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S u m m a r y  - -  Invest igat ions have shown tha t  in groundwater-  and oil-bearing 
s t ra ta  there are preferential  directions of flow tha t  are often maintained over wide 
areas. JOI~NSON & HTdCnES (1948, see Ref.) analysed a series of oil well cores by cut- 
ting them into s m a l l  horizontal plugs and they obtained directional permeabilities 
which they plotted in the form of polar graphs. They were not  able to give a physical 
explanat ion of this phenomenon.  On the other hand, there exists a theory of permea- 
bi l i ty  in which the la t te r  is represented as a symmetric  tensor.. This theory has been 
developed by FEIIllANDON (1948, see Ref.), but  no exper imental  substantiat ion of it  
seems ever to have been a t tempted.  

In  the present paper,  the author  undertakes to compare the two sets of findings. 
From Fi~RRANDO~'s theory, the directional permeabili t ies (denoted by k) corresponding 
to the experiments of JohNsoN & HucI~s,s are calculated and it is shown tha t  k-~/2 
if plot ted as polar  graph,  should_ form an ellipse. The data of JOHNSON & t Iuc~Es  
are then are drawn. In  this manner ,  a substantiat ion of the tensor theory of F~RRAN- 
DON is obtained. 

Z u s a m m e n f a s s u n g  - -  Untersuchungen tier Permeabilit~it yon Grundwasser und 
Erd61 ffihrenden Gesteinsschichten haben gezeigt, dass dieselbe in vielen F~illen rich- 
tungsabh~ngig ist. Hierbei bleibt die Richtung extremaler  Permeabi l i tgt  oft fiber 
weite Gebiete konstant .  JOHNSON & H~JCHES untersuchten eine t leihe yon Bohrkernen 
yon Oelquellen auf  Richtungsabhangigkei t  der Permeabilit i i t .  Hierzu schnitten sic 
aus denselben kleine, waagrechte Stficke, bes t immten deren Permeahi l i tgt  und stellten 
das Ergebnis ihrer Messungen in tier Form yon Permeabil i t i i tspolardiagrammen dar. 
Sic waren nicht im Stande, eine theoretische Erkl~rung tier erhaltenen Kurven  zu 
gehen. Auf  der anderen Seite existiert eine Theorie der Permeabilit~it, wol3ei die 
letztere als symmetrischer Tensor behandel t  wird. Diese Theorie wnr{Ie yon F~RX~AN- 
DON vorgesehlagen;  es scheint aber, dass keine experimentel le  Best~itigung davon je 
versucht  worden ist. 

In  der vorliegenden Arbeit  vergleicht tier Yerfasser die zwei  Typen yon Unter- 
suchungen. Nach der F~l~ANDoN'schen Theorie wird die (( gerichtete )} Permeabilit~it 
(mit k bezeichnet), die den Exper imenten  yon J o h n s o n  & Huc~Es  entsprieht,  berechnet.  
Es wird gezeigt, dass k-l/~, als Polardiagramm dargestelh,  die Gestalt  einer Ellipse 
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haben sollte. Die Resultate yon JOttNSON & HUGItES werden dann in die Form yon 
k-l~ 2 umgerechnet und als entsprechende Polardiagramnae dargestellt. In dieser Weise 
wird eine experimentelle Best~itigung der Tensortheorie yon FERRANDON erhalten. 

1. I n t r o d u c t i o n  - -  The study of flow of fluids through porous media has re- 
cently become important  in several branches of applied geophysics. The disloca- 
tion of fluids in water and in oil-bearing strata is fully conditioned by  the 
mechanics of such flow. Thus, the latter is fundamental for ground water hydro- 
logy as well as for the science of petroleum product;on. 

The fundamental  law of flow through porous media has been postulated a 
great numer of years ago by  DAttCy. However, the law of DARCY, in its usual 
form, surmises the porous medium to be isotropic. Unfortunately it has been 
found that  natural  porous media are more often that  not anisotroplc, i.e., tha t  
fluids may  move more easily in one direction than in another. This fact is well 
known from studies in groundwater hydrology. Similarly, J o h n s o n  et al. (JoHNsoN 
& ttUGHES, 1948; JohNsoN & BRESTO~, 1950) analysed a series of oil well cores 
by cutting them into small horizontal plugs and observed tha t  the permeability 
varies with the direction in which the plug is cut. 

I t  is therefore necessary tha t  t he  theory of DARCY be extended to cases where 
anisotropy occurs. Such an extension has been developed by FERRA~DON (1948) 
upon theoretical grounds, in which permeability is represented as a symmetric 
tensor. An evaluation of this theory as presented in the present paper, yields 
tha t  directional permeabilities (denoted by  k) should not form a simple figure if  
they are plotted as a polar graph, but tha t  a polar graph of  k -~/2 should yield a 
simple curve, namely an ellipse. 

Furthermore, an analysis of the measurements of Jott~csoN et al. in the light 
of the theory of FERRANDON, leads to a substantiation of the tensor theory of  
permeability. The data published by  JoHNsoN et al. can be recalculated and, 
for thir ty samples, the values of k -1/2 can be determined. A method can theft 
be devised to plot the best-fitting ellipses through those values whereupon it is 
seen that  the curves obtained in this manner coincide reasonably well with the 
actually measured values. Accordingly, a substantiation of the tensor theory of  
FERRAPCDON is obtained. 

2. T h e  P e r m e a b i l i t y  T e n s o r  - -  The flow of fluids through porous med ia  is 
commonly thought to be subject to DARCY'S law, viz. 

(2. !) q = (k /p)  grad p 

where q is the vector of the seepage velocity of the fluid, k is the permeability of 
the porous medium, ~ is the viscosity of the fluid and p is the pressure in the fluid. 
Herein, it has been assumed that  gravi ty  can be neglected, otherwise one would 
have to replace p by a function of the hydrostatic head and the density of the fluid. 

Equation (2.1) describes the flow in an isotropic porous medium. In  the 
case of anisotropic media, equation (2.1) has to be generalized. Such a generali- 
zation has been proposed by FERRANDON (1948), and similarly, by  LITWII~I[SZYiN 
(1950). A further review of the subject has been given by IRMAY (1951). LIT- 
W~NISZYN arrived at his equation by analogy with the process of diffusion, whereas 
FERI1A~DOY~ gave an actual theoretical derivation of the formulas. Both theories 
are essentially identical. 
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The theory of FERRANDON a s s u m e s  tha t  the contribution to the quant i ty  qn 
of  flow through unit  area in the direction n (components hi) from elementary flow 
tubes parallel to the direction m (components mi) whose combined cross-sectional 
area is equal to ~,do~ (d~ denoting the solid angle), is proportional to the gradient 
of  the pressure in the direction of m .  Thus one has 

(2.2) dqn = 2 i j k  yni  mi (~p/~xj)  mj  dto/~, . 

Here, k and ~/are, of course, functions of mi, such tha t  one can set upon integration: 

(2.3) q~ = 2 i j  ni ~p/axj  k "~ mi mj d~/~  = •ij ni (kij/~,) (ap/~xj)  

where kit -~ kj~. This can be written in vectorial form as follows: 

(2.4) q = (~/~) grad p 

where k is a symmetric tensor consisting of the components kij. I t  can properly be 
referred to as the r162 permeability-tensor >> of the pOrous medium. 

The fact tha t  the permeability of an an~sotropic porous medium can be repre- 
sented as a symmetric tensor, leads immediately to the following conclusions: 

(i) I n  general, the pressure gradient (grad p) and the seepage velocity q do 
not have the same direction. 

( i i )  There are three orthogonal axes in space along which the pressure 
gradient and the seepage velocity do have the same direction. These axes are 
termed the ~ principal axes ~> of the permeability tensor. Their direction is that  
of the eigenvectors of  the permeability tensor. 

The task remains to relate the permeability tensor to what  physically might 
be called ~ directional permeability >> of a porous medium. The <r directional per- 
meability >> may  be obtained by  cutting a pencil-shaped piece parallel tO the direction 
n out of the medium and measuring its permeability in the ordinary manner (i.e. 
based upon DxRcu s law). I n  this case, the seepage velocity q must  obviously be 
parallel to n ;  let it be denoted by  qn. The pressure drop along the r pencil ~>, de- 
noted by Pn,  is then given by  Eq. (2.4) as follows : 

(2.5) p n =  n g r a d p = t ~ n ~ n % ,  

where K is the inverse tensor of  k, such that  

(2.6) K k =  ~ K =  1, 
i denoting the unit  tensor. 

The directional permeability k~ in the direction n is then given b y  

( 2 . 7 )  k~ = ~ q~/v~ = 1 / ( n ~ ) .  

An alternative method to define directional permeability physically is by  
choosing a system in which the pressure drop is given by  the boundary conditions, 
and by measuring tha t  component of the velocity which is parallel to the pressure 
gradient. The directional permeability is thus defined by  DARcY's law from the 
given pressure  and the velocity component parallel to it. Thus, denoting the 
pressure gradient by  pr~, it being in the direction of  n,  and the velocity component 
parallel to this direction by  % = n q ,  one has 

kn = ~ qn/Pn = ~nq /pn  = n~n 
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However,  this last  expression is identical  to tha t  obtained in (2.7) because one 
has, owing to the fact tha t  the dis t r ibut ive  law holds in mat r ix  mul t ip l ica t ion:  

n ~ n n K n =  n k - K n =  n ~ n =  1,  
and thus : 

n ~ n = 1/(n "~ n). 

Let  us now choose the principal  axes of the  permeabi l i ty  tensor  as co-ordinate  
axes (the corresponding permeabil i t ies  being kl, k2, ks) and denote the angles of n 
with those axes b y  ~ ,~ , ' f "  Then Eq. (2.7) yields 

(2.8) 1/k  n : cos 2 ~/k  1 ~- cos "~ ~/k  2 -- cos2 ~//ka 

which is the central  equat ion of an ellipsoid i f  

(2.9) r : kn-1/2 

is p lo t ted  on the corresponding directions of n. One has thus the following theorem : 
I f  the inverse square root  of the  direct ional  permeabi l i ty  is p lo t ted  on all of  

the corresponding directions in a po;nt  of an anisotropic porous medium,  then  one 
obtains an ellipsoid. The axes of the  la t te r  are in the  direction of the  pr incipal  
axes of permeabi l i ty ,  their  length being equal to the  inverse square root  of the  
principal  permeabil i t ies (i.e. of the eigenvalues of  the  permeabi l i ty  tensor).  The  
ellipsoid is called the (( ellipsoid of permeabi l i ty  ~. 

Now, if any plane section of a porous medium be taken  and the  direct ional  
pe rmeabdi ty  be determined around 180 o, then  the values of k -1/2, if  p lo t ted  on the 
directions to which they  apply  in form of a polar  diagram, lie on an ellipse. In  a 
polar  diagram of k ins tead of k -1/2, the result ing curve will not  be as simple as an 
ellipse, bu t  given by  the e q u a t i o n  

(2.10) k = klk2/(k  2 sin2 ~. § k 1 cos ~ ~.), 

3. T h e o r y  o f  D i r e c t i o n a l  P e r m e a b i l i t y  M e a s u r e m e n t s  - -  In  pract ice,  i t  is pos- 
sible to measure directional permeabil i t ies  of a porous medium for various directions.  
The problem is then  to proper ly  plot  those values,  to tes t  how well t hey  conform 
to the theory  pos tu la t ing  the  existence of  a permeabi l i ty  tensor,  and to calculate 
the  best-f l t t ing such tensor. 

The subsequent analysis will be confined to the  two- dimensional case. The 
extension to three dimensions wouId be  quite s t ra ightforward.  

The proper  representat ion of directional permeabi l i ty  k for a porous medium 
is obviously by  plot t ing k -1/2 as a polar  diagram. The result ing figure should be 
an ellipse. I f  this is the case, then the measurements  conform to the  theory.  
In  practice,  if  a series of points  are measured,  there will be some scat ter ing around 
the ellipse. I n  order to find the permeabi l i ty  tensor, one is faced with the t a sk  
of drawing the best-f i t t ing ellipse. 

I t  is a very  tedious job to construct  a best-fi t t ing ellipse through a series of  
points,  owing to the fact t ha t  the equat ion of the  la t te r  is quadrat ic .  On can, 
however, approach the  problem from a different angle. 

Each directional  permeabi l i ty  value measured - -  denoted b y  ki, - -  should 
be dependent  on, the corresponding angle c~ according to Eq. (2.7). This means 

(3.1) K i  ~ 1/ki  = 'K H cos 2 chi § 2K12 cos ~i sin ~i --[ K22 sin2 ~ 
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w h e r e  Kij  are  t he  c o m p o n e n t s  of  t h e  i nve r se  p e r m e a b i l i t y  t enso r .  
D e n o t i n g  t h e  m e a s u r e d  va lues  of 1/k~ b y  Pi, t h e  ~( t h e o r e t i c a l  )) v a l u e s  of 1/ki  b y  
K i  (i.e. t h e  va lues  w h i c h  c o r r e s p o n d  t o  t h e  a s s u m p t i o n  t h a t  p e r m e a b i l i t y  is a 
t enso r ) ,  one  has  to  d e t e r m i n e  t h e  coefficients K~. such  t h a t  one  o b t a i n s  a b e s t  f i t  
b e t w e e n  ~c t h e o r e t i c a l  ~) a n d  (( m e a s u r e d  )~ va lues .  A c c o r d i n g  to  t h e  u s u a l  p r o c e d u r e s ,  
t h i s  is done  b y  m i n i m i z i n g  t h e  s u m  of t h e  s q u a r e - d e v i a t i o n s  of  m e a s u r e d  f r o m  
t h e o r e t i c a l  va lues ,  i.e. b y  r e q u e s t i n g  ($ d e n o t i n g  t h e  v a r i a t i o n ) :  

(3 .2)  8 E ( K i - - p i )  2 =  O . 

I n s e r t i n g  (3.1) y ie lds  

(3.4)  2E (Kl l  cos 2 cr i + 2K12 cos cr i sin ~i + Ks2 sins ~i - -  Pi) ( eoss cti ~Kll  + 

+ 2 cos ei sin ei 8Kls + sins :r SKss) = 0 . 
T h i s ' l e a d s  t o  

i Kl l  E cos 4 ~i + K~s E2 cos a ~i sin ~i + Kss E sin s ~i cos s ~i = Epi cos s ~i 

Kl l  E cos s ~i sins ui • K12 E2 cos ui sin s ai • Kss E sin a ~i = Epi sin 2 ~-i 

(3.5) ( Kl l  E cos s ui sin ~i + K12 E2 cos~-ul sin 2 ~i + K22 E cos ~i s ins ui = E~i cos ~i sin ~i. 

T h i s  is a s y s t e m  of  3 l inear e q u a t i o n s  for  t h e  t h r e e  u n k n o w n s .  I t  c a n  b e  so lved  
w i t h o u t  too  m u c h  t r o u b l e .  H o w e v e r ,  if  t h e  m e a s u r e m e n t s  are  m a d e  a t  e q u a l  
ang le  i n t e r v a l s  b e t w e e n  0 o a n d  180 o, t h e n  all  t h e  t e r m s  c o n t a i n i n g  on ly  odd  powers  
of t h e  g o n i o m e t r i c  f u n c t i o n s  wil l  cance l  o u t  a n d  t h e  s y s t e m  r educes  t o :  

i KlI  Z cos a c~ i @ Kzs E sin '~ ~i cos s ~i = E o cos s ~-i 

(3.6) <1 K11 E cos s ~i s ins ~i • K22 Z sln a ~i = E 9i sin2 

Kls ~ 2 cos s ~i sin2 ~i = ~ Pi cos ~i sin ~i �9 

I n  p a r t i c u l a r ,  ~f t h e  angles  :~i chosen  are  0 o, 30 o, 60 ~ ..... , one o b t a i n s  

(3.7) i Kxl = (1/2) E Pi cosS c~i (1/6) E Pi sin2 ~i 
i ss 0 / 2 )  2 Pi sin2 cr - -  (1/6) 2 pi cos s ~i 

Kx2 (2/3) Z ~i cos ct i sin c~i, 

a n d  i f  t h e  angles  a re  0, 22 ~ 30 ' ,  45 ~ ...... one o b t a i n s :  

K~_x = (3/8) E 9i cos2 ~i - -  (1/8) E Fi s ins 

(3.8)  Ks2 = (3/8) Z Pi sin s ~i - -  (1/8) E ~ cos s c~ 

K~2 = (1/2) E ,z i cos ei sin e i .  

W i t h  t h e  k n o w l e d g e  of  Ki j  - -  t h e  i nve r se  p e r m e a b i l ' t y  t e n s o r  - - ,  i t  is easy  to  
ca lcu la te  t h e  p o s i t i o n  of  t h e  p r i n c i p a l  axes  of  t h e  el l ipse of p e r m e a b i l i t y .  One  
o b t a i n s  

(3.9) t an  q~ = { Kss - -  K;x • [ (K~ - -  K2z) 2 -- 4K12~]~/2 } / (2Kxs) 

w h e r e  q9 ~s t h e  ang le  o f  p o s i t i o n  o f  t h e  p r i n c i p a l  axes .  
F u r t h e r m o r e ,  t h e  l e n g t h  of t h e  axes  Of t h e  el l ipse o f  p e r m e a b i l i t y  are s i m p l y  

g iven  b y  t h e  s q u a r e  r o o t  of t h e  e igenva lues  k of t h e  i n v e r s e  p e r m e a b i l i t y  t e n s o r  K .  
T h e  l a t t e r  are  t h e  r o o t s  of t h e  e q u a t i o n  

.(3.10) I ~ -  X T I  = 0 

i.e. o f  

(3.11)  (K~I - -  ~.) (K2s - -  ;~) - -  Kx~ s = 0 . 
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Explic i t ly ,  the eigenvalues are 

(3.12) X = (1/2){ Kll  + Is • [ ( K I ~ -  K22) 2 + 4K12~)11/2} . 

The (( theoret ical  >> ellipse of permeabi l i ty  can therefore be p lot ted  and can be 
compared with  the ac tual ly  measured points. 

4. Analys is  o{" Experimental  Da ta  - -  The task  remains to compare the theory 
outl ined in Secs. 2 and 3 wi th  experiments  tha t  have ac tua l ly  been performed. 
In  this istance, i t  may  be noted tha t  JoI~NSON and coworkers (JoHNsoN & HuGH~S, 
1948; JORNSON & Bn~STON, 1950) devised a method of measuring direct ional  
permeabili t ies.  They  also repor ted  a great  number  of results of such measure- 
ments. We shall endeavor  to analyse these results and to compare them with the  
theory outl ined above. In  referring to the  papers of JoH~so~ and coworke~s~ the 
first paper ,  b y  J o ~ s o N  & HuanEs  (1948) will be noted as << I )), and the second, by  
Jonr~soN & BRESTON (1950), by  ~( I I  ~. 

The one method used by  JoHnsoN et al. consists of cut t ing pencil-shaped 
sections at  various angles from well cores of fluid-bearing s t ra ta  which were ob- 
ta ined  by  diamond drilling. The pe rmeab i l i t y  of the pencil-shaped sections i~ 
then measured by  an ordinary permeabi l i ty  apparatus .  I t  is obvious tha t  this 
manner  of measuring directional permeabi l i ty  corresponds to the first possibi l i ty  
of mathemat ica l  definition of the la t te r  suggested in Section 2. 

An al ternat ive method of measuring directional  pe rmeabi l i ty  was also em- 
ployed by  JorI~SON et al. In  this second method,  a hole was dril led down the 
center of a cylindrical  piece of an anisotropic porous medium (again a well core) 
whose faces were previously made parallel.  The equipment  used, then,  consisted 
of a system of clamps, mounted  with bearings which allowed the porous cylinder 
to be ro ta ted  to any posit ion for flow measurement  while fluid was cont inuously 
being flowed from the center to the outside of the  cylinder. A collecting head,  
which was clamped to the cylinder, was used to collect the fluid which flowed from 
tha t  por t ion of the cylinder which is under observation. The directional  permea-  
b i l i ty  was then calculated according to DARCY'S law from the volume of fluid 
flowing in the given direction and collected by  the head. I t  is obvious t ha t  this 
manner  of measuring directional permeabi l i ty  corresponds to the second mathe-  
mat ica l  definition of the la t te r  outl ined in Section 2. 

JoI~-sor~ et  al. employed the first method only in one example in order to 
test  whether  the two methods would yield identical  exper imenta l  results.  As 
this  was sat isfactori ly the case, the  second method was employed for most  of thei r  
measurements  as i t  is much simpler to carry  out. They did not  realize t ha t  the  

t e n s o r  theory  of permeabi l i ty ,  if correct, requires the  two types  of measurements  
to be identical.  

The results of Jonr~sorr et al. were repor ted  in the  form of polar  diagrams of 
the directional permeabi l i ty  kn against  the polar  angle ~. The results  were pu- 
bl ished in graphical  form. No a t t empt  was made b y  Jonr~soN et al. to e i ther  
confirm or refute the tensor theory  of permeabi l i ty  of whose existence these authors 
do not  seem to have been aware. The prime object  of JohNson ' s  invest igat ions 
was to show tha t  in one geological s t r a tum or even in a set of s t ra ta  the directions 
of max imum permeabi l i ty  are aparellel  over wide areas. The direction of ma x imum 
pexmeabil i ty  was determined in a ra ther  haphazard  manner  by  inspecting the 
graphs. Fur thermore ,  the graphs were drawn b y  s t r ic t ly  plot t ing the  experi- 
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menta l  results wi thout  making any a t t empts  to unders tand  their  physical  signi- 
ficance. Thus, i t  m a y  often be noted in the graphs tha t  permeabil i t ies  in directions 
differing b y  180 ~ are not  identical .  This is most  certainly due to inhomogeneit ies 
ii1 the pieces of porous mater ia ls  used, as i t  is quite inconceivable t ha t  the  permea-  
b i l i ty  would va ry  upon reversal  of the  direction of flow. Such an effect would 
be equivalent  to a valve-act ion of the  porous medium which, a l though not  a pr ior i  
impossibile,  would destroy any basis for DARCY's law to hold, - -  to say the  least .  
Until  such an effect is much more definitely established, the  wri ter  is therefore 
inclined to ascribe the observed discrepancies to in homogeneities in the  mater ia l ,  

One par t icu lar  well core (I, Fig. 7) was most  extensively analysed experimen- 
ta l ly  by  JoH~so~  & HUGH~S. I t  will be demons t ra ted  on this example how the  
enper imental  da t a  can be recalculated so as to permi t  to draw physical  conclusions 
from them. 

J o ~ s o ~  & I-IUG~ES represented the  results of their  exper iments  on this  

I 

270~ ~ 180 ~ 

Fig. 1 

par t icu lar  piece of porous mater ia l  in a d iagram which  is reproduced in Fig. 1. 
The method  of measuring direct ional  permeabil i t ies  employed in this case was 
t ha t  o f  cut t ing penci l-shaped pieces out  of the medium. The three curves in 
Fig. 1 represent  a quasipolar  (as zero is not  in the center!) d iagram of 3 sets of 
(c pencils )) cut  a t  various angles from 3 different paral lel  layers out  of the medium. 
The layers are only a few centimeters apart .  

The curves shown b y  JoHnson  have physical ly  obviously not  much meaning.  
They show essential ly the var ia t ions of permeabi l i ty  tha t  can be expected in the  
various directions due to small  inhomogeneities in a na tu ra l  porous medium. The 
fact t ha t  JoHnson ' s  da t a  have been referred to (( 100 )) for the  ma x imum permea- 
b i l i ty  in each layer  fur ther  helps to obl i terate  any  physical  meaning of the curves. 
Obviously.  the first t a sk  is therefore to restore the  original pe rmeab3 i ty  values in 



- -  8 2  - -  

the  var ious  directions for the 3 curves.  This  has been  done  in  Tab le  I.  the  corres- 
ponding  results  are p lo t ted  in  Fig.  2. 

The  n e x t  step is to average all the  va lues  and  to symmet r ize  the  curves wi th  
respect  to the  origin of the d iagram in  order to ob ta in  an  average di rect ional  per- 
meab i l i ty  va lue  for each hor izonta l  direct ion in  the  porous m e d i u m  unde r  conside- 

!I 

~-~ ~: :~- : . 

i. " 

3 

l i l t  1'•1 I I I l J l l l l l l t l l } ~ ~ 1 7 6  II ~m" 1 I l l i t  I] t t l t l  [ , l t l l l ,  I l l l  t f l i t ,  t I ' I 

Fig. 2 

ra t ion .  F ina l ly ,  one can  calculate  k -1/2 for each direction.  The  resul ts  of these  
c a l c u l a t i o n s a r e  also shown in  Tab le  I .  The  corresponding va lues  are p lo t t ed  in  
Fig. 3. 

I n  order  to tes t  the  theory,  one now has to con~pare t h e  measured  va lues  of  
k -1 J~ w i t h  the  bes t - f i t t ing ellipse. The  bes t  f i t t ing  ellipse can he ca lcula ted  accor- 
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TABL~ 1: Permeabilities in Millidarcies 

Angle 

0 
22.5 
45 
67.5 

90 
1t2.5 
135 
157.5 

180 
202.5 
225 
247.5 

270 
192.5 
315 
337,5 

Max. P e r m  . . . .  I 

Curve 1 

74.5 
64.1 
57.2 
36.4 

26.0 
34.6 
55.4 
65.8 

76.2 
69.3 
62.4 
57.2 

55.4 
50.2 
46.8 
58.4 

76.2 

] Curve 2 

57.9 
55.2 
53.8 
48.8 

44.2 
44.2 
46.9 
55.2 

60.7 
53.8 
46.9 
34.5 

27.6 
35.8 
49.7 
53.8 

60.7 

Curve 3 

55.1 
55.1 
55.1 
48.4 

47.0 
49.7 
53.7 
56.4 

59.1 
53.7 
49.7 
48.4 

48.4 
48.4 
51.1 
53.7 

59.1 

Average 
k 

63.9 
58.5 
54.2 

. 4 6 . 6  

41.4 
43.8 
50.6 
57.2 

63.9 
58.5 
54.2 
45.6 

41.4 
43.8 
5 0 . 6  
57.2 

t l v ~ k  - 

0.125 
0.131 
0.136 
0.148 

0.156 
0.151 
0.141 
0.132 

0.125 
0.131 
0.136 
0.148 

0.156 
0.151 
0.141 
0.132 

d ing  to  f o r m u l a s  (3.8), s ince  t h e  m e a s u r e m e n t s  h a v e  b e e n  t a k e n  a t  equa l  ang le  
i n t e r v a l s  of 22.5 ~ One  o b t a i n s ,  a f t e r  a s t r a i g h t  f o r w a r d  ca l cu l a t i on  

Kl l  0.0148 m d  -I  

K~2 ~ 0.0237 m d  -1 

K12 = - -  0.0006 m d  -1 . 

C o n s e q u e n t l y ,  one  o b t a i n s  for  t h e  p r i n c i p a l  d i r ec t i ons :  

t a n  ~ = 15.26 .'. 9 = 86~ 
t a n ~ - -  0 . 0 6 . ' . ~  = - -  4o 

a n d  for  t h e  e i g e n v a l u e s :  

X -~ 0.0239 m d  -1 .'. axis ~ 0.154 rod-l/2 

;~ = 0.0146 m d  -1 .'. axis = 0.121 rod-l/2 . 

T h e  p r i n c i p a l  p e r m e a b i l i t i e s  t u r n  o u t  to  b e  42 m d  a n d  68 rod, r e spec t ive ly .  T h e  
c o r r e s p o n d i n g  c u r v e s  a re  s h o w n  m Fig.  3 a n d  i t  is seen  t h a t  t h e  co inc idence  w i t h  
t h e  m e a s u r e d  p o i n t s  is exce l l en t .  

A s imi l a r  ana lys i s  h a s  b e e n  m a d e  w i t h  t h e  r e m a i n i n g  29 p o l a r  d i a g r a m s  of  
d i r e c t i o n a l  p e r m e a b i l i t y  m e a s u r e m e n t s  t h a t  h a v e  b e e n  p u b l i s h e d  b y  JorI~cso~ 
e t  al. T h e  re su l t s  of t h i s  ana lys i s  a re  t a b u l a t e d  i n  T a b l e  2. T h e r e i n ,  c o l u m n  1 
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assigns a number to each sample, col. 2 gives the figure corresponding to the sample 
in JoH~soWs papers, 3 gives the key used for the sample by  JoHnsoN 4 gives the 
position of the (~ top )) in J o ~ s o ~ ' s  figure as compared with our choice of zero 
angle, and 5, 6 and 7 give the position of the principal axes, their ratios, and the 
principal permeability ratio, respectively. Fig. 4-10 represent the results graphi- 

6o  e ?0o  eo  ~ 9oo  ! no  a i i o  o IZO  ~ 
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ITO o 

2WJ 9 

l~ig. 3 

cally. The first plot for each sample is Jol~r~so~'s plot, the second is the same 
after symmetrization, and the third is a plot of k -1/2 together with the best-fitting 
ellipse. AU values are referred to as (c 100 )) for t he  maximum value of the quan- 
t i ty in question tha t  was obtained. 

The calculation of the position of the principal axes as well as of the eigen- 
values has been made by  using formulas (3.7), since the values were measured at 
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e q u a l  i n t e r v a l s  o f  30 ~ . T h e  c a l c u l a t i o n s  a re  s o m e w h a t  l e n g t h y ,  b u t  b y  n o  m e a n s  
d i f f icul t .  T h e y  c a n  eas i ly  b e  se t  u p  for  w o r k i n g  o u t  b y  u n t r a i n e d  h e l p .  T h e r e  
is t h e r e f o r e  n o  r e a s o n  w h y  t h e y  c o u l d  n o t  b e  m a d e  s t a n d a r d  p r o c e d u r e  i n  c o n n e c t i o n  

T A B L E  2 

Sa m ple  
1~o. 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
1 8  
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 

Source  

I ,  Fig .  7 
I ,  Fig.  7 
I ,  Fig.  7 
I, Fig.  7 
I ,  Fig .  8 

I ,  Fig.  8 
i ,  F ig .  8 
I ,  Fig .  9 
I ,  Fig .  9 
I ,  Fig.  9 

I ,  Fig .  9 
I ,  Fig.  10 
I ,  F ig .  10 
I ,  Fig.  10 
I ,  Fig .  10 

i ,  F ig .  10 
I ,  Fig .  10 
I ,  Fig.  11 
I ,  Fig .  11 
I ,  Fig .  7 

I ,  Fig .  12 
I I ,  Fig .  4 
I I ,  Fig .  4 
I I ,  Fig .  4 
I I ,  Fig.  4 

I I ,  Fig.  5 
I I ,  Fig.  5 
I I ,  Fig .  5 
I I ,  Fig .  5 

K e y  

+ + + + + +  

+ + + + + +  

+ + + + + +  

+ + + + + +  

P B 5 4 - 1 B  
PB54-2B(1 /2S)  
P B 5 4 - 2 B ( N S )  
PB54-1C 

Top  in 
s o u r c e  

90 ~ 
90 ~ 
90 ~ 
60 ~ 

60 ~ 

60 ~ 
60 ~ 

120 ~ 
120 ~ 
120 ~ 

120 ~ 
30 ~ 
30 ~ 
30 ~ 
30 ~ 

30 ~ 
30 ~ 
60 ~ 
60 ~ 
60 ~ 

30 ~ 
30 ~ 
30 ~ 
30 ~ 
30 ~ 

210 ~ 
90 ~ 
60 ~ 

120 ~ 

Pos i t i ons  
of  P r ine .  

axes  

73 ~ 
88 ~ 
73 ~ 

4 ~ 
73 ~ 

20 ~ 
68 ~ 

8 ~ 
86 ~ 

4 ~ 

5 ~ 
lo 
4 ~ 
2 ~ 
1 ~ 

1 o 

3 ~ 
5 ~ 
4 ~ 

22 ~ 

10 o 
0 o 

89 ~ 
6 ~ 
4 ~ 

20 ~ 
16 ~ 
86 ~ 

4 ~ 

R a t i o  of  
axes  of  
e l l ipse 

.94 

.87 

.92 

.82 

.92 

.87 

.91 
192 
.77 
.81 

.85 

.80 

.82 

.87 

.87 

.93 
�9 84 
.93 
.85 
.92 

.82 

.80 

.82 

.84 

.85 

.96 

.94 

.94 

.92 

P e r m e a b .  
Ra t io  

.81 

.76 

.85 

.67 

.84 

.78 

.83 

.85 

.59 

.65 

.73 

.64 

.67 

.76 

.76 

.87 

.71 

.87 

.72 

.85 

.67 

.64 

.68 

.71 

.72 

.92 
�9 8'8 
.88 
.85 

w i t h  r o u t i n e  d i r e c t i o n a l  p e r m e a b i l i t y  d e t e r m i n a t i o n s .  I n  t h i s  m a n n e r ,  a t  l e a s t ,  
a de f i n i t e  v a l u e  for  t h e  p r i n c i p a l  p e r m e a b i l i t y  d i r e c t i o n s  as  we l l  as  fo r  t h e  co r r e -  
s p o n d i n g  p r i n c i p a l  p e r m e a b i l i t i e s  is o b t a i n e d ,  w h i c h  is  m u c h  b e t t e r  t h a n  r e a d i n g  
t h o s e  v a l u e s  off  a d i a g r a m  in  a m a n n e r  w h i c h  is l i t t l e  m o r e  b u t  h a p h a z a r d .  
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5.  C o n c l u s i o n s  - -  The final task is to investigate how well the points obtained 
from measurements of JOHNSON et al. do fit the best-fitting ellipse of the polar 

180 ~ 18@ 180 ~  0000 0 
S A~LE 25 

270 ~ 

1SO ~ ,I0o ~ 180 a 

S ~ 2 L 8  26 

100 ~ 

o o 

180 ~ 

180 o 180 ~ 

S ~ F L E  27 

180 ~ I 0 0  ~ 

180 ~ 1BO ~ 180 ~ 

0 o 0 o 0 o 

S ~ P L E  29 

Fig. 10 

diagrams in order to determine whether or not the tensor theory of permeabil i ty is 
a correct representation of the physical facts. In order to achieve this it is ob- 
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viously necessary to obtain somehow a rough idea of the experimental confidence 
limits attached to the points as calculated from the data of JOHNSOrr et al. 

Errors of the position of those points can arise from two sources. Firstly,  
there is the possibility of inaccuracies in the actual determinat ion of each permea- 
bil i ty value. Secondly, i t  must  be held that  the porous samples tested are in no 
case perfectly homogeneous such that  the permeabili ty values obtained in one 
direction from a small sample of the porous medium may be in error as compared 
with the average permeabilit)~ in  tha t  direction if a larger piece of medium would 
have been used for the determination. 

As so the first possible cause of error, JoHr~soN et al. have already analysed 
it  and have shown that  these inaccuracies are very small, of the order of 1 per cent. 

As to the second cause, no such evaluation has been made by the original 
authors. Therefore, one is faced with the task of supplying same. I t  is proposed 
to do this as follows: 

In  the first experiment, represented in our Fig. 1, JOHNSON & HUGHES, in 
fact, obtain six different permeabil i ty values for each direction. I t  must  be assu- 
med tha t  all these values should be identical if the porous medium tested were 
perfectly homogeneous. The spread of permeabili ty values around the mean, 
therefore, must  be taken as an indication of the iuh0mogeneities encountered. I t  
is, then, possible to calculate the standard deviation of the 48 permeabil i ty values 
listed ia  Table 1 around the means for the respective directions~ This s tandard 
deviation expressed as a percentage, should be a good indication for the s tandard 
error (in per cent) of a directional permeabili ty value to be expected i n any one sam- 
ple if only one measurement is made. From a straightforward evaluat ion of the 
data of Table t ,  one obtains 
(5.1) Standard permeability error = 6.87 md 

= l o . o  % 

Therefore, the relative standard error of 1/k  1/2 is roughly half tha t  much, i.e. 5 %. 
Since each point  in the graphs of 1/k  t/2 in Figs. 4-10 is the average of two measu- 

rements (in opposite directions), this error is again lowered by  a factor of 1/~/2-. 
Since all measurements are referred to (( 100 )) as max imum values the percentage 
error as calculated above is also the absolute error of the graph. One obtains:  

(5.2) Standard error of 1/~r 3.5 % .  

In  view of this result, i t  must  be held tha t  the experimental points in Figs. 
4-10 do fit the (( theoretical )) ellipses. In  most cases, the fit is even much bet ter  
than within the standard error limits indicated by  Eq. (5.2). I t  must  be con- 
cluded, therefore, tha t  the tensor theory of permeabil i ty is able to account for the 
data obtained by JorI~soN et al. in  a most satisfactory manner.  
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