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List of symbols

= gemi axis of revolution of spheroids;
projection of this axis on the X, X,-
plane at ¢,.

= function of r, defined by equation (20).

= radius of a rigid sphere, undeformed
drop and semi axis of equatorial dia-
meter of rigid cylinder; projection of
this axis on the X, X;-plane at ¢,.

B = minor axis of a deformed liquid drop.

C = orbit constant, orbit constant - at

t = 0; dynamic orbit constant.

D = geometrical deformation of a fluid
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drop.
s Ep = calculated deformation of a fluid
drop; deformation at burst.
= total normal force measured in the
rheogoniometer.
= (194 + 16)/(16A + 16).
== velocity gradient, at R in the Couette
annulus; value of G at burst.
G’ = measured velocity gradient.
h = height of liquid in the Coueite appa-
ratus.
K,n = constants for power law fluid.
= major axis of a deformed drop.
== tangential shear stress; normal stress
difference.
p = particle axis ratio = a/b.
e = equivalent ellipsoidal axis ratio.
= projection and average projection of
unit length of rod axis on the X, X,-
plane.
= radial distance of the particle center
from the axis of rotation in Couelte
flow; radius of inner and outer cylin-
der of Couette apparatus.
R, = radius of the cone of the rheogonio-
meter.
= axis ratio of the ellipse, projection of
particle rotational orbit in the X, X ;-
plane.
¢ = time.
T = period of rotation of particle.
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U, = fluid velocity along X;-axis.

X, X,,X; = Cartesian coordinate axes of the ex-
ternal flow field.

A4X,,4X, = distances along the X, and X, axes

of a sphere center from the mid-point
of the collision doublet axis.

& = rheological constant.

Oy = spheroid integral.

i = p/Gb 1.

A == viscosity ratio = #;/7,.

No» 1 = respective apparent viscosities of the
suspending and suspended phases.

Y = interfacial tension.

T = total torque applied on the liquid in a
Couette apparatus.

0y, @1 = spherical polar coordinates referred
to the polar axis X, of the external
flow field.

Cas Pr = rectilinear angles of approach and
recession of collision doublet of rigid
spheres.

®m = @,-orientation of principal axis of

deformed drop in shear flow.
= angular velocity of a spheroid.

.Q(R) £2;, Q24 = angular velocity of the fluid at R;
angular velocities of the inner and
outer cylinders of the Couefte appa-
ratus.

Iy = hydrodynamic torque.

Introduction

A series of investigations conducted in this laboratory
have described the behaviour of rigid and deformable
particles suspended in Newfornian liquids undergoing
Couette and Poiseuille flow at very low Reynolds num-
bers. Beginning with single isolated particles studies
were made of the rotations of rigid spheres, discs and
rods, the different modes of deformation and break-up
of liquid drops, and the orbits of rotations of flexible
filaments. Particle interactions in dilute suspensions
were then studied by observing two- and three-body
collisions between spheres, and by measuring the
transient and steady state orientations of cylinders. A
comprehensive review of this work and the underlying
theory has recently been given (1).

The motions of single rigid and deformable particles
have since been observed in sheared elasticoviscous
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liquidst) made by dissolving polyisobutylene in decalin
or polyacrylamide in water (2). The present investigation
represents an extension of this phase of the work to the
slow Cowueite flow of pseudoplastic liquids, i. e. liquids
which exhibit a continuous decrease in viscosity with
increasing rate of shear without any appreciable elastic
recovery when the shearing action is stopped. Included
in the experiments are measurements of the rotation,
migration, deformation and two-body collisions of
spheres and cylinders as well as a study of the de-
formation of elasticoviscous drops and aspects of
particle interactions in elasticoviscous fluids, hitherto
not examined. Similar experiments in tube flow will be
described in a forthcoming publication (4).

Tt should be pointed out that whereas in Newtonian
media, the particle motions can be predicted from the
linearized Nawier-Stokes equation with solutions given
by Jeffery (5), Brenner (6) and Taylor (7), no such theory
exists to describe the sometimes different behaviour

1) Following the terminology suggested by Reiner
and Scott Blair (3), the liquids designated ““viscoelastic”
in reference 2 are here termed “elasticoviscous”.

?) In this convention, based on the usual right-
handed coordinate system, X, is parallel to the vorticity
axis; the velocity filed is parallel to the X ;-axis instead
of along the X, -axis as is often used in rheology.

in elasticoviscous and pseudoplastic suspending fluids.
It has been suggested that some of these flow properties
are a result of the combined action of normal stresses
and the velocity gradient (2, 8). Hence, evidence
for the existence of normal stresses in the suspending
phase solutions was sought from measurements carried
out in a rheogoniometer. In addition the shear rate —
shear stress relationships were determined in each case.
Pseudoplastic liquids follow the so-called “power
law” (9), which in terms of the right-handed Cariesian
coordinate system X, X,, X; of the external flow field,
defined by U; = G'X, as shown?) in fig. 1a, may be
written:

[1]

Here p,; is the tangential shear stress (fig. 1b), G is the
rate of shear, and K and = are two constants depending
on the fluid. When n = 1, this equation reduces to
Newton’s law with K = 7, the viscosity; when »n > 1,
the liquid is termed dilatant and when n < 1, pseudo-
plastic. As a consequence of eq. [1], the velocity profile
in a liquid flowing under conditions of variable shear is
different from that in a Newtonian fluid. Although not
as pronounced as in Poiseuille flow, this effect would
be expected in the case of Couette flow in the annulus
between two counter-rotating cylinders considered in
the present work.

Pas = KG".

o] X, b X
ORBIT C
9; Ip"
Pis A
3
p
—% /‘ TN
X 3
3 // Py [Pre

7/

///

Po

Xz
c
pIsC X ROD
C=0 2 C=0
/ e \ —
STATIONARY
LAYER (—EE-) %‘ﬂ%'r—gg‘) X3 _$"—
o2 AN N
-—
b o T I Em o

Fig. 1. (a) Cartesian coordinate system X,, X,, X, of the external flow field. 0, and ¢, are the polar co-

ordinates with respect to X, as the polar axis. The upper end of the axis of revolution of a prolate spheroid

(re > 1) is shown tracing out the path of a spherical elliptical orbit having the orbit constant C. — (b) Stresses

acting on three faces of a unit cube in a Cartesian coordinate system X,, X,, X;; Py;, Pas and p,, arve the

normal stress components and p;;, (i = j), are the tangential (or shear) stress components. — (¢} Pro-

jections of a disc (left) and a rod (right) rotating in Couefte flow viewed along the X -axis after they have
attained orbits having the respective limiting values C = co and 0

24*
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The results described below show, however, that some
of the observed phenomena, such as the migration of
rigid spheres toward a region of higher shear in the
Couette apparatus, .and the unsymmetrical two-body
collisions cannot at present be adequately interpreted
in terms of the known rheological properties of the
fluids used.

Experimental part

The experiments were made in a Couetfe apparatus
previously described (10) in which the suspensions were
sheared in the annulus between two counter-rotating
cylinders. The particle motions were viewed through a
microscope aligned with the axis parallel to the planes
of shear and recorded with a Paillard Bolex camera
mounted on the microscope. The eine films were sub-
sequently analysed on a drafting table.

The pseudoplastic liquids were obtained by dissolving
a carboxyvinyl polymer (Carbopol 940, B. F. Goodrich
Chemical Company) in water, glycerine, ethylene
glycol, propylene glycol or a mixture of these, giving
solutions from 0.07 to 0.159%, by weight of polymer. The
resin was supplied as a powder in acid form and was
mixed by stirring into the solvent until completely
dissolved. The solution was then neutralized with few
drops of sodium hydroxide or triethylamine to the
accompaniment of a marked increase in viscosity.

Aqueous elasticoviscous solutions were prepared by
dissolving a high molecular weight polyacrylamide
supplied as a white powder (Cyanamer P250, Poly-
acrylamide, American Cyanamid Company) at concen-
trations ranging from 1 to 49,. These solutions when
stirred mechanically showed the Weissenbery climbing
effect (11), while the pseudoplastic liguids did not have
this property. The elastic behaviour of the polyacryl-
amide solutions was also evident when small tracer
polystyrene spheres were suspended in the liquids being
sheared in the Couelfe apparatus with one cylinder
stationary. When the other cylinder was suddenly stop-
ped, the particles showed translational recovery in a
direction opposite to that of the flow. This behaviour
was not observed with particles suspended in the
pseudoplastic solutions.

The p,; — G relations for these liquids, shown in
fig. 2a were measured in a rotational viscometer
(Epprecht Rheomat 15). The apparent viscosities of
all the liquids decreased with increasing @ and the
solutions of carboxyvinyl polymers were found to
follow eq.[1] in agreement with the observations of
Metzner and Dodge (12). Carbopol solutions had pre-
viously been studied by Fisher, Bauer and Wiberley (13),
who reported that they could *... clearly establish the
presence of a yield stress for concentrations only above

0.59,”, the value being 60 dyne cmn~? at pg = 6.6 and -

25 °C. However, nothing is recorded in the literature
for the lower concentrations used in this study (< 0.29%,).
None of the solutions studied in the present work were
thixotropic or rheopectic i.e. the measured shear
stresses did not change with time and at a given @
were identical after increasing or decreasing the shear
rates.

The normal stresses were measured at room tem-
perature (25 °C) with a Weissenberg rheogoniometer
{Sangamo Controls Ltd.) equipped with a flat plate
and a 1° cone of 5.0 cm of diameter?). The results for

%) These experiments were carried out with the
instrument of Dr. A. L. Copley at the Veterans Hospital,
East Orange, N.J. The authors are most grateful to
Dr. Copley for permission to use the rheogoniometer and
to Mr. King who kindly supervised the measurements.
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Fig. 2. (a) Log-log plot of the shear stress (dyne cm—2)
against the rate of shear (sec™?) for two pseudoplastic
liquids: open circles, system 1; closed circles, system 8;
and two elasticoviscous liquids: open triangles, sys-
tem 8; and two elasticoviscous liquids: open triangles,
system 10; and closed triangles, system 18. There were
no suspended particles in these liquids. — (b) Apparent
viscosities as a function of the shear rate for the same
systems

the polymer solutions at three concenfrations over a .
range of G from 2 to 200 sec™! are illustrated in fig. 3,
where the pressure difference pg; — p,, was calculated
from the total force F applied on the cone of radius R,
using the eguation:

2F
P3sg — P2 = m (2]

With polyacrylamide solutions, appreciable normal

‘stresses existed at shear rates < 5 sec! and increased

with increasing G and concentration of polymer in
solution. For example, in a 19{ solution at G = 5.5sec™?,
Paz — Paz Was 0.3 dyne em~2, but in 2 and 3%, solutions
at a lower G of 2.2 sec-! it reached 2.2 and 4.5 dyne
cm—2 respectively.

In the case of the pseudoplastic solutions, no normal
stresses were apparent at velocity gradients below
50 sec1. At higher rates of shear, normal stresses were
detected when the rheogoniometer was switched on,
but they decreased slowly as secondary flows developed.
In all cases the normal stresses were very small, decreas-
ing from 2.5 dyne em—2 at G = 217 sec! to only
0.2 dyne cm~® at @ = 68 secl, a value which was of



Gauthier et al., Particle motions in non-Newtonian media, I 347

102}

ol

P33~ Ppp »dyne cm™2

109

——5—
(e}
O

e d

o

o
G,

i0?

sec”’

the same order of magnitude as the sensitivity of the
apparatus. Due to the uncertainty in the measurements
the data for the pseudoplastic liquids in fig. 3 are shown
enclosed between two parallel lines. Since all the
experiments described below were carried out at
G < 8sec?, the existence of measurable normal
stresses in the pseudoplastic liquids is ruled out.

Lists of the different systems and their properties
are given in tables1 and 2 for suspensions of rigid and
deformable particles respectively. The velocity pro-
files were determined with small aluminum tracer
particles; polystyrene spheres, discs, and nylon rods

Fig. 3. Normal stresses as a function of the shear rate
for three elasticoviscous solutions of polyacrylamide in
water: open circles, 3% by weight; closed circles,
29, by weight; open triangles, 19, by weight, and three
pseudoplastic solutions: closed triangles, 0.29, by
weight, n = 0.79; open squares, 0.159, by weight,
n = 0.88; closed squares, 0.19; by weight, n = 0.90.
Because of the experimental error in the measurements
for the pseudoplastic solutions, the points are enclosed
in the hatched area

Table 1. Suspensions of rigid particles.
Psendoplastic media: carboxyvinyl polymer in alcohols; concentration = 0.07 to 0.159, by weight

System Solvent K dyne n Mo *) Suspended phase Range of particle
sec cm—2 Poise dimensions X 10% cm
1 aluminum particles <2
2 propylene nylon rods a = 25 to 53
glycol 10.2 0.77 7.26 b= 2to 3
3 polystyrene discs a= 6to 8
b = 46 to 72
4 propylene 9.8 0.79 6.91 polystyrene spheres b = 32 to 56
glycol
5 propylene 6.8 0.87 5.42 polystyrene spheres b = 67
glycol
6 ethylene 324 062 22.2 polystyrene discs v= 1
7 glycol polystyrene spheres b =58
8 propylene 30.6 0.63 20.4 polystyrene spheres b = 40 to 55
glycol
and glycerine
Elasticoviscous medium: polyacrylamide in water
System Solvent concentration 7o *) Suspended phase Range of particle
(by weight) Poise dimensions > 10% cm
9 water 0.025 20.2 polystyrene sphere b =67
10 water 0.030 49.7 aluminum particles <2
11 water 0.030 49.7 nylon rod a = 52
b= 4
12 water 0.040 150.5 polystyrene disc a= 6.5
b =54

*) Apparent viscosity measured at @ = 3.11 sec! except for systems 10 and 12 where ¢ = 2.18 sec.
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Table 2. Suspensions of deformable particles
System  Suspending phase ‘ Mo L) Suspended phase mY) A ¥ dyne b Defor-
Poise Poise et mm  mation
class
13 Pseudoplastic: 16.3 dibutylphthalate 0.21 0.01 <2 050-0.73 B-1
14 carboxyvinyl 16.3 Ucon oil LB 1715 2) 1.49 0.08 2 0.58-0.69 B-1
15  polymer in 16.3  silicone oil (200 fluid)®)  0.10  0.006 7.5 080  B-1
16 propylene glycol 16.3 silicone oil (200 fluid) ?) 5.08 0.37 7.5 0.65 B-1
1749y =071 16.3 silicone oil (510 fluid) ?) 0.51 0.03 0.66-091 —
% = 22.9 dyne sec”
cm~2
184)  Elasticoviscous: 11.5 silicone oil (510 fluid)?)  0.51 0.04 0.43-0.83 —
polyacrylamide in
water (¢ = 0.015)
19 Newtonian: 53.1 propylene glycol 0.24 0.004 8.6 0.63 A
20 Silicone oil 53.1 carbopol in propylene  16.3 0.31 8.6 0.63-0.86 B-1
(510 fluid)?) glycol (n = 0.71), » =
22.9 dyne sec® cm—2
21 53.1 carbopol in propylene 1.32 0.02 8.6 0.92 B-1
glycol (n = 0.97), x =
L.1 dyne sec? cm—2
22 53.1 carbopol in propylene 0.84 0.015 8.6 0.88 B-1
glycol (» = 1.0}, x = 0.8
dyne sec” cm—?
23 53.1 water 0.01 2x10* 21.2 0.81 A
24 53.1 1.59, by weight poly- 11.5 0.22 194 0.74 B-1
acrylamide in water
25 53.1 49, by weight poly-. 150.5 2.84 16.5 0.54-0.88 B-2

acrylamide in water

1) For the non-Newfonian liquids, 7, and 7, represent the apparent viscosities measured at G = 3.110 sec™?,

except for system 25 where ¢ = 2.927 sec™L.
2) Union Carbide, polyglycol oils.

3) Dow Corning Silicone Fluids (Series 200 and 510 fluid).
4) Systems 17 and 18 were used for the study of the migration of drops.

being used to study particle rotation, migration and
collision.

Systems 13 to 18 in table 2 were made up by dis-
persing Newfonian drops in non-Newfonian liquids,
and vice versa in systems 19 to 25. The liquid drops
were released from a hypodermic syringe immersed in
the suspending phase, and pictures were taken before
and during deformation. The interfacial tensions were
measured with a DuNouy tensiometer except for
systems 24 and 25 where the elastic properties of the
liquid might have influenced the readings. Here the
measurements were made using the rotating drop
method (14), in which a fluid drop of known volume is
suspended in an horizontal tube filled with a denser and
immiscible liquid. As the tube rotates, the drop assumes
an axisymmetric position and is elongated along the
axis of rotation until the deformation forces due to the
centrifugal field are balanced by the interfacial tension.
From the measured drop length and volume, speed of
rotation and density differences between the two
phases, the interfacial tension can be calculated.

Except for the normal stress measurements, all the
experiments were made in a thermostated room at
22 4 0.5°C.

Results and discussion

a) Velocity profiles

The velocity profiles in a pseudoplastic
{(system 1) and elasticoviscous liquid (sys-
tem 10) were determined by measuring the
translational velocities of small aluminum
particles and are in fig. 4.

For a fluid located in the annulus two
concentric cylinders of radius Ry and Ry,
rotating with respective angular velocities £2;
and O, the velocity gradient G at radial
distance R in cylindrical coordinates is
given by:
dQ(R)
dR ’

G=—R 3]

where £2(R) is the angular velocity of the
fluids.
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Fig. 4. Velocity profiles of non-Newfonian liquids in Couette flow. Ry == 4.756 cm, Ry = 5.652 cm. — Pseudo-

plastic liquid, system 1:
Qi = 0. Elasticoviscous liquid,

system 10:
(d) £1 = 0.030 rad. sec?,

(a) ;= 0.011 rad. sect, 21 = — 0.013 rad. sec™;
(c) Qr = 0.014 rad. sec™,
211 = — 0.031 rad. sec™*. — The positive and negative signs refer to counter-

(b)y Q1= 0.045 rad. sec™?,
Q11 = — 0.007 rad. sec™!;

clockwise and clockwise rotation respectively. The solid line represents the velocity profile of a Newifonian
liguid and the dashed lines in (a) and (b) were calculated from equation [6] with » = 0.77. The points are ex-
perimental. The arrows give the location of the stationary layer in the annulus

If 7 is the total torque applied on the
liquid, and A its height in the annulus, then
the shear stress at R is:

T
P 9 peh (4]

For a power law liquid, we may apply eq. [1]
and substitute it, with eq. [4], into eq. [3] to
obtain:

ARy 1 un | 5
dR~  2xKh =~ 2ta " 51
R 2

Integration of eq.[5] with the boundary
conditions

when R = Ry, Q(R)= &g,
and when R = Ri1, Q(R) = {11,

2
o
Rz/n "

then yields:

om+ o B (
_ - /
Qr — 011 Rill.%ﬂ. R2m

(61

For two counter-rotating cylinders, the
velocity gradient at the stationary layer is:

0 Rz/n -0 Rz/n
G(R) - % J Rlz/n RI21/7L = [7]
1~ A
When the liquid is Newtonian, n = 1 in
egs. [6] and [7] (15).

Infigs. 4a and 4b, the solid lines represent
the velocity profile for a Newtonian liquid while
the dashed lines were calculated from eq. [7]
for the pseudoplastic media using the measur-
ed n= 0.766. Despite the fact that n was
appreciably different from unity, it is evident
that the two velocity profiles are very close
together and the scatter in the experimental
points is such that they give a good fit with
either line. A small but significant deviation
from the Newtonian velocity profile was how-
ever obtained for the elasticoviscous liquid
(fig. 4c and 4d). At the stationary layer
indicated by the arrows in the figure, the
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velocity gradients calculated from eq. [7]
assuming Newtornian behaviour were slightly
greater than those, G, calculated from the
slope of the best fit line drawn through the
experimental points. For fig. 4¢, ¢'/G' = 0.94,
and for fig. 4d, ¢'/G = 0.98.

b) Rotation of particles

The angular velocities of rigid spheres,
dises and rods and the orientations of the
cylinders were studied over a range of G
from 0.1 to 2 sec~’. In the spherical polar co-
ordinates shown in fig. la with X, as the
polar (and also the viewing) axis, the rotation
of the axis of revolution of spheroids sus-
pended in a Newtonian liquid is described by
Jeffery’s equations (5):

9 _ @G % cog? in?
Wy =g = R (rp® cosPpy + sin?ey),  [8]
40, _ Grp*—1)

i = W sin2 ¢, sin26,, 9
where @ is the velocity gradient, 6, and ¢,
are the polar angles defined in fig. la
and 7, is the axis ratio (axis of revolution/
equatorial diameter) = 2a/2b.

(i) Spheres: For a sphere, r, =1 and
eq. [8] reduces to:

o=, [10]
a relation which has been verified experi-
mentally for Newtonian liquids (15). The
steady angular velocities of spheres sus-
pended in a pseudoplastic medium [system 5
(n = 0.87)] given in table 3, were also in
good agreement with the values calculated
from the experimental G and eq.[7], the
mean 2w,/G being 0.99 4+ 0.03.

Table 3 also compares the observed angular
velocities of spheres in an elasticoviscous
fluid with those calculated assuming Newlon-
ian behaviour of the fluid. It is evident that
the values were slightly less than the
theoretical with a mean 2w,/G'=0.95 4-0.02.
It was not possible to compute 2w, /G’ since the
velocity profiles were not measured, but the
decrease is of the same order as that of ¢/G
meagsured at the stationary layer in system 9.
Thus, it is probable that 2w,/G" == 1 and the
results show that the rotation of the field is
equal to half the velocity gradient.

(1) Rods and discs, angular velocity: The
variation of the angle p, with time of rigid
cylinders in the pseudoplastic systems 2
and 3, illustrated in fig. 5a, was obtained
from the cine films by measuring the angle

Table 3. Comparison hetween the calculated and ob-
served angular velocities of spheres in non-Newionian
liquids

Pseudoplastic liquid " Elasticoviscous liquid

system 5, n = 0.87 system 9
2w, obs. G 2w,(obs.) 2w,0bs. G  2w,(obs.)

rad cale. ) G rad. cale.?y = ¢
sec™! secl  (cale.)  secl sec™l  (cale.)
0.122 0.13 098  0.179 0.19 0.96
0.175 0.19 0.95  0.297 0.29 1.03
0.265 0.27 098  0.368 0.39 0.96
0.312 0.33 0.96  0.447 0.50 0.90
0.427 0.43 1.00  0.644 0.70 0.92
0.542 0.52 1.04 0818 0.85 0.97
0.555 0.53 1.06  0.963 1.02 0.95
0.580 0.58 1.00 1.08 1.16 0.93
0.624 0.65 0.98 1.28 1.36 0.94
0.705 0.73 0.92 1.55 1.78 0.98
0.728 0.74 0.99  2.04 2.18 0.94
0.789 0.75 1.04 Average: 0.94
0.904 0.88 102 Mean deviation: +0.02
0.907 0.92 0.98
0.955 0.93 1.02
1.17 1.07 1.09
1.07 1.11 0.96
1.15 1.19 0.97
0.977 1.00 0.98
1.55 1.48 1.04

Average: 0.99

Mean deviation: +0.03

1) Using eq.[7] with » = 0.87.
?) Using eq.[7] assuming Newfonian behaviour, n=1.

of the major axis of the particle with the
wall of the Couette cylinder as the reference
X,-axis (fig. 1a). As previously found in
elasticoviscous solutions, and predicted by
eq. [8], de/dt in each orbit is a minimum for
a rod at ¢, ==x/2, 3n/2 and for a disc at
¢, = 0, n. Again as in elasticoviscous liquids,
there was a eontinuous drift of the variation
of the angle 6, with time, and the particles
finally took on limiting rotational orbits
which are described below.
Integration of eq. [8] yields:
27t

tang, = rytan ——.

- 1]

where 7T is the period of rotation about
the X, -axis. Eqs.[8] and [11], applicable to
ellipsoids of revolution, have also been
verified for rigid rods (15) and discs (16),
providing an equivalent ellipsoidal axis
ratio 7,, instead of 7, is used, 7, being
calculated from the measured 7 by means
of the relation:

[12]
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Fig. 5. (a) Variation of ¢, with

bl

time for a rigid rod and a rigid
disc in a pseudoplastic solution.
Rod: open circles, r, = 23.2,
7o = 16.1, @ = 0.57 sec™, system 2.
Disc: closed circles, 7, = 0.11,
re=0.24, ¢ = 1.17sec™, system 3.
(b) Variation of ¢, with time for a

disc in an elasticoviscous solution,
system 12, 7p = 0.12, r, = 0.15.
Opencircles: ¢ = 1.04sec™1; closed
circles: ¢ = 0.31 sec™%. The curves
are calculated from eq. [11] using
the experimental 7, obtained for
the same disc in a Newtonian liquid.
When ¢, =0, the discs, now
aligned with the flow, did not rot-
ate further. — (¢) Variation of tan
@, with tan 27¢/T according to eq.
[11] for the same rod and disc
shown in (a) with the same con-
ditions. The lines drawn were cal-

culated using 7, obtained from
the experimental 7" and ¢ in a
Newtonian liquid

It can be seen from figs. 5a and 5b that the
results, using the experimental r,, are in
excellent agreement with eqs. [8] and [11].
As previously found in Newtonian and elasti-
coviscous media, the equivalent ellipsoidal
axis ratios of the particles determined from
eq. [12] using the experimental values, of 7'
and ¢ were greater than the particle axis
ratios 7, for the discs and smaller than ), for
the rods. The values when inserted into a plot
of r,/r, versus logr, given in fig. 6 lie close
to the best fit line drawn from data of pre-
vious investigations in Newtonian liquids
(16, 17), the scatter at low r, presumably
being due to some small imperfections in the
shape of the discs.

(iil) Rods and discs: Drift in the orbit constant
When eq. [9] is integrated, one obtains

1 1 1
-0.05 005 0i0

o
2t
fon =

Or,

tanf, —
AT (r¢? cos2qp, + sinZep,)t/2

[13]
where C is the orbit constant which can
assume values between 0 and co. It follows
from eq. [13] that

at (p,:%, tanf, = Crg,

and at ¢, =0, tanf,=C. [14]

Experimentally, the angle 0, was computed
from the following relations:

L%) = sin 6
a 1
b% = cos0,, [15]

2a’ (p,) and 2" (¢,) being the respective
projected lengths of the axis of revolution
and equatorial diameter on the X, X,-plane.
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Fig. 6. Equivalent ellipsoidal axis ratio 7., as a function

of the particle axis ratio ry for rods and discs in pseudo-

plastic liquids, The points are experimental (system 2,

3 and 6) and the line is drawn from reference (17) and

is the best fit of several studies carried out in Newtonian
liquids

The above theory, applicable in the Stokes
or creeping flow regime, does not predict
the existence of preferred orbits (5). This was
confirmed by experiments at very low
Reynolds numbers in Newtonian liquids in
which the orbit adopted by a rod or disc was
found to depend only on the initial conditions
of release (16, 18); the particle then continued
to rotate without change of orbit, provided
it did not sediment or collide with other
cylinders. However, in elasticoviscous fluids
(2), drifts in the orbit constant were observed
such that the particles took on limiting
rotational orbits as illustrated in fig. 1o
with ¢ = 0 for a rod and C = oo for a disc.
Similar drifts were here observed in the
pseudoplastic systems 2 and 3. To distinguish
the transient or dynamic orbit constant,
obtained from solutions of eq. [13] at a given
t/T, from the true orbit constant, C is
replaced by ¢’ below. In the final orientations
as illustrated in fig. 1¢, a rod spins about its
long axis which is aligned parallel to the
X;-axis, and a disc rotates in the edge-on
position with its axis of revolution in the
X, X -plane. A convenient way of presenting
the drift in orbit is to plot the projection of
the axis of revolution in the X, X;-plane. For
a constant orbit C, the projection is an
ellipse of axis ratio R, given by (19):

—1/2
I

1 1/2 1
Ry = (1 + _0—2) (1 oy [16]

Fig.7. (a) Calculated and computer-drawn X,X,-
projections of the axis of revolution of a rod (= semi-
major axis) with r, = 16.1 in various spherical elliptical
orbits whose constant C increases from 0 at the origin,
to the circle corresponding to C = co. — (b) and (¢) Re-
spective measured projections of one end of the same
rod suspended inan elasticoviscous liquid (G = 0.53sec™?,
system 11) and in a pseudoplastic liquid (G = 0.57sec?,
system 2) showing the progressive drift of the orbit
constant from " = co to €' close to 0 in the direction
given by the arrows. The lines are the best fit of the
experimental points

When r, > 1, the major axis lies along the
X, -axis and when 7, < 1, it lies along the
X,-axis. At ¢ = 0o, Ey3 =1 and the pro-
jection is a circle, the center of which re-
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2

Fig. 8. (a) Calculated and computer-drawn X,X,-
projections of the axis of revolution (= semi-minor
axis) of a disc with r, = 0.24 rotating in various
spherical elliptical orbits. At the origin C == 0; the
circle corresponds to ¢ = co. (b) Measured projections
of one end of the axis of revolution of the same disc
suspended in a pseudoplastic liquid (G = 1.11 sec™?,
system 3) as the orbit constant drifted from a value
initially close to " = 0 to " = co in the direction
given by the arrows. — (¢) Measured projections for
disc, 7, = 0.15 suspended in an elasticoviscous liquid.
Same particle and conditions as in fig. 5b. In (b)
and (c), the lines are the best fit through the ex-
perimental points

presents the projection at C = 0. Figs. 7a
and 8a show a set of ellipses calculated and

drawn with the aid of an IBM 360 computer
for various ¢ in the case of a rod with
r, = 16.1 and a disc r, = 0.24 assuming no
change in C with time. The actual time course
of the dynamic orbit constant ¢’ for the
same rod as in fig. 7a is shown in figs. 7b
and 7c¢ in elasticoviscous and pseudoplastic
liquids respectively. Starting with an orien-
tation where € was large, the curves appear
as concentric spirals with the biggest change
in ¢" occurring when ¢, is within 1+10°
of =/2 or 3x/2 where the particle spent 809,
of its time, very little decrease in €’ occurring
in the rest of the orbit. A similar plot was
obtained for a disc suspended in a pseudo-
plastic solution. Here, as illustrated in
fig. 8b, " increased from an initial value
close to 0 to a final value at infinity, and as
expected, the major change in ' occurred
while the particle was close to the orien-
tations ¢, = 0 and &. In all cases, the drifts
were rapid, taking only between 2 and 3 ro-
tations for the rod at ¢ = 0.57 sec™!, and 5
to 6 rotations for the disc at G = 1.1 sec™,
to reach the limiting orientations in the pro-
pylene glycol solution.

In a theoretical study, Saffman (20)
showed that in non-Newtonian liquids, a
particle could assumec preferred orbits but
was unable to predict in which direction ¢
would vary. He derived the following
relation for the rate of change in ¢”:

1 d¢ G
_ = ‘]
" dt Mo f(O/a’)s

[17]
where « is a constant characterizing the non-
Newtonian properties of the liquid and
f(C'/a) is a function depending on the par-
ticle shape and on the rate of strain tensor.
A plot of In (V/C, against time according to
the integrated form a eq. [17], with C; the
orbit constant at time f{ = 0, is given in
fig. 9 for different cylinders suspended in
elasticoviscous and pseudoplastic liquids.
The experimental points at each », and G fall
on straight lines suggesting that the function
f(C'[a) in eq. [17] is a constant for a given sys-
tem in the range of variation of ¢’ observed:
C'1Cy < 10 for dises and ¢"/Cy > 0.03 for
rods. As (' approached the limiting value,
@ (¢y)/a in the case of rods and b" {¢,)/b in the
case of discs became very close to 0. Hence 0,
from eq.[15] and C° could no longer be
computed with any accuracy and eq.[17]
could no longer be verified. In both elastico-
viscous and pseudoplastic liquids, dC’/dt in-
creased with the velocity gradient. In all these
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Table 4. Critical velocity gradient and torque for dises
100 rotating in an elasticoviscous solution of 29, poly-
acrylamide
50 Dia-  Thick- G1) 7% 1,9
meter  ness Tp re  (crit.) Poise dyme
2b 2a sec™! cm
cm cm x 104
0.072 0.008 0.11 021 635 11.1 1.06
0.115 0.020 0.18 029 375 13.1 4.08
1.0 0.121 0.019 016 028 158 160 221
0.13¢ 0015 012 024 093 171 1.60
0.174 0.016 0.091 0.15 053 179 232
05 0.182 0.012 0.064 014 029 187 1.17
0.188 0.168 0.096 0.17 0.31 186 1.54
~ ° —
OIS 1} Calculated assuming Newtonian behaviour.

ol

0.05)

0.0 1 1 1 {
] 50 100 1580 200 250

TIME , sec.

Fig. 9. Variation of log C"/C, with time for a rod
7o = 16.1 and different discs rotating in pseudoplastic
and elasticoviscous liquids. The lines drawn are the
best fit of the experimental points.

: dise, 7, =10.22, G = 2.38sec™, €', =0.75, system 6.

: disc, 7,=0.24, G =1.11sec?, €, = 0.66, system 3.

: dise, r,=10.15, G'==0.31sec™, C,=1.15, system 12.

: disc, 7,=0.22, @ =0.71sec™1, C, = 0.89, system 6.

: rod, ¢ =0.53sec™1, 0;=1.80, system 11.

: rod, G=0.558ec™?, €\, = 1.24, system 2.

: rod, @=0.5Tsec™1, {;, = 0.54, system 2.

SO W

experiments ¢ was sufficiently low to rule
out the presence of secondary flows, and sedi-
mentation during the time of a run was
negligible. Thus the drift in C" could only be
due to non-Newtonian behaviour of the fluids.

(iv) Rotation of discs in elasticoviscous media :
Previous work (2) with dises in elastico-
viscous solutions of polyisobutylene under-
going tube flow had shown that the particles
rotated according to eq. [11]. Similar results
were here obtained with discs rotating in 29,
aqueous polyacrylamide solutions subjected
to Couette flow provided that the shear rate
was below a certain critical value which, as
shown in table 4 decreased with inecreasing
particle diameter. Above this critical ¢ the
discs oriented themselves with their axis of
revolution along the X,-axis, ¢, = 0, 6, = 90°
and, as illustrated in fig. 5b, ceased to rotate

2) Extrapolated for low & from the viscosity-rate of
shear relation.
3) Torque calculated from eq. [18].

further. They remained aligned with the
direction of the flow even when the velocity
gradient was further increased. The drift in
the angle 6, to 90° occurred even when the
disos were initially in the ¢;-orientation == 0°.
This is shown in fig. 8¢ for a disc having
r, = 0.15, for which ¢’ was 2.36 when ¢,
reached 0°, after which 0; continuously
increased to 90° with ¢, constant.

The alignment of discs is most likely due
to the elastic properties of the polyacrylamide
solutions which increase with increasing
polymer concentration and which, during
shear give rise to a restoring torque opposing
that due to viscous deformation of the fluid.
When the particles cease to rotate, the two
torques balance each other. Table 4 lists
values of the hydrodynamic torque I3
at the critical G calculated from Jeffery’s
theory (5) for a spheroid in a Newtonian
liquid in the orbit ¢ = oo (no spin), using
the relation {21):

__ 8mn,G

Ty 3,

(18]

Here «, is an integral, whose value for a
cylinder has been shown to be:

A
N = 75> [19]
where
| recosTlry, re?
A= M—rgpe ~ T—rg" {20]

As @ is further increased, the particle
remains at a constant orientation indicating
that the elastic torque is increasing faster
than the hydrodynamic torque. »
A similar alignment of rods in the direction
of flow was not observed as here the particles
oriented themselves with the axis of re-
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volution (and major axis) parallel to the
vorticity or Xj-axis and were observed to
spin about their axes.

¢) Deformation and break-up of liquid drops

As previously found in Newtorian (22) and
elasticoviscous fluids (2), spherical drops in
all the systems listed in table 2 were deformed
into ellipsoids in shear flow, and the de-
formation increased with increasing velocity
gradient. At high ¢/, the drops were observed
to break-up and, as indicated in table 2 and
described later, could be grouped into various
classes according to their mode of break-up
(22).

The motion of a neutrally buoyant fluid
drop of radius b and viscosity %, suspended
in a Newtonian liquid of viscosity #,, sub-
jected to Couelte flow, was first treated by
Taylor (23). He showed that the drop be-

haviour depends only on the two dimension-
less parameters 4 = #,/n, and » = y/Gby,,
y being the interfacial tension. To achieve a
balance between the interfacial tension and
the normal components of the viscous stress
acting across the interface the drop undergoes
a change of curvature, becoming an ellipsoid
having major and minor axes L and B
respectively, as shown in fig. 10a.

Two cases were considered

(i) The interfacial tension effects are
dominant over the viscous effects: 1 = 0(1),
%> 1, with the result that the geometrical
deformation D = L — B/L + B is given by:

p_p-1®
x
G b,
= 700, 21
y fA), [21]
Gb, em.sec™
002 004 006

040

030

020

0.10]

1 I I
0 010 020 030

Gb , cm. sec™

Fig. 10. (a) Coordinate system for
the deformation of a drop situated 80+
at the origin of a field of Coueite
flow, Uy = G X,. — (b) Deformation
of Newtonian drops in a pseudo-
plastic liquid as a function of Gb.
System 13, line 2: open circles,
b= 0.050 cm; closed circles,
b = 0.064 cm; half open circles,
b = 0.074 cm. System 14, line 1:
open triangles, b = 0.058 cm; clo-
sed triangles, b = 0.069 cm. System
15: half open circles, b = 0.080 cm.
System 16: half open triangles,
b = 0.065 cm. The curves are the
best fit through the experimental a0
points. — (c) Variation of the angle

of deformation for the same systems

¢, + degrees

as in (b). The lines are also the 0
best fit through the experimental
points

1
0.40
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where F is the ratio of surface tension to sometimes given good agreement with the
viscous forces, and theory at values of D > 0.2. Chaffey and
194 + 16 Brenner (24), taking into account second
fA) = 167716 [22] order terms in the deformation have treated
case (i) and found that ¢, increases with D
The drop major axis is oriented at an angle according to the relation
P = pp = 7|4 (fig. 10a).
(i) The interfacial tension effects are om ="+ (i " ﬂ) D. [24]
negligible compared to the viscous effects: 4 5 5

A> 1, x = 0(1), in which case Coxz (25) has recently given a more general
5 treatment of the theory applicable to inter-
41’ [23] " mediate values of A and » for which O ab
equilibrium, lies between n/4 and x/2. The
relations for D and ¢, were found to be

D=

and the drop aligns itself with the flow,
Pm =n/2. Eqs.[21] to [23] are valid for

very small deformations only, although D= 5(192 + 16) [25]
experiments in Newtonian systems (22) have 400+ 1) V(202 + 1927
0601  o30r
qQ © b /2' .
29 v S ny
// /’ I
/, //
" % o020+ /
040 Vs // 2
d e
o I/ // A
,/ //
t/ - [~
o020t oof -~
/e :
S
O, vy
//
O ) L ) ) i (o] ) ) 1 L
0 00z 004 006 008 ) 002 004 006 008
Gb , cm.sec™ ’ Gb , cm. sec'

1 ] 1
0 OO0 020 030 040 050 6 065 0o 0B 020
D D

Fig. 11. Upper part: (a) Deformation of pseudoplastic drops in a Newtonian liquid. Newtonian drops, system 19:
open circles, b = 0.063 cm. System 20: closed circles, b = 0.069 cmi; half open circles, b = 0.080 cm. Sys-
tem 21: open triangles, b = 0.092 cm. System 22: closed triangles, b = 0.088 cm. The line was calculated
for system 19 using eq. [21]. (b) Deformation of elasticoviscous drops in a Newfonian liquid. Newfonian
drops, system 23: open circles, b = 0.081 cm. The remaining points are: system 24: open triang-
les, b= 0.074 cm, system 25: half open circles, b = 0.055cm; closed circles, b = 0.067 cm; closed
triangles, b = 0.088 cm. The lines 1, 1/, 2' were calculated using eq. [21] for systems 23, 24, 25. Line 2 is
the best fit through the experimental results for system 25. — Lower part: (c¢) Variation of ¢y with D
for the same systems as in (a). The line is calculated from eq.[24] for system 19. (d) Variation of ¢y, with D
for the same systems as in (b). Lines 1 and 2, are calculated from eq. [24] for systems 23 and 24 respectively
and line 3 is calculated from eq. [26] for system 25. The dashed line is the best fit through the experimental
results for system 25
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(pmzl—l—i‘oan‘l( 191).

4 2 20 % [26]

For the special cases given above, eq. [25]
reduces to eq.[21] and [23] respectively,
and ¢, in eqgs.[26] assumes the limiting
values #/4 and /2.

(1) Newtonian drops: The results for Newton-
ian drops in a pseudoplastic liquid, systems 13
to 16, are shown in fig. 10 where the de-
formation D has been plotted against Gb.
Although the points obtained at different
drop diameters in each system fitted on a
single curve (e.g., curves 1 and 2) as pre-
dicted by theory, a linear relation between D
and G'b was not found, presumably because #,
decreased with increasing @ leading to an
increased 2 and hence X in eq. [21].

The variation of the angle ¢,, with D for
drops in the same system is shown plotted
in fig. 10c. The lines, which are the best
fit through the experimental points, have an
intercept at ¢,, = #/4 for D = 0 as predicted
by egs. [24] and [26], and found in Newtornian
gystems (22). This contrasts with the be-
haviour of drops in elasticoviscous liquids (2)
where for D = 0, the intercept of ¢,, on the
D-axis was 61° showing an increased align-
ment of the major axis of the ellipsoid with
the direction of flow.

(ii) Non-Newtonian drops: The results for
the deformation of pseudoplastic and elastico-
viscous drops in Newtorian liquids are shown
infig.11a and 11 b. Inthese systems the values
of 1 and » were such that eq. [21] is a good
approximation of eq.[25]. Theline in fig.11a
was calculated from eq. [21] for the Newton-
ian system of pure propylene glycol drops in
silicone oil, and the points are experimental.
It is evident that, except at high Gb, the
data obtained with pseudoplastic drops also
lay on this line, a result which is in accord
with eq. [21] since the respective calculated
slopes = (#,/7)f(4), in systems 20, 21, and 22
are only 59, 39, and 0.5%, different from
that in system 19. Similarly, the angles of
orientation ¢,, plotted in fig. 11c fitted,
within experimental error, around the line
calculated from eq. [24].

In contrast to pseudoplastic drops, the
measured deformation of elasticoviscous drops
of aqueous polyacrylamide in Newtonian li-
quids, while still a function of G/b, was less
than predicted by Coxs theory. This is
illustrated in fig. 11b where the points for the
Newtornian system of water in silicone oil
lie on line 1, calculated from eq. [25]. But so
do the experimental points in system 24 for

which the calculated slope should be 109
higher as shown by the dashed line 1'.
In 4%, aqueous polyacrylamide, system 25,
the points at different drop diameters lie
on a single line [2] actually having a lower
slope than line 1 although the initial theoreti-
cal slope is 409, higher, as indicated by the
calculated dashed curve 2. This behaviour
may be due to the existence of normal
stresses and/or elastic recovery of the liquid
inside the drops which act to decrease the
deformation. The ¢, -orientations of elastico-
viscous drops are shown in fig. 11d. Again,
the points obtained in the Newfonian sys-
tem 23 give a good fit of eq. [24] (line 1),
and unlike the deformation, the measured ¢,
of elasticoviscous drops in system 24 having
a low 1 agree quite well with theory as is
illustrated by line 2 which was calculated
from eq. [24] assuming a constant A in the
range of G used (0-2sec™!), but actually
measured at ¢/ = 3.11 sec™'. In system 25,
A 1s too great to permit comparison with the
second order theory of Chaffey and Brenner,
and the results are seen to lie on a line having
an appreciably greater slope than that
calculated from eq. [26].

Nevertheless, the experimental results
show that, as predicted by the theory (24,
25), at a given deformation, the alignment of
the deformed drop with the flow is greater
at higher 1.

(iii) Break-wp of drops: Table 2 shows that
the values of 1 in the suspensions of liquid
drops varied from 2 x 10~* to 2.8 and, as in
Newtonian liquids in this range of 1 (22),
drop break-up in Classes A, B-1 and B-2 was
observed?). When A< 10-2 break-up occurred
in Class A with the drops developing pointed
ends and the liquid being ejected at the two
extremities. System 25, in which 1 = 2.8,
showed Class B-2 break-up in which the
elasticoviscous drops extended into long
threads which only broke up into small
droplets when the apparatus was stopped.
The remaining systems all having 4 < 1,
belonged to Class B-1 in which the drops
were pulled out until a neck was formed
between their rounded ends, which then
separated to form two parent drops with
three satellite droplets between them. This
behaviour paralleled that previously found in

4) Recent work by Torza et al. (26) has shown that
drops exhibiting Class A break-up are in unstable
equilibrium, as a result of too rapid an increase in the
velocity gradient. When G is increased very slowly and
the drops are always in true equilibrium, Class B-1
break-up is observed in these systems.
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Newtonian systems and with Newtonian
drops in polyacrylamide solution (2).

Measurements of the velocity gradient at
break-up, Gz, were made and are listed in
table 5 together with the deformation at
burst, £y, calculated from eq. [21] using the
measured apparent viscosities of the drop
fluid at (5. It may be seen that in a given
system the values of (fyb were independent
of 5. The mean values of Ep for pseudo-
plastic drops lay at the top of the range
previously found for Newtonian systems
(Ep=0.52 +0.10). In the case of the elastico-
viscous drops of system 24, L was con-
siderably higher, and this, as the abnormally
low deformability reported above, was pro-
bably due to the effects of normal stresses
in the polyacrylamine solution.

d) Migration of rigid and deformable particles

(i) Rigid spheres: Previous experiments (2)
had shown that rigid spheres suspended in an
elasticoviscous fluid subjected to Couette flow
migrated towards the outer cylinder. It was
suggested that since the velocity gradient
was greater at the inner cylinder than at the
outer, a pressure difference due to the normal
stresses would result in a force pushing the
spheres towards the outer cylinder. In the
present experiments with pseudoplastic li-
quids, the opposite behaviour was found: the

particles migrated towards the inner cylinder,
i.e. towards the region of greater velocity
gradient. As described elsewhere (4), a similar
result was obtained in tube flow where rigid
particles migrated towards the tube wall,
whereas in elasticoviscous liquids they had
been found to migrate towards the tube axis
(2). The results in Couette flow are illustrated
in fig. 12 and it is evident that the direction of
migration was independent of which cylinder
was stationary (curves 1 and 3) and of the
direction of rotation (curves 1 and 2). The
rates of migration increased with the sphere
diameter (curves 1 and 5) and also with the
velocity gradient (curves 1 and 2). Sur-
prisingly, however, when the particles were
close to the outer cylinder
R — E1)/(Br1 — By) > 0.75],

they migrated towards it (curve 4). In all
experiments ¢ was less than 8 sec™!, and as
shown in fig. 2, there are no measurable
normal stresses at this value of the shear rate.
In addition, great care was taken to avoid
secondary flows in the annulus of the
Couelte apparatus which might have ac-
counted for radial migration. A low viscosity
(0.01 Poise) mixture of silicone oil and carbon
tetrachloride was used as bottom layer, on
which the propylene glycol solution (#,
== 6.9 Poise) was floated. In all cases, the
sedimentation rates were less than 0.1 cm/h

Table 5. Velocity gradient at burst of non-Newtorian drops suspended in a Newtonian liquid

System 19 . System 20 System 21
b Gpt) Gpb b Gpl) Gpb b Ggl) Gpb
cm sec™! cm gec! cm gec™! cm sec™! om sec™1 em sec™!
0.028 4.11 0.11 0.042 2.48 0.12 0.031 2.81 0.09
0.040 1.91 0.08 0.053 1.84 0.10 0.040 2.60 0.10
0.051 1.84 0.09 0.073 1.44 0.11 0.050 1.95 0.10
0.063 1.68 0.11 0.092 1.11 0.10 0.064 1.33 0.09
0.106 0.96 0.10 0.156 0.87 0.10 0.080 1.02 0.08
Average: Ggb = 0.10 Gpb = 0.10 Gpb =091
Eg2) = 0.61 Ep? =065 Egp? =059
System 23 System 24
0.043 5.18 0.20 0.033 8.20 0.27
0.055 3.57 0.21 0.041 6.10 0.26
0.073 3.19 0.23 0.052 4.79 0.25
0.087 2.61 0.19 0.066 4.02 0.26
0.114 1.79 0.22 0.083 3.04 0.26
Average: Gpb = 0.22 Gpb=0.26
Ep® = 0.54 Ep?) =073

1) G g velocity gradient at burst.

?) E g calculated deformation at burst from G'p b using the measured drop apparent viscosity, and eq. [21].



Gauthier et al., Particle motions in non-Newtonian media, I

359

Flg 12. Migration of rigid particles 1.00

in a pseudoplastic liquid in Couette 4
flow, system 4, R = 4.756 cm,
Ri1 = 5.652 cm. Curves 1 to 4:

b = 0.056 cm; curve 1:

Q1 =0, 211 = —1.07 rad. sec™?,

G = 7.32 sec™!; curve 2:

021 =0, Q1= —0.748 rad. sec1,

G = 5.13 sec™!; curves 3 and 4:

Qr = 1.07Trad. sec™!, Qi1 =0, o
@ = 5.20 sec™L; curve 5:

b = 0.032 cm,

Q1 =0, Q11 = 1.07 rad. sec1,

G = 7.32 sec™™.

The size of the spheres relative to
the gap width is also shown; posi-
tive and negative signs of £
indicate counter-clockwise and
clockwise rotation of the cylinders
respectively. The values of & are o

075

0.25

S B
-OUTER CYLINDER

],2,3,4@ SQ

{ ! 1

those calculated at the stationary 0
layer or at the resting inner
cylinder

for a sphere (b = 0.02 cm) located in the
middle of the annulus. Moreover, during the
experiments, the spheres did not sink or rise
at a rate greater than the one observed
without shear. Taylor (27) in a study of the
secondary flows between two cylinders rotat-
ing in the same direction found that they were
a succession of alternate vortices of opposite
direction extending from one cylinder to
the other. When the cylinders counter-
rotated, the vortices developed in two
regions of the annulus, one close to the inner
cylinder and the other close to the outer
with the circulation still changing direction
from one vortex to the other as if they were
geared together. Consequently, in the pre-
sence of secondary flows, the particles would
be expected to migrate towards the inner or
outer cylinders and also upwards and
downwards depending on their initial position
of release in the annulus. This behaviour
was not observed during the course of the
above experiments where, at a given @, the
direction and rate of migration were the
same when a sphere was located at different
heights but at the same radial distance R
in the annulus.

(i) Deformable drops: In both elasticoviscous
and pseudoplastic liquids as shown in fig. 13a
and 13b respectively, fluid drops migrated
away from the cylinder walls towards an
equilibrium position. The rates of migration
increased with increasing velocity gradient
and the ratio b/(Ry—R;) and decreased with
decreasing radial distance from the equi-
librium position. The position of equilibrium
was itself dependent on G and b/( R — Ry),

- 1
25 50 % 100

being closer to the inner cylinder for drops
suspended in a pseudoplastic liquid and
closer to the outer cylinder for drops in an
elasticoviscous medium.

Two-way migration of deformable drops
in Couette flow had previously been observed
in Newtonian systems (28), but there the
equilibrium position was about half-way
between the cylinders and the phenomenon
was explained as resulting from a com-
bination of the particle deformation and its
interaction with the wall (29, 30). In non-
Newtorian media, presumably, there is super-
imposed on the wall migration, the migration
observed with rigid spheres, and this results
in a displacement of the equilibrium position
towards one or other of the cylinders.

e) Collision of spheres

In Newtonian liquids at low Reynolds
numbers, two-body collisions between rigid
spheres are found to be symmetrical and
reversible (31, 32). The particles approach
along curvilinear paths and, after coming into
apparent contact with each other, rotate as a
rigid dumbbell, until they separate at an
orientation ¢, of the axis joining their centers,
which is the reflection of the angle of contact.
The spheres then recede along curvilinear
paths which are the mirror image of the paths
of approach. If the flow is now reversed,
the spheres recollide along paths which are
the exact reverse in time and space of those
followed in the forward collision.

In elasticoviscous liquids, however, two-
body collisions, between rigid spheres are

25
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Fig. 13. Migration of liquid drops in
Couette flow. Ry = 4.756 cm, Ryy =

INNER_CYLINDER

5.652 om. (a) Suspending phase:
Pseudoplastic liquid, system 17. Cur-
ves 1-3:

b = 0.066 cm, open circles:

01 = 0495 rad. sec™t, Q= 0,

G = 2.40 sec*; closed circles:

, 01 =0, Q11 = —0.293 rad. sec?,

1200 G = 2.01 sec™?; closed triangles:
01 = 0.281 rad. sec1,
Q1 =0, G=1.36sec1.

Curve 4, open triangles:

075

b= 0.091 cm, Q7 = 0.495 rad. sec?,
011 =0, G = 240 sec™ (b) Suspen-
ding phase: Elasticoviscons liquid,
system 18. Open circles b: = 0.043 cm,
1 = 0.144 rad. sec™?, 21 = —0.143
rad. sec™, G = 1.68 sec™; closed cir-
cles: b = 0.054 cm, 05 = 0.144 rad.

i

025

INNER CYLINDER
S

sec?, Q11 = — 0.143 rad. sec™?, G =
1.68 sec™; open triangles: b = 0.064
cm, £ = 0.061l rad. secl, Q=
—0.062 rad. sec1, G = 0.72 sec™1; clo-
sed triangles: b = 0.083 cm, 21 = 0.151
rad. sec™l, 2y = —0.102 rad. sec,
G = 1.43 sec™!. — The size of the drops
relative to the gap is also shown:
positive and negative signs of Q
refer to counter-clockwise and clock-
wise rotation of the cylinders respect-

3600
TIME , sec.

found to be unsymmetrical and irreversible
(2). The same behaviour was here observed
in pseudoplastic media and is shown in fig. 14a
in a dimensionless plot of the paths of the
centers of two polystyrene spheres of equal
diameter colliding in the equatorial plane,
i.e. 6; = /2. Tt is convenient to describe
the collision in terms of the rectilinear col-
lision angles of approach, ¢,, and recession,

Pr»
[7al = cost (53%).

and similarly for ¢,. 4X, is the separation
of particle centres along the X,-axis when the
axial separation of centers AXg; > 4b. The
figure shows that the paths of approach and
recession were curvilinear and in the first
collision | ¢,| was greater than |¢,| resulting
in an increased separation of their centers
along the X,-axis. Upon reversal of the flow,
the spheres recollided at an angle |¢,'| = |, |

{27]

5400

ively, and the values of G were cal-
culated at the stationary layer or
at the stationary cylinder

and separated at | ¢, | < |, | again increas-
ing their separation. After three such col-
lisions, the particles no longer made apparent
contact. Three body collisions were also
observed; as expected these were also un-
symmetrical and irreversible and, as shown
in fig. 14b, the values of 4X, for all three
spheres increased after each collision. The
cause of this irreversibility, as in elastico-
viscous suspending media, is probably due to
the asymmetry of the forces generated by the
fluid acting along the doublet axis, com-
pressive in the quadrant of approach, and
tensile in that of recession. In Newtonian
liquids, these forces are symmetric around
the X,-axis, ¢; = 0 (31), whereas in both
elasticoviscous and pseudoplastic media this
does not appear to be the case. Furthermore
it appears that on reversing the rotation of
the field, the magnitude as well as the sign
of the force is changed.
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Fig. 14. Collisions of rigid spheres in
Couette flow. (a) Dimensionless plot of the

>

-

paths of particle centers about the mid-
point of the doublets for an equatorial
collision (0, = =/2) in a pseudoplastic
liquid, system 6. The open circles are the
experimental points obtained during the
first collision and the closed circles those
during the second collision by reversing
the flow. b = 0.058 cm, Q21 = 0.013 rad.
sec™, Qrr = — 0.007 rad. sec?;
56°, || = || =38 || = 17"
(b) Tracings from cine ﬁlms illustrating
the nonreversibility of a three body
collision in system 8. The angles ¢, made
by the line joming the centers of the lower
two spheres are the same in the corrc-
sponding sequences of the forward (upper
part) and reverse collision (lower part)

=

|fpa[— ¢I

e 3

-33° +|7°

Da79,

= -45°¢ -33¢ +7° +50°

but the spheres separated from each other

Concluding remarks

The present Part completes a study of
single particle behaviour in non-Newtonian
fluids and it is of interest to compare the
results previously obtained in Newtonian
fluids (1) with those in elasticoviscous and
pseudoplastic liquids. This information has
been summarized in table 6.

Certain results are identical in all three
types of fluid e.g. the measured angular
velocities of spheres are found to be equal
to half the velocity gradient and this, as
shown in the second Part (4), is also true
in Poiseuille flow. The modes of deformation
and burst of fluid drops are also similar in the
three fluids, although in an elasticoviscous
suspending phase, the drop is more aligned
with the direction of the flow than theory
predicts.

Some of the phenomena reported with
particles in elasticoviscous media (2) which
differ from those in Newfonian fluids are also
observed in pseudoplastic liquids. Thus,

collisions between rigid spheres are wun-
symmetrical and irreversible, and the ro-
tation of rigid rods and discs results in their
adopting preferred limiting rotational orbits
which, for Newtonian liquids, corresponds to
minimum energy dissipation in Couette flow.
It should be noted that since it was shown
that the pseudoplastic fluids here used have
no measurable elastic properties, and since
there are no measurable normal stresses
present at low experimental velocity gra-
dients, these results must be explained in
terms of other rheological properties of the
fluid.

The observed adoption of limiting ro-
tational orbits by cylinders raises the ques-
tion whether it is possible to flow a suspension
of rods until all particles are oriented with
their major axis parallel to the fluid vorticity
axis. In this case the suspension should be
free lowing even at very high concentrations
close to the packing volume fraction for
cylinders which is between 0.78 and 0.91.
However, the results of the experiments in

25%
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Table 6. Summary of particle behaviour in Couette flow of Newtonian and non-Newfonian liquids at low
Reynolds numbers

Newtonian liquids

Elasticoviscous liquids Pseudoplastic liguids

2 w,/G =1
Angular velocity of arigidrod follows eq. [11]
follows eq. [11]

Rotation of a rigid sphere

Angular velocity of a
rigid disc

Drift in the orbit constant C = constant

of a rod

Drift in the orbit constant
of a disc

Deformation and burst of
liquid drops
Newtonian drop

¢ = constant

follows equation [26];
classes A, B, C burst
D less than given by
eq. [26]; only class B
burst observed
follows eq. [26]; only
class B burst observed

Elasticoviscous drop

Pseudoplastic drop

Orientation of liquid drops
Newtonian drop at low 4, follows

eq. [24]; at high 4,

follows equation [26]
Elasticoviscous and at low 4, follows
pseudoplasgtic drops eq. [24]
Lateral migration of none

rigid spheres

away from the cylinder
walls to the center of
the annulus

Lateral migration of
liquid drops

Collision of rigid spheres

which the distribution of orientations of rods
were studied in suspensions from 0.03 to 20%,
volume concentration, and which are de-
scribed in another paper (33), have shown
that such a situation is not realized in
practice. Thus, the mean values of the pro-
jection ryy = sin 6, of unit length of the rods
in the X,X;-plane show that 7,; is never
very close to 0, corresponding to perfect
alignment with the X;-axis, increasing from
0.326 at ¢ = 1.5%, to 0.686 at ¢ = 209,, a
value approaching that, 0.785, calculated for
a random distribution (34). These results in-
dicate that interactions between the rods
play a very important role in determining
their equilibrium orientations.

The most striking difference in particle
behaviour between the two non-Newfonian

symmetrical and reversible

2w/G =1
follows eq. [11]

follows eq.[11] at
low @ in polyacrylamide -
solutions; rotation ceases
at higher G depending on
polymer cone. and disc size

2 w,/G =1
follows eq. [11]
follows eq. [11]

=0 =0
0" — oo ' >0
theory not obeyed ; classes theory not obeyed;
A, B and C burst classes A and B burst

at D = 0, ¢ = 7/4; at
higher D, theory not
obeyed

at low A, follows
eq. [24]

towards lower G (inner
cylinder) except for
R — Ry

—a < 0.75
Byr — By

towards lower G, i.e. to
the outer cylinder

when migration is to
outer cylinder

away from the walls,
equilibrium closer to
inner cylinder

away from the walls,
equilibrium closer to
the outer cylinder

unsymmetrical and

unsymmetrical and
irreversible

irreversible

media is in the migration of rigid and de-
formable spheres. The astonishing reversal of
the direction of lateral motion in going from
elasticoviscous to pseudoplastic liquids, even
more strikingly revealed in the non-uniform
velocity gradient existing in Poiseuille flow (4),
cannot be explained at present. The suggestion
that the combined action of the velocity
gradient and normal stresses can account for
particle migration (8) appears now to be
oversimplified.

Also of great interest is the observed
alignment with the direction of the flow of
discs in elasticoviscous solutions at suffi-
ciently high shear rates and polymer con-
centrations. It appears that this can be
explained by postulating a balance between
the torque due to elastic deformation of the
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fluid, and that due to viscous deformation.
The result is similar to that observed in the
rotation of cylinders under the combined
action of a shear and electric field (35), ex-
cept that there, a series of steady state
values of @, are possible depending on the
ratio of electrical field strength to velocity
gradient as well as on 7,. The existence of
an elastic restoring stress may also account
for the observed lower deformability of
elasticoviscous drops in Newtonian suspend-
ing fluids.

Summary

An experimental study of the behaviour of rigid and
deformable particles suspended in pseudoplastic and
elasticoviscous liquids undergoing slow Couette flow
was undertaken. The velocity profiles deviated slightly
from those obtained for Newtonian fluids, but the meas-
ured angular velocities of rigid spheres showed that the
rotation of the field was equal to half the velocity
gradient. While the measured angular velocities of
rods and discs were in accord with theory applicable
to Newtonian liquids, in both non-Newtonian media
there was a steady drift in the orbit towards an asymp-
totic value corresponding to minimum energy dissi-
pation in the flow. Furthermore, discs in elasticoviscous
solutions of polyacrylamide at higher shear stresses
aligned themselves in the direction of the flow and
ceased to rotate.

Migration of rigid particles across the planes of
shear in the annulus of the Couette was also observed.
In pseudoplastic liquids, the migration was towards
the region of higher shear, whereas the opposite was
truc in elasticoviscous liquids.

The deformation, orientation and burst of pseudo-
plastic drops in Newtonian liquids and that of Newton-
ian drops in pseudoplastic fluids were similar to those
previously in completely Newtonian systems. With
elasticoviscous drops, however, the deformation was
smaller than given by theory.

As in elasticoviscous fluids, two-body collisions of
rigid uniform spheres in the pseudoplastic liquids were
unsymmetrical and irreversible, thus differing from
collisions in Newtonian systems where complete
reversibility is observed.

While some of the observed phenomena in elastico-
viscous suspensions could be qualitatively interpreted,
particle behaviour in the pseudoplastic liquids could
not be explained in terms of the known rheological
properties of the fluids.

Zusammenfassung

Es wurde experimentell das Verhalten von festen
und deformierbaren Teilchen untersucht, die bei der
Suspension in strukturviskosen und viskoelastischen
Fliissigkeiten einer langsamen Couette-Stromung aus-
gesetzt sind. Die Geschwindigkeitsprofile zeigten ge-
wisse Abweichungen von denen Newtonscher Fliissig-
keiten, aber die gemessenen Winkelgeschwindigkeiten
der festen Kigelchen ergaben, dall die Drehung des
Feldes gleich dem halben Geschwindigkeitsgradienten
war. Die gemessenen Winkelgeschwindigkeiten der
Stabcehen und Scheiben stimmten mit der Theorie, die
auf Newtonsche Flussigkeiten zutrifft, iberein. In beiden
nicht-Newtonschen Flussigkeiten verschob sich jedoch
die Kreisbahn stetig zu einem asymptotischen Wert,
der einem Minimum der Dissipationsenergic der Stro-

mung entsprach. Scheibchen in viskoelastischen Lé-
sungen von Polyacrylamid richteten sich bei héherer
Scherspannung in Stromungsrichtung aus und zeigten
keine Drehung mehr.

Es wurden auch Wanderungen von festen Teilchen
iiber die Scherebene im Spalt der Couetfe- Anordnung
beobachtet. In strukturviskosen Flussigkeiten erfolgte
die Wanderung in Richtung der hoheren Scherung,
wahrend auf elastische Flassigkeiten das Gegenteil
zutraf.

Die Deformation, Orientierung und das Aufbrechen
strukturviskoser Tropfchen in Newfonschen Flissig-
keiten und das Verbalten von Newtonschen Trépfchen
in strukturviskosen Flissigkeiten waren den friher in
rein-Newfonschen Systemen beobachteten Phinomenen
ghnlich. Die Deformation der viskoelastischen Tropf-
chen war jedoch kleiner als die von der Theorie vorher-
gesagt worden war.

Zweikorper-ZusammenstoBe zwischen festen gleich-
formigen Kiigelchen in strukturviskosen Flissigkeiten
waren unsymmetritch und irreversibel. Darin unter-
schieden sie sich von ZusammenstéBen in Newfonschen
Flissigkeiten, in denen vollige Umkehrbarkeit, beobach-
tet worden war.

Wihrend einige der beobachteten Phinomene in
viskoelastischen Suspensionen qualitativ gedeutet
werden konnten, lieB sich das Teilchenverhalten in
strukturviskosen Flussigkeiten nicht anhand der be-
kannten rheologischen EKigenschaften der Flissigkeiten
erkléren.
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