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Abstract. 

In this paper, the optimal order of non-confluent Diagonally hnplicit Runge-Kut ta  (DIRK) methods 
with non-zero weights is examined. It is shown that the order of a q-stage non-confluent D I R K  method 
with non-zero weights cannot exceed q + 1. In particular the optimal order of a q stage non-confluent 
D I R K  method with non-zero weights is q + 1 for I _< q _< 5. D I R K  methods of orders five and six in four 
and five stages respectively are constructed. It is further shown that the optimal order of a non-confluent 
q stage D I R K  method with non-zero weights is q, for q _> 6. 
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1. Introduction. 

In this paper, we are concerned with the approximate numerical integration of the 

m-dimensional stiff initial value problem, 

(1) y' = f(x, y), y(xo) = Yo 

using a q-stage Diagonally Implicit Runge Kutta (DIRK) method: 

Kl")=f (x ,+c~h ,h~ai jk~") ) ,  i = l(1)q, 
j = l  

(2) 

a n d ,  

q 

Y,+I= Y, + h ~ bike, 
i=1 

where there exists an s, t < s < q, such that a~s # 0. A q-stage DIRK method of 
order p is referred to by the pair (q, p). DIRK methods have been studied by Norsett 
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[14, 17], Crouzeix [9], Alexander [1], Cash [7, 8], Cooper and Safy [10], A1-Rabeh 
[2, 3, 4], and Dekker at. al [12]. A particular class of DIRK methods for which all 
the diagonal elements a , ,  i = l(1)q of the coefficient matrix are equal has received 
attention as these methods can be implemented efficiently. Optimal methods of 
orders 2, 3, and 4 in 1, 2, and 3 stages have been derived. However, Alexander [1] has 
shown that no method of order 5 in 4 stages exists. Norsett [15] conjectured that no 
q stage DIRK method of order q + 1 exists if q is any even number greater than 2. 

In this paper we examine the attainable order of the general class of DIRK 
methods defined by (2). In section two the attainable order of DIRK methods is 
discussed. In section three certain properties of optimal order DIRK methods are 
derived. In sections four and five (4, 5) and (5, 6) DIRK methods are constructed, In 
section six the existence of a (6, 7) DIRK method is examined. 

2. Attainable Order of DIRK Methods. 

Butcher [6] has shown that for any q _> 1, there exists a q-stage implicit Runge- 
Kutta  method of optimal order 2q. For DIRK methods the attainable order is 
considerably lower. Before examining the problem of attainable optimal order for 
DIRK methods, we need some preliminary results. 

Following Dahlquist et al. [11] we state, 

DEFINITION: A DIRK method is non-confluent if all c~, i = l(1)q, are distinct and 
confluent otherwise. 

Following Butcher [5, 6], we shall use the symbols A, B, F, G, and E to represent 
statements about some interesting groups of the order equations. 

A(p): ~b = I/y, whenever r < p, where r is the order of the elemental weight. (These 
are all the order equations). 

q 

(3) B(p): q~ = y~ b, = t,  
i=1 

q 1 
[(Dk-1] = 2 b~ c k - 1  = -  for k = l(1)p, 

i=1 k '  

q 

(4) F(p): [2(P]2 = 
i , j = l  

b i a i j c  j = 1,  

q 1 k--3 
bici  a u c j  - 2 k  " 

i , j = l  
[[q)]~k-a] = for k = 4(1)p, 
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q 
I (5) G(p): [2@]2 = ~ biai~e~" = 1~, 

L j = I  

q 1 
= _ ie i  aide d - -  

3k i , j = l  

q 1 
(6) E(p): [2qo k 2]2 = ~ b~aiyc k - 2 -  k(k 1) '  

i , j= l 

for k =  5(t)p, 

k =  3(1)p. 

Using these relationships the following results are stated: 

THEOREM ( l ) :  B u t c h e r  [6] 
(i) A(p) = > B(p). 
(ii) A(p)= >F(p). 
(iii) A(p)= > G(p). 
(iv) A(p)= >E(p). 

Using Theorem (1), the following result is formulated: 

THEOREM (2): A non-confluent (q, p) D I R K  method with non-zero weights has an 
order p that cannot exceed q + 1. 

PROOF: Assume that  there exists a non-confluent (q, q + 2) D I R K  method with 
non-zero weights, then B(q + 2), F(q + 2), and G(q + 2). 

Set 

q 

Pi = ~ aljci - c~/2, 
j = l  

q 
2 c ~ / 3 ,  = y~ a , c ~  - 

j = l  

then we shall show that Pi = 71 = O, for i = l(1)q. 
Consider combining B(q + 2) and F(q + 2), then 

[ w ] ~  - ½[~ o~] = o, 

[ [ ~ ] ~ o ~ - q  - ½[~- ~] = o,  

or, equivalently, writing out in full 

i =  l(1)q. 

i =  l(1)q. 

k = 4(1)q + 2, 

q 

biPic[ = O, r = O(1)q - 1. 
i=1  

Since the D I R K  method is nonconfluent with non-zero weights, then Pi = 0 for 
i =  t(1)q. 
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C2 
Note t h a t P l = 0 =  > c 1 = 0 =  > 7 ] = 0 ,  a l s o P 2 = 0 =  > a 2 2 -  2 

Considering combining equations B(q + 2) and G(q + 2), then 

[~o~]~ - ~ [q ,~ ]  = o, 

[[~0al~o~ . 1 _ ~[q~k-~1 = 0, k = 5(1)q + 2, 

or, writing out in full 

but since T1 = 0, then 

q 

b ~ c ~  = O, r =0(1)q - 2, 
i = 1  

623 

(b2 b)() . . . . .  T2 

iil i =o 
c~-2b2 g-  

and a similar argument leads to, 

T~=0, for i= l (1 )q ,  

but 7~ = 0 = > a2z 1c which contradicts the previous result. --="3 2,  

To complete the proof, we need to show that the theorem is true for q = 1. This is 
simple to show, since the one stage DIRK method is the well known midpoint rule 
which is of order 2. 

By considering the N-rational approximation to e z, z ~ C, Norsett and Wolf- 
brandt [16], have shown that the order of any q-stage DIRK method cannot exceed 
q + 1. Their approach is quite different from that presented. It is noted, however, 
that Norsett and Woltbrandt [161, do not impose any conditions on the nodes ci's 
and the weights bi's. 

3. Properties of  Optimal DIRK Methods. 

As a consequence of Theorem (1), we turn our attention to q-stage DIRK methods 
of order q + 1. Following Butcher [51, and Dekker et. al [121, we shall use the 
symbols C, and D to represent some convenient relationships between the coeffi- 
cients of the DIRK method: 

k-1 ~ c i ,  i =  l(1)q, k =  t(1)3, (7) C(~): %c~ = 
j = l  

(S) D(~): ~ bja~c~ -1 = l b i (1  -c~), i =  l(1)q, k = 1(1)~. 
j = l  
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TO help us construct  such methods,  we shall replace some of the order  equat ions 
with a much more  convenient  set of equations.  

LEMMA l" For any non-confluent (q,p) DIRK method, with p = q + 1, then D(1). 

PROOF: Set 

q 

di= ~', ajibj - ( 1  - ci)bi, i = l(1)q. 
j = l  

We shall show that  d~ = 0 for i = l(1)q. 
Consider  the vector: 

u i = (1, c~, c q- 1~r _ . . . ,  ~ , , i :  l ( 1 ) q .  

Now, if all the c[s are distinct, then set: 

q 

w_ = ~ d,u, = (Zd~... ScT- l d J .  
i = 1  

For  some constants d~, i = l(1)q. 

Since the D I R K  method  used is of  order  q + 1 then B(q + 1) and E(q + 1), using 

Theorem (1). 
Now,  consider a typical component  of_w, then, 

q 
k W k = ~ C  i ld~ Ezfpk-X]z_[q~k 13 +[(pk 3 = 0 ,  

i 

i.e. w = 0, but  since _ui are linearly independent  for i = t(1)q, then 

di=O,, for i =  l(l)q. 

The set of equat ions D(1) has the effect of ensuring that  all first degree elementary 
weight have the correct  values if the same is true for the other  elementary weights. 

LEMMA 2: For a non-confluent (4, 5) DIRK method with non-zero weights C(2). 

4 
I 2 PROOF: Let Pi = ~ aijcj -- yci, i = l(1)q. 

j = l  

Assume that  not  all pl, i = l(1)q vanish, then using the order  equat ions given in 

Butcher [6], we have 

4- 4 

(i) Z bipi=O, (ii) Z bicipi--O, 
i = 1  i = 1  

4 4 

(iii) Z bicZ~P, = 0, (iv) Z b~P2~ = O, 
i = I  i = 1  
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For  example,  to verify (iv), we have, 

bip 2 = bi aijci - Z b,c2aijcj + ¼ Z b,c~ = ~ - ~ 0 + ~ = 0 , '  
i=1 ~=, j=l ~ = 1  

Equat ions  (i) to (iv) could be rewrit ten in matr ix form. 

C2 . . . .  P2 = O, 

~ c l b l  . . .  P3 
\ p l b l  p4b4/) p 

Since not  all the pi's vanish, and the D I R K  method  is nonconfluent  with non-zero 
weights, then: 

(9) Pi = tc~ + uci + v, i = 1(1)4, 

for some constants  t, u and v, (not all zero). 
Now,  substitute (9) into (i), (ii) and (iii), and using the order  equations,  

t/3 + u/2 + v = O, 

t/4 + u/3 + v/2 = O, 

t/S + u/4 + v/3 = O. 

Thus,  t = u = v = 0, a contradict ion.  Therefore,  P, = 0, for i = l(1)q. 

REMARK: Lemma  2 can be generalized to any (q, q + 1) D I R K  method,  where 
q > 4, using 

q 

(10) ~ k-3 bici Pi = 0, k = 3(1)q + 1, 
i = 1  

which follows from combining B(q + 1) together with F(q + t). 

LEMMA 3: For a non-confluent (5, 6) D I R K  method with non-zero weights, and not 
all Ti's are zero where 

(11) 

Then, D(2), 

PROOF: Set 

(12) 

q c/a 
2 , i =  l(1)q. T~ = y~ a , jq  3 

j = l  

q 

si = ~ bjcjaji -- ½bi(1 - c/Z); 
j = l  

Then, using the order  equat ions we have the following: 

i =  l(1)q. 
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Equations (i) yo (iv) could be rewritten in matrix form. 

q q q 

(i) ~ , s , = 0 ,  (ii) 2 s~c~=O, (iii) ~ ,s ,c  3 = 0 ,  
i = l  i = 1  i = 1  

q q 

(iv) y, s~c? = 0, (v) ~ s~7; = 0. 
i = 1  i = l  

Equations (i), (ii), and (iii) are easily verified using the order equations, given in 
Butcher [6]. Furthermore, 

(iv) Z sic3i = bycjajic~ - ½ bic~ - bic~ 
i = I  i , j = l  i i = 1  

= [ [ o ~ ] e ]  - ½ { [ o  3] - [ e s ] }  = o, u s i n g  Theorem (1), 

(v) 2 Tisi= ~ biciaijajkc 2 -  2 blai~ c 2 -  bic~aljc.7 
i = 1  i , j , k =  l ~ 1 \ ' , j =  i , j = l  

+ 1 + b,c  - b , 4  
i , j = l  k i = l  i = 1  

= EE2o212~0] - ½ { E w q 2  - EE~oqo;]} 

- ½ E E @ ] o ]  + E~{Eo31 - E~053} = o. 

Using Theorem (1) and the order equations. 
Equations (i)-(v) give 

Cl C2 C3 C4 C5 S1 

= 9  

If the determinant of the matrix is zero, and the method is nonconfluent then: 

(13) T~ = 2c~ + #c 2 + 6cl + a, i = l(1))q 

for some constants 2, #, 6 and a, (not all zero). Using the order equations we have: 

q q q 

(14) (a) Z biT~ = 0, (b) Z bic.~T~ = 0, (c) ~ bNZT, = 0. 
i = l  i = 1  i = 1  

Substitute T~ given by (13) in (a), (b) and (c), we have: 

( 1 / 4 ) 2 + ( 1 / 3 ) # + ( t / 2 ) 6  + a = 0  

(1/5)2+(1/4)# +(1/3)6 + ( 1 / 2 ) a = 0  

( 1 / 6 ) 2 + ( 1 / 5 ) ~ + ( 1 / 4 ) 3 + ( 1 / 3 ) a = 0  



O PT IMA L ORDER D I A G O N A L L Y  I M P L I C I T  R U N G E - K U T T A  METHODS 627 

Now, from the generalization of Lemma 2: 

c 1 = 0 =  T 1 = 0 =  > q ) = 0 ,  but a = 0 =  > 2 = # = ~ = 0 .  

which contradicts the requirement of the Lemma. Hence, st = 0 for i = l(1)q. 
Alexander [1] and Norsett [14], constructed DIRK methods of optimum order 

for q = 1, 2 and 3. Using the previous Lemmas, (4, 5) and (5, 6) DIRK methods will 
be constructed. Moreover, the existence of a (6, 7) DIRK method wilt be inves- 
tigated. 

4. (4, 5) DIRK Methods. 

For a fifth order DIRK method we need to satisfy a set of 17 order equations 
(Butcher [6]). Alternatively, consider the following equations: 

4 

(i) B(5), (ii) C(2), (iii) D(1), (iv) ~ bic~auc 2 = ~ .  
i , j = l  

The original order equations can be replaced with the much simpler equations (i) 
to (iv). As an example, we can see that elementary weights of degree one, and 
elementary weights of the form, [[(P]qh • • • ~0s] are satisfied if (i) to (iv) are true. For 
example: 

q 

[4~]4 = ~ bia~jajkaktcl 
i , j , k ,  1 

q 

= ~ ~ biaijajkc 2, using (ii) 
i , j , k  

- 2 -  ! biajkc~ -- b/c.iajkc k , using (iii) 
k j ,  k j . k  ) 

2 c~bj --  3 = - cj b~ - , using (iii) and (iv) 
j j = l  

= ~ using (i). 

Thus, the elementary weight [4~014 has the correct value. The rest of the order 
equations can be treated similarly. 

Equations (i) to (iv) represent a set of 14 equations which are more convenient to 
solve than the original 17 order equations. It is simple to verify that, 

4 4 

(v) ~ biT~ = 0, (vi) ~ biciTi = O, 
i = 1  i=1 

where Ti is as defined by (11). 
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Solving the set of 14 equations and using (v) and (vi) results in a two parameter  
family of D I R K  methods. 

Special Choice of Parameters. 

Set a22 = a33 = a44, then, a33 = ½c2 = I - c4, i.e. c2 = 2(1 - c¢), and 
a 3 3  = a 4 4  : > c ~  - -  2c] + ~-c 4 - 37 : 0 

The solution of the above equation results in exactly three D I R K  methods, they 

are: 

0 
0.2180780182 
0.5545195045 
0.8909609909 

0 0 0 0 
0.1090390091 0.1090390091 0 0 
0.0177359481 0.4277445474 0.1090390091 0 
0.1173343519 0.2044057169 0.4601819131 0.1096390091 

0.0707307044 0.3078968440 0.3589454736 0.2624269779 

0 
0.463866737 
0.6159666843 
0.7680666315 

0 0 0 0 
0.2319333685 0.2319333658 0 0 
0.2830468765 0.1009864392 0.2319333685 0 
0.2181834746 0.5195503629 -0.2016005745 0.2319333685 

0.1269880164 1.1744777572 --1.2277758135 0.9263100398 

0 
1.3180552448 
0.8295138112 
0.3409723776 

0.1059840102 

0 0 0 0 
0.6590276224 0.6590276224 0 0 
0.3242171755 -0.1537309866 0.6590276224 0 

--0.0474436927 0.1185096734 -0.3891212254 0,6590276224 

0.0020003972 0.3954847537 0.3954847537 0.4965308389 

Alexander [1], showed that there are no D I R K  methods of order 5 in 4-stages if 
au = c~ for i = I(1)4, hence one advantage of allowing unequal diagonal elements is 

the achievement of higher order. 

5. (5, 6) DIRK Methods. 

The construction of D I R K  methods of higher order (p > 5) becomes increasingly 

difficult; for example, to achieve order six, we need to satisfy a set of 37 algebraic 
equations, a difficult task, but again using Lemma, 1, 2 and 3 these equations could 
be reduced to a more manageable set of 22 simple algebraic equations as follows 

5 

bic i aijcj = i-lg. (i) B(6) (ii) C(2) (iii) D(1) (iv) D(2) (v) ~ 2 2 
i = 1  

The analysis of the (4, 5 ) D I R K  method indicates that if(i) to (iv) are true, then the 
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first 17 order equations are satisfied. Note that equation (iv) in the (4, 5) case is not 
included in our set since, 

biciai~c~ = ½ bjc} - b~c using (iv) 
i , j = l  i, 1 

1 1 using (i). 

It remains to show that the order six elementary weights are also satisfied. 
Overall, we have some 20 elementary weights of order six, See Butcher [6]. 

Recall that (iii) = > all first degree elementary weights have the correct value if 
the same is true for all the other elementary weights. Thus, we only need to concern 
ourselves with elementary weights of order 6 and degree > 1. 

Similarly, we do not need to concern ourselves with elementary weights of the 
form [[q~], q~l--- ~o~] since it was shown that if (ii) is true, then these elementary 
weights have the correct value. 

The remaining equations, excluding (i) and (v), are as follows: 

5 

a. [[(D][2~012(~02] = Z b i c 2 a i j a j k C k  1 .  = 3~, 
i , j , k  

5 

b. [[[q~]cp]q~] = ~ biciaijcjajkCk = ~-g; 
i , j , k  

5 

c. [[q~3]q~] = ~, b,cia,Dc 3 = ~-~; 
i . j  

5 

d. [[3(p]3~o] = Z bic2aijajk c, = T~; 
i , j , k , l  

5 

e. [[2q~212~o] = ~ biciaijajkc z = ~ .  
L j ,  k 

It is a relatively simple task to show that equation (iv) assuming (i) and (v) implies 
equations b, c, d, and e, for example b: 

5 

[[[¢p](p]q~] = ~, biciaijcjajkCk 
i , j , k  

5 

= ½ ~ b.icjajkck 
j , k  

= [[~o]q~] -- ~ b j c j  using (ii) 
J 

= ~{~1 1 _ i2},1 (using (ii)) 

= ~ ,  (the correct value). 
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We have shown that if the 22 conditions given by equations (i) to (v) hold, then the 
original 37 order equations are satisfied. 

The order equations yield a two parameter family of DIRK methods with the 
following interesting relationships among the coefficients: 

c5 = 1, a55 = 0, and a 4 4  = ½(1 -- c4). 

EXAMPLE: Set cz = ¼, and c4 = ¼, then the following DIRK method is of order 6. 

0 
1/4 
t/2 
3/4 

1 

0 0 0 0 0 
1/8 1/8 0 0 0 

-1 /12  2/3 -1 /12  0 0 
1/8 1/4 1/4 1/8 0 

0 4/7 - 1 / 7  4/7 0 

7/90 16/45 2/15 16/45 7/90 

Unfortunately, the above DIRK is not A-stable. 
As a result of Theorem (2), and the construction of DIRK methods of orders 

2, 3, . . .  6 in 1, 2 , . . .  5 stages respectively, we state the following result: 

THEOREM (3): The optimal order of a non-confluent (p,q) DIRK method with 

non-zero weights is q + 1,for q <_ 5. 

6. The Non-existence of a (6, 7) DIRK method. 

In this section we investigate the existence of a (6, 7) DIRK method. 

THEOREM (4): For the non-confluent class of DIRK methods with non-zero weiyhts, 
there is no DIRK method of order 7 in six stages. 

PROOF: L e t  

6 
2 1 ,3 (14) Ti = ~ aijc~ - ~ c i ,  i =  1(1)6. 

i = i  

For a DIRK method of order 7, the following equations (i) to (v) are necessary 
conditions: 

6 

(i) ~ bi~ = 0, (necessary for order 4). 
i = 1  

6 

(ii) ~ b~c~Ti = 0, (necessary for order 6). 
i = I  
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6 

(iii) ~ b,c~T~=0, 
i = 1  

6 

(iv) ~ bic3Ti=O, 
i - -1  

6 

(v) ~ biT/2 = 0, 
i = l  

(necessary for order 6). 

(necessary for order 7). 

(necessary for order 7). 

It is relatively simple to verify the above equations, for example: 

6 6 6 

(iv) ~ b,c~ T~ = ~ b,c~ a,jc 2 - ½ ~, bic 6 
i = 1  i , j  i = 1  

= [[02]03]  - ½[06] = 0, using Theorem (1). 

We shall show that  the only 
a contradiction. 

Lemma 2 = > c l  = 0, thus T1 = 0. 
Hence, equations (i) to (v) give: 

c~b2 
c~b2 
Tzb2 

b3 b4 
c3b3 

possibility is T~ = 0, i =  1(t)6, which leads to 

T4 = 0  

• T5 

CASE 1: detl I ~ 0, then: T~ = 0, 1 = i(1)6. 

CASE 2: 
weights then: 

detl.I = 0, since the D I R K  method is nonconfluent with non-zero 

T~ = 2c~ +/~c~ + 6c~ + a, i = 2(1)6 

il(i) 
for some real constants, 2, #, c5 and a. 

Using (i), (ii), (iii) and (iv), we have, 

1 g 
½ 1 1 

3 4 
1 1 
4 5 
1 1 
5 6 

=_0 

Hence, 2 = # = 6 = a = 0 a n d ,  T~=0,  i = l ( 1 ) 6 .  
Now, T2 = 0 implies that  a22 = l C  2 but Lemma 2 = > a22 = ~c2, as c2 ~ cl = O, 

hence we have a contradiction. 
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REMARK: Clearly, the approach of the previous theorem can easily be generaliz- 

ed. 

THEOREM (5): Among the class of non-confluent DIRK methods with non-zero 
weights there are no methods of order q + 1 in q-stages, for q > 6 

PROOF: Similar to Theorem (4), since 

q 

(i) ~ bic~Ti = 0, k = 0(1)q - 3, and 
i = 1  

q 

(ii) ~ bi Ti 2 = 0, (true for order 2 7). 
i = 1  

The above equations can be verified using B(q + 1) and G(q + I). 
Equations (i) and (ii) will give us a q -  1 equation for the (q - 1) quantities 

T2,..., Tq then we can proceed in exactly the same manner as in the previous 

theorem. 

7. Conclusion. 

In this paper, the optimal order of non-confluent Diagonally Implicit Runge- 
Kutta (DIRK) methods with non-zero weights was examined. It was shown that the 
order of a q-stage DIRK method cannot exced q + 1. In particular the optimal order 
of a q-stage DIRK method is q + 1 for I < q _< 5. DIRK methods of orders five and 
six in four and five stages respectively were constructed. It was further shown that 
the optimal order of a q-stage DIRK method is q, for q > 6. The results are 

summarized in the following table: 

Table: DIRK Methods for Optimal Order (q, p*). 

No. of Stages q 1 2 3 4 5 6 

Optimal Order p* 2 3 4 5 6 6 
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