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Reynolds numbers, however, the falling speed of a 
sphere diminishes as its size approaches that  of the 
suspended particles. The significance of these results 
to the theory of the viscosity of suspensions is discussed. 
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Discussion 
G. W. Scott Blair (Reading) : 

Has Dr. Whitmore any experimental evidence for, or 
any theoretical comments on a phenomenon which was, 
I believe, predicted or found by Prof. Faxdn, namely 
that  spherical particles falling near the wall of a 
container are deflected from their vertical motion? 

F. R. Eirich (New York): 
I agree fully with all your results but wish to point 

out that  your projected experiments at a variety of 
concentrations were carried out by us some time ago 
(Kolloid-Z. 74, 276, 1936) and led to the same findings 
as just described by you. In  addition, we carried out 
experiments with non-spherical particles. 

We did not anticipitate your elegant method of 
varying the sphere sizes, but concluded the prevalence of 
Newtonian flow from the absence of shear-rate depen- 
dance, except in the case of capillary flow. As for the 
latter, as you have also indicated, we found anomalies 

and explained them by inertia effects (Kolloid-Z. 
85, 260, 1938; Sitz.ber. Akad. Wiss. Wien 1938). That 
the latter are absent in your falling sphere experiments 
is proven by the identical fall times observed by you, 
whether your falling spheres followed a straight or a 
round-about path;  it shows that  there is no relative 
translational motion between the resting spheres and 
the liquid passed by the falling sphere. The curvilinear 
path, incidentally, of two spheres passing at close 
distance, was postulated sometimes ago by myself and 
others, has been recently calculated by Mooncy (J. Colloid 
Sci. 12, 575, 1957) and experimentally shown by Mason. 

J. E. Roberts (Seven Oaks/Kent): 
Dr. Fidleris and Dr. Whitmore have used Reynolds 

number as a criteria. May I ask how they calculated this 
for the falling sphere? A sphere has different rates of 
shear at various points, so may I ask how they evaluated 
their Reynolds number. 

R. L. Whltmore (Nottingham) Schlul~wort: 
In  reply to Dr. Scott Blair we have not made any 

measurements of the motion of a sphere moving parallel 
to a plane-boundary but, besides the work of Faxgn, 
at least one other author (F. C. Karal, J. App. Phys. 24, 
1947, 1953) has shown that  a force will be developed 
which will push the sphere away from the wall. 

We are of course aware of Professor Eirich's pioneer 
work on the fall of particles in suspensions and we refer 
to it in our paper. In  his experiments the falling sphere 
was very much larger than the suspended bodies and 
the flow was, in general, streamline or nearly so. This 
work we have extended to turbulent flow and shown that  
suspensions of spheres still behave as simple fluids. Our 
special interest, however, has been in the fall of spheres 
comparable in size with the suspended spheres. I t  might 
well be anticipated from the work of others that  the 
rate of energy dissipation from shearing the general 
mass of suspension at a distance from the falling sphere 
would depend only on the concentration of spheres 
present and not on their size, but what did surprise us 
was that  the rate of energy dissipation by the sphere, 
falling under streamline-flow conditions, while interact- 
ing with particles in its track (which involved the move- 
ment of falling and suspended particles along curvilinear 
paths, ro~ation about their own axes and probably the 
vertical displacement of the suspended particles) exactly 
equalled the rate at which energy would haye been dis- 
sipated if the sphere had fallen straight and unrotating 
through a 2Vewtonian fluid of the same viscosity as the 
suspension. I t  is, of course, possible that  the energy 
dissipated in particle interactions by the falling sphere 
is small compared with tha~ dissipated in the remainder 
of the suspension but we did not  investigate this point. 

In  reply to Mr. Roberts the Reynolds numbers for the 
falling spheres were calculated in the conventional way 
as used by many other workers and as described in the 
test of our paper. (Eg. see Lamb, H., Hydrodynamics, 
6 th  Ed. Cambridge 1932). 
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D i s c u s s i o n  perturbation method of Fr6hlich and Sack for values of 
the concentration which are not infinitesimal. I t  would be 

J. G. Oldroyd (Swansea): of interest to compare Dr. van der Pod's extension of 
I am interested to know if Dr. van der Poel has a Einstein's formula to large concentrations with that  of 

simple argument to justify in principle the use of the G.J.  Kynch (Proc. Roy. Soc. London A 237, 90, 1956), 



Rajagopal, The Viscosity of Polydisperse Emulsions 581 

which was derived theoretieMly by making use of ~n 
electromagnetic analogue of this problem. 

IV. Fritz (Braunsehweig) : 
Bei der Strbmung einer Flfissigkeit mig Fremd- 

partikeln anderer Diehte als die reine Fliissigkeit sollte 

man erwarten, d~g die P~rtikel sieh relativ zur Fliissig- 
keit bewegen. Die Versuehe scheinen zu zeigen, dub der 
EinfluB dieser versehiedenen Bewegung yon Partikel 
und Fliissigkeit gering ist oder nieht beobaehtet werden 
karm. Welche Ansicht hat  der Vorbragende su dieser 
Frage? 

From the Department o] Physics, Indian Institute o/ Science, Bctngalore (India) 

The Viscosity of  Polydisperse Emuls ions  

By E. S. R a j a g o p a l  
(Received July 17, 1958) 

1. Introduction 

The classical problem of the Newtonian 
flow of disperse systems has at tracted con- 
siderable attention in recent times owing to 
its importance in the s tudy of such systems. 
The elegant investigations of Einstein (I) on 
the intrinsic viscosity of suspensions have 
been the fountain head of all the subsequent 
theoretical developments. His theory for the 
suspensions of solid incompressible spheres 
was extended to the dispersions of liquid 
spheres by  Taylor (2). These investigations 
showed that  the viscosity was proportional 
to the concentration of the dispersed phase, 
in the limit of low concentrations. The theor- 
etical and experimental studies are summaris- 
ed by  Hermans (3) in his book. 

But  recent experiments have shown that  
the size of the particles affects the viscosity 
slightly [Sherman (4); Orr and Blocker (5)], 
a fact not understood in the usual theory. 
The effect can be explained if a more real- 
istic model of the emulsion is considered, in 
which partial slipping can occur at the 
interface between the dispersed particle and 
the dispersion medium. Such a slipping will 
occur due to the presence of emulsifiers and 
other surface adsorbent materials. In  order 
to explain the effects in detail, a very simple 
quantitative theory has been developed 
using the methods of Fr6hlich and Sack (6) 
and of Oldroyd (7). 

Instead of computing the viscous re- 
sistance experienced by  the medium con- 
taining spherical particles by  the usual 
hydrodynamic methods, as was done by 
Einstein and by  Taylor, Frbhgch and Sack 
gave a new procedure of calculating the 
equivalent viscosity directly. Their method 
consists in identifying the macroscopic flow 
of the composite medium with the flow of an 
equivalent homogeneous medium. This 
method has been successfully applied by 
Oldroyd to elucidate the complex visco- 

elastic behaviour of emulsions. The present 
work is essentially similar but  a simpler 
t reatment  which is applied to polydisperse 
emulsions. 

2. Formulation of the Hydrodynamic Problem 
Consider a dilute emulsion of concen- 

tration e and viscosity ~. The dispersed 
particles (not necessarily monodisperse) will 
be so far apart  that  mutual  interactions can 
be neglected. The dispersed l iquid is of 
viscosity T]', while the dispersion medium is 
of viscosity ~/. One need consider only the 
uniform slow motion of the spheres and so 
the motion can be taken to be axisymmetrie. 
For the small shears, the particles will remain 
spherical during the motion. 

Let a be the radius of any dispersed 
particle. One forms a composite element by  
surrounding it from r == a to r = b (such 
that  aa/b ~ = c ~ 1) with the dispersion 
medium of viscosity V, and from r = b to 
r = R (R >~ b) with the equivalent medium 
of viscosity ~. The macroscopic flow of this 
composite element is identified with the 
flow of the homogeneous element which 
consists of a sphere of the equivalent medium 
of viscosity ~, filling the whole space 
0 _~ r ~ R. The two elements are identical 
except for the smM1 part  within r = b and 
the influence of the part  within r ----- b upon 
the flow at r = J~ must be of the order of 
the ratio of the two volumes, i. e., ~ (b/R) 8. 

Frbhlich and Sack therefore demand that  
the ratio of the flow at r ~ R of the two 
elements be 

1 4- X const. (l/R) ~ [1] 
n>3 

that  is, unity up to the third power of (b/R). 
One can write the axisymmetric equations 

of continuity and of slow motions in polar 
coordinates as [e. g.. Lamb (8); Milne- 
Thomson (9)]. 

] 0 Ur)-k-  1 ~ (sin0 U o ) : O  [2] 
r -~  ~ r  ( r~ r sin 0 -a O- 
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