed in time
O(n log n). If we could compute r(e) for each edge e of the MST, then by lemma 6 we
could show that all but k of the MST edges must remain in all the k best spanning
trees. This may be done as follows.

LEMMA 14. For each replacement edge r(e) connecting points x and y, it must be the
case that x and y are part of a set S forming a region v(S) in the order-3 Voronoi diagram
of the input points.

PROOF: Let e divide the MST T into components Tt and T2, with x in T1 and y in
T2. Construct the circle C with diameter xy. If C contains a site z which is neither x, y,
nor and endpoint of e, then as in lemma 12 either T - e + (x, z) or T -- e + (z,y) is
better than T - e + (x, y), contradicting the assumption that r(e) = (x,y). The only
other way that C could contain four sites would be if they were x and y together with
the two endpoints of e; but then again we would have a better replacement for e than
(x, y). Therefore C contains at most three sites, and x and y belong to the Voronoi
region containing the center of C. •

COROLLARY 1. We can compute r(e) for each edge e in the MST, in time O(n log n).

244 DAVID EPPSTEIN

PROOF: The order-3 Voronoi diagram can be constructed in this time bound. It
contains O(n) pairs (x, y) sharing a Voronoi region; therefore by lemma 4 each value
of r(e) can be computed in a total time bound of O(n~(n)) = O(n log n). •

Now as before we can find a set S of all but k edges in the MST, such that the best
k spanning trees each contain all the edges in S. Denote the remaining MST edges by
el, e2 ek. Now we must show how to use this information to reduce the possible
non-MST edges we must consider.

If we were to follow the graph algorithm, we would want to compute, for each
edge, the best replacement edge, and only choose the k edges minimizing the
difference in costs between themselves and their replacements. However we do not
have time to consider all edges in what is still almost the complete graph. Instead, we
first note that any replacement edges considered must come from the k MST edges
chosen above. We will find a set of O(k) vertices such that useful non-MST edges will
have both endpoints in this set. These vertices are found by computing, for each
vertex, the minimum difference between the costs ofa non-MST edge adjacent to the
vertex and that edge's replacement, assuming that replacement is one of the k se-
lected edges. We then show how the problem may be reduced to that of computing
bichromatic nearest neighbors.

Given a point x, and an MST edge e~, let ei divide the MST into components T1
and T2 with x in T1; then we define f~(x) to be the nearest point to x in T2. We further
define

(1) F(x) = min w(x, fi(x)) - w(ei).
i

LEMMA 15. For each x, F(x) + w(T), where Tis the MST, gives the minimum weight
of a spanning tree containing all the edges in S and containing an edge not in S adjacent
to x.

PROOF: By lemma 8, the spanning tree defined by the lemma must be of the form
T - ei + (x, y) for some i and y. But this is exactly what is minimized by F(x). •

We now show how to compute F(x); this depends on the following well-known
solution to the bichromatic nearest neighbor problem:

LEMMA 16. Given a set of m red points, and a set of n blue points, we can compute for
each blue point the nearest red point, in time O((n + m) log m).

PROOF: We simply construct the Voronoi diagram of the set of red points, and use
a planar point location procedure [20]. •

LEMMA 17. All values ofF(x) can be computed in time O(nk log(n/k)).

FINDING THE k SMALLEST SPANNING TREES 245

PROOF: Removing the edges el divides the MST T into k + 1 components T~. We
first compute, for each input point, the nearest point in each component. This takes
time O(n ~ log I Td); the sum in this bound is maximized when all T/are equal in size,
and the bound then becomes O(nk log(n/k)).

The components T~, connected by the edges ei, can be imagined as forming a tree
with (k + 1) vertices; there are 2k subtrees that can be formed by removing any edge
of the tree. For each point, we find the nearest point to it in each of those subtrees;
this may easily be done in time O(k) per point by dynamic programming. Therefore
this step takes time O(nk).

At this point we have computed f~(x) for each i and x, as the nearest point to x in
the subtree not containing x of the two formed by removing edge e~ from the
component tree. From this F(x) may be computed directly from formula 1, in time
O(nk). •

THEOREM 4. The k best spannin9 trees for a set of points in the plane can be
computed in time O(k 2 q- kn log(n/k)).

PROOF: The algorithm of corollary 1 takes time O(nlogn), which is always
dominated by the O(kn log(n/k)) time to compute F(x). By lemma 11, the k best
spanning trees together contain only k edges not already in the MST, and (counting
the MST edges not in S) 2k edges not in S. Therefore only the 4k points having the
lowest values of F(x) may be endpoints of those edges. By using lemma 17 and
a linear time selection algorithm [4] we may find those 4k points in time
O(kn log(n/k)). These points determine O(k 2) possible non-MST edges. Therefore,
the problem becomes one of finding the k best spanning trees in a graph with O(k 2)
edges and O(k) vertices; this can be solved in time O(k2). •

6. Alternate metrics.

All the algorithms described above depend only on some simple properties of the
Voronoi diagram, and therefore work just as well for alternate metrics in the plane.
However, the fastest construction of the order r Voronoi diagram that works for
general metrics takes time O(k2n log n), and therefore theorem 3 ne,,er leads to
a better time than the O(k 2 + kn log n) bound of theorem 4.

However in certain cases we can do better. In particular, for the L 1 (equivalently,
L~) metric, corresponding to the important case of orthogonal spanning trees, we
can achieve a time bound of O(k 2 + kn log log n + n log n); this is always at least as
fast as our algorithms for the usual L2 metric.

The algorithm we use is essentially the same as that of theorem 4. The key
difference is in the computation of f~(x), which was the only step in that theorem
requiring time O(kn log n). Recall that this can be considered to be O(k) computa-
tions of the bichromatic nearest neighbor problem. We now give an improved

246 DAVID EPPSTEIN

solution to this problem for the L, metric, after an O(n log n) time preprocessing
(sorting) stage. This leads to a speedup of our spanning tree algorithm.

Recall that the LI distance between points (x,y) and (x',y') is simply
Ix - x'l + l Y - Y'I. We will solve the following simplified version of the problem:

LEMMA 18. Given a set of m red points, and n blue points, sorted by their values of
x (x'), and within the same value o f x in order by y, we can compute for each blue point
(x, y) the nearest red point (x', y') with x' < x and y' <_ y, in time O((n + m) log log m).

PROOF: We process the points in the sorted order. The preprocessing stage
consists of simply sorting the points in this order. At any stage in the processing,
corresponding to some particular value of x, we maintain a data structure listing, for
each value of y, the nearest red point (x', y') with x' < x and y' < y. This point must
already have been processed by the order of processing. Then to find the nearest
neighbor of an input point, we perform a lookup in the data structure; to process
a red point, we update the data structure.

Each red point (x', y') nearest to any blue point must correspond to some interval
1-y',y] in the data structure; this is because if some other red point is nearer to
a particular value of(x, y) it will be nearer to all blue points with greater values ofy.
We may represent this collection of intervals using thef la t tree integer searching
data structure of van Emde Boas [22], indexed by the m possible y coordinates of the
points in A. Computing these indices for the n input points can be done by a linear
time sweep of the points ordered by their y coordinates.

Then finding the nearest red neighbor of a blue point (x, y) simply consists of
looking up y in the data structure to find which interval contains it. Processing a red
point (x', y') consists of again'finding the interval containing y', then splitting that
interval at y' to create a new interval for that point, and while each succeeding
interval corresponds to a point (x", y") farther from (x', y'), deleting those succeeding
intervals and merging them into the new interval for (x', y').

All these data structure operations can be performed in time O(log log m) each.
A deletion can be charged to its corresponding insertion, so processing each point
requires a constant amortized number of data structure operations. Therefore the
whole operation take time O(n log log m). •

This algorithm is essentially identical to one used by Eppstein et al. [11] to
compute RNA secondary structure predictions; they also used a more complicated
version of the algorithm as part of a method of computing optimal sequence
alignments. Our algorithm should also be compared with that of Chew and Fortune
I-9] which computes the orthogonal Voronoi diagram of a set of points in
O(n log log n) time; our algorithm differs in simultaneously performing point loca-
tion within the constructed Voronoi diagram.

FINDING THE k SMALLEST SPANNING TREES 247

THEOREM 5. The k best orthogonal spanning trees for a set of n points in the plane
can be found in time O(k 2 d- kn log log(n/k) + n log n).

PROOF: The algorithm oflemma t8 may be repeated four times, in four different
directions, to solve the L1 bichromatic nearest neighbor problem. This problem in
turn is solved k times as in theorem 4. The points need be sorted only four times, for
the four different directions; the same sorted are used in each of the k bichromatic
nearest neighbor problems. All other steps are the same as in lemma 17 and theorem
4, using the bound of lemma 18 instead of that of lemma 16. •

Acknowledgements.

This research was performed at the Xerox Palo Alto Research Center. I would like
to thank Frances Yao for suggesting the Euclidean version of this problem and
directing me to reference I-2].

REFERENCES

1. A. Aggarwal, L. J, Guibas, J. Saxe, and P. W. Shot, A linear time algorithm for computing the Voronoi
diagram of a convex polygon, Discrete and Comput. Geom. 4, 1989, 591-604.

2. A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Finding k points with minimum diameter and related
problems, J. Algorithms, to appear.

3. A. Aggarwal and J. Wein, Computational Geometry, MIT LCS Research Seminar Series 3, 1988.
4. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, 71me bounds for selection, J.

Comput. Syst. Sci. 7, 1972, 448-461.
5. H. Booth and J. Westbrook, Linear algorithms for analysis of minimum spanning and shortest path

trees in planar graphs, Tech. Rep. TR-763, Department of Computer Science, Yale University, Feb.
1990.

6. R.N. Burns and C. E. Haft, A ranking problem in graphs, 5th Southeast Conf. Combinatorics, Graph
Theory and Computing 19, 1974, 461-470.

7. P. M. Camerini, L. Fratta, and F. Maffioli, The k shortest spanning trees of a graph, Int. Rep. 73-10,
IEEE-LCE Politechnico di Milano, Italy, 1974.

8. D. Cheriton and R. E. Tarjan, Finding minimum spanning trees, SIAM J. Comput. 5, 1976, 310-313.
9. L. P. Chew and S. Fortune, Sorting helps for Voronoi diagrams, 13th Symp. Mathematical Progr.,

Japan, 1988.
10. D. Eppstein, Offline algorithms for dynamic minimum spanning tree problems, 2nd Worksh. Algo-

rithms and Data Structures, Springer Verlag LNCS 519, 1991, 392-399.
11. D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Italiano, Sparse dynamic programming, 1st ACM-

SIAM Symp. Discrete Algorithms, San Francisco, 1990. 513-522.
12. D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung, Maintenance of

a minimum spanning forest in a dynamic planar graph, 1st ACM-SIAM Symp. Discrete Algorithms,
1990, 1-11.

13. G. N. Frederickson, Data structures for on-line updating of minimum spanning trees, with Ap-
plications, SIAM J. Comput. 14(4), 1985, 781-798.

14. G. N. Frederickson, Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees, 32nd IEEE Conf. Foundations of Computer Science, 1991, to appear.

15. H.N. Gabow, 7lvo algorithms for generating weighted spanning trees in order, SIAM J. Comput. 6,
1977, 139-150.

248 DAVID EPPSTEIN

16. H.N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan, Efficient algorithms for minimum spanning
trees on directed and undirected graphs, Combinatorica 6, 1986, 109-122.

17. H.N. Gabow and M. Stallman, Efficient algorithms for graphic matroid intersection and parity, 12th
Int. Conf. Automata, Languages, and Programming, Springer-Verlag LNCS 194, 1985, 210-220.

18. N. Katoh, T. Ibaraki, and H. Mine, An Mgorithm for finding k minimum spanning trees, SIAM J.
Comput. 10, 1981, 247-255.

19. E. W. Mayr and C. G. Plaxton, On the spanning trees of weighted eraphs, manuscript, 1990.
20. N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees, C. ACM 29(7), 1986,

669-679.
21. R. E. Tarjan, Applications of path compression on balanced trees, J. ACM 26, i979, 690-715.
22. P. van Emde Boas, Preservino order in a forest in less than logarithmic time, 16th IEEE Symp. Found.

Comput. Sci., 1975, and Info. Proc. Lett. 6, 1977, 80-82.

