DIRECTIONAL PERMEABILITY
OF POROUS MEDIA TO HOMOGENEOUS FLUIDS (*)

by Abprian E. SCHEIDEGGER (**)

Summary - Investigations have shown that in groundwater- and oil-bearing
strata there are preferential directions of flow that are often maintained over wide
areas, JomNsoN & HucHEs (1948, see Ref.) analysed a series of oil well cores by cut-
ting them into small horizontal plugs and they obtained directional permeabilities
which they plotted in the form of polar graphs. They were not able to give a physical
explanation of this phenomienon. On the other hand, there exists a theory of permea-
bility in which the latter is represented as a symmetric tensor.. This theory has been
developed by FERraNDON (1948, see Ref.), but no experimental substantiation of it
seems ever to have been attempted.

In the present paper, the author undertakes to compare the two sets of findings.
From FERRANDON’s theory, the directional permeabilities (denoted by k) corresponding
to the experiments of JounsoN & HucHEs are calculated and it is shown that k/2
if plotted as polar graph, should form an ellipse. The data of Jounson & Hucuss
are then are drawn. In this manner, a substantiation of the tensor theory of FERRAN-
DON is obtained.

Zusammenfassung — Untersuchungen der Permeabilitit von Grundwasser und
Erdsl fithrenden Gesteinsschichten haben gezeigt, dass dieselbe in vielen Fallen rich-
tungsabhiingig ist. Hierbei bleibt die Richtung extremaler Permeabilitat oft iiber
weite Gebiete konstant. JoENsoN & HucHES untersuchten eine Reihe von Bohrkernen
von Oelquellen auf Richtungsabhingigkeit der Permeabilitat. Hierzu schnitten sie
aus denselben kleine, waagrechte Stiicke, bestimmiten deren Permeabilitit und stellten
das Ergebnis ihrer Messungen in der Form von Permeabilitiatspolardiagrammen dar.
Sie waren nicht im Stande, eine theoretische Erklarung der erbaltenen Kurven zu
geben. Auf der anderen Seite existiert eine Theorie der Permeabilitat, wobei die
letztere als symmetrischer Tensor behandelt wird. Diese Theorie wurde von FERRAN-
DON vorgeschlagen; es scheint aber, dass keine experimentelle Bestitigung davon je
versucht worden ist.

In der vorliegenden Arbeit vergleicht der Verfasser die zwei Typen von Unter-
suchungen. Nach der FERRANDON’schen Theorie wird die « gerichtete » Permeabilitiit
(mit k bezeichnet), die den Experimenten von Jounsox & HucHEs entspricht, berechnet.
Es wird gezeigt, dass k71/2, als Polardiagramm dargestellt, die Gestalt einer Ellipse
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haben sollte. Die Resultate von JorNsoN & HugHEs werden dann in die Form von
k12 umgerechnet und als entsprechende Polardiagramme dargestellt. In dieser Weise
wird eine experimentelle Bestédtigung der Tensortheorie von FERRANDON erhalten.

1. Inireduction — The study of flow of fluids through porous media has re-
cently become important in several branches of applied geophysics. The disloca-
tion of fluids in water and in oil-bearing strata is fully conditioned by the
mechanics of such flow. Thus, the latter is fundamental for ground water hydro-

logy as well as for the science of petroleum production.

The fundamental law of flow through porous media has been postulated a
great numer of years ago by Darcy. However, the law of Darcy, in its usual
form, surmises the porous medium to be isotropic. Unfortunately it has been
found that natural porous media are more often that not anisotropic, i.e., that
fluids may move more easily in one direction than in another. This fact is well
known from studies in groundwater hydrology. Similarly, Jornson et al. (JornsoN
& HucuEs, 1948; JounsoN & BresToN, 1950) analysed a series of oil well cores
by cutting them into small horizontal plugs and observed that the permeability
varies with the direction in which the plug is cut.

It is therefore necessary that the theory of DARCY be extended to cases where
anisotropy occurs. Such an extension has been developed by FErRraAnDON (1948)

‘upon theoretical grounds, in which permeability is represented as a symmetric
tensor. An evaluation of this theory as presented in the present paper, yields
that directional permeabilities (denoted by k) should not form a simple figure if
they are plotted as a polar graph, but that a polar graph of k=172 should yield a
simple curve, namely an ellipse.

Furthermore, an analysis of the measurements of JOENSON et al. in the light
of the theory of FERRANDON, leads to a substantiation of the tensor theory of

" permeability. The data published by JorNson et al. can be recalculated and,
for thirty samples, the values of k—!/2 can be determined. A method can then
be devised to plot the best-fitting ellipses through those values whereupon it is
seen that the curves obtained in this manner coincide reasonably well with the
actually measured values. Accordingly, a substantiation of the tensor theory of
FrrrANDON is obtained.

2. The Permeability Tensor — The flow of fluids through porous media is
commonly thought to be subject to Darcy’s law, viz.

@.1) q = (kju) grad p

where ¢ is the vector of the seepage velocity of the fluid, % is the permeability of
the porous medium, y, is the viscosity of the fluid and p is the pressure in the fluid.
Herein, it has been assumed that gravity can be neglected, otherwise one would
have to replace p by a function of the hydrostatic head and the density of the fluid.

Equation (2.1) describes the flow in an isotropic porous medium. In the
case of anisotropic media, equation (2.1) has to be generalized. Such a generali-
zation has been proposed by FERraANDON (1948), and similarly, by LirwiNiszyN
(1950). A further review of the subject has been given by Irmay (1951). Lit-
WINISZYN arrived at his equation by analogy with the process of diffusion, whereas
FERRANDON gave an actual theorctical derivation of the formulas. Both theories
are essentially identical.
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The theory of FERRANDON assumes that the contribution to the quantity g,
of flow through unit area in the direction n (components n;) from elementary flow
tubes parallel to the direction m (components m;) whose combined ecross-sectional
area is equal to vdo (de¢ denoting the solid angle), is proportional to the gradient
of the pressure in the direction of m. Thus one has

2.2) dgn = 2k yn; m; (Op[0x;) mj doju. .

Here, k and v are, of course, functions of m;, such that one can set upon integration:

2.3) qn = Zij nq 0p[0x; by mi mj dofu = Xy n; (kijlp) (Op/0xy)
where k; = kj;. This can be written in vectorial form as follows:
(2.4) q = (kj») grad p

where k is a symmetric tensor consisting of the components k. It can properly be
referred to as the « permeability-tensor » of the porous medium.

The fact that the permeability of an anisotropic porous medium can be repre-
sented as a symmetric tensor, leads immediately to the following conclusions:

(i) In general, the pressure gradient (grad p) and the seepage velocity g do
not have the same direction.

(ii) There are three orthogonal axes in space along which the pressure
gradient and the seepage velocity do have the same direction. These axes are
termed the « principal axes» of the permeability tensor. Their direction is that
of the eigenvectors of the permeability tensor.

The task remains to relate the permeability tensor to what physically might
be called «directional permeability » of a porous medium. The « directional per-
meability » may be obtained by cutting a pencil-shaped piece parallel to the direction
n out of the medium and measuring its permeability in the ordinary manner (i.e.
based upon Darcy s law). In this case, the seepage velocity g must obviously be
parallel to n; let it be denoted by ¢,. The pressure drop along the « pencil », de-
noted by p,,, is then given by Eq. (2.4) as follows:

@.5) pu—ngradp—unKnag,
where K is the inverse tensor of E, such that
(2.6) Ki=kK=1,
I denoting the unit tensor.
The directional permeability k, in the direction n is then given by

@.7 Fn = 1 gu/pn = 1/(nKn) .

An alternative method to define directional permeability physically is by
choosing a system in which the pressure drop is given by the boundary conditions,
and by measuring that component of the velocity which is parallel to the pressure
gradient. The directional permeability is thus defined by Darcy’s law from the
given pressure and the velocity component parallel to it. Thus, denoting the
pressure gradient by p,,, it being in the direction of n, and the velocity component
parallel to this direction by ¢, = ngq, one has

kn = i gulpn = ung/p, = nkn.
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However, this last expression is identical to that obtained in (2.7) because one
has, owing to the fact that the distributive law holds in matnx multiplication:

nEn=nkKn=nIn=1,
and thus:
nkn=1/(nKn).

Let us now choose the principal axes of the permeability tensor as co-ordinate
axes (the corresponding permeabilities being k,, k,, k;) and denote the angles of n
with those axes by «,(,v. Then Eq. (2.7) yields

(2.8) 1/ky, = cos? afky + cos? B/k, + cos®y/ks
which is the central equation of an ellipsoid if
(2.9) P = k12

is plotted on the corresponding directions of n. One has thus the following theorem:

If the inverse square root of the directional permeability is plotted on all of
the corresponding directions in a point of an anisotropic porous medium, then one
obtains an ellipsoid. The axes of the latter are in the direction of the principal
axes of permeability, their length being equal to the inverse square root of the
principal permeabilities (i.e. of the eigenvalues of the permeability tensor). The
ellipsoid is called the «ellipsoid of permeability ».

Now, if any plane section of a porous medium be taken and the directional
permeability be determined around 180°, then the values of k=172, if plotted on the
directions to which they apply in form of a polar diagram, lie on an ellipse. In a
polar diagram of % instead of k=112, the resulting curve will not be as simple as an
ellipse, but given by the equation

(2.10) ko= kky/(ky sino + ky cos®a):

3. Theory of Directional Permeability Measurements — In practice, 1t is pos-
sible to measure directional permeabilities of a porous medium for various directions.
The problem is then to properly plot those values, to test how well they conform
to the theory postulating the existence of a permeability tensor, and to calculate
the best-fitiing such tensor.

The subsequent analysis will be confined to the two- dunensmnal case. The
extension to three dimensions would be quite straightforward.

The proper representation of directional permeability k for a porous medium
is obviously by plotting k=1/2 as a polar diagram. The resulting figure should be
an ellipse. If this is the case, then the measurements conform to the theory.
In practice, if a series of points are measured, there will be some scattering around
the ellipse. In order to find the permeability tensor, one is faced with the task
of drawing the best-fitting ellipse.

It is a very tedious job to comstruct a best-fitting ellipse through a series of
points, owing to the fact that the equation of the latter is quadratic. On can,
however, approach the problem from a different angle.

Each directional permeability value measured -— denoted by k;, — should
be dependent on.the corresponding angle «; according to Eq. (2.7). This means

3.1 K; = 1/k; = K,; cos? ¢; + 2K, cos o sin oy + Ky, sin® o
12



where K;; are the components of the inverse permeability tensor.

Denoting the measured values of 1/k; by p;, the «theoretical » values of 1/k; by
K; (i.e. the values which correspond to the assumption that permeability is a
tensor), one has to determine the coefficients Kj; such that one obtains a best fit
between « theoretical » and « measured » values. According to the usual procedures,
this is done by minimizing the sum of the square-deviations of measured from
theoretical values, i.e. by requesting (3 denoting the variation):

(3.2) SE(K;—pi)2=0.
Inserting (3.1) yields
(3.4) 25 (Kyp cos? oy + 2K, cos o sin oy - Ky, sin? a; — ;) (cos? o3 8Ky +
+ 2 cos o sin o; 3Ky, + sin® oy 3Ky,) = 0.
This leads to
([ Ky, 2 costui + K, 22 cos? oy sina; + K,y X sin? o cos? oy = Xpjcos? oy
(3.5) ¢ Ky X cos?agsin? a; + Ky, 22 cos a;sind oy + Ky, X sin® oy = Zpgsin? oy

| Kj; S cosPogsinay + Ky, X2 cos?agsin® o + K,y X cos o sin® a; = Zp; cos o sin o4,

This is a system of 3 linear equations for the three unknowns. It can be solved
without too much trouble. However, if the measurements are made at equal
angle intervals between 0° and 1800, then all the terms containing only odd powers
of the goniometric functions will cancel out and the system reduces to:

{ Kj; 2 costa; + K,y 2 sin? ¢ cos? oy = 2 p cos? oy
3.6) - ¢ Ky Zecos?a;sin? oy + Ky, Zsinto; = X gg sin? oy
11 i 22 i i i

K, %2 cos? oy sin? oy = X p; cos visin o5 .
In particular, if the angles ; chosen are 00, 300, 60° ..... , one obtains

_ [ K= (1/2) 3 pjeos2o; — (1/6) X p; sin? oy
3.7 K,y = (1)2) Z gz sin® oy — (1/6) Z o5 cos? o
? Ky, = (2/3) X p; cos o sin o5 ,

and if the angles are 0, 220 30", 450 ..... , one obtains:

K;; = (3/8) X picos?a; — (1/8) X ¢gsina
(3.8) K,y = (3/8) X gssin®a; — (1/8) = ps cos?
Ky = (1/2) X g; cos o; sin oy .

With the knowledge of K;; — the inverse permeability tensor —, it is easy to
calculate the position of the principal axes of the ellipse of permeability. One
obtains

(3.9) tan ¢ == {Kzz — Ky + [(Kyy — Kpp)? + 4K1é2]1/2} [ (2Ky)

where ¢ 1s the angle of position of the principal axes.

Furthermore, the length of the axes of the ellipse of permeability are simply
given by the square root of the eigenvalues » of the inverse permeability tensor K.
The latter are the roots of the equation

(3-10) | R—2F| =0
ie. of .
(3-11) (Kll_')‘) (K22_7\)_K122= 0.
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Explicitly, the eigenvalues are
(3.12) A= (12) { Ky + Ky & [(Kyy — Kop)? + 4K,,9P2}

The « theoretical » ellipse of permeability can therefore be plotted and can be
compared with the actually measured points.

4. Analysis of Experimental Data — The task remains to compare the theory
outlined in Secs. 2 and 3 with expermrents that have actually been performed.
In this istance, it may be noted that Jounson and coworkers (Jonnson & Hucnss,
1948; Jonnson & BrEsTON, 1950) devised a method of measuring directional
permeabilities. They also reported a great number of results of such measure-
ments, We shall endeavor to analyse these results and to compare them with the
theory outlined above. In referring to the papers of Jounson and coworkers, the
first paper, by Jonnson & Hucngs (1948) will be noted as « I », and the second, by
Jornson & BresTonw (1950), by « I1».

The one method used by Jomnsow et al. consists of cutting pencil-shaped
sections at various angles from well cores of fluid-bearing strata which were ob-
tained by diamond drilling. The permeability’ of the pencil-shaped sections is
then measured by an ordinary permeability apparatus. It is obvious that this
manner of measuring directional permeability corresponds to the first possibility
of mathematical definition of the latter suggested in Section 2.

An alternative method of measuring directional permeability was also em-
ployed by Jonnsow et al. In this second method, a hole was drlled down the
center of a cylindrical piece of an anisotropic porous medium (again a well core)
whose faces were previously made parallel. The equipment used, then, consisted
of a system of clamps, mounted with bearings which allowed the porous cylinder
to be rotated to any position for flow measurement while fluid was continuously
being flowed from the center to the outside of the cylinder. A collecting head,
which was clamped to the cylinder, was used to collect the fluid which flowed from
that portion of the cylinder which is under observation. The directional permea-
hility was then calculated according to Darcy’s law from the volume of fluid
flowing in the given direction and collected by the head. It is obvious that this
manner of measuring directional permeability corresponds to the second mathe-
matical definition of the latter outlined in Section 2.

Jounson et al. employed the first method only in one example in order to
test whether the two methods would yield identical experimental tesults. As
this was satisfactorily the case, the second method was employed for most of their
measurements as it is much simpler to carry out. They did not realize that the
“temsor theory of permeability, if correct, requires the two types of measurements
to be identical.

The results of JoaNsON et al. were reported in the form of polar diagrams of
the directional permeability k, against the polar angle «. The results were pu-
blished in graphical form. Mo attempt was made by Jounson et al. to either
confirm or refute the tensor theory of permeability of whose existence these authors
do not seem to have been aware. The prime object of JouNsoN’s investigations
was to show that in one geological stratum or even in a set of sirata the directions
of maximum permeability are aparellel over wide areas. The direction of maximum
permeability was determined in a rather haphazard manner by inspecting the
graphs. Furthermore, the graphs were drawn by strictly plotting the experi-
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mental results without making any attempts to understand their physical signi-
ficance. Thus, it may often be noted in the graphs that permeabilities in directions
differing by 180° are not identical. This is most certainly due to inhemogeneities
in the pieces of porous materials used, as it is quite inconceivable that the permea-
bility would vary upon reversal of the direction of flow. Such an effect would
be equivalent to a valve-action of the porous medium which, although not a priori
impossibile, would destroy any basis for Darcy’s law to hold, — to say the least.
Until such an effect is much more definitely established, the writer is therefore
inclined to ascribe the observed discrepancies to inhomogenerties in the material,

One particular well core (I, Fig. 7) was most extensively analysed experimen-
tally by Jorwson & HucrEs. It will be demonstrated on this example how the
enperimental data can be recalculated so as to permit to draw physical conclusions
from them. '

Jonnson & HucHES represented the results of their experiments on this

Fig. 1

particular piece of porous material m a diagram which is reproduced in Fig. 1.
The method of measuring directional permeabilities employed in this case was
that of cutting pencil-shaped pieces-out of the medium. The three curves in
Fig. 1 represent a quasipolar (as zero is not in the center!) diagram of 3 sets of
« pencils » cut at various angles from 3 different parallel layers out of the medium.
The layers are only a few centimeters apart. '

The curves shown by JorNsoN have physically obviously not much meaning.
They show essentially the variations of permeability that can be expected in the
various directions due to small inhomogeneities in a natural porous medium. The
fact that JornsoN’s data have been referred to « 100 » for the maximum permea-
bility in each layer further helps to obliterate any physical meaning of the curves.
Obviously. the first task is therefore to restore the original permeab lity values in
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the various directions for the 3 curves. This has been done in Table I. the corres-
ponding results are plotted in Fig. 2.

The next step is to average all the values and to symmetrize the curves with
respect to the origin of the diagram in order to obtain an average directional per-
meability value for each horizontal direction in the porous medium under conside-
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ration. Finally, one can calculate k~1/2 for each direction. The results of these
calculations are also shown in Table I. The corresponding values are plotted in
Fig. 3. " ‘
In order to test the theory, one now has to compare the measured values of
k172 with the best-fitting ellipse. The best fitting ellipse can be calculated accor-
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TasLe 1: Permeabilities in Millidarcies

Angle Curvel . (j_xﬂuie—z Curve 3 Ave;age I/VE
0 74.5 57.9 55.1 63.9 0.125

22.5 04.1 55.2 55.1 58.5 0.131
45 57.2 53.8 55.1 54.2 0.136
67.5 36.4 48.8 48.4 . 46.6 - 0.148
90 26.0 44.2 47.0 41.4 0.156

112.5 34.6 44.2 49,7 ’ 43.8 0.151

135 55.4 46.9 53.7 50.6 0.141
157.5 65.8 55.2 56.4 57.2 0.132
; 180 76.2 60.7 59.1 63.9 0.125
i 202.5 69.3 53.8 53.7 58.5 0.131
225 62.4 46.9 49.7 ' 54.2 0.136
247.5 57.2 i 34.5 48.4 45.6 0.148
270 55.4 27.6 48.4 41.4 0.156

192.5 50.2 35.8 . 48.4 43.8 0.151

315 46.8 49.7 51.1 50.6- 0.141
337.5 58.4 53.8 53.7 57.2 0.132

Max, Perm. ... 76.2 60.7 59.1 — _

ding to formulas (3.8), since the measurements have been taken at equal angle
intervals of 22.5°. One obtains, after a straight forward calculation

K,= 0.0148 md-!
K, =  0.0237 md-?
Ky, = — 0.0006 md-1,

Consequently, one obtains for the principal directions:

tang = 1526 .0 = 860
tan @ = — 0.06 .0 = — 4°

and for the eigenvalues:

A= 0.0239 md! .-, axis = 0.154 md-1/2
A = 0.0146 md-! .". axis = 0.121 md—/2,

The principal permeabilities turn out to be 42 md and 68 md, respectively. The
corresponding curves are shown m Fig., 3 and it is seen that the coincidence with
the measured points is excellent.

A similar analysis has been made with the remaining 29 polar diagrams of
directional permeability measurements that have been published by Jomnson
et al. The results of this analysis are tabulated in Table 2. Therein, column 1



assigns a number to each sample, col. 2 gives the figure corresponding to the sample
in JOHNSON’s papers, 3 gives the key used for the sample by JoHNsON 4 gives the
position of the «top» in JoENsoN’s figure as compared with our choeice of zero
angle, and 5, 6 and 7 give the position of the principal axes, their ratios, and the
principal permeability ratio, respectively. Fig. 4-10 represent the results graphi-
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Fig. 3

cally. The first plot for each sample is JorwsoN’s plot, the second 1s the same
after symmetrization, and the third is a plot of £~1/2 together with the best-fitting
ellipse. All values are referred to as « 100 » for the maximum value of the quan-
tity in question that was obtained. '
The calculation of the position of the principal axes as well as of the eigen-
values has been made by using formulas (3.7), since the values were measured at



equal intervals of 30°,

— 8

5

The calculations are somewhat lengthy, but by no means
difficult. They can easily be set up for working out by untrained help. There
is therefore no reason why they could not be made standard procedure in connection

TABLE 2
1
f . Positions | Ratio of |
| Sample Source Key Top in of Prine, | axes of Permt?ab.
No. source . Ratio
axes ellipse
1 LFig. 7 | ... 900 730 .94 .81
2 I, Fig. 7 - 900 880 .87 .76
3 I, Fig. 7 —_— 900 730 .92 .85
4 I, Fig. 7 _ 600 40 .82 .67
5 I, Fig. 8 - - 600 730 .92 .84
6 I,Fig. 8 | = ----- 60° 200 .87 .78
7 I, Fig. 8 ++++++ 600 680 .91 .83
8 I, Fig. 9 R 1200 8o .92 .85
9 I, Fig. 9 _— 1200 860 17 .59
10 I, Fig. 9 —— 1200 40 .81 .65
; 11 I, Fig. 9 |  ----. 1200 50 .85 .73
| 12 T, Fig. 10 _ 300 o .80 .64
13 1, Fig. 10 ce- 300 40 .82 .67
14 I, Fig. 10 —_— — — 300 20 .87 .76
| 15 | 1, Fig. 10 ——— 300 lo .87 .76
| 16 1, Fig. 10 ————— 300 1o .93 .87
17 I, Fig. 10 ++++++ 300 3o .84 J11
18 I, Fig.11 | ————- 600 50 .93 .87
19 I, Fig. 11 ++++++ 600 40 .85 .72
20 I, Fig. 7 _— 60° 220 .92 .85
21 . I, Fig, 12 _ 300 100 .82 .67
22 11, Fig. 4 300 Qo .80 .64
23 11, Fig. 4 | ------- 300 890 .82 .68
24 I, Fig. 4 | —-—————— 300 6o .84 71
25 11, Fig. 4 +++++ -+ 300 40 .85 .72
26 II, Fig. 5 | PB54-1B 2100 200 .96 .92
27 I, Fig. 5 | PB54-2B(1/25) 900 160 .94 .88
28 IL, Fig. 5 | PB54-2B(NS) 600 860 .94 .88
29 11, Fig. 5 PRB54-1C 1200 40 .92 .85

with routine directional permeability determinations. In this manner, at least,
a definite value for the prineipal permeability directions as well as for the corre-
sponding principal permeabilities is obtained, which is much better than reading
those values off a diagram in a manner which is little more but haphazard.
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5. Conclusions — The final task is to investigate how well the points obtained
from measurements of Jonnson et al. do fit the best-fitting ellipse of the polar

frasion)

'-!\‘qw}

(TR
NS sy
\‘\‘{\\‘g"/}:!/

72
0,
il

eSSy

SAMPLE 29

diagrams in order to determine whether or not the tensor theory of permeability is
a correct representation of the physical facts. In order to achieve this it is ob-
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viously necessary to obtain somehow a rough 1dea of the experimental confidence
limits attached to the points as calculated from the data of JoHNsON et al.

Errors of the position of those points can arise from two sources. Firstly,
there 1s the possibility of inaccuracies in the actual determination of each permea-
bility value. Secondly, it must be held that the porous samples tested are in no
case perfectly homogeneous such that the permeability values obtaned in one
direction from a small sample of the porous medium may be in error as compared
with the average permeability in that direction if a larger piece of medium would
have been used for the determination.

As so the first possible cause of error, JoEnson et al. have already analysed
it and have shown that these inaccuracies are very small, of the order of 1 per cent.

As to the second cause, no such evaluation has been made by the original
authors. Therefore, one is faced with the task of supplying same. It is proposed
to do this as follows:

In the first experiment, represented in our Fig. 1, Jounson & HucHEs, in
fact, obtain six different permeability values for each direction. It must be assu-
med that all these values should be identical if the porous medium tested were
perfectly homogeneous. The spread of permeability values around the wmean,
therefore, must be taken as an indication of the inhomogeneities encountered. It
is, then, possible to calculate the standard deviation of the 48 permeability values
listed in Table 1 around the means for the respective directions, This standard
deviation expressed as a percentage, should be a good mdication for the standard
error {in per cent} of a directional permeability value to be expected in any one sam-
ple if only one measurement is made. From a straightforward evaluation of the
data of Table 1, one obtains
(5.1) Standard permeability error = 6.87 md

= 10.0 %

Therefore, the relative standard error of 1/k'/2 is roughly half that much, i.e. 5 %,.
Since each point in the graphs of 1/k*/2 in Figs. 4-10 is the average of two measu-
rements (in opposite directions), this error is again lowered by a factor of 1 /V2.
Since all measurements are referred to « 100 » as maximum values the percentage
error as calculated above is also the absolute error of the graph. One obtains:

(5.2) Standard error of 1/Vh = 3.5 % -

In view of this result, it must be held that the experimental points in Figs.
4-10 do fit the « theoretical » ellipses. In most cases, the fit is even much better
than within the standard error limits indicated by Eq. (5.2). It must be con-
cluded, therefore, that the tensor theory of permeability is able to account for the
data obtained by JoHNSON et al. in a most satisfactory manner.
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