
BIT 32 (1992), 580-585.

S T A B L E M I N I M U M S P A C E P A R T I T I O N I N G

I N L I N E A R T I M E

JYRKI KATAJAINEN and TOMI PASANEN

Department of Computer Science, Department of Computer Science,
University of Copenhagen, University of Turku,
Universitetspurken 1, Lemminkiiisenkatu 14 A,
DK-2tO0, Copenhagen East, Denmark SF-20520 TURKU, Finland

Abstract.

In the stable 0-1 sorting problem the task is to sort an array of n elements with two distinct values such
that equal elements retain their relative input order. Recently, Munro, Raman and Salowe gave an
algorithm which solves this problem in O(n log* n)t time and constant extra space. We show that by
a modification of their method the stable 0-1 sorting is possible in O(n) time and O(I) extra space. Stable
three-way partitioning can be reduced to stable 0-1 sorting. This immediately yields a stable minimum
space quicksort, which sorts multisets in asymptotically optimal time with high probability.

CR categories: E.5, F.2.2.

The stable 0-1 sorting problem is defined as follows: Given an array of n elements
and a function f mapping each element to the set {0, t }, the task is to rearrange the
elements such that all elements, whose f-value is zero, come before elements, whose
f-value is one. Moreover, the relative order of elements with equal f-values should
be maintained. For the sake of simplicity, we hereafter refer to bits instead of the

f-values of elements.
Stable partitionin9 is a special case of stable 0-1 sorting, where the f-values are

obtained by comparing every element xi to some pivot element x~ (which will not

take part in partitioning):

~0 for xi < x j, or x~ = xj and i < j
f(xi) = (1 for xi > x j, or x~ xj and i > j.

Another interesting special case is the stable unmergin 9 problem studied in [9]:
Given two lists A and B stably merged together into a single list L, the task is to
separate L into its constituent sublists A and B in their original order. The informa-

t log* n is defined as 1 + log*(logz n), ifn > 2, and otherwise it is 1.
Received April 1991. Revised February 1992.

STABLE MINIMUM SPACE PARTITIONING IN LINEAR TIME 581

tion associated with each element, indicating from which of the sublists the element
originated, corresponds to its f-value. In the case of equal-valued elements, A-
elements are considered to be smaller than B-dements. Therefore, in the stable
unmerging problem, one never sees a block of equal-valued A-elements intermixed
with B-elements, or vice versa. (Observe that the algorithm of Salowe and Steiger [9]
makes use of this fact and hence it cannot be immediately adapted to solve the stable
0-1 sorting problem.)

Recently, Munro, Raman, and Salowe [6] showed that stable 0-1 sorting is
possible in O(nlog* n) time when only O(1) extra space is available. In this note we
improve this result by reducing the running time to O(n) still maintaining the space
bound.

Before proceeding we should define precisely what we mean by a minimum space
or in-place algorithm. In addition to the array containing the n elements, we allow
one storage location for storing an array element. This is needed when swapping two
data elements. The elements are regarded to be atomic. They can only be moved and
used as arguments when computing f-values. Of course the evaluation of the
f-function is assumed to be a constant time operation. Moreover, we assume that
a constant number of extra storage locations, each capable of storing a word of
O(log2 n) bits, is available and that operations { < , = , > , + , - , shift} take constant
time for these words. An unrestricted shift operation takes two integer operands
v and i and produces Iv" 2~J. It should be observed that our model of computation is
not as general as that of Munro, Raman, and Salowe [6] since their algorithms can
be implemented without the shift operation.

Next we briefly review the techniques used in our minimum space algorithm.

Blocking: The input array is divided into equal sized blocks. Most efficient in-
place algorithms in the literature are based on the blocking technique.

Block interchanging: A block A can be reversed in-place in linear time by swap-
ping the pair of end elements, then the pair next to the ends, etc. Let A R be
A reversed. The order of two consecutive blocks (not necessarily of the same size)
A and B may be interchanged by performing three block reversals, namely
BA = (ARBR) R. This idea seems to be part of computer folklore.

Packing small integers: Let us assume that we have t small integers i, it, each
of which can be represented by m bits. That is, the integers are from the domain
[0, 2 m - 1]. Further, assuming that t" m < log2 n, the integers can be packed into
one word w of log2 n bits. The integer ij, 1 < j < t, is stored by using the bits (j - 1)m,
. . . , jm - 1 ofw. Each integer is easily recovered from w in constant time if multipli-
cations and divisions by a power of two are constant operations. The value v of i t is
obtained as follows: v = {w - [(w shift - j m) shiftjm]} shift - (j - 1)m. (Observe
that in our algorithm m can be chosen to be a power of 2, so we do not need general

582 JYRKI KATAJAINEN AND TOMI PASANEN

multiplication.) With a code similar to this the value of i~ can be updated. Previously
the packing technique has been used for example in [2, 4].

Without loss of generality, we can assume that n, the number of elements, is
a power of 2. If this is not the case, the following recursive method can be used to
reduce the original problem to subproblems, whose size is a power of 2. First,
compute by repeated doubling the smallest 2 k such that 2 k < n < 2 k+l. Second,
partition the first 2 k elements with Algorithm D to be given later. Third, call the same
method recursivety for the last n - 2 k elements. Finally, interchange the block of
ones (if any) among the first 2 k elements with the block of zeros (if any) lying after the
ones. This method runs clearly in linear time if the running time of Algorithm D is
linear. It is an easy matter to establish an iterative implementation of the method
above without using any recursion stack, that is 0(1) extra space is enough here.

The stable 0-1 sorting problem is easily solved in linear time when O(n) extra space
is available. We describe Algorithm A that performs this. The algorithm first
computes the total number of zeros in the array. Let this number be Z~ota~. Then the
input array is scanned another time. During this scan two counters Co and C1 are
maintained, the former counting the number of zeros and the latter the number of
ones to the left of the current position. Together with each element bi e {0, 1 } its rank
b~Ztotat + Cb, + 1 is stored. Reserving one more bit for each element, telling whether
the element is in its final position or not, the elements are permuted to their final
positions (for details, see [6; Lemma 1]). Hence we have

LEMMA 1. Algorithm A sorts stably a bit-array of size n in O(n) time with n bits and
n + O(1) counters, each requiring at most [log2(n + 1)7 bits.

Munro, Raman, and Salowe [6; Lemma 3] presented an algorithm similar to
Algorithm A but they did not state explicitly the size of the counters.

Another building block is Algorithm B developed by Munro, Raman, and
Salowe. Its performance is given in the following

LEMMA 2. [6; Theorem 1] Algorithm B sorts stably a bit-array of size n in
O(nlog2 n) time and constant extra space, but makes only O(n) moves.

To improve these algorithms we divide the input into blocks of size lg n, which
denotes the smallest power of 2 greater than or equal to log2 n. Since n is a power of 2,
it is divisible by lg n. Now the basic steps of our algorithms are

(i) element sorting: Sort stably every block of lg n elements. When sorting the
blocks the same storage space is used.

(ii) transformation from sorted blocks to typed blocks: Rearrange the elements
stably such that each block (except perhaps the last one) contains only either
zeros or ones. We say that a block is of type 0 or 1 depending on its contents.

(iii)
(iv)

STABLE MINIMUM SPACE PARTITIONING IN LINEAR TIME 583

Munro, Raman and Salowe [6; Lemma 2; Step 3] showed that this transform-
ation from sorted blocks to typed blocks is possible in O(n) time and 0(1)
extra space. (Their proof is for blocks of size x/n, but it is not difficult to see
that the same method works for any block size.)
block sorting: Sort stably the blocks according to their type.
cleaning up: Interchange the zeros (if any) in the last block into their correct
positions.

When following the basic steps we have to specify the routines that are used in
element sorting and block sorting. In Algorithm C, Algorithm A is applied in both
places. Therefore we have

LEMMA 3. Algorithm C sorts stably a bit-array of size n in O(n) time with
lgn + n/lgn bits and lgn + n/lgn + O(1) counters, each requiring at most
[]og2(n + 1)7 bits.

The final algorithm, Algorithm D is also based in lgn-blocking. Now, however,
the elements are sorted by Algorithm C and the typed blocks by Algorithm B. When
sorting the elements of a block, we have to store O(log2 n/log2 log2 n) counters, each
of O(log2 log2 n) bits (and O(1) indices, each of O(log2 n) bits). The total number of bits
required is only O(log2 n). Therefore we can pack the integers into a few words and
manipulate them efficiently with shift operations.

Algorithm D is used for proving our main result.

THEOREM 1. A bit-array of size n can be stably sorted in O(n) time and O(1) extra
space.

PROOf. The most critical part of Algorithm D is element sorting. But, due to
constant-time shift operations, each block is sorted in O(logz n) time. Block sorting
requires O(n/lgn. logz(n/lgn)) time for comparisons and pointer manipulations, and
n/lg n block moves; that is O(n) time in total. Since all the steps element sorting,
creation of typed blocks, block sorting, and cleaning up take linear time, the overall
running time of Algorithm D is O(n). •

Algorithm D is quite complicated. It is therefore natural to ask, whether there
exists a simpler algorithm which solves the stable 0-1 sorting problem in minimum
space. (Here it should be observed that, if it is only required to maintain the stability
of zeros or ones, a simple algorithm exists which is based on the wheel technique [1;
Section 10.2].) We consider the technique of packing small integers important and
believe that it can be used in other applications as well. However, the technique
requires that the shift operation takes constant time. Can stable, in-place 0-1 sorting
be done in linear time by allowing only comparisons, movement of data, additions,
and subtractions?

584 JYRKI KATAJAINEN AND TOMI PASANEN

By computing the minimum, performing stable 0-1 sorting such that elements
equal to the minimum are interpreted as zeros and other elements as ones, and
repeating this for the ones, we obtain

THEOREM 2. An array of n elements with k distinct values can be stably sorted in
O(kn) time and O(1) extra space.

In a decision tree model, Q(nlog2 n - Ek i= 1 ni log 2 ni + n) is a lower bound for sorting
k hi) [5]. An interesting a multiset with multiplicities nl, n2 , . . . , nk (where n = Z,= t

open question is whether one can improve Theorem 2 and devise an in-place
algorithm that sorts multisets stably in asymptotically optimal time.

We can give a partial answer to this question, since quicksort can be adapted to
sort a multiset by doing a three-way partition at each recursive step [12]. If elements
less than, equal to, and greater than the pivot are considered to have values 0,1, and
2, respectively; the stable three-way partitioning will reduce to stably sorting of
elements with three distinct values. By avoiding the recursion stack as proposed in
[3] or [13], applying the algorithm of Theorem 2 in partitioning, and combining this
with the analysis of Seidel [10], we get the following

THEOREM 3. With probability 1 - O(n-'°°*2~-1~), for any constant ~ > 1, ran-
domized quicksort sorts stably a multiset of size n with multiplicities nl, n2 , . . . , nk in

O(omlog2 n -- y k= 1 nl 1og2 nt + n) time and O(1) extra space.

PROOF. First of all, one should observe that the running time of quicksort is
proportional to the total number of comparisons performed. Since we are not
interested in constant factors, we assume that at each partition every element
involved is compared to the pivot only once. In [10] (for similar results, see for
example [8, 11]) it has been proved that, with probability 1 - O(n -~°°g2~- ~)), none
of the elements will take part in more than 2alog~ n partitions. Due to the three-way
partitions, all redundant comparisons between a pivot and elements equal to the
pivot are avoided. This means that n i log2ni - O(n~) comparisons are saved for
a class of ni equal elements (cf. [7; Theorem 3.1]). From this the claim fol-

lows. •

Acknowledgements.

We thank Christos Levcopoulos for introducing us to the technique of packing
small integers; and Svante Carlsson, Jeffrey Salowe, and Jukka Teuhola for their
help. We are also grateful to a referee whose report helped to improve the presenta-

tion of this note.

STABLE MINIMUM SPACE PARTITIONING IN LINEAR TIME 585

N o t e added in proof.

We have been able to solve the open problem posed after Theorem 2. This f inding

will be presented at the 3rd Scand inav ian Workshop on Algor i thm Theory.

REFERENCES

1. J. Bentley, Programming Pearls, Addison-Wesley, 1986.
2. S. Carlsson, J. I. Munro, P. V. Poblette, An implicit binomial queue with constant insertion time, 1st

Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science 318, Springer-
Verlag, 1988, pp. t-t3.

3. D. 15uriah, Quicksort without a stack, Mathematical Foundations of Computer Science 1986,
Lecture Notes in Computer Science 233, Springer-Verlag, 1986, pp. 283-289.

4. C. Levcopoulos, O. Petersson, An optimal adaptive in-place sorting algorithm, 8th International
Conference of Fundamentals of Computation Theory, Lecture Notes in Computer Science 529,
Springer-Verlag, 1991, pp. 329-338.

5. J. I. Munro, V. Raman, Sorting multisets and vectors in-place, 2nd Workshop on Algorithms and
Data Structures, Lecture Notes in Computer Science 519, Springer-Verlag, 1991, pp. 473-480.

6. J.I. Munro, V. Raman, J. S. Salowe, Stable in situ sorting and minimum data movement, BIT 30 (1990)
220-234.

7. J.I. Munro, P. M. Spira, Sorting and searching in multisets, SIAM Journal on Computing 5 (1976)
1-8.

8. P. Raghavan, Lecture notes on randomized algorithms, Computer Science Report RC 15340, IBM
Research Division, T. J. Watson Research Center, 1990.

9. J. S. Salowe, W. L. Steiger, Stable unmerging in linear time and constant space, Information
Processing Letters 25 (1987) 285-294.

10. R. Seidel, Backwards analysis of randomized geometric algorithms, Technical Report, Computer
Science Division, University of California Berkeley, 199i,

11. S. Sen, Random sampling techniques for efficient parallel algorithms in computational geometry, Ph.D.
thesis, Computer Science Department, Duke University, 1989.

12. L. M. Wegner, Quicksortfor equal keys, IEEE Transactions on Computers C34 (1985) 362-367.
13. L. M. Wegner, A generalized, one-way, stackless quicksort, BIT 27 (1987) 4448.

