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Abstract. 

Let , - {q}j=o be a family of polynomials that satisfy a three-term recurrence relation and let {tk}~= 1 be 
a set of distinct nodes. Define the Vandermonde-like matrix W, = [Wjk]~',,i= 1, wik = qi- l(t,). We describe 
a fast algorithm for computing the elements of the inverse of W, in O(n 2) arithmetic operations. Our 
algorithm generalizes a scheme presented by Traub 1-22] for fast inversion of Vandermonde matrices. 
Numerical examples show that our scheme often yields higher accuracy than the LINPACK subroutine 
SGEDI for inverting a general matrix. SGEDI uses Gaussian elimination with partial pivoting and 
requires O(n a) arithmetic operations. 
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1. Introduction. 

Let {tk} ~ = 1 be a set of real distinct nodes and let {qj}Y-~o be a family of polynomials 
that satisfy a three-term recurrence relation 

(1.1) qj+ l( t )  = Ofit - f l j )q f i t )  - y s q j - l ( t ) ,  j = O, 1 . . . . .  n - 2, 

with 

(1.2) qo(t)  = 6, q _  ~(t) = O, 

where ~ # 0 and 0j > 0 for all j. Define the n x n Vandermonde-like matrix 
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qo(tl) qo(g2) . . .  qo(t,) 

(1.3) W, ---- ql( t l )  ql(t2) .-- q~(t~) 

q,-t(t l)  q,-l(t2) ... q,-~(tn) 

The associated linear systems of equations W,a = b and W t a  = b, where b is a given 
right hand side vector, appear naturally and have to be solved in many applications, 
such as when approximating functionals or when approximating functions by 
polynomials or rational functions; see [1, 22]. If qj(t) = t;, then the matrix W~ 
reduces to a Vandermonde matrix. 

Many representations of the inverse of a Vandermonde matrix are available. 
A representation of the elements in terms of symmetric functions is described in [ 18]. 
Algorithms for fast solution of linear systems of equations with Vandermonde 
matrices or their transpose are presented in [3, 6, 12, 13, 21]. These algorithms 
determine various representations of the inverse of a Vandermonde matrix, e,g., as 
products of triangular matrices or as a sum of such products. Traub [22] describes 
an algorithm for rapidly computing the elements of the inverse of a Vandermonde 
matrix. 

Representations of Vandermonde-like matrices W,, in factored form are described 
by Higham [15, 16] and Verde-Star [23]. In [t 5, 16] algorithms for the faetorizafion 
of Vandermonde-like matrices are described, and [23] presents a factorization that 
can be used to develop an algorithm for computing the entries of the inverse of 
a Vandermonde-like matrix. 

Vandermonde matrices with real nodes tk are often quite ill-conditioned; see 
Gautschi and Inglese [10, 11]. On the other hand, Vandermonde-like matrices, in 
which the polynomials qj are chosen to be orthogonal polynomials for an interval 
[a, b] containing the nodes, can be much better conditioned; see Gautschi [9]. This 
has generated interest in developing fast solution methods for linear systems of 
equations with Vandermonde-like matrices (1.3); see [5, 15, 16, 20]. 

The present paper presents a new fast algorithm for computing the elements of the 
inverse of an n × n Vandermonde-like matrix W,. Our scheme requires only O(n z) 
arithmetic operations. If the structure of W. is ignored and Wn- 1 is computed by first 
factoring Wn by Gaussian elimination with partial pivoting and thereafter solving 
W,X, = I by using the computed factorization, then O(n 3) arithmetic operations are 
required. Moreover, our fast algorithm generally yields higher accuracy than the 
slower scheme based on Gaussian elimination. Our algorithm is derived by general- 
izing the scheme for computing the inverse of a Vandermonde matrix described by 

Traub [22]. 
The exploitation of structure is a well-known theme in numerical linear algebra. 

However, fast solvers for linear systems of equations that use the structure of the 
matrix to reduce the operation count can yield less accurate approximate solutions 
than structure-ignoring slower solvers, such as Gaussian elimination with partial 
pivoting; see [4] for a discussion. Our interest in the new scheme for computing the 
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entries of IV,-1 stems from that it is faster than Gaussian elimination with partial 
pivoting and numerical experiments suggest that it also is more accurate. 

We remark that Higham [14] demonstrated that the fast Vandermonde solver by 
Bjtrck and Pereyra [3] also can be very accurate. More precisely, Higham [14] 
showed that if the signs of the entries of the right hand side vector alternate and if the 
nodes t~ are all of one sign, then the accuracy of the computed solution is indepen- 
dent of the condition number. Computed examples show that our algorithm for the 
computation of W, ~ 1 yields higher accuracy than Gaussian elimination with partial 
pivoting also when the nodes tj are not all of the same sign. 

It may be convenient to apply our scheme when many Vandermonde-like systems 
have to be solved with the same matrix and different right hand side vectors. After 
having determined W,- 1 the solution of each linear system of equation requires only 
one matrix-vector product. The matrix-vector products can be computed efficiently 
by using level 2 BLAS, If several right hand side vectors are known simultaneously, 
then several solutions can be determined at the same time by computing a matrix- 
matrix product, which can be carried out efficiently by using level 3 BLAS; see [2] for 
a description of the BLAS. 

The paper is organized as follows. Section 2 derives the formulas required and 
Section 3 describes our computational scheme. The accuracy of the computed 
inverse depends strongly on the ordering of the nodes tk. An ordering scheme is 
proposed in Section 4. Computed examples in Section 5 compare our fast algorithm 
with the LINPACK [7] subroutine SGEDI. This subroutine computes the inverse 
of a general n × n nonsingutar matrix by first computing its LU-factorization by 
Gaussian elimination with partial pivoting and requires O(n a) arithmetic oper- 
ations. The computed examples illustrate that our fast algorithm generally yields 
a more accurate approximation of the inverse than SGEDI when the nodes are 
ordered suitably. Numerical properties of SGEDI are discussed in ~8]. 

2. The inverse of  a Vandermonde-like matrix. 

Let the polynomials qi(O satisfy the three-term recurrence relation (1.1)-(1.2) and 
let the matrix IV. be defined by (1.3). Introduce the polynomials 

k 

(2.1) p (O = 1-[ (t - tj), o <_ k <_ n, 
j = l  

where po(t) = 1. Consider the divided difference 

(2.2) p,[t, u3 - p,(t) - p,(u), 
t - - U  

and define the set of polynomials {rj}j= o"- 1 by 
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n - 1  

(2.3) p , [ t , u ]  = ~ qj ( t )rn- j - l (u) .  
] = 0  

We will see in Section 3 that each of the polynomials rj is of degreej. Since the nodes 
tk are distinct, we have p,[-tk, h] = 0 for k v ~ I, and from (2.3) it follows that 

n - I  

(2.4) ~ q j t t k ) r , - j - t ( h )  = O. 
. /=0  

Letting t converge to u in (2.3) yields 

n--1  

(2.5) p',(u) = ~ qj (u)r ,_ j_  l(u). 
j = 0  

Thus, equations (2.4)-(2.5) yield the orthonormality relations 

(2.6) , ~ t  q j ( t k ) r ,_ i_ l (h  ) = 6kl, 1 < k, l  < n, 
j = o  p ' . ( h )  - - 

where bk~ denotes the Kronecker b-function. The polynomial values qi(tk), 0 <_ j < n, 
are the entries of the kth column of I41,. Therefore, it follows from (2.6) that 

r.-j(tt) 
(2.7) ~ l j =  p,(fi) 

are the elements of the inverse of W,, i.e., W,- 1 = [~j]7,~ = t. The following section 
presents a recursive scheme for evaluating the polynomials r i at the nodes. 

3. Computation of the inverse. 

We describe an algorithm for computing the elements of W,-1. Express the 
polynomials Pk defined by (2.1) in terms of the orthogonat polynomials q j, i.e., 

k 

(3.1) pk(t) = ~ Pkjqj(t). 
j = O  

We wish to determine the coefficients p,j, 0 _ j  < n, and proceed as follows. 
Substituting (3.1) into the recursion formula Pk + 1(0 ---- (t -- tk + 1)pk(t), and applying 

(3.2) 

yields 

(3.3) 

1 
tqy(t) = W-(qJ + 1(0 + Yjqj-1(0)  + fljqj(t), vj 

k + l  k + l  1 k 

Pk + l,JqJ(t) = Z Pk , j -  I ~ qj(t) + ~ Pkj(fij -- tk + t)qj(t) 
j = O  j = l  v J - 1  j = O  

k - 1  
~j+l ~ et ~ 

j=O 
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which gives the recurrence relations 

1 7j+ i 
(3.4) P k + l , j  = ~ - - - - - P k , j - 1  -[- (f l j  -- tk+l)Pkj + - ~ - - - P k , j + l ,  0 <_j < k, 

v j - 1  Uj+ l 

1 

Pk+l,k+l =~kPkk,  

where 0_ 1 = 1, Pk, - 1 = 0 and Pkj = 0 for j > k. 
Having computed  the coefficients p,j,  0 <_ j < n, from (3.4), we can determine the 

values rj(tD recursively. F r o m  (2.2)-(2.3) it follows that  

n-I 
(3.5) p.( t )  = (t - -  tk) ~ ,  q j ( t ) rn~ j - l ( t k ) ,  1 < k < n. 

j=o 

Substi tut ion of (3.1)-(3.2) into (3.5) yields 

__~i 0 ~ _  1 n-1 pnjqi(t) = qj(t)r._j(tg) + ~ (flj -- tk)qj( t )r . - j_  l(tk) 
j=O j -  j=O 

.f 
+ 7j+l qj(t)r, j 2(tk), 

j=o Oj+ l - - 

which gives the recurrence relations 

(3.6) ro(tk) = 0 ,_  iP , . ,  

7j+ 1 r._,(tk) = 0j_ , ( ; . ,  - (~j - tk)r._j_ ,(t~) --  ~ r . _ i _  2(t~)), l ~ j < n ,  

where r~ = 0 for l < 0. In particular,  (3.6) shows that  rj(t) is a polynomial  of degreej.  
We use formulas (3.6) to evaluate the polynomials  rj at the nodes. The denominators  
in (2.7) are determined by evaluating the derivative of the right hand side in (2.1). 
This gives rise to the following algorithm. 

Algor i thm 3.1. (Inversion o f  Vandermonde-l ike matrix)  

Input: n, 6, {Oj}j=o, . - 1  . . n {flJ}j=O, (Tj}j=O, { t j } j= l ;  
Output :  W,- 1 = {wu}~,,l= 1; 

Po : = 1/6; 
f o r k : =  1,2 . . . .  , n d o p k : =  O; 
for j :  = 1, 2 . . . . .  n -- 1 flo begin 

71 
"= (~o - tj)po + ~ p i ;  

for k : = 1, 2 . . . . .  j do begin 

7k+l 
/Ok:= Pk-  i /Ok- i + (ilk -- tj)pk + O-O~+ i Pk + l; Pk-1  "= Pk-1; 

end k; 
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i f j  < n - 1 then p~: = 15 i else begin p.  : ~- pJOfi p~ : = ~ ;  end; 
end j; 

for k: = I, 2,..., n do begin 

ro(tk) : = 0n- lPn; 
rl(tk):= O,-z(p,-  1 -- (ft.- 1 -- tk)r0); 
for j : = n -- 2, n -- 3, . . . ,  1 do begin 

~J+____L1 r . t t ~- r . _  j ( t~ )  : = 0 r -  ~ ( p j  - (/~j - t ~ ) r . _  j _  l ( t~ )  - 0 r  + 1 " - j -  2 ~ ~ . ,  

end j; 
p ; : =  1; 
for j :  = 1, 2 , . . . ,  n do i f j  ~ k then p', : = p'.(tk -- t j); 
for j : =  1,2 . . . . .  n do ~kj: = r,-j(tk)/p',; 

end k; II 

We remark that the coefficients ~Sk and Pk can share the same storage locations for 
almost all values k, and, therefore, the tSk do not have to be stored in a separate 
(n + 1)-vector. The function values r i_ l(tk) can be saved in the storage locations for 
~kj- The algorithm requires 12n 2 + O(n) arithmetic operations (+ ,  - ,  x ,/), if the 
quantities yj0j ,  1 ___ j _< n, are computed only once and stored. The elements of 
IV,- 1 are independent of the coeffÉcients 0i, flj and yj for j > n - 1, but round-off 
errors introduced during the computations can make the computed entries depend 
on 0,_1, fl,_~ and 7,_~. In the computed examples of Section 5 we select these 
coefficients so that q, belongs to the same family of orthogonal polynomials as the q j, 

l <_j<n. 

4. Ordering of  the nodes. 

The accuracy achieved with Algorithm 3.1 depends on the ordering of the nodes. 
In our computed examples of Section 5 we consider two orderings: i) the tk are 
ordered monotonically, and ii) the tk are ordered so that 

(4.1) Ittl = max Itd, 
l < ~ k ~ n  

k - 1  k - 1  

I-[[tk--tJ[= max l~Lt l - - tJ l ,  2 < k < n .  
j = l  k < _ l < _ n j = l  

We refer to the ordering (4.1) as Leja orderin9 of the nodes, because of the connection 
with Leja's work on the approximation of analytic functions by interpolating 
polynomials [17]. This ordering has also been used by Higham [16] in fast solvers 
for Vandermonde-like systems based on the Bj6rck-Pereyra [3] algorithm. In that 
context the ordering (4.1) corresponds to partial pivoting. An application of Leja 
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ordering to the Newton interpolation formula is discussed in [19]. The ordering of 
an arbitrary set ofn real distinct nodes {t~}~ = 1 so as to satisfy (4.1) can be carried out 
in less than n 2 arithmetic operations. 

Numerous computed examples show that Leja ordered nodes generally yield 
higher accuracy than monotonically ordered nodes; see Section 5 for some illustra- 
tive examples. We present a heuristic motivation for using the ordering (4.1). The 
ordering of the nodes only affects the computation of the coefficients Pkj for k < n 
and 0 < j  < k. It follows from (3.1) that Pkk is the reciprocal value of the leading 
coefficient of qk(t), and, therefore, is independent of the ordering of the nodes. 
Substitution of t j, 1 <_ j < k, into (3.1) yields the linear Vandermonde-like system of 
equations 

(4.2) Wkrrk = -- Pkkqk, 

for rk = [PRO, Pkl . . . . .  Pk,g- 1], where qk -- [qk(tl), qk(t2),..., qk(tk)] T. We would like 
to choose the nodes t j, 1 < j < k, so that the solution vector is of small norm. This 
would reduce the risk of loss of significant digits due to subtraction of large 
quantities of nearly equal magnitudes and of the same sign during the computation 
of the coefficients Pk+ l,j,  0 <_ j <_ k, from the Pkj, 0 <_ j <_ k by (3.6). Introduce the 
matrices Wk r, 1 < j < k, in which column j of Wk r is replaced by - Pkkqk. Crarner's 
rule yields 

det Wkj 0 < j < k. 
(4.3) Pkj = det I/Vk ' 

Assume that the coefficients {p~_ 1,j}~-o 1 already have been computed, and therefore 
the nodes ~- 1 {tj}~ = 1 already have been selected. Let T. denote the set of n nodes that 
determine IV.. We now would like to choose the node tk~ T.\{t~}~_5~ so that the 
coefficients {Pkj}~= o are of small magnitude. Formula (4. 3) suggests that a good way 
to choose the node tk is to maximize the magnitude of the denominator. This can be 
accomplished by factoring Wk Lk Vk, where L k k = = [ljm]j,,~ = 1 is a lower triangular 
matrix, with diagonal elements 111 = 6 and Ijj = 6I]~-2oOm for j > 1, and 
Vk = [V~m]~,r.= 1, Vim = t~-1, is a Vandermonde matrix. Thus, 

k - 1  

det Wk = 6 k I-I O~-j -1  I-I (tin -- h). 
j = l  l <l<m<_k 

Regarding ldet Wk[ as a function of t = t~ yields that 

k - I  

t ~ ]det Wkl = C k I - I  I t - -  tml, 
m = l  

for some constant Ck independent of t. Therefore, Leja ordering is equivalent to 
ordering the nodes so as to maximize the magnitude of the determinants of leading 
principal submatrices of W, over the set of nodes not already chosen. 
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5. Computed examples. 

We present some experiments that illustrate the numerical behavior of Algorithm 
3.1 when the nodes are ordered monotonically or so as to satisfy (4.1). The computa- 
tions were carried out on an HP 9000-720 workstation using single and double 
precision arithmetic, i.e., with about 7 and 15 significant difits, respectively. The 
orthogonal polynomials qj used in our computed examples are Chebyshev poly- 
nomials 

Tj(t) = cos (j arccos (t/2)) 

for the interval [ -  2, 2]. We compare the accuracy in the computed inverse deter- 
mined by our algorithm with the two ordering of the nodes mentioned and in the 
inverse computed using Gaussian elimination with partial pivoting (GEPP) for the 
following nodes {tk) ~ = 1 :  

k - 1  
(5.1) equidistant on [ -2 ,2 ] :  tk = --2 + 4 - -  

n - - l '  

// 2 k -  1"~ 
(5.2) zeros of T.(t): tk = 2 COS ~rc ~ ) ,  

(5.3) clustered on [ -2 ,2 ] :  tk = - 2  + 4 \ n  _ 1 J  " 

Note that roughly half of the "clustered" nodes (5.3) lie is the interval [ -  2, - 1]. We 
select the interval [ - 2 ,  2] because this yields a scaling that makes underflow and 
overflow when forming the products (4.1) less likely than if we would choose a longer 
or shorter interval. The advantages of the interval [ -  2, 2] follow from that it has 
capacity 1; see [19] for details. 

For each monotonic ordering (M) and Leja ordering (L) of the nodes we compute 
the inverse IV,- 1 of the Vandermonde-like matrix W, in three different ways in single 
precision arithmetic: i) by our fast algorithm (FASTINV), ii) by Gaussian elimin- 
ation with partial pivoting applied to W~ (GEPP), iii) by Gaussian elimination with 
partial pivoting applied to the transpose W r (GEPPT). The computation of the 
inverse using Gaussian elimination with partial pivoting was performed using the 
LINPACK subroutine SGEDI; see [7]. While the accuracy of the inverse computed 
by our algorithm is sensitive to the ordering of the nodes, the accuracy of the inverses 
computed using GEPP and GEPPT is essentially unaffected by changing the order 
of the nodes. 

In order to compare the accuracy of the inverse W,- 1 computed by the different 
schemes mentioned, we computed the Frobenius norm of the difference of the 
inverse computed in single precision and the inverse computed using GEPP in 
double precision. In addition, we computed the relative left residuals 
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Table 1, Equidistant nodes on [ - 2 ,  2]: monotonic ordering. 
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k FASTINV(M) GEPP(M) GEPPT(M) dr rrr condF 

4 2.17E-7 8.03E-8 4.95E-8 9.01E-8 8.00E-8 4.51 
8 6.80E-6 5.30E-7 4.77E-7 9.76E-7 6.14E-7 1.46E + 1 

12 5.59E-3 9.36E-6 2.75E-6 1.22E-4 2.16E-5 1.07E+2 
16 1.29 8.56E-4 6.75E-4 2.86-E3 2.37E-4 1.18E+3 
20 7.94E+ 1 4.96E-2 4.96E-2 1.51E-2 5.25E-4 1.49E+4 

(5.4) rlr = ]IWn-IW" - IHe 
II~rlr IIWn-l/Ir 

and the relative right residuals 

[I W~ W, 1 - IIIF 
(5.5) rrr = 

II ~ Ill LI W.- l llf 

for the approximate inverses W~- 1 computed by the different schemes. The relative 
left and right residuals for the inverse computed by Gaussian elimination with 
partial pivoting appied to the matrices W~ and W r were consistently very small, of 
the order of 10- s independently of the Frobenius norm of the error in the computed 
inverse. The relative left and right residuals for the inverse computed by our 
algorithm, on the other hand, varies with the norm of the errror in the computed 
inverse, as can be seen in the columms labelled rlr and rrr of Tables 1-6. The 
Frobenius norm condition numbers of the matrices W~ are shown in the Tables 1, 
3 and 5 in the column labelled condr. We remark that since the Frobenius norm is 
invariant under unitary transformations, and since reordering of the nodes corre- 
sponds to a permutation of columns of W~, the computed condition number is 
independent of the ordering of the nodes tj. 

EXAMPLE 5.1. We use equidistant nodes (5.1) introduced in monotonically in- 
creasing order and Leja order. The condition number of the matrix W~ grows rapidly 
with n for this choice of nodes; see Table 1. When the nodes are ordered monotoni- 
cally, the error in the computation of the inverse by the fast algorithm grows quickly 
with the size of the matrix, as it shows in Table 1. Notice that in this case the norm of 
the error for the fast algorithms is up to three orders of magnitude larger than the 
norm of the error for GEPP and GEPPT. However, Table 2 shows that the fast 
inversion algorithm yields higher accuracy than GEPP and GEPPT, in fact up to 
two digits, when the nodes are ordered so as to satisfy (4.1). The sensitivity of the 
accuracy of the inverse computed by our fast algorithm to the ordering of the nodes 
is more noticeable as the size of the matrix increases. A difference of 5 digits in the 
accuracy of the inverse can be observed when n = 16 simply by changing the 
ordering of the nodes. 
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T a b l e  2. Equidistant nodes on [ -  2, 2] Leja ordering. 

k FASTINV(L) GEPP(L) GEPPT(L) rlr rrr 

4 8.66E-8 6.32E-8 5.93E-8 4,04E-8 3,02E-8 
8 4.38E-7 3.20E-7 Z79E-7 6.99E-8 4.45E-8 

12 5.62E-6 1.04E-5 2,00E-6 1.61E-7 1.09E-7 
16 3.92E-5 1.05E-3 6.74E-4 1.28E-7 6.60E-8 
20 6.96E-4 2.89E-2 4.92E-2 1.85E-7 1.39E-7 

T a b l e  3. The nodes are zeros of Chebyshev polynomials on [ - 2 ,  2]: 

monotonic ordering. 

k FASTINV(M) GEPP(M) GEPPT(M) rlr rrr condF 

4 3.11E-7 8.19E-8 1.32E-7 1.10E-7 1.07E-7 4,t8 
8 3.40E-5 2.05E-7 1,97E-7 8.87E-6 8.30E-6 8,22 

12 5.95E-4 3.59E-7 3.36E-7 1.35E-4 1.20E-4 1.22E+ 1 
16 5,56E-2 3.79E-7 3.51E-7 1.03E-2 9.68E-3 1.62E+ 1 
20 3.48E+ 1 5.76E-7 5.12E-7 2.30E-1 2.18E-1 2.02E+ 1 

T a b l e  4. The nodes are zeros of Chebyshev polynomials on [ - 2 ,  2]: Leja orderin 9. 

k FASTINV(L) GEPP(L) GEPPT(L) rlr rrr 

4 9.00E-8 1,340E-7 1,33E-7 3.84E-8 3,97E-8 
8 3.51E-7 1.96E-7 2.42E-7 8.84E-8 7.94E-8 

12 7.22E-7 3.48E-7 3.39E-7 1.35E-7 1.35E-7 
16 9.23E-7 3.70E-7 3.81E-7 1.77E-7 1.67E-7 
20 1.27E-6 4.70E-7 4.79E-7 2.17E-7 2.15E-7 

T a b l e  5. The nodes are clustered on [ -  2, 2]: monotonic orderiny. 

k FASTINV(M) GEPP(M) GEPPT(M) rlr rrr condr 

4 3.t3E-8 2.39E-7 2,64E-7 2.57E-8 2,53E-8 6,70 
8 2.04E-4 2,64E-4 1.33E-4 1.23E-6 4.30E-7 4.32E+2 

12 2.78 1.54 8.50E-1 1.35E-4 1.12E-5 7.08E+4 

T a b l e  6. The nodes are clustered on [ - 2 ,  2]: Leja ordering, 

k FASTINV(M) GEPP(M) GEPPT(M) fir rrr 

4 3,13E-8 2.73E-7 2.48E-7 2.57E-8 3.37E-8 
8 3,54E-5 5.33E-4 t.33E-4 2.31E-7 6.41E-8 

12 3,97E-3 1.33 8,50E-1 1.93E-7 9.74E-8 
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EXAUPLE 5.2. In this example the nodes are the zeros (5.2) of the Chebyshev 
polynomial T,(t), ordered so as to satisfy (4.1), or in monotonically decreasing order. 
We remark that, unlike in Example 5.1, the Vandermonde-like matrices ~ which 
result are fairly well-conditioned, as it is shown in Table 3. The accuracy of the 
inverse computed by Algorithm 3.1 with Leja ordering of the nodes is essentially the 
same as the accuracy of the inverse computed by GEPP and GEPPT; see Table 4. As 
in Example 5.1, monotonic ordering of the nodes causes Algorithm 3,1 to yield poor 
accuracy except for very small values of n, as is illustrated by Table 3. 

EXAMPLE 5.3. In this example we use the set of clustered nodes defined in (5.3), 
introduced in either monotonically increasing order or Leja order. Table 5 shows 
that the matrices W, obtained are very ill-conditioned. Note that for this set of nodes 
the accuracy of the inverse computed by our algorithm with monotonic ordering of 
the nodes is essentially the same as the accuracy of the inverse computed by GEPP, 
while GEPPT yields a more accurate inverse, as shown in Table 5. Table 6 shows 
that the inverse computed by our algorithm with Leja ordering of the nodes is more 
accurate than the inverse computed by GEPP or GEPPT. 

The examples above are typical for our computational experience with a wide 
variety of Vandermonde-like matrices. Our numerical experiments suggest that, in 
general, our fast algorithm used in conjunction with Leja ordering of the nodes 
yields at least as high accuracy in the computed inverse of a Vandermonde-like 
matrix as Gaussian elimination with partial pivoting (GEPP and GEPPT). How- 
ever, Gaussian elimination (GEPP and GEPPT) sometimes yields slightly smaller 
residual errors (5.4) and (5.5). 
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