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Particle motions  in non-Newtonian  media 

I: Couette flow*) 

By F. Gauthier,  H. L. Goldsmith, and S. G. Mason 

With 14 figures and 6 tables 

L i s t  o f  symbols 

a; a ' ( ~ )  ~ semi axis of revolution of spheroids; 
projection of this  axis on the  X2X3- 
plane at  ~ .  

A = function of re defined by  equation (20). 
b; b' (~1) ~ radius of a rigid sphere, undeformed 

drop and semi axis of equatorial  dia- 
meter  of rigid cylinder; projection of 
this axis on the  X2Xa-plane a t  ~1. 

B = minor axis of a deformed liquid drop. 
C, Co; C' = orbit  constant,  orbit  constant  a t  

t = 0; dynamic orbit  constant.  
D ~ geometrical deformation of a fluid 

drop. 
E;E1~ = calculated deformation of a fluid 

drop; deformation at  burst .  
F = total  normal force measured in the  

rheogoniometer. 
/(~) = (19~ + 16)/(164 + 16). 
G, G(R);  GB ~ velocity gradient,  a t  R in the  Couette 

annulus;  value of G at  burst .  
G' ~ measured velocity gradient. 
h ~ height  of liquid in the Couette appa- 

ratus. 
K, n = constants for power law fluid. 
L = major  axis of a deformed droP. 
Pza, P3a - - P ~  = tangent ial  shear stress; normal stress 

difference. 
rp = particle axis ratio = a/b. 
re = equivalent ellipsoidal axis ratio. 
r28, ~2a = projection and  average projection of 

uni t  length of rod axis on the  X2Xa- 
plane. 

R;  RI,  RII = radial distance of the  particle center 
from the  axis of rota t ion in Couette 
flow; radius of inner and outer cylin- 
der of Couette apparatus.  

Re = radius of the  cone of the  rheogonio- 
meter. 

R~3 ~ axis ratio of the  ellipse, projection of 
particle rotat ional  orbit  in the  X2Xa- 
plane. 

t = time. 
T ~ period of ro ta t ion of particle. 

*) This work was supported by  the Defence Research 
Board of Canada (DRB Grant  9530-47). 
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fluid velocity along X3-axis. 
Cartesian coordinate axes of the  ex- 
ternal  flow field. 
distances along the  X2 and X3 axes 
of a sphere center from the mid-point  
of the  collision doublet  axis. 
rheological constant.  
spheroid integral. 
7/Gb ~o. 
viscosity rat io = ~i/~0. 
respective apparent  viscosities of the  
suspending and suspended phases. 
interfacial tension. 
to ta l  torque applied on the liquid in a 
Couette apparatus.  
spherical polar coordinates referred 
to the  polar axis X 1 of the external  
flow field. 
rectilinear angles of approach and 
recession of collision doublet of rigid 
spheres. 
~l-orientation of principal axis of 
deformed drop in shear flow. 
angular velocity of a spheroid. 
angular velocity of the  fluid a t  R;  
angular velocities of the  inner and 
outer  cylinders of the  Couette appa- 
ratus.  
hydrodynamic torque. 

Introduction 
A series of investigations conducted in this laboratory 

have described the  behaviour  of rigid and deformable 
particles suspended in Newtonian liquids undergoing 
Couette and Poiseuille flow at  very low Reynolds num- 
bers. Beginning with single isolated particles studies 
were made of the  rotat ions of rigid spheres, discs and 
rods, the  different modes of deformation and break-up 
of liquid drops, and the  orbits of rotations of flexible 
filaments. Part icle interactions in dilute suspensions 
were then  studied by  observing two- and three-body 
collisions between spheres, and  by  measuring the  
t ransient  and  steady state orientations of cylinders. A 
comprehensive review of this  work and the underlying 
theory has recently been given (1). 

The motions of single rigid and  deformable particles 
have since been observed in sheared elasticoviscous 
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liquids ~) made by  dissolving polyisobutylene in decalin 
or polyacrylamide in water  (2). The present investigation 
represents an extension of this  phase of the  work to the  
slow Couette flow of pseudoplastic liquids, i .e .  liquids 
which exhibi t  a continuous decrease in viscosity with 
increasing rate of shear wi thout  any  appreciable elastic 
recovery when the  shearing action is stopped. Included 
in the  experiments are measurements  of the  rotation, 
migration, deformation and two-body collisions of 
spheres and cylinders as well as a s tudy of the de- 
formation of elasticoviscous drops and aspects of 
particle interactions in elasticoviscous fluids, hi therto 
not  examined. Similar experiments in tube flow will be 
described in a forthcoming publication (4). 

I t  should be pointed out  t ha t  whereas in Newtonian 
media, the  particle motions can be predicted from the 
line~rized Navier-Stokes equation with solutions given 
by Je~ery (5), Brenner (6) and Taylor (7), no such theory 
exists to describe the  sometimes different behaviour 

~) Following the  terminology suggested by  Reiner 
and Scott Blair (3), the  liquids designated "viscoelastic" 
in reference 2 are here termed "elasticoviscous". 

2) In  this  convention, based on the usual right- 
handed  coordinate system, X 1 is parallel to the  vorticity 
axis; the  velocity filed is parallel to the X3-axis instead 
of along the  Xl-axis as is often used in rheology. 
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in elasticoviscous and pseudoplastic suspending fluids. 
I t  has been suggested t h a t  some of these flow properties 
are a result  of the  combined action of normal  stresses 
and the velocity gradient (2, 8). Hence, evidence 
for the  existence of normal  stresses in the  suspending 
phase solutions was sought from measurements carried 
out  in a rheogoniometer. In  addition the  shear ra te  - 
shear stress relationships were determined in each case. 
Pscudoplastic liquids follow the so-called "power 
law" (9), which in terms of the  r ight-handed Cartesian 
coordinate system X1, X2, X3 of the external  flow field, 
defined by  U 3 ~  GX 2 as shown 2) in fig. l a ,  may be 
writ ten : 

P23 : KGn. [1] 

Here P23 is the  tangent ia l  shear stress (fig. lb ) ,  G is the  
rate of shear, and  K and n are two constants depending 
on the  fluid. When n ~ 1, this equation reduces to 
Newton's law with K : ~1, the  viscosity; when n > l, 
the  liquid is termed dflatant  and when n < 1, pseudo- 
plastic. As a consequence of eq. [1], the  velocity profile 
in a liquid flowing under  conditions of variable shear is 
different from t h a t  in a Newtonian fluid. Although not  
as pronounced as in Poiseuille flow, this effect would 
be expected in the  case of Couette flow in the  annulus 
between two counter-rotating cylinders considered in 
the  present work. 
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Fig. 1. (a) Cartesian coordinate system X1, X2, X 3 of the external  flow field. 01 and ~v 1 are the polar co- 
ordinates with respect to X 1 as the  polar axis. The upper  end of the  axis of revolution of a prolate spheroid 
(re > l)  is shown tracing out  the  path  of a spherical elliptical orbit  having the  orbit  constant  C. - (b) Stresses 
acting on three faces of a uni t  cube in a Cartesian coordinate system X~ X~, X,~; p ~ , p ~  and Pa3 are the  
normal stress components and Pij ,  (i =]= j), are the  tangent ial  (or shear) stress components. - (c) Pro- 
jections of a disc (left) and  a rod (right) rota t ing in Couette flow viewed along the  Xl-axis after they have 

a t ta ined orbits having the  respective limiting values C ~ co and 0 

24* 
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The results described below show, however, t h a t  some 
of the  observed phenomena,  such as the  migrat ion of 
rigid spheres toward a region of higher shear in the  
Couette apparatus,  a n d  the  unsymmetrical  two-body 
collisions cannot  at  present be adequately interpreted 
in terms of the  known theological properties of the  
fluids used. 

Experimental part 
The experiments were made in a Couette apparatus  

previously described (10) in which the  suspensions were 
sheared in the  annulus between two counter-rotating 
cylinders. The particle motions were viewed through a 
microscope aligned with the  axis parallel to the  planes 
of shear and recorded with a Pail lard Bolex camera 

m o u n t e d  on the  microscope. The cine films were sub- 
sequently analysed on a drafting table. 

The pseudoplastic liquids were obtained by  dissolving 
a carboxyvinyl polymer (Carbopol 940, B. F. Goodrich 
Chemical Company) in water, glycerine, ethylene 
glycol, propylene glycol or a mixture of these, giving 
solutions from 0.07 to 0.15% by weight of polymer. The 
resin was supplied as a powder in acid form and was 
mixed by  stirring into the  solvent unti l  completely 
dissolved. The solution was then  neutralized with few 
drops of sodium hydroxide or t r ie thylamine to the  
accompaniment  of a marked increase in viscosity. 

Aqueous elasticoviscous solutions were prepared by  
dissolving a high molecular weight polyacrylamide 
supplied as a white powder (Cyanamer P250, Poly- 
aerylamide, American Cyanamid Company) a t  concen- 
t rat ions ranging from 1 to 4%.  These solutions when 
stirred mechanically showed the  Weissenberg climbing 
effect (11), while the  pseudoplastic liquids did not  have 
this  property. The elastic behaviour of the  polyacryl- 
amide solutions was also evident when small tracer 
polystyrene spheres were suspended in the  liquids being 
sheared in the Couette appara tus  with one cylinder 
stationary. When  the  other cylinder was suddenly stop- 
ped, the  particles showed translat ional  recovery in a 
direction opposite to t ha t  of the  flow. This behaviour  
was not  observed with particles suspended in the  
pseudoplastic solutions. 

The P~3 -- G relations for these liquids, shown in 
fig. 2a  were measured in a rotational viscometer 
(Epprecht  Rheomat  15). The apparent  viscosities of 
all the  liquids decreased with increasing G and the  
solutions of carboxyvinyl  polymers were found to 
follow eq. [1] in agreement with  the  observations of 
.Metzner and Dodge (12). Carbopol solutions had  pre- 
viously been studied by  Fisher, Bauer and Wiberley (13), 
who reported t h a t  they  could " . . .  clearly establish the  
presence of a yield stress for concentrations only above 
0 .5%",  the  value being 60 dyne cm -~ at  pI~ = 6.6 and  
25 ~ However, nothing is recorded in the l i terature 
for the  lower concentrations used in this  s tudy (<  0.2%). 
5Tone of the  solutions studied in the  present work were 
thixotropic or rheopectic i.e. the  measured shear 
stresses did not  change with t ime and at  a given G 
were identical after increasing or decreasing the  shear 
rates. 

The normal stresses were measured at  room tem- 
perature (25 ~ wi th  a Weissenberg rheogoniometer 
(Sangamo Controls Ltd.) equipped with a fiat plate 
and a 1 ~ cone of 5.0 cm of diameterS). The results for 

a) These experiments were carried out  with the  
ins t rument  of Dr. A. L. Copley at  the  Veterans Hospital, 
Eas t  Orange, N . J .  The authors  are most grateful to 
Dr. Copley for permission to use the  rheogoniometer and 
to Mr. King who kindly supervised the  measurements. 
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Fig. 2. (a) Log-log plot of the shear stress (dyne cm -~) 
against the rate of shear (sec -I) for two pseudoplastic 
liquids: open circles, system l ;  closed circles, system 8; 
and two elasticoviscous liquids: open triangles, sys- 
tem 8; and  two elasticoviscous liquids: open triangles, 
system 10; and  closed triangles, system 18. There were 
no suspended particles in these liquids. - (b) Apparent  
viscosities as a function of the  shear rate for the  same 

systems 

the  polymer solutions at  three concentrations over a 
range of G from 2 to 200 sec -1 are i l lustrated in fig. 3, 
where the  pressure difference Pan --  P~2 was calculated 
from the  total  force F applied on the  cone of radius Rc 
using the  equation:  

2 F  
P3a --  P ~  = ~ Rc2 �9 [2] 

Wi th  polyacrylamide solutions, appreciable normal 
stresses existed at  shear rates < 5 sec -1 and increased 
with increasing G and concentration of polymer in 
solution. For example, in a 1% solution at  G = 5.5 sec -1, 
Pus --  P ~  was 0.3 dyne cm -2, bu t  in 2 and 3% solutions 
a t  a lower G of 2.2 sec -~ i t  reached 2.2 and  4.5 dyne 
cm -2 respectively. 

In the case of the pseucloplastie solutions, no normal 
stresses were apparent  at  velocity gradients below 
50 sec -1. At  higher rates of shear, normal  stresses were 
detected when the  rheogoniometer was switched on, 
bu t  they decreased slowly as secondary flows developed. 
In  all cases the  normal stresses were very  small, decreas- 
ing from 2.5 dyne cm -2 at  G = 217 sec -~ to only 
0.2 dyne cm -~ a t  G = 68 sec- ~, a value which was of 
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the same order of magnitude as the sensitivity of the 
apparatus. Due to the uncertainty in the measurements 
the data for the pseudoplastic liquids in fig. 3 are shown 
enclosed between two parallel lines. Since all the 
experiments described below were carried out at  
G < 8sec -1, the existence of measurable normal 
stresses in the pseudoplastic liquids is ruled out. 

Lists of the different systems and their properties 
are given in tables 1 and 2 for suspensions of rigid and 
deformable particles respectively. The velocity pro- 
tiles were determined with small aluminum tracer 
particles; polystyrene spheres, discs, and nylon rods 

l~ig. 3. Normal stresses as a function of the shear rate 
for three elasticoviscous solutions of polyacrylamide in 
water: open circles, 3% by weight; closed circles, 
2% by weight; open triangles, 1% by weight, and three 
pseudoplastic solutions: closed triangles, 0.2% by 
weight, n = 0.79; open squares, 0.15% by weight, 
n ~ 0.88; closed squares, 0.1% by weight, n ~ 0.90. 
Because of the experimental error in the measurements 
for the pseudoplastic solutions, the points are enclosed 
in the hatched area 

Table 1.  Suspensions of rigid particles. 
Pscudoplastic media: carboxyvinyl polymer in alcohols; concentration ~ 0.07 to 0.15~ by weight 

System Solvent K dyne n ~o *) Suspended phase Range of particle 
sec n cm -~ Poise dimensions • 10 ~ cm 

1 aluminum particles < 2 

2 propylene nylon rods a ~= 25 to 53 
glycol 10.2 0.77 7.26 b = 2 to 3 

3 polystyrene discs a = 6 to 8 
b ~ 46 to 72 

4 propylene 9.8 0.79 6.91 polystyrene spheres b = 32 to 56 
glycol 

5 propylene 6.8 0.87 5.42 polystyrene spheres b := 67 
glycol 

6 ethylene 32.4 0.62 22.2 polystyrene discs a ~ 7 
b ~ 57 

7 glycol polystyrene spheres b ~ 58 

8 propylene 30.6 0.63 20.4 polystyrene spheres b ~ 40 to 55 
glycol 

and glycerine 

Elasticoviscous medium: polyacrylamide in water 

System Solvent concentration ~10 *) Suspended phase Range of particle 
(by weight) Poise dimensions • 103 cm 

9 water 0.025 20.2 polystyrene sphere b ~ 67 

10 water 0.030 49.7 aluminum particles < 2 

11 water 0.030 49.7 nylon rod a ~ 52 
b :  4 

12 water 0.040 150.5 polystyrene disc a ~ 6.5 
b = 54 

*) Apparent viscosity measured at G = 3.11 see -1 except for systems 10 and 12 where G -~ 2.18 see 1. 
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Table 2. Suspensions of deformable particles 

System Suspending phase 72 ~) Suspended phase ~ 1) ~ ~ dyne b Defor- 
Poise Poise cm -1 mm mation 

class 

13 Pseudoplastic: 16.3 dibutylphthalate 0.21 0.01 < 2 0.50-0.73 B-1 

14 carboxyvinyl 16.3 Ucon oil LB 1715z) 1.49 0.08 2 0.58-0.69 B-1 

15 polymer in 16.3 silicone oil (200 fluid) a) 0.10 0.006 7.5 0.80 B-1 

16 propylene glycol 16.3 silicone oil (200 fluid) 3) 5.08 0.37 7.5 0.65 B-1 

17 ~) n = 0.71 16.3 silicone oil (510 fluid) 3) 0.51 0.03 0.66-0.91 --  
= 22.9 dyne secn 
era-2 

18 4) Elasticoviscous: 11.5 silicone oil (510 fluid)~) 0.51 0.04 0.43-0.83 
polyacrylamide in 
water (c = 0.015) 

19 Newtonian: 53.1 propylene glycol 0.24 0.004 8.6 0.63 A 

20 Silicone oil 53.1 carbopol in propylene 16.3 0.31 8.6 0.63-0.86 B-1 
(510 fluid) a) glycol (n = 0.71), u = 

22.9 dyne secn cm -~ 

21 53.1 carbopol in propylene 1.32 0.02 8.6 0.92 B-1 
glycol (n = 0.97), u = 
1.I dyne see n cm -2 

22 53.1 carbopol in propylene 0.84 0.015 8.6 0.88 B-1 
glycol (n = 1.0), u = 0.8 
dyne secn cm -u 

23 53.1 water 0.01 2 •  -4 21.2 0.81 A 

24 53.1 1.5~o by weight poly- 11.5 0.22 19.4 0.74 B-1 
acrylamide in water 

25 53.1 4~o by weight poly- 150.5 2.84 16.5 0.54-0.88 B-2 
acrylamide in water 

1) For the non-Newtonian liquids, T0 and ~1 represent the apparent viscosities measured at G = 3.110 sec -1, 
except for system 25 where G = 2.927 sec -1. 

2) Union Carbide, polyglycol oils. 
3) Dow Coming Silicone Fluids (Series 200 and 510 fluid). 
4) Systems 17 and 18 were used for the study of the migration of drops. 

being used to study particle rotation, migration and 
collision. 

Systems 13 to 18 in table 2 were made up by dis- 
persing Newtonian drops in non-Newtonian liquids, 
and vice versa in systems 19 to 25. The liquid drops 
were released from a hypodermic syringe immersed in 
the suspending phase, and pictures were taken before 
and during deformation. The interfaeial tensions were 
measured with a DuNony tensiometer except for 
systems 24 and 25 where the elastic properties of the 
liquid might have influenced the readings. Here the 
measurements were made using the rotating drop 
method (14), in which a fluid drop of known volume is 
suspended in an horizontal tube filled with a denser and 
immiscible liquid. As the tube rotates, the drop assumes 
an axisymmetric position and is elongated along the 
axis of rotation until the deformation forces due to ~he 
centrifugal field are balanced by the inteffacial tension. 
From the measured drop length and volume, speed of 
rotation and density differences between the two 
phases, the interfacial tension can be calculated. 

Except for the normal stress measurements, all the 
experiments were made in a thermostated room at 
22 • 0.5 ~ 

Results and discussion 

a)  Velocity profiles 

T h e  v e l o c i t y  p r o f i l e s  i n  a p s e u d o p l a s t i c  
( s y s t e m  1) a n d  e l a s t i c o v i s c o u s  l i q u i d  (sys-  
t e m  10) w e r e  d e t e r m i n e d  b y  m e a s u r i n g  t h e  
t r a n s l a t i o n a l  v e l o c i t i e s  o f  s m a l l  a l u m i n u m  
p a r t i c l e s  a n d  a r e  i n  fig. 4. 

F o r  a f l u id  l o c a t e d  i n  t h e  a n n u l u s  t w o  
c o n c e n t r i c  c y l i n d e r s  o f  r a d i u s  R I  a n d  R I I ,  
r o t a t i n g  w i t h  r e s p e c t i v e  a n g u l a r  v e l o c i t i e s  19i 
a n d  9 I I ,  t h e  v e l o c i t y  g r a d i e n t  G a t  r a d i a l  
d i s t a n c e  R i n  c y l i n d r i c a l  c o o r d i n a t e s  is 
g i v e n  b y :  

G =  - R  d~(R) 
dR ' [3] 

w h e r e  Q ( R )  is  t h e  a n g u l a r  v e l o c i t y  o f  t h e  
f lu ids .  
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Fig. 4. Velocity profiles of non-Newtonian liquids in Couette flow. R[- -4 .756 cm, RI[ =-5.652 cm. - Pseudo- 
plastic liquid, system 1: (a) 12[ = 0.011 rad. sec L g 2 1 I - . -  0.013 rad. see-l; (b) [2[ 0.045 rad. sec 1, 
1 2 H -  0. Elasticoviscous liquid, system 10: (c) s :. 0.014 rad. sec-L -(21i -- -- 0.007 rad. see-~; 
(d) st2[--0.030 rad. sec l, g2lI = -  0.031 rad. sec-L - The positive and negative signs refer to counter- 
clockwise and clockwise rotation respectively. The solid line represents the velocity profile of a Newtonian 
liquid and the dashed lines in (a) and (b) were calculated from equation [6] with n = 0.77. The points are ex- 

perimental. The arrows give the location of the stationary layer in the annulus 

I f  ~ is t h e  t o t a l  t o r q u e  a p p l i e d  on  t h e  
l i qu id ,  a n d  h i t s  h e i g h t  in  t h e  a n n u l u s ,  t h e n  
t h e  s h e a r  s t r e ss  a t  R i s :  

T 
P~3-- 2~R2 h �9 [4] 

F o r  a p o w e r  l a w  l iqu id ,  we  m a y  a p p l y  eq. [1] 
a n d  s u b s t i t u t e  i t ,  w i t h  eq. [4], i n to  eq.  [3] to  
o b t a i n  : 

df2(R) r 1/n 1 
=- d R  = -- 2~ K ~  2+n [5] 

R e 

I n t e g r a t i o n  o f  eq. [5] w i t h  t h e  b o u n d a r y  
c o n d i t i o n s  

when R ~ R I ,  I2(R) = s 

a n d  w h e n  R ~ R I I ,  ~ ( R )  = ~ I I ,  

t h e n  y i e l d s  : 

~ ( R )  q- ~Q[ ~ 1 I  ] - -  . [6] 
2f~)I ~QII ~=I[l'?2/n _. R12/n R2[a / 

F o r  t w o  c o u n t e r - r o t a t i n g  c y l i n d e r s ,  t h e  
v e l o c i t y  g r a d i e n t  a t  t h e  s t a t i o n a r y  l a y e r  i s :  

2 ~(~l: /~2/n ._ O i92/n 
"~I ~ I [  ~ l I  

(~(l~) - - -  [7] n 1~2/n t~2/n 

W h e n  t h e  l i q u i d  is N e w t o n i a n ,  n = - 1  in  
eqs.  [6] a n d  [7] (15). 

I n  figs. 4 a  a n d  4b ,  t h e  so l id  l ines  r e p r e s e n t  
t h e  v e l o c i t y  prof i le  for  a N e w t o n i a n  l i q u i d  whi le  
t h e  d a s h e d  l ines  were  c a l c u l a t e d  f r o m  eq.  [7] 
for  t h e  p s e u d o p l a s t i c  m e d i a  u s ing  t h e  m e a s u r -  
e d  n--~ 0.766. D e s p i t e  t h e  f a c t  t h a t  n w a s  
a p p r e c i a b l y  d i f f e r en t  f r o m  u n i t y ,  i t  is e v i d e n t  
t h a t  t h e  t w o  v e l o c i t y  prof i les  a r e  v e r y  close 
t o g e t h e r  a n d  t h e  s c a t t e r  in  t h e  e x p e r i m e n t a l  
p o i n t s  is such  t h a t  t h e y  g ive  a g o o d  f i t  w i t h  
e i t h e r  l ine.  A s m a l l  b u t  s ign i f i can t  d e v i a t i o n  
f r o m  t h e  N e w t o n i a n  v e l o c i t y  prof i le  w a s  h o w -  
e v e r  o b t a i n e d  for  t h e  e l a s t i c o v i s e o u s  l i q u i d  
(fig. 4 c a n d  4 d). A t  t h e  s t a t i o n a r y  l a y e r  
i n d i c a t e d  b y  t h e  a r r o w s  in  t h e  f igure ,  t h e  



350 Rheologica Acta, Band 10, Heft 3 (1971) 

veloc i ty  grad ien ts  calcula ted f rom eq. [7] 
assuming Newtonian behav iou r  were sl ightly 
grea te r  t h a n  those,  G',  ca lcula ted f rom the  
slope of the  bes t  fit line d rawn  th rough  the  
expe r imen ta l  points.  F o r  fig. 4e, G'/G = 0.94, 
and  for fig. 4d, G'/G = 0.98. 

b) Rotation o/particles 

The angu la r  velocities of  rigid spheres,  
discs and  rods  and  the  or ienta t ions  of  the  
cylinders were s tudied over  a range  of G 
f rom 0.1 to 2 sec -1. I n  the  spherical  polar  co- 
ord ina tes  shown in fig. 1 a wi th  X 1 as the  
po la r  (and also the  viewing) axis, the  ro t a t ion  
of  the  axis of  revolut ion  of spheroids sus- 
pended  in a Newtonian l iquid is described b y  
Jeffery's equat ions  (5): 

d~l G 
a)l = ~ -- rp ~ + 1 (rp~ e~176 -t- sin*~ol), [8] 

dO1 G(rp ~ -  1) 
dt 4rp ~ + 1 sin2~lsin201' [9] 

where  G is the  ve loc i ty  gradient ,  01 and  ~ 
are the  polar  angles defined in fig. l a 
and  r~ is the  axis ra t io  (axis of  revolut ion/  
equa tor ia l  d iameter )  = 2 a/2 b. 

(i) Spheres: For  a sphere,  rp = 1 and  
eq. [8] reduces to  : 

G ~i = ~ - ,  [10] 

a re la t ion which has been  verified experi-  
men t a l l y  for Newtonian liquids (15). The  
s t eady  angu la r  velocities of  spheres sus- 
pended  in a pseudoplas t ic  m e d i u m  [system 5 
(n = 0.87)] g iven in tab le  3, were also in 
good ag reemen t  wi th  the  values  calcula ted 
f rom the expe r imen ta l  G a n d  eq. [7], the  
m e a n  2ml/G being 0.99 4" 0.03. 

Tab le  3 also compares  the  observed  angula r  
velocities of  spheres in an elast icoviscous 
fluid wi th  those  calcula ted assuming Newton- 
ian behav iou r  of  the fluid, i t  is ev ident  t h a t  
the  values  were sl ightly less t h a n  the  
theoret ica l  wi th  a mean  2eh/G = 0.95 4-0.02. 
I t  was not  possible to compu te  2 ~o~/G' since the  
ve loc i ty  profiles were no t  measured ,  bu t  the  
decrease is of  the  same order  as t h a t  of  G'/G 
measured  a t  the  s t a t i ona ry  layer  in sys t em 9. 
Thus,  i t  is p robab le  t h a t  2(Ol/G' = 1 and  the  
resul ts  show t h a t  the  ro t a t i on  of  the  field is 
equal  to  ha l f  the  ve loc i ty  gradient .  

(ii) Rods and discs, angular velocity: The 
va r i a t ion  of the  angle ~1 wi th  t ime  of  rigid 
cylinders in the  pseudoplas t ie  sys tems  2 
and  3, i l lus t ra ted  in fig. 5a,  was  ob ta ined  
f rom the cine films b y  measur ing  the  angle 

Tabie 3. Comparison hegween ~he calculated and oh- 
"served angular velocities of spheres in non-Newtonian 

liquids 

Pseudoplastic liquid Elasticoviscous liquid 
system 5, n = 0.87 system 9 

20) 1 obs. G 2wl(obs.) 2co 1 obs. G 2~ol(obs.) 
rad. ealc. 1) G rad. eale. 3) G 
see -1 sec -1 (calc.) see -1 sec -1 (talc.) 

0.122 0.13 0.98 
0.175 0.19 0.95 
0.265 0.27 0.98 
0.312 0.33 0.96 
0.427 0.43 1.00 
0.542 0.52 1.04 
0,555 0.53 1,05 
0.580 0.58 1.00 
0.624 0.65 0.98 
0.705 0.73 0.92 
0.728 0.74 0.99 
0.789 0.75 1.04 
0.904 0.88 1.02 
0.907 0.92 0.98 
0.955 0.93 1.02 
1.17 1.07 1.09 
1.07 1.11 0.96 
1.15 1.19 0.97 
0.977 1.00 0.98 
1.55 1.48 1.04 

Average: 0.99 
Mean deviation: _+0.03 

0.179 0.19 0.96 
0.297 0.29 1.03 
0.368 0.39 0.96 
0.447 0.50 0.90 
0.644 0.70 0.92 
0.818 0.85 0.97 
0.963 1.02 0.95 
1.08 1.16 0.93 
1.28 1.36 0.94 
1.55 1.78 0.98 
2.04 2.18 0.94 

Average: 0.94 
Mean deviation: _ 0.02 

1) Using eq. [7] with n = 0.87. 
2) Using eq. [7] assuming Newtonian behaviour, n = 1. 

of  the  ma jo r  axis of  the  par t ie le  wi th  the  
wall  of  the  Couette cylinder  as the  reference 
Xa-axis  (fig. l a). As prev ious ly  found  in 
elasticoviseous solutions, and  predic ted  b y  
eq. [8], dT/dt in each orbi t  is a m i n i m u m  for 
a rod a t  ~t = ~/2, 3~/2 and  for a disc a t  
~01 = 0, ~. Again  as in elast icoviseous liquids, 
there  was  a eont inuous  dr i f t  of  the  va r ia t ion  
of the  angle 01 wi th  t ime,  and  the  part icles 
finally took  on l imit ing ro ta t iona l  orbits  
which are deseribed below. 

In t eg ra t i on  of  eq. [8] yields:  

2 ~ t  
tan~l = rptan T [11] 

where T is the  per iod of  ro ta t ion  abou t  
the  Xl-axis .  Eqs.  [8] and  [11], appl icable  to 
ellipsoids of  revolut ion,  h a v e  also been 
verified for rigid rods  (15) and  discs (16), 
p rov id ing  an  equiva len t  ellipsoidal axis 
ra t io  re, ins tead  of r~ is used, r e being 
calculated f rom the measu red  T b y  means  
of the  re la t ion:  
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Fig.  5. (a) Var ia t ion  of  901 wi th  
t i m e  for a r igid rod  a n d  a rigid 
disc in  a pseudoplas t i c  solut ion.  
R o d :  open  circles, rp - -  23.2, 
r e ~ 16.1, G = 0.57 sec z s y s t e m  2. 
Disc:  closed circles, rp = 0.11, 
r e ~ 0.24, G = 1.17sec 1, s y s t e m  3. 
(b) Var ia t ion  of  901 wi th  t i me  for a 
disc in an  e las t icoviscous  solut ion,  
s y s t e m  12, rp = 0.12, re = 0.15. 
Opencirc les :  G = 1.04sec-1; closed 
circles: G = 0.31 see -z. T he  curves  
are  ca lcula ted  f rom eq. I l l ]  us ing  
t h e  e x p e r i m e n t a l  re ob ta ined  for 
t h e  same  disc in a N e w t o n i a n  l iquid. 
W h e n  9 0 1 -  O, t h e  discs, now 
a l igned  wi th  t he  flow, did  no t  rot- 
a te  fur ther .  - (c) Var ia t ion  of  t a n  
901 wi th  t a n  2 n t / T  according to eq. 
[11] for t he  s ame  rod  a n d  disc 
s h o w n  in (a) wi th  t h e  s ame  con- 
di t ions.  The  lines d r a wn  were cal- 
cu l a t ed  us ing  re ob ta ined  f rom 
t h e  expe r imen t a l  T a n d  G in a 
N e w t o n i a n  l iquid  

.e= T 
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I t  can be seen from figs. 5 a and 5 b t ha t  the 
results, using the experimental  re, are in 
excellent agreement  with eqs. [8] and [11]. 
As previously found in Newtonian and elasti- 
coviscous media, the equivalent  ellipsoidal 
axis ratios of the particles determined from 
eq. [12] using the experimental  values, of T 
and G were greater t han  the particle axis 
ratios r~ for the discs and smaller t han  r~ for 
the rods. The values when inserted into a plot 
of re/r ~ versus log rp given in fig. 6 lie close 
to the best fit line drawn from da ta  of pre- 
vious investigations in Newtonian liquids 
(16, 17), the scatter at  low rp presumably 
being due to some small imperfections in the 
shape of the discs. 

(iii) Rods and discs." Drift in the orbit constant 
When eq. [9] is integrated, one obtains 

C r e 

t an0z  (%2 cos2901 + sin2%)1/2 , [13] 

where C is the orbit constant  which can 
assume values between 0 and oo. I t  follows 
fl'om eq. [13] t ha t  

at  9~ = - 2 -  ' tan01 ~ Cre,  

a n d  a t  901 = O, t an01  ~ C. [14] 

Experimental ly ,  the angle 01 was computed 
from the following relations" 

a'(901) - -  s in01,  
a 

b'(%) _ cos01, [15] 
b 

2a ' (~Vl )  a n d  2 b ' ( c p 1  ) b e i n g  t h e  r e s p e c t i v e  
p r o j e c t e d  l e n g t h s  o f  t h e  a x i s  o f  r e v o l u t i o n  
a n d  e q u a t o r i a l  d i a m e t e r  o n  t h e  X ~ X a - p l a n e .  
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Fig. 6. Equivalent ellipsoidal axis ratio re, as a function 
of the particle axis ratio r v for rods and discs in pseudo- 
plastic liquids, The points are experimental (system 2, 
3 and 6) and the line is drawn from reference (17) and 
is the best fit of several studies carried out in Newtonian 

liquids 

The above theory,  applicable in the Stokes 
or creeping flow regime, does not  predict 
the existence of preferred orbits (5). This was 
confirmed by  experiments at  very  low 
Reynolds numbers  in Newtonian liquids in 
which the orbit  adopted by  a rod or disc was 
found to depend only on the initial conditions 
of release (16, 18) ; the particle then  continued 
to rotate  wi thout  change of orbit, provided 
it did not  sediment or collide wi th  other 
cylinders. However,  in elasticoviscous fluids 
(2), drifts in the orbit  constant  were observed 
such t h a t  the  particles took on limiting 
rotat ional  orbits as i l lustrated in fig. l c 
wi th  C = 0 for a rod and C = eo for a disc. 
Similar drifts were here observed in the 
pseudoplastic systems 2 and 3. To distinguish 
the t ransient  or dynamic  orbit constant ,  
obtained from solutions of eq. [13] at  a given 
t /T,  from the t rue orbit constant ,  C is 
replaced by  C' below. In  the final orientations 
as i l lustrated in fig. 1 e, a rod spi~s about  its 
long axis which is aligned parallel to the 
Xl-axis, and  a disc rotates in the edge-on 
position with  its axis of revolution in the 
X2Xa-plane. A convenient way  of presenting 
the drif t  in orbit  is to plot the  projection of 
the axis of revolution in the X2Xa-plane. For  
a constant  orbit C, the projection is an 
ellipse of axis ratio R~a given by (19): 

[ / 
R~ + I1 + [16] ~ ~1 C2 ] \ C2re2] . 

o 

r r  

X 
<~ 

F- 

. J  

X3 

x2 

;2 

x3 

(b) 
x2 

:[2 

x 2 

Fig. 7. (a) Calculated and computer-drawn X ,  X3- 
projections of the axis of revolution of a rod ( =  semi- 
major axis) with re = 16.1 in various spherical elliptical 
orbits whose constant C increases from 0 at the origin, 
to the circle corresponding to C = co. - (b) and (e) Re- 
spective measured projections of one end of the same 
rod suspended in an elastieoviseous liquid ( G = 0.53 see -1, 
system 11) and in a pseudoplastie liquid (G = 0.57 sec -1, 
system 2) showing the progressive drift of the orbit 
constant from C' = co to C' close to 0 in the direction 
given by the arrows. The lines are the best fit of the 

experimental points 

When r e > 1, the major  axis lies along the 
Xs-axis and  when r e < 1, it  lies along the 
X~-axis. At  C =  oo, R 2 a =  1 and the pro- 
jeetion is a circle, the center of which re- 
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x3 xa 

(b) 
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X 3 Xa 
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Fig.  8. (a) Calculated and  compute r -d rawn X z X  a- 
project ions  of  t he  axis of  revolut ion ( =  semi-minor  
axis) of  a disc wi th  r e -  0.24 ro ta t ing  in various 
spherical  elliptical orbits.  At  the  origin C = 0; the  
circle corresponds to C - -  co.  (b) Measured project ions 
of  one end of  the  axis of  revolut ion of  t he  same disc 
suspended  in a pseudoplast ic  l iquid (G = 1.11 sec - i ,  
sys tem 3) as the  orbi t  cons tan t  dr i f ted f rom a value 
ini t ial ly close to C ' - - 0  to C ' - ~  co in the  direction 
given by  the  arrows. - (c) Measured project ions  for 
disc, r e = 0.15 suspended  in an elastieoviscous liquid. 
Same particle and  condit ions as in fig. 5b.  In  (b) 
and  (e), t he  lines are the  bes t  fit t h rough  the  ex- 

per imenta l  points  

presents  the  project ion a t  C - -  0. Figs. 7a  
and  8 a show a set  of  ellipses calculated and  

d rawn wi th  the  aid of  an I B M  360 c o m p u t e r  
for var ious  C in the  case of  a rod  wi th  
r e = 16.1 and  a disc r e ---- 0.24 assuming  no 
change in C wi th  t ime.  The  ac tua l  t ime  course 
of  the  dynamic  orbi t  cons tan t  C' for the  
same rod  as in fig. 7a  is shown in figs. 7b  
and  7c in elast icoviscous and  pseudoplas t ic  
liquids respect ively.  S tar t ing  wi th  an orien- 
t a t ion  where C' was large, the  curves a p p e a r  
as concentr ic  spirals wi th  the  biggest  change 
in C' occurr ing when  ~s I is wi thin  ~=10 ~ 
of ;~/2 or 3z/2  where  the  part icle  spent  80% 
of its t ime,  v e r y  li t t le decrease in C' occurr ing 
in the  res t  of  the  orbit .  A similar  p lo t  was  
ob ta ined  for a disc suspended in a pseudo-  
plast ic  solution. Here ,  as i l lus t ra ted  in 
fig. 8b, C' increased fi 'om an initial  va lue  
close to 0 to a final va lue  a t  infinity, and  as 
expected ,  the  m a j o r  change in C' occurred  
while the  par t ic le  was close to the  orien- 
ta t ions  ~v 1 - -  0 and  n. I n  all cases, the  drif ts  
were rapid ,  t ak ing  only be tween  2 and  3 ro- 
t a t ions  for the  rod  a t  G - -  0.57 sec -1, and  5 
to 6 ro ta t ions  for the  disc a t  G - -  1.1 see -1, 
to reach  the  l imit ing or ienta t ions  in the  pro-  
py lene  glycol solution. 

I n  a theoret ica l  s tudy,  S a f f m a n  (20) 
showed t h a t  in n o n - N e w t o n i a n  liquids, a 
par t ic le  could assume prefer red  orbi ts  bu t  
was unable  to p red ic t  in which direct ion C' 
would va ry .  He  der ived the  ibllowing 
re la t ion for the  r a t e  of  change in C ' :  

1 dC' G 2 c~ 

C' dt *]o 
/(C'/a), [17] 

where ~ is a cons t an t  character iz ing the  non- 
N e w t o n i a n  proper t ies  of  the  l iquid and  
/ (C ' /a )  is a funct ion  depending on the  par -  
t i d e  shape  and  on the  ra te  of  s t ra in  tensor.  
A plot  of  In C' /C o against  t ime  according to 
the  in tegra ted  fo rm a eq. [17], wi th  C O the  
orbi t  cons tan t  a t  t ime  t -  0, is g iven in 
fig. 9 for different  cylinders suspended in 
elast icoviscous and  pseudoplas t ie  liquids. 
The expe r imen ta l  points  a t  each r e and  G fall 
on s t ra igh t  lines suggest ing t h a t  the  func t ion  
/ (C ' /a )  in eq. [17] is a cons tan t  for a g iven sys- 
tern in the  range  of va r ia t ion  of C' observed  : 
C'/C o < 10 for discs and  C'/C o > 0.03 for 
rods. As C' app roached  the  l imit ing value,  
a' (cp1)/a in the  case of  rods and  b' (~01)/b in the  
ease of  discs became  ve ry  close to 0. Hence  01 
f rom eq. [15] and  C' could no longer be 
c o m p u t e d  with  a n y  accuracy  and  cq. [17] 
could no longer be verified. I n  bo th  elastieo- 
viscous and  pseudoplas t ic  liquids, dC'/dt  in- 
creased wi th  the  ve loc i ty  gradient .  I n  all these  
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Fig. 9. Variation of log C'/C0 with time for a rod 
r ,  ~ 16.1 and different discs rotating in pseudoplastic 
and elasticoviscous liquids. The lines drawn are the 
best fit of the experimental points. 
1 : disc, re ~ 0.22, G ~ 2.38 sec -~, Co = 0.75, system 6. 
2: disc, re ~ 0.24, G = 1.11 sec -1, Co ~ 0.66, sys tem 3. 
3: disc, re=0.15,  G=0.31sec  -1, Co= 1.15, system 12. 
4: disc, re=0.22,  G=0.71sec  -1, C0=0.89, system 6. 
5: rod, G=0.53sec-~, Co= 1.80, system 11. 
6: rod, G=0.55sec  -~, Co= 1.24, system 2. 
7: rod, G = 0.57sec -~, C O ~ 0.54, system 2. 

experiments G was sufficiently low to rule 
out the presence of secondary flows, and sedi- 
mentation during the time of a run was 
negligible. Thus the drift in C' could only be 
due to non-Newtonian behaviour of the fluids. 

(iv) Rotation o/discs in elasticoviseous media: 
Previous work (2) with discs in elastico- 
viscous solutions of polyisobutylene under- 
going tube flow had shown that  the particles 
rotated according to eq. [11]. Similar results 
were here obtained with discs rotating in 2% 
aqueous polyacrylamide solutions subjected 
to Couette flow provided tha t  the shear rate 
was below a certain critical value which, as 
shown in table 4 decreased with increasing 
particle diameter. Above this critical G the 
discs oriented themselves with their axis of 
revolution along the X2-axis, ~1 = 0, 01 = 90 ~ 
and, as illustrated in fig. 5b, ceased to rotate 

Table 4. Critical velocity gradient and torque for discs 
rotating in an elasticoviscous solution of 2% poly- 

acrylamide 

Dia- Thick- G 1) ~1o 3) /'13) 
meter hess rp  r e (crit.) Poise dyne 

2b 2a sec -~ cm 
cm cm • 104 

0.072 0.008 0.11 0.21 6.35 l l .1  1.06 
0.115 0.020 0.18 0.29 3.75 13.1 4.08 
0.121 0.019 0.16 0.28 1.58 16.0 2.21 
0.134 0.015 0.12 0.24 0.93 17.1 1.60 
0.174 0.016 0.091 0.15 0.53 17.9 2.32 
0.182 0.012 0.064 0.14 0.29 18.7 1.17 
0.188 0.168 0.096 0.17 0.31 18.6 1.54 

1) Calculated assuming N e w t o n i a n  behaviour. 
3) Extrapolated for low G from the viscosity-rate of 

shear relation. 
8) Torque calculated from eq. [18]. 

/urther. They remained aligned with the 
direction of the flow even when the velocity 
gradient was further increased. The drift in 
the angle 01 to 90 ~ occurred even when the 
discs were initially in the ~l-orientation ~ 0 ~ 
This is shown in fig. 8e for a disc having 
r e ~ 0.15, for which C' was 2.36 when ~01 
reached 0 ~ after which 01 continuously 
increased to 90 ~ with ~01 constant. 

The alignment of discs is most likely due 
to the elastic properties of the polyacrylamide 
solutions which increase with increasing 
polymer concentration and which, during 
shear give rise to a restoring torque opposing 
tha t  due to viscous deformation of the fluid. 
When the particles cease to rotate, the two 
torques balance each other. Table 4 lists 
values of the hydrodynamic torque /~1 
at the critical G calculated from Je~ery 's  
theory (5) for a spheroid in a Newtonian 
liquid in the orbit C = ~ (no spin), using 
the relation (21) : 

/'1 - -  8~r ~o G [18] 
3 e% 

Here ~ is an integral, whose value for a 
cylinder has been shown to be: 

A 
c% = a b 3 ' [19] 

where 
re cos -x re re 2 [20] 

A (1 - -  re3)a/~ 1 - -  re 3 " 

As G is further increased, the particle 
remains at  a constant orientation indicating 
tha t  the elastic torque is increasing faster 
than the hydrodynamic torque. 

A similar alignment of rods in the direction 
of flow was not observed as here the particles 
oriented themselves with the axis of re- 
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volution (and major axis) parallel to the 
vorticity or Xz-axis and were observed to 
spin about their axes. 

c) De/ormation and break-up o/ liquid drops 

As previously found in Newtonian (22) and 
elasticoviscous fluids (2), spherical drops in 
all the systems listed in table 2 were deformed 
into ellipsoids in shear flow, and the de- 
formation increased with increasing velocity 
gradient. At high G, the drops were observed 
to break-up and, as indicated in table 2 and 
described later, could be grouped into various 
classes according to their mode of break-up 
(22). 

The motion of a neutrally buoyant fluid 
drop of radius b and viscosity Vl, suspended 
in a Newtonian liquid of viscosity V0, sub- 
jected to Couette flow, was first treated by 
Taylor (23). He showed that  the drop be- 

haviour depends only on the two dimension- 
less parameters 2 = ~ 1 / ~ o  and g --~ 7/Gb~7o, 
y being the interfacial tension. To achieve a 
balance between the interfacial tension and 
the normal components of the viscous stress 
acting across the interface the drop undergoes 
a change of curvature, becoming an ellipsoid 
having major and minor axes L and B 
respectively, as shown in fig. 10a. 

Two cases were considered 

(i) The interfacial tension effects are 
dominant over the viscous effects: ~ --~ 0(1), 
z ~ l, with the result that  the geometrical 
deformation D ~ L -- B /L  ~- B is given by: 

D : E - -  /(~) 

Fig. 10. (a) Coordina te  s y s t e m  for 
t he  de fo rma t ion  of a d rop  s i t ua t ed  
a t  t h e  origin of  a field of  Couette 
flow, U3 = G X2.  - (b) De fo rma t i on  
of  Newtonian drops  in a pseudo-  
p las t ic  l iquid  as a func t ion  of  Gb. 
S y s t e m  13, l ine 2: open  circles, 
b - -  0.050 cm;  closed circles, 
b = 0 . 0 6 4 c m ;  ha l f  open  circles, 
b ~ 0.074 cm.  S y s t e m  14, l ine l :  
open  t r iangles ,  b ~ 0.058 em;  clo- 
sed t r iangles ,  b - -  0.069 cm. S y s t e m  
15: ha l f  open  circles, b = 0.080 cm. 
S y s t e m  16: ha l f  open  t r iangles ,  
b = 0.065 em.  The  curves  are t h e  
bes t  fit t h r o u g h  t he  e x p e r i m e n t a l  
points .  - (c) Var i a t ion  o f  t he  angle  
of  de fo rma t ion  for t he  s ame  s y s t e m s  
as in (b). The  lines are  also t he  
bes t  fit t h r o u g h  t he  e xpe r i men t a l  
po in t s  
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where E is the ratio of surface tension to 
viscous forces, and 

19A + 16 
/(~t) - -  16~ + 16 [22] 

The drop major  axis is oriented at  an  angle 
~1 = ~m = ~/4 (fig. 10a). 

(ii) The interracial tension effects are 
negligible compared to the viscous effects: 

~ 1, u ---- 0 (1), in which case 

5 
D = 4--~' [23] 

and the drop aligns itself wi th  the flow, 
~ = n / 2 .  Eqs. [21] to [23] are valid for 
very small deformations only, a l though 
experiments in Newtonian systems (22) have 

06C 

0.4C 

o.2(i 

Oi 
0 

0 | 

0 ~.02 P ~ l 0 0 4  0.06 0 . (~  

G b ,  r sec -I  

sometimes given good agreement with the 
theory  at  values of D > 0.2. Chancy and 
Brenner (24), taking into account second 
order terms in the deformation have t reated 
case (i) and found tha t  ~m increases with D 
according to the  relation 

~ m = ~ - +  ~ - +  D.  [24] 

Cox (25) has recently given a more general 
t r ea tment  of the theory  applicable to inter- 
mediate values of ~ and  ~ for which ~v m, at  
equilibrium, lies between z/4 and z/2. The 
relations for D and ~m were found to be 

D = 5(19~t + 16) , [25] 
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Fig.  11. U p p e r  pa r t :  (a) Deformat ion  of  pseudoplas t ic  drops  in a Newtonian liquid. Newtonian drops,  sys tem 19: 
open circles, b = 0.063 cm. Sys tem 20: closed circles, b = 0.069 cm; ha l f  open circles, b = 0.080 cm. Sys- 
t e m  21: open tr iangles,  b = 0.092 em. Sys tem 22: closed tr iangles,  b = 0.088 cm. The line was calculated 
for sys tem 19 using eq. [21]. (b) Deformat ion  of  e]asticoviscous drops in a Newtonian liquid. Newtonian 
drops,  sys t em 23: open circles, b = 0.081 cm. The  remaining po in t s  are: sys tem 24: open tr iang- 
les, b = 0.074 cm, sys tem 25: hal f  open circles, b = 0.055 cm; closed circles, b = 0.067 cm; closed 
tr iangles,  b = 0.088 cm. The  lines 1, 1', 2' were calculated using eq. [21] for sys tems 23, 24, 25. Line 2 is 
t he  bes t  fit t h rough  the  exper imenta l  resul ts  for sys tem 25. - Lower  p a r t :  (c) Var ia t ion  of  ~m wi th  D 
for the  s a m e  sys tems as in (a). The  line is calcula ted f rom eq. [24] for sys tem 19. (d) Var ia t ion of  Tm wi th  D 
for t he  same sys tems as in (b). Lines 1 and  2, are calculated f rom eq. [24] for sys tems 23 and  24 respect ively  
a n d  line 3 is calculated f rom eq. [26] for sys t em 25. The dashed  line is t he  bes t  fit t h rough  the  exper imenta l  

results  for sys tem 25 
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1 / 19A \ 
~0 m : -~- q- ~- tan -1 ( ~ ) .  [26] 

For  the special eases given above, eq. [25] 
reduces to eq. [21] and  [23] respectively,  
and ~m in eqs. [26] assumes the  l imiting 
values z/4 and ~/2. 

(i) Newtonian drops: The results for Newton- 
ian drops in a pseudoplastic liquid, systems 13 
to 16, are shown in fig. 10 where the de- 
format ion  D has been p lo t ted  against  Gb. 
Although the points obta ined  at  different 
drop diameters  in each system fi t ted on a 
single curve (e.g., curves i and 2) as pre- 
dicted by  theory ,  a l inear relat ion between D 
and Gb was not  found, p resumably  because 70 
decreased with increasing G leading to an 
increased A and hence E in eq. [21]. 

The var ia t ion  of  the angle ~ with D for 
drops in the  same system is shown p lo t ted  
in fig. 10c. The lines, which are the best  
fit th rough  the exper imenta l  points,  have  an 
in tercept  a t  ~m ~ ~/4 for D ~ 0 as predic ted  
by  eqs. [24] and [26], and found inNewtonian 
systems (22). This contrasts  with the be- 
haviour  of drops in elasticoviscous liquids (2) 
where for D ~ 0, the in tercept  of ~m on the 
D-axis was 61 ~ showing an increased align- 
ment  of the major  axis of the ellipsoid with 
the direction of flow. 

(ii) Non-Newtonian drops: The results for 
the deformat ion of pseudoplastic and elastico- 
viscous drops in Newtonian liquids are shown 
in fig. 11 a and I 1 b. In  these systems the values 
of 2 and z were such t ha t  eq. [21] is a good 
approximat ion  of eq. [25]. The line in fig. 11 a 
was calculated from eq. [21] for the Newton- 
ian system of pure  propylene  glycol drops in 
silicone oil, and the points are experimental .  
I t  is evident  tha t ,  except  a t  high Gb, the  
da ta  obta ined  with pseudoplastie drops also 
lay on this line, a result  which is in accord 
with eq. [21] since the respective calculated 
slopes ---- (~0/y)/(A), in systems 20, 21, and  22 
are only 5%,  3% and 0.5% different f rom 
t ha t  in system 19. Similarly, the angles of 
or ienta t ion 7~ p lo t ted  in fig. l l c  fitted, 
within exper imenta l  error,  a round the line 
calculated f rom eq. [24]. 

In  contras t  to  pseudoplastic drops, the 
measured deformat ion of elasticoviscous drops 
of aqueous polyacry lamide  in Newtonian li- 
quids, while still a funct ion of G b, was less 
t han  predicted by  Coxs theory.  This is 
i l lustrated in fig. 11 b where the points for the 
Newtonian system of water  in silicone oil 
lie on line 1, calculated from eq. [25]. Bu t  so 
do the exper imenta l  points in system 24 for 

which the  calculated slope should be 10% 
higher as shown by  the  dashed line 1'. 
In  4% aqueous polyacrylamide,  system 25, 
the  points a t  different drop diameters  lie 
on a single line [2] ac tual ly  having a lower 
slope t h an  line 1 a l though the initial theoret i -  
cal slope is 40% higher, as indicated b y  the  
calculated dashed curve 2'. This behaviour  
m a y  be due to the existence of normal  
stresses and/or  elastic recovery  of the  liquid 
inside the drops which act  to decrease the 
deformation.  The ~m-orientations of  elastico- 
viscous drops are shown in fig. l l d. Again, 
the points obta ined  in the Newtonian sys- 
t em 23 give a good fit of  eq. [24] (line 1), 
and unlike the deformat ion,  the  measured ~m 
of elasticoviscous drops in sys tem 24 having 
a low A agree quite well with theory  as is 
i l lustrated by  line 2 which was calculated 
from eq. [24] assuming a constant  A in the  
range of G used (0-2 see-l), bu t  ac tual ly  
measured at  G --  3.11 sec -1. In  sys tem 25, 

is too great  to permi t  comparison wi th  the 
second order  theory  of Cha~ey and Brenner, 
and the results are seen to lie on a line having 
an appreciably greater  slope t h an  t h a t  
calculated f rom eq. [26]. 

Nevertheless,  the exper imenta l  results 
show tha t ,  as predic ted  by  the theory  (24, 
25), at  a given deformat ion,  the al ignment  of 
the deformed drop with the flow is grea ter  
a t  higher 2. 

(iii) Break-up o~ drops: Table 2 shows t h a t  
the values of 2 in the suspensions of liquid 
drops var ied from 2 x 10 4 to 2.8 and, as in 
Newtonian liquids in this range of 2 (22), 
drop break-up in Classes A, B-1 and B-2 was 
observed4). When  A < 10 -2 break-up occurred 
in Class A with the drops developing poin ted  
ends and  the liquid being ejected at  the  two 
extremities.  System 25, in which 2 = 2.8, 
showed Class B-2 break-up in which the  
elasticoviscous drops ex tended  into long 
threads  which only broke up into small 
droplets when the  appara tus  was stopped.  
The remaining systems all having A < 1, 
belonged to Class B-1 in which the drops 
were pulled out  unt i l  a neck was formed 
between their  rounded  ends, which then  
separa ted  to form two pa ren t  drops with 
three  satellite droplets  be tween them. This 
behaviour  paralleled t h a t  previously found in 

a) Recent work by Torza et al. (26) has shown that 
drops exhibiting Class A break-up are in unstable 
equilibrium, as a result of too rapid an increase in the 
velocity gradient. When G is increased very slowly and 
the drops are always in true equilibrium, Class B-1 
break-up is observed in these systems. 
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Newtonian sys tems  and  wi th  _Newtonian 
drops  in po lyac ry lamide  solution (2). 

Measuremen t s  of  the  veloci ty  g rad ien t  a t  
b reak-up ,  GB, were made  and  are l isted in 
table  5 toge the r  wi th  the  de fo rmat ion  a t  
burs t ,  EB, calcula ted f rom eq. [21] using the  
measured  a p p a r e n t  viscosities of  the  drop  
fluid a t  G B. I t  m a y  be seen t h a t  in a given 
sys tem the  values  of  GBb were independen t  
of  b. The  m e a n  values of  E B for pseudo-  
plast ic  drops  lay  a t  the  top  of the  range  
prev ious ly  found  for Newtonian sys tems  
(E B ---- 0.52 =~ 0.10). I n  the  case of  the  elastico- 
viscous drops  of  sys t em 24, EB was con- 
s iderably  higher,  and  this, as the  abnorma l ly  
low deformabi l i ty  r epor ted  above,  was  pro- 
b a b l y  due to  the  effects of  no rma l  stresses 
in the  po lyac ry lamine  solution. 

d) Migration o/rigid and de/ormable particles 

(i) Rigid spheres: Prev ious  expe r imen t s  (2) 
h a d  shown t h a t  r igid spheres suspended in an  
elast icoviscous fluid subjec ted  to Couette flow 
mig ra t ed  towards  the  outer  cylinder.  I t  was  
suggested t h a t  since the  ve loc i ty  grad ien t  
was g rea te r  a t  the  inner  cyl inder  t h a n  a t  the  
outer ,  a pressure  difference due to the  no rma l  
stresses would resul t  in a force pushing  the  
spheres towards  the  outer  cylinder.  I n  the  
presen t  exper imen t s  wi th  pseudoplas t ic  li- 
quids, the  opposi te  behav iou r  was found:  the  

part icles  mig ra t ed  towards  the  inner  cylinder,  
i.e. t owards  the  region of grea ter  ve loc i ty  
gradient .  As descr ibed elsewhere (4), a s imilar  
resul t  w a s  ob ta ined  in t ube  flow where r igid 
par t ic les  mig ra t ed  towards  the  tube  wall, 
whereas  in elast icoviscous liquids they  had  
been found  to migra te  towards  the  tube  axis 
(2). The  resul ts  in Couette flow are i l lus t ra ted  
in fig. 12 a n d  it  is ev iden t  t h a t  the  direct ion of 
migra t ion  was independen t  of  which cyl inder  
was s t a t i o n a r y  (curves 1 and  3) and  of the  
direct ion of  ro t a t ion  (curves 1 and  2). The  
ra tes  of  migra t ion  increased wi th  the  sphere 
d i ame te r  (curves 1 and  5) and  also wi th  the  
ve loc i ty  g rad ien t  (curves 1 and  2). Sur- 
prisingly, however ,  when  the  part icles were  
close to the  outer  cyl inder  

[ ( R ,  RI)/(RH -- R~) > 0.75], 
t hey  mig ra t ed  towards  i t  (curve 4). I n  all 
expe r imen t s  G was less t h a n  8 sec -1, and  as 
shown in fig. 2, there  are no measurab le  
no rma l  stresses a t  this  va lue  of the  shear  ra te .  
I n  addi t ion,  g rea t  care was t a k e n  to avo id  
secondary  flows in the  annulus  of  the  
Couette a p p a r a t u s  which migh t  have  ac- 
counted  for radia l  migrat ion.  A low viscosi ty  
(0.01 Poise) mix tu re  of  silicone oil and  carbon 
te t rachlor ide  was used as b o t t o m  layer,  on 
which the  p ropy lene  glycol solution (~0 
--~ 6.9 Poise) was floated. I n  all cases, the  
sed imen ta t ion  ra tes  were less t h a n  0.1 cm/h  

Table 5. Velocity gradient at burst of non-Newtonian drops suspended in a Newtonian liquid 

System 19 System 20 System 21 
b GB 1) GB b b Gj~ i) G~ b b GB 1) G~ b 

cm sec -1 cm sec -1 cm sec -1 cm scc -1 em sec -1 cm sec -1 

0.028 4.11 0.11 0.042 2.48 0.12 0.031 2.81 
0.040 1.91 0.08 0.053 1.84 0.10 0.040 2.60 
0.051 1.84 0.09 0.073 1.44 0.11 0.050 1.95 
0.063 1.68 0.11 0.092 1.11 0.10 0.064 1.33 
0.106 0.96 0.10 0.156 0.87 0.10 0.080 1.02 
Average: G/~ b ~ 0.10 G/~ b ~ 0.10 GB b ~ 0.91 

E~ 2) ~ 0.61 EB 2) : 0.65 EB 2) : 0.59 

0.09 
0.10 
0.10 
0.09 
0.08 

System 23 System 24 

0.043 5.18 0.20 0.033 8.20 0.27 
0.055 3.57 0.21 0.041 6.10 0.26 
0.073 3.19 0.23 0.052 4.79 0.25 
0.087 2.61 0.19 0.066 4.02 0.26 
0.114 1.79 0.22 0.083 3.04 0.26 
Average: GB b -~ 0.22 G/~ b ~ 0.26 

E B  ') ---- 0.54 BB ~ ) : 0.73 

1) G_~ velocity gradient at burst. 
2) E~ calculated deformation at burst from GB b using the measured drop apparent viscosity, and eq. [21]. 
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Fig. 12. Migration of rigid particles 
in a pseudoplast ic  liquid in Couette 
flow, sys tem 4, Ri  = 4.756 era, 
RII  ~ 5.652 em. Curves 1 to 4: 
b ~ 0.056 cm; curve 1 : 
~()I = 0, -QII = - -  1.07 tad.  see -z, 
G ~ 7.32 sec-~; curve 2: 
~(~I ~ O, ~(~II = --  0.748 rad. see -z, 
G = 5.13 see-I;  curves 3 and  4: 
DI = 1.07 rad. see -I ,  DI I  = 0, 
G ~ 5.20 see-i ;  curve 5: 
b ~ 0.032 cm, 
~ I  = 0, -QII = 1.07 rad. see -I ,  
G ~ 7.32 sec i. 

The size of  the  spheres relative to 
the gap wid th  is also shown;  posi- 
tive and  negative signs of zQ 
indicate counter-clockwise and 
clockwise rota t ion of the  cylinders 
respectively. The values of G are 
those  calculated at  the  s ta t ionary  
layer or  at  the rest ing inner  
cylinder 
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for a sphere (b = 0.02 cm) located in the 
middle of the annulus. Moreover, during the 
experiments, the spheres did not sink or rise 
at a rate greater than the one observed 
without shear. Taylor (27) in a study of the 
secondary flows between two cylinders rotat- 
ing in the same direction found that  they were 
a succession of alternate vortices of opposite 
direction extending from one cylinder to 
the other. When the cylinders counter- 
rotated, the vortices developed in two 
regions of the annulus, one close to the inner 
cylinder and the other close to the outer 
with the circulation still changing direction 
from one vortex to the other as if they were 
geared together. Consequently, in the pre- 
sence of secondary flows, the particles would 
be expected to migrate towards the inner or 
outer cylinders and also upwards and 
downwards depending on their initial position 
of release in the annulus. This behaviour 
was not observed during the course of the 
above experiments where, at a given G, the 
direction and rate of migration were the 
same when a sphere was located at  different 
heights but at the same radial distance R 
in the annulus. 

(ii) De/ormable drops: In both elasticoviscous 
and pseudoplastic liquids as shown in fig. 13 a 
and 13b respectively, fluid drops migrated 
away from the cylinder walls towards an 
equilibrium position. The rates of migration 
increased with increasing velocity gradient 
and the ratio b/(RII-RI) and decreased with 
decreasing radial distance from the equi- 
librium position. The position of equilibrium 
was itself dependent on G and b/(RII--RI), 

being closer to the inner cylinder for drops 
suspended in a pseudoplastie liquid and 
closer to the outer cylinder for drops in an 
elasticoviseous medium. 

Two-way migration of deformable drops 
in Couette flow had previously been observed 
in Newtonian systems (28), but there the 
equilibrium position was about hMf-way 
between the cylinders and the phenomenon 
was explained as resulting from a com- 
bination of the particle deformation and its 
interaction with the wall (29, 30). In non- 
Newtonian media, presumably, there is super- 
imposed on the wall migration, the migration 
observed with rigid spheres, and this results 
in a displacement of the equilibrium position 
towards one or other of the cylinders. 

e) Collision o~ spheres 
In Newtonian liquids at low Reynolds 

numbers, two-body collisions between rigid 
spheres are found to be symmetrical and 
reversible (31, 32). The particles approach 
along curvilinear paths and, after coming into 
apparent contact with each other, rotate as a 
rigid dumbbell, until they separate at an 
orientation ~i of the axis joining their centers, 
which is the reflection of the angle of contact. 
The spheres then recede along eurvilinear 
paths which are the mirror image of the paths 
of approach. I f  the flow is now reversed, 
the spheres recollide along paths which are 
the exact reverse in time and space of those 
followed in the forward collision. 

In elastieoviscous liquids, however, two- 
body collisions, between rigid spheres are 

25 
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Fig.  13. Migra t ion  o f  l iquid  d rops  in 
Couette flow. g i  ~ 4.756 cm,  RI I  
5.652 cm. (a) S u s p e n d i n g  phase :  
Pseudop las t i e  l iquid,  s y s t e m  17. Cur- 
ves  1-3:  

b = 0.066 cm,  open  circles: 
~QI = 0.495 tad .  sec -1, ~gn = 0, 
G ~ 2.40 see - l ;  closed circles: 
.(21 ~ 0, -Qn ~ - -  0.293 rad.  see-~, 
G ~ 2.01 see-~; closed t r i ang les :  
t91 = 0.281 rad.  sec -1, 
zgii = 0, G = 1.36 see -x. 
Curve  4, open  t r i ang les :  
b = 0.091 cm,  z9i = 0.495 rad.  sec -~, 
~9ii = 0, G = 2.40 sec -1 (b) Suspen-  
d ing  phase :  E las t i eov i scous  l iquid,  
s y s t e m  18. Open  circles b: = 0.043 em, 
zg~ = 0.144 rad .  see -x, zgH = - - 0 . 1 4 3  
rad.  sec -~, G = 1.68 see-X; closed cir- 
cles: b ~ 0.054 cm,  ~ I  = 0.144 rad.  
see-X, ~ I I  ~ - -  0.143 rad.  see -~, G = 
1.68 see-X; open  t r i ang les :  b ~ 0.064 
cm,  Y2I ~ 0.061 rad .  sec -~, $r~ii = 
- -0 .062  rad.  sec -x, G = 0.72 see-~; clo- 
sed t r iangles :  b = 0.083 cm, /2 I  ~ 0.151 
rad.  see -x, [~n  ~ - - 0 . 1 0 2  rad .  see -z, 
G = 1.43 sec -~. - T h e  size of  t h e  drops  
re la t ive  to  t he  gap  is also shown:  
posi t ive  and  n e g a t i v e  s igns  o f  t9 
refer  to counter-c lockwise  a n d  clock- 
wise ro ta t ion  of  t h e  cyl inders  r e spec t -  
ively,  a n d  t h e  va lue s  o f  G were cal- 
cu l a t ed  a t  t h e  s t a t i o n a r y  l aye r  or 
a t  t he  s~at ionary  cy l inder  

tbund to be unsymmetrical and irreversible 
(2). The same behaviour was here observed 
in pseudoplastic media and is shown in fig. 14a 
in a dimensionless plot of the paths of the 
centers of two polystyrene spheres of equal 
diameter colliding in the equatorial plane, 
i.e. 01 = z/2. I t  is convenient to describe 
the collision in terms of the rectilinear col- 
lision angles of approach, ~a, and recession, 
~r, 

{ ~ x q ,  [27] 
I ~ 2 a l = c ~  25 ] 

and similarly for ~v r. zJX, is the separation 
of particle centres along the X,-axis when the 
axial separation of centers AX 3 > 4b. The 
figure shows that  the paths of approach and 
recession were curvilinear and in the first 
collision I~al was greater than I~rl resulting 
in an increased separation of their centers 
along the X2-axis. Upon reversal of the flow, 
the spheres recollided at an angle ]~oa' t = l~r I 

and separated at I ~r'l < [~a'I again increas- 
ing their separation. After three such col- 
lisions, the particles no longer made apparent 
contact. Three body collisions were also 
observed; as expected these were also un- 
symmetrical and irreversible and, as shown 
in fig. 14b, the values of zJX 2 for all three 
spheres increased after each collision. The 
cause of this irreversibility, as in elastico- 
viscous suspending media, is probably due to 
the asymmetry of the forces generated by  the 
fluid acting along the doublet axis, com- 
pressive in the quadrant of approach, and 
tensile in that  of recession. In Newtonian 
liquids, these forces are symmetric around 
the X2-axis, ~1 = 0 (31), whereas in both 
elasticoviscous and pseudoplastie media this 
does not appear to be the case. Fur thermore  
it appears that  on reversing the rotation of 
the field, the magnitude as well as the sign 
of the force is changed. 
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Fig. 14. Collisions of rigid spheres in 
Couette flow. (a) Dimensionless plot of the  
paths  of particle centers about  the  mid- 
point of the  doublets for an  equatorial 
collision (01 = ~/2) in a pseudoplastic 
liquid, system 6. The open circles are the  
experimental  points obtained during the  
first collision and  the  closed circles those 
during the  second collision by  reversing 
the  flow. b = 0.058 era, t)~ 0.013 rad. 
sec -1, ~ [ [ - - -  --  0.007 rad. see  1; iI ~a/==i7 ~ 
56~ I~rl=l~a'l  =33~ I~r 
(b) Tracings from eine films il lustrating 
the nonreversibil i ty of a three body 
collision in system 8. The angles ~s~ made 
by the line joining the  centers of the  lower 
two spheres are the same in the corre- 
sponding sequences of the  forward (upper 
part)  and reverse collision (lower part)  
bu t  the spheres separated from each other  
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Concluding remarks 

The present Part  completes a study of 
single particle behaviour in non Newtonian 
fluids and it is of interest to compare the 
results previously obtained in Newtonian 
fluids (1) with those in elasticoviscous and 
pseudoplastic liquids. This information has 
been summarized in table 6. 

Certain results are identical in all three 
types of fluid e.g. the measured angular 
velocities of spheres are found to be equal 
to half the velocity gradient and this, as 
shown in the second Part  (4), is also true 
in PoiseuiUe flow. The modes of deformation 
and burst of fluid drops are also similar in the 
three fluids, although in an elasticoviscous 
suspending phase, the drop is more aligned 
with the direction of the flow than theory 
predicts. 

Some of the phenomena reported with 
particles in elasticoviscous media (2) which 
differ from those in Newtonian fluids are also 
observed in pseudoplastic liquids. Thus, 

collisions between rigid spheres are ~n- 
symmetrical and irreversible, and the ro- 
tation of rigid rods and discs results in their 
adopting preferred limiting rotational orbits 
which, for Newtonian liquids, corresponds to 
minimum energy dissipation in Couette flow. 
I t  should be noted that  since it was shown 
tha t  the pseudoplastie fluids here used have 
no measurable elastic properties, and since 
there are no measurable normal stresses 
present at  low experimental velocity gra- 
dients, these results must be explained in 
terms of other theological properties of the 
fluid. 

The observed adoption of limiting ro- 
tational orbits by cylinders raises the ques- 
tion whether it is possible to flow a suspension 
of rods until all particles are oriented with 
their major axis parallel to the fluid vortieity 
axis. In this ease the suspension should be 
free flowing even at very high concentrations 
close to the packing volume fraction for 
cylinders which is between 0.78 and 0.91. 
However, the results of the experiments in 

25* 
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Table 6. Summary of particle behaviour in Couette flow of Newtonian and non-Newtonian liquids at tow 
_Reynolds numbers 

Newtonian liquids Elasticoviscous liquids Pseudoplastic liquids 

X~otation of a rigid sphere 2 wl/G = 1 

Angularvelocity0farigidrod follows eq. [11] 
Angular velocity of a follows eq. [11] 

rigid disc 

Drift in the orbit constant 
of a rod 

Drift in the orbit constant 
of a disc 

Deformation and burst of 
liquid drops 
Newtonian drop 

Elasticoviscous drop 

Pseudoplastie drop 

Orientation of liquid drops 
Newtonian drop 

Elastieoviscous and 
pseudoplastic drops 

Lateral migration of 
rigid spheres 

C = constant 

C = constant 

follows equation [26]; 
classes A, B, C burst 

D less than given by 
eq. [26]; only class B 
burst observed 

follows eq. [26]; only 
class B burst observed 

at low ~, follows 
eq. [24]; at high 2, 
follows equation [26] 

at low ~, follows 
eq. [24] 

nOlle 

away from the cylinder 
walls to the center of 
the annulus 

symmetrical and reversible 

Lateral migration of 
liquid drops 

Collision of rigid spheres 

wh ich  the  d i s t r i bu t ion  o f  o r i en ta t ions  o f  rods  
were s tud ied  in suspens ions  f r o m  0.03 to  2 0 %  
v o l u m e  concen t r a t i on ,  a n d  wh ich  are  de- 
scr ibed in a n o t h e r  p a p e r  (33), h a v e  shown  
t h a t  such  a s i t ua t ion  is n o t  real ized in 
prac t ice .  Thus ,  t he  m e a n  va lues  o f  the  pro-  
j ec t ion  r23 -= sin 01 o f  u n i t  l eng th  o f  the  rods  
in the  X2X3-p l ane  show t h a t  ~2a is n e v e r  
v e r y  close to  0, co r r e spond ing  to  pe r fec t  
a l i g n m e n t  w i th  t he  Xl -ax i s ,  increas ing  f r o m  
0.326 a t  c =  1 .5% to  0.686 a t  c =  20% , a 
va lue  a p p r o a c h i n g  t h a t ,  0.785, ca lcu la ted  for  
a r a n d o m  d i s t r i bu t ion  (34). These  resu l t s  in- 
d ica te  t h a t  i n t e rac t ions  b e t w e e n  the  rods  
p l a y  a v e r y  i m p o r t a n t  role in d e t e r m i n i n g  
the i r  equ i l ib r ium or ien ta t ions .  

The  m o s t  s t r ik ing  difference in  par t ic le  
b e h a v i o u r  b e t w e e n  t he  t w o  n o n - N e w t o n i a n  

2 o)l/G = 1 

follows eq. [11] 
follows eq. [11] at 

low G in polyacrylamide 
solutions; rotation ceases 
at higher G depending on 
polymer cone. and disc size 

C' --> 0 

CI --> cx3 

2 (ol/G = 1 

follows eq. [11] 
follows eq. [11] 

Ct --> 0 

Ct--~ (x) 

theory not obeyed; classes 
A, B and C burst 

theory not obeyed; 
classes A and B burst 

at D = 0, q~m = ~/4; at 
higher D, theory not 
obeyed 

at low ~, follows 
eq. [24] 

towards lower G, i.e. to 
the outer cylinder 

away from the walls, 
equilibrium closer to 
the outer cylinder 

unsymmetrical and 
irreversible 

towards lower G (inner 
cylinder) except for 

R -- RI < 0.75 
RH -- t1i 

when migration is to 
outer cylinder 

away from the walls, 
equilibrium closer to 
inner cylinder 

unsymmetrical and 
irreversible 

m e d i a  is in the  m i g r a t i o n  o f  r igid  a n d  de- 
fo rmab le  spheres.  The  a s ton i sh ing  reversa l  o f  
t he  d i rec t ion  o f  la te ra l  m o t i o n  in going  f r o m  
elas t ieoviseous  to  pseudop las t i c  l iquids,  even  
more  s t r ik ing ly  r evea l ed  in t he  n o n - u n i f o r m  
ve loc i t y  g r a d i e n t  exis t ing  in P o i s e u i l l e  flow (4), 
c a n n o t  be  exp la ined  a t  present .  The  sugges t ion  
t h a t  t h e  c o m b i n e d  ac t ion  o f  t he  ve loc i t y  
g r a d i e n t  a n d  n o r m a l  stresses can  a c c o u n t  for  
par t ic le  m i g r a t i o n  (8) appea r s  n o w  to  be 
overs implif ied.  

Also o f  g r ea t  in t e res t  is t he  o b s e r v e d  
a l i g n m e n t  w i th  t h e  d i rec t ion  o f  t he  flow o f  
discs in e las t ieoviseous  solut ions  a t  suffi- 
c ien t ly  h igh  shear  ra tes  a n d  p o l y m e r  con-  
cen t ra t ions .  It appears that this can be 
explained by postulating a balance between 
the torque due to elastic deformation of the 
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fluid, and that  due to viscous deformation. 
The result is similar to tha t  observed in the 
rotation of cylinders under the combined 
action of a shear and electric field (35), ex- 
cept tha t  there, a series of steady state 
values of ~0~ are possible depending on the 
ratio of electrical field strength to velocity 
gradient as well as on r e ,  The existence of 
an elastic restoring stress may also account 
for the observed lower deformability of 
elasticoviscous drops in N e w t o n i a n  suspend- 
ing fluids. 

Summary 
An experimental study of the behaviour of rigid and 

deformable particles suspended in pseudoplastic and 
elasticoviscous liquids undergoing slow Couette flow 
was undertaken. The velocity profiles deviated slightly 
from those obtained for Newtonian fluids, but the meas- 
ured angular velocities of rigid spheres showed that  the 
rotation of the field was equal to half the velocity 
gradient. While the measured attgular velocities of 
rods and discs were in accord with theory applicable 
to Newtonian liquids, in both non-Newtonian media 
there was a steady drift in the orbit towards an asymp- 
totic value corresponding to minimum energy dissi- 
pation in the flow. :Furthermore, discs in elastieoviseous 
solutions of polyacrylamide at higher shear stresses 
aligned themselves in the direction of the flow and 
ceased to rotate. 

Migration of rigid particles across the planes of 
shear in the annulus of the Coue#e was also observed. 
In pseudoplastie liquids, the migration was towards 
the region of higher shear, whereas the opposite was 
true in elasticoviscous liquids. 

The deformation, orientation and burst of pseudo- 
plastic drops in Newtonian liquids and that  of Newton- 
Jan drops in pseudoplastic fluids were similar to those 
previously in completely Newtonian systems. With 
elasticoviscous drops, however, the deformation was 
smaller than given by theory. 

As in elasticoviscous fluids, two-body collisions of 
rigid uniform spheres in the pseudoplastie liquids were 
unsymmetrical and irreversible, thus differing from 
collisions in Newtonian systems where complete 
reversibility is observed. 

While some of the observed phenomena in elastieo- 
viscous suspensions could be qualitatively interpreted, 
particle behaviour in the pseudoplastie liquids could 
not be explained in terms of the known rheological 
properties of the fluids. 

Zusammen/assung 
Es wurde experimentell das Verhalten yon festen 

und deformierbaren Teilehen untersucht, die bei der 
Suspension in strukturviskosen und viskoelastisehen 
:Flfissigkeiten einer langsamen Couette-Str6mung aus- 
gesetzt sind. Die Gesehwindigkeitsprofile zeigten ge- 
wisse Abweiehungen von denen Newtonscher :Flfissig- 
keiten, aber die gemessenen Winkelgeschwindigkeiten 
der festen Kfigelchen ergaben, dab die Drehung des 
:Feldes gleieh dem halben Gesehwindigkeitsgradienten 
war. Die gemessenen Winkelgeschwindigkeiten der 
Stgbchen und Scheiben stimmten mit der Theorie, die 
auf Newtonsche Fliissigkeiten zutrifft, iiberein. In  beiden 
nicht-Newtonschen :Fliissigkeiten versehob sieh jedoeh 
die Kreisbahn stetig zu einem asymptotischen Weft, 
der einem Minimum der Dissipationsenergie der Str6- 

mung entspraeh. Scheibehen in viskoelastischen L6- 
sungen von Polyacrylamid richteten sich bei h6herer 
Scherspannung in StrSmungsrichtung aus und zeigten 
keine Drehung mehr. 

Es wurden auch Wanderungen yon festen Teilehen 
fiber die Scherebene im Spalt der Couette-Anordnung 
beohachtet. In  strukturviskosen :Flfissigkeiten erfolgte 
die Wanderung in l~ichtung der h6heren Scherung, 
w~hrend auf elastisehe :Flfissigkeiten das Gegenteil 
zutraf. 

Die Deformation, Orientierung und das Aufbreehen 
strukturviskoser Tr6pfehen in Newtonschen :Flfissig- 
keiten und das Verhalten von Newtonschen Tr6pfchen 
in strukturviskosen :Fliissigkeiten waren den frfiher in 
rein-Newtonschen Systemen beobachteten Phg~nomenen 
5~hnlich. Die Deformation der viskoelastischen Tr6pf- 
chen war jedoch kleiner als die yon der Theorie vorher- 
gesagt worden war. 

ZweikSrper-ZusammenstSge zwischen festen gleich- 
f6rmigen Kfigelehen in strukturviskosen :Flfissigkeiten 
waren unsymmetriteh und ilweversibel. Darin unter- 
schieden sic sich yon Zusammenst6Ben in Newtonsehen 
:Flfissigkeiten, in denen vSllige Umkehrbarkeit beobach- 
tel~ worden war. 

WS~hrend einige der beobachteten Phi~nomene in 
viskoelastisehen Suspensionen qualitativ gedeutet 
werden konnten, lieB sieh das Teilchenverhalten in 
strukturviskosen :Fliissigkeiten nieht anhand der be- 
kannten rheologischen Eigenschaften der Fltissigkeiten 
erkliiren. 
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