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Abstract. 

Given two arbitrary real matrices A and B of the same size, the orthogonal Procrustes problem is to 
find an orthogonal matrix M such that the Frobenius norm II M A - B]I is minimized. This paper treats 
the common case when the orthogonal matrix M is required to have a positive determinant. The stability 
of the problem is studied and supremum results for the perturbation bounds are derived. 

AMS subject classification: 65K05, 65F35, 65G99. 

Keywords: Condition number, Orthogonal Procrustes problem, Perturbation bounds, Singular 
values. 

1. Introduction. 

Given any matrices A and B ~ R "×", the orthogonal Procrustes problem is for- 
mulated as 

(1.1) min lIMA - Bl[, 
MeO 

where the norm ll'll is the matrix Frobenius norm and f2 denotes the set of orthogonal 
m by m matrices. Green [4] solved the problem when A and B both are assumed to 
have full row rank. The general problem was solved by Sch6nemann [9] and it has 
later also been treated by Hanson and Norris [5]. By using the singular value 
decomposition, B A  r = UZz V r, of the matrix Z = BA r, the solution is given by the 
orthogonal polar factor of Z, i.e., 

(1.2) ~ / =  U V r. 

The solution is unique provided the smallest singular value, ~r,,(Z), of Z is nonzero. 
Hanson and Norris [5] and Wahba [13] treat the problem when M is required to 

have a positive determinant, i.e., the set f2 in (1.1) is replaced by a set f2+ defined as 

12+ = { M ~ R " × m I M r M  = I; det(M) = +1}. 
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We will focus our attention on this problem which arises in many applications where 
M corresponds to a rotation, for example in kinematics when determining a rota- 

tional movement  of a body, see e.g., [10]. To express the solution explicitly we have 

to consider two different cases: 
1. d e t ( U V  r) = +1.  The solution is given by M = UV T and it is unique if 

a , ,_~(Z)  ~ O. 

2. det(U V r) = - 1. The solution is given by A7I = U diag(1 . . . . .  1, - 1) V r and it 

is unique if o- m_ l (Z) 4= am(Z). 
We will study the perturbed problem 

(1.3) rain II M ( A  + AA) - (B + AB)[], 
M ~  + 

to investigate how the solution /Q + A M  depends on the perturbation matrices 

A A  = {6a,,j} and A B  : {6b,,j} e R  "× ' .  
When the solution of problem (1.3) is given by the polar decomposition of the 

matrix (B + AB)(A  + AA)  r (case 1 above), it is of course possible to use the well- 

known bounds for the polar factors, see e.g., [1, 2, 6, 8 and 14]. But by utilizing the 
special structure of the problem it is possible to derive much sharper bounds. 

In section 2, we prove a supremum result for tIAMII, expressed by the residual 
]IAT/A - BH, and by the amount  of perturbations ]tAAH and HABll, In section 3 we 
show how the problem is connected to the skew symmetr ic  Procrustes problem. This 

connection is used on problems with zero residual to derive the same first order 

bound as in section 2. 

2. The perturbation bound. 

As shown in section 1, a necessary condition for the unperturbed problem to have 
a unique solution is that the second smallest singular value of the matrix B A  r is 

nonzero. Thus, we are only interested in cases where n >_ m -  1. However, to 
simplify notations we will assume n _> m. This is no restriction since we can append 
a zero column to A and B, if necessary, without changing the problem. 

The following theorem gives a supremum result for the error JlAMI[. 

THEOREM 2. 1 Given a matr ix  A ~ R m ×", m <_ n, with singular values al  >-- • • • > a,,, 
2 2~. 

and a positive number y, satisfying 7 < (o m_ 1 + ~ . )  . 

By  introducing the set 

F =  {BERm~nJ  min  l IMA - BJ[ <7},  
M ~ .-"2 + 

f o r  any matr ix  B ~ F we can define the matrices 1~4 and hTl as 

~ / =  arg min It M A - B [I, 
M ~  + 

= arg min [IM(A + AA)  -- (B + AB)II, 
M ~ - Q  + 
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where the perturbation matrices AA  ~ R "  ×" and AB ~ R m ×" are bounded as 

2 2½ IIAAII _< E:A '< (62--1 -[- 0"2) "i, [IABll ~ ~B < (6m-1  "4- O'm) - -  ~). 

The perturbation A M  = ffl - )Pl is then bounded as 

(2.1) sup supllaMII 2~/ [1  ((1 ~44)½(1 2 2  ½ . . . .  ~ )  - ~c~:~A~.)] ,  
B~F 

the second supremum taken over llAAtl < eA and IIAB[I <-~B, and where 

l / ( .~_~ + 6~m) ½ and ~ is 1/ ( (~_~ + 6~)½ - 7). 
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~c A is 

By using the Tay lo r  expans ion  of (2. I) and  by applying the theorem on some 
interesting special cases we get the following results. 

COROLLARY 2. t With the same assumption and definitions as in Theorem 2.1, define 

the function h(ea, eR, 7) = sup sup II A M II, the second supremum taken over IIAA tl <- ea 
B~F 

and tlABf[ <- en. The function h(~a, emT) then satisfies 

(2.2) h(gA, 8B, ]~) = 42(KAgA + lgBSB) + O((BA mr_ gB)3), 

(2.3) h(eA, O,y) = 2~/[1  -- (1 -- ~AeA)2 2 i ]  = X/2xae  A + O(e3), 

(2.4) h(0, eB, y) = 2 X/J1 -- (1 -- r2e2)½] = x/2 ~CBe B + o(eg). 

For problems with zero residual (7 = 0), we observe that KA equals ~B. When the 

perturbation matrices are equal (ca = e~ = e), the function h(e, e,O) is the linear 
function 

(2.5) h(e, e, 0) = 2 ~/2 XA e. 

To  prove  Theo rem 2.1 we need the following lemma.  

LEMMA 2.1 Given the matrices Y, = d iag(a i ,  62), B e R 2 × 2, and a positive number ?, 

satisfying ? < tlEII. I f  tie - BII <- 7 then 

(2.6) a l b l a  + 62b2,2 > llEll (11~II - ~'). 

PROOF. T a k e  B = E + R, where It R II -< 7- Then  

a i b l , l  + t72b2,2 = ff 2 + 6 2 -1- trlrl, I + ff2r2, 2 ~__ IIEIt 2 - IIEII > 

PROOF OF THEOREM 2.1. We give a strict p roo f  for the case when eA is zero, 
followed by a geometr ical  a rguing to obta in  the general result. 

Wi thou t  loss of  generali ty we can assume tha t  ~r  = I  and A = Z = 

diag(o-1 . . . . .  O-m), where 61 >_. . .  >_ O'r, > 0, see [11] for details. 
Let  us first consider the 2-dimensional  case. The matr ix  M = I + A M  can then be 

writ ten as I + A M  = F c°s (¢) - s i n ( C ) ]  
[ s in  (q~) cos (¢)d '  and it is easy to see that  l] A m II satisfies 
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(2.7) IIAMII 2 = 4 -- 4cos(05). 

By comput ing  F(05) = II(I + A M ) E  - (B + AB)I[ and utilizing the necessary con- 
dit ion for minimum, OF/O(o = 0, we get the following equation: 

sin(~) r + O-xt~b2, l - -  0-2~5bl, 2 
tan (05) - - - -  

cos(05) q + cr13bl, 1 + o2~5b2, 2 ' 

where r = alb2,1 - ~2bl,2 and q = 0.1b1,1 + 0.2b2.2. Since 05 = 0 is assumed to be 
the solut ion to the unper turbed  problem, it follows that  r vanishes. 

By defining 

2-* (2.8) c~ = (0 .2 "t- 0"2) ~, 

we get from Lemma  2.1 that  q satisfies q >_ 0~(e - 7). Since [l AB 1] is less than c~ - 7, we 

conclude that  tan (05) is bounded.  
It is no restriction to assume that 05 is nonnegative.  Thus, both  tan (05) and j] AMll 

are increasing functions of 05 and the worst per turbat ion  AB is identified by solving 

0.16b2,1  - 0 - 2 6 b l , 2  
(2.9) max 

IIABII<_eB q + a ,abl ,1  + o'26b2,2 " 

The solution to this problem satisfies 

-o co  0q 
(2.10) AB = [_ e l  cos (0) -- o'z sin (0) J eB/~. 

To  identify the angle 0, corresponding to a maximum, we observe that problem (2.9) 

becomes 

c o s  ( 0 )  
(2. i t) max 

0 q .... c~eBsin(0)' 

which is solved by sin(0) = 7eB/q. The worst  per turbat ion  AB in (2.10) is now 
completely determined.  For  this worst  per turbat ion,  the value of tan (qS) is 

~e~/q 
(2.12) tan (05) = 

(1  - 

Thus, tan(05) and tlAM{I are bo th  maximized for the angle 05 satisfying sin (05) = 

~e~/q. 
To  identify B e F that  minimizes q, and hence maximizes sin (05), we use Lemma 2.1 

to get q,,i, -- ~(~ - Y). The maximal value of sin (05) is therefore ez/(c~ - 7). By using 
the definition (2.8) of ~, and the expression (2.7) for IIAMII, we conclude 

(2.1.3) sup sup I IAMII=2  / { 1 - ( 1  - 52 ) ~ }  

For  m > 2 we use the real Schur decomposi t ion to rewrite the matr ix I + A M  as 
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I + AM = Wdiag(It, q~l . . . .  , ~ v ) W  ~", 

where W is or thogonal ,  t + 2p = m, and the matr ices  ~ are identified as 

F os sin (4,3 t ,  i = l ,  , .p .  
~ i  = Lsin(4~3 cos  ( ¢ 3 3  " 

Let the matr ices  G = w T z ,  C = WTB, and E = W TAB be par t i t ioned in row 
blocks as 

G T [G S, r C r E T ~], = [ c L .  ,Cp], =EEl,..  T . . . . . . . .  ,Ep], 

Go, Co, Eo~R t×', Gi, Ci, EimR 2×", i = 1 . . . .  p. 

Each one of  the matr ices  ~bi is then the solut ion to the 2-dimensional  p rob lem 

(2.14) min  I[~b,G~- (C~ + E~)H. 
Oie-O + 

We have a l ready proved  that  (2.13) holds for 2-dimensional  problems.  Hence,  we 
apply  (2.13) on p rob lem (2.14) to get 

i=1 i=1 (al(G~) 2 + a2(Gi) ~ - 71) 2 ' 

where si = IIC,[I satisfies Z~'e 2 < ~2 and  ?i = I tG~-  C, II satisfies Z f ?  2 _< 72. Let 
i = k be the solut ion to 

min (a2(Gi) + a2(Gi)). 
l<_i<_p 

Then  HAM[] 2 in (2.15) is maximized  when  ek = eB, 7k = ? and e~ = 0, ?i = 0 for 
i # k. F r o m  the Mirsky  T h e o r e m  (see e.g., [12] p. 204) we get 

a2(Gk) + a#(Gk) >_ ¢r~_t(G) + a2(G) -~- O. m2 _ 1 "~ 6ra'2 

Hence,  we conclude 

(2.16) ItAMII < 2  1 - -  1 - -  ( (a~_,  + a 2 ) ~ - - ? )  2 " 

The  upper  bound  is a t ta ined for 

(7" 2 2 -~ (2.17) B = Y - diag(0 . . . .  ,0, ~_ i, am)?/(am- 1 + am) :, 

[~ 0 ] 'whereAB22~R2×2isch°senas  and AB = A B 2 2  

[ --ICBeB~Tm-1 --(1-- ~¢~)~ a,. 1 eB 
(2.18) A B 2 2  = (1 2 2 ½ 2 " 

- ~ e ~ )  ~ , . _ ,  --~B~B~,. J (~m-1 + a~)~ 

The theorem is now proved  for the special case ~A = 0. 

To  generalize the result to the case where also a per tu rba t ion  A A is considered, we 
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study the worst  2 by 2 per turbat ion  AB, given by (2.10), from a geometrical point  of 
view, see Fig. 1. We observe that  0 equals ~bn. We also know from the solution of 
(2.11) and from the minimal value of  q, that  0 satisfies sin (0) = e~/(~ - ?). Analog- 
ously, the angles co and ~bA corresponding to the worst  per turbat ion  AA, satisfy 

co = 4)a and sin(co) = cA~a, see Fig. 1. 

I 

\ 
/ .  

x --/~b2 .-2 t .. 

> 

Fig. 1. A 2-D illustration of how the worst perturbations AB = [0bi,6bz ] and AA = [6ai,3a2], affect 
the rotation matrix by making the rotation angle q~a + ~B as large as possible. 

The ro ta t ion  angle, 4~, corresponding to the per turbed ro ta t ion matr ix equals 

~b~ + ~ba. Hence,  

cos (q~) = cos (qSB + 4)A) = COS (q~B) COS (q~a) -- sin (~b~) sin (4~A) 

(2.19) -- (1 - e2/~xz)i(1 - eB2/(0t - -  7 ) 2 )  {- - -  e A ~ B / ( Z (  ~Z - -  "~)). 

As in the case for eA = 0, we generalize the results to arbi t rary dimension by 
replacing al  and a2 with am-1 and am, in the definition (2.8) of ~. By doing so and 
inserting the expression (2.19) into the equat ion (2.7) we get the general result 

(2.1). • 

Let  us now give some comments  about  Theorem 2.1. First, the sensitivity of the 
problem is determined by the condi t ion numbers  tea = 1/(a~-X + O-~) ~ and 
~c~ = 1/((o-z~_ i + °'2) ~ -- 7). Hence, if the two smallest singular values of the matrix 
A are small, or  if the residual is large, the problem is ill-conditioned. 

Second, the worst  matr ix B e F defined in (2.17) has singular values that satisfy 

1/(a 2- l(B) + a2(B)) ~ = 1/(( a 2 -  t + a2,,) ~ - )') = ~cm 

Using this fact, the symmetry  in the problem, with respect to A and B, becomes more  

evident. 
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Third, if we assume a,, > 0 and restrict the residual, ~,, and the allowed amounts of 
perturbations, ~a and ~B, to satisfy y < o'm, eA < a,,, and eB < % -- Y, then the 
theorem also holds for the general orthogonal Procrustes problem (1.1) provided 
that the unperturbed solution has positive determinant. This is true because these 
restrictions imply that sign(det((B + AB)(A + AA)T)) equals sign(det(BAT)), i.e., the 
solut ion/~ to the perturbed general problem has positive determinant. 

Finally, we compare our first order bound (2.2) with the bound obtained by 
applying the results derived in [1] and [8] for the polar decomposition. The result 
for the orthogonal polar factor M + A M  of a matrix Z + AZ  is 

211AZII 
(2.20) IIAMtl < + O(llAZllZ). 

O'm_ l ( Z  ) -~- O' . (Z)  

In our application Z corresponds to B A  T and A Z  to BAA r + ABA r + ABAA r. 

Using the expression (2.17) for the matrix B that makes the problem most ill- 
conditioned we get the relations 

(2.21) 

and 

(2.22) 

[IAZI[ ~ (71(~A + ~B) + O((eA + ~B) 2) 

2~- 2 O'm_ I ( Z  ) -4- (Tra(Z) = (O"2_1 -~- O'm) ((O'm_ 1 -1- 0-2) ½ - -  ~) = 1/(tgAKB). 

These relations inserted into (2.20) give 

(2.23) IlAMII ----- 61KAKB(I~A "4- ~B)" 

Thus, our result (2.2) is much sharper if ~r 1 ~ (%_2 1 + tr2) ~ or if the residual is large. 

3. The connection with the skew symmetric Procrustes problem. 

Every matrix (hT/+ AM)~  f2+ can be represented by a skew symmetric matrix S as 
(M + AM) = exp(S) = e s, (see [3] p. 287). Using this representation, problem (t.3) 
becomes 

(3.1) min ]leS(A + AA) - (B + AB)I]. 
S= - S  T 

If we assume M = I, A = E, and that the residual to the unperturbed problem is 
zero, i.e., B = Z, the first order approximation of problem (3.1) is the linear skew 
symmetric Procrustes problem 

(3.2) min [IS(Z + AA) - (AB - AA)I[. 
S= -S  T 

This problem is closely related to the symmetric Procrustes problem treated by 
Higham [7]. According to the theory by Higham for the symmetric case, we can 
show that the solution to (3.2) satisfies 
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s u p  JlSII = ,ff2(t[AA[[ + ItABIL) 
~2 ,~,~ (~m- ~ + ~)~ 

(3.3) x/2(l]Ah][ + [[ABII) 
= 2 2 ~ + O((I[AA[[ + IIABH)2), 

(a.,_ i + am) 

where 8m- 1 and 8,, are the two smallest singular values of the matrix Z + AA.  Since 

AM -- S + O(JISJ[2), we note that (3.3) is the same first order result for IIAMII as we 
get by inserting 7 = 0 into (2.2). 
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