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1. Introduction

A knowledge of the flow fleld in and
around a droplet submerged in an unbounded
fluid is of considerable practical interest. It
isusual to regard the fluid as being unbounded
if the radius of the droplet is much smaller
than that of the containing vessel (order of
10—3 or less), otherwise one has to consider
hydrodynamic forces due to the walls of the
vessel.

Theoretical analysis of the flow field
around a droplet in an unbounded fluid have
been limited in the past to cases when some

particular velocity profile is postulated at a.

large distance from the droplet. Examples
for such solutions are the solution of Hada-
mard (1) — Rybczynski (2), for uniform
velocity profile and the solutions of @G. I.
Taylor (3), for shear flows.

In this work the flow fields interior to a
droplet and exterior to it are solved for the
case when the velocity profile at a large
distance from the droplet is quite arbitrary.

The term ‘droplet’ is used throughout this
work, even though the solutions are ap-
plicable to spherical solid particles, droplets
or bubbles.

2. Statement of the problem

Consider a droplet which is submerged in
an unbounded fluid. The droplet moves with
constant velocity U. The undisturbed velo-
city field V., is Stokesian, but other than
that is quite arbitrary.

A gpherical coordinate system is used,
whose center coincides with the center of
mass of the droplet, and moves with the
constant velocity U.

The fluids involved are homogeneous,
isothermal, Newfonian and of constant
densities. Surface-active-agents are assumed
to be absent. The flow around the droplet is
creeping, namely, the inertia terms in the
equations of motion are negligible.
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With these suppositions, the equations of
motion and the equations of continuity are
ag follows:

for the continuous fluid

Vp, (1]
and
, (2]
for the interior of the droplet

1

7y = — Vp', 3]
WP [

and
Vi =0, (4]

where 7 and ¢ are the velocities exterior to
the droplet and interior to it, respectively.
p and p’ are the pressures and w and u are
the respective viscosities.

The boundary conditions for an observer
moving with the center of mass of the droplet
are as follows:

at r = o0 B
on the interface
o = '* [6a]
— % 1 1y,
ﬂ(n) — ‘t'(n) =0 (71 + 72) ln [Bb]
=7k
. =0, [6¢]

where the star indicates that the functions
are evaluated at the interface; f, is a unit
vector normal to the interface: 7, and
T(sy are the normal stress vectors: based on
the velocities ¢ and %' respectively, R,(6, ¢)
and R,(6, ¢) are the principal radii and ¢ is
the surface tension.

3. The solution

The solution of the basic equations subject
to the boundary conditions, has to yield
explicitly the flow fields interior to the
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droplet and exterior to it, and the general
equation of the interface. However, the
mathematical treatment of solving simultane-
ously the flow fields and the equation of the
interface is excessively difficult. Therefore,
an iterative procedure is adopted here. First
the droplet is postulated to be spherical and
the flow fields are determined using only six
of the boundary conditions. Later, the
seventh boundary condition is used for
determining the deviation of the interface
from sphericity and its dependence on the
various flow parameters. The interface thus
determined can be used for determining a
second iteration of the flow fields.

3.1. The first tteration

Based on experimental observation it is
known that small droplets or bubbles are
nearly spherical. Therefore, we begin the
calculations by assuming a spherical droplet.
Using Lamb’s general solution for Stokesian
flows, the velocity and pressure fields are as
follows:

Outside the droplet:
Be=ig+ V [7]

where

Ve(Fy noi) + VP_pn_y

~d
i
i M

n=1 (8]
n—2 n+ 1
T on@n np UV Sy P ‘l’
and
p= ZP» n—1- [9]
n=0
Inside the droplet:
= {Vx F yn) + VO,
n=1
n4 3
Tomrnan g e
n 7
Grner e 1ol
and
P =2 pu, (11]
n=0

where ¥ n_1,D_n_1,D_n 1, yn,Pnand p, are
solid spherical harmonics of degree —n ~1
and n, respectively, which have to be
determined.

The spherical harmonics are conveniently
determined by transforming the boundary

conditions in the following way (Appendix A):

VX f= V* 4 0% =0 [12a, b]

av; * oV, * Foor 1
[r —87] — l:7’ W_:l = [7' or ] [120]
[F-Vad'¥ —[F Vo VP = [7- Vab,]* [12d]

[7-VaFat'm))* — [F ValFx7n)]*
= [T+ Va(F ¢ T))1* [126€]

[F-Vo#ml*—[F Vaiml* = [F Va Twm]* {121]

where T and 7' are based on V and ¥,
respectively and 7.y is based on the un-
perturbed velocity 7.,

The seventh boundary condition is used
in section 3.3 and is discussed there.

Since the unperturbed velocity field 4., is
a solution of the Stokes’ equation, it can be
expressed by the general solution of Lamb,
ie.

1700:2 {Vx(i"x;")
= — 00
n+ 3 5 [ 0o
VOt s ee sy s P
e 3]

where y°, @ and p are yet undetermined
solid spherical harmonies.

Substitution of eqs. [7], [8], [10] and [13]
into eqs. [12], one obtains (Appendix B):

From eq. [12a]:

©o

na » *
P T R LN
From eq. [12b]:
st an+ 1) * n+ 1 o«
121 [2u @n—1) P-n1 "'T(’)‘"*‘]
& na oo % n 00 %
=2 supary o e gor] e

M= - 00
From eq. [12¢]:
< nt+ Da » nn—1)
2 ety 2 e

nn+ Da x
2u(2n — 1)

Pop-1— P

(n+)n+2)(p ]
—n-1

-3 [nw_ * ﬁ&"a_l

o0 %
S @nt 3] o o) ].[1401

No== — 00

From eq. [12d}:

Ky 1= 2 [l + 1) 771
me [14d]

Z [n(n+1) (z, —
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From eq. [12¢]:

_(n+1)2(n——1)a ®
1T @ 1) P-nm1

2o,

2
+—2ai(n~1)n(n+ gty Mt lae *]

WEn+3) Pn

—Z [ n—1)nin + )&,

=00

nz(n+2)a, oo %
T uEn g b ]
[146]

From eq. [121]:
L [An—1) g + (0 + 2) 2%, 1}

[14f]

=2 n—Da@+1)g 1,

where 4 = u'/u.

The solution is now continued by defining
the solid spherical harmonics in the following
way:

P = A g’ o= Sy (0, @);
Pon—r=A _n_1 pa®r "=18,(0, p);
Dy, = Bpa 11" 8,(0, ¢);
@—n—l = B__n—l a”+2 7~7L——1 Sn(ev (P),
zn = Cpa~ " 8,(0, ¢);

A—n-—-1= C_patty—n-t ‘S’n(ea ®), [15]

where S, are surface harmonics of order =,
@’ is the radius of the spherical droplet and
An, By, Cy ete. are yet undetermined coeffi-
cients. The notation used above is an
abbreviation, but one must keep in mind
that the product A, 8, (0, ¢), for example,
represents 2 n + 1 terms, that is:

kil
= Z (A} cosm @ + A sin @) P™ (cos).
m=0 [16]

4, 8,0, ¢)

In an analogous manner, the solid spherical
harmonics of the unperturbed flow field 7.,
namely those in eq. [13], can be defined:

w  2@2n+3)

», = p o o P S (6, @)

oo l i
B = — Bua 8 (0, 9)

1

An = n(n + 1 7l

)'Vna o Sul8, ),
where o, Su(0, ), BuSn(0, ) etc., are an
abbreviation of 2741 terms, analogue to
eq. [16], and where n = —o00 to —oo.
Notice that ps°, D", yo and x> cannot be
determined from this definition. This, how-

ever, ig no limitation since these particular
spherical harmonics do not contribute to the
unperturbed velocity in eq. [13].

The coefficients 4, By, C., etc. of the
solid spherical harmonics in eq. [15] are
determined by substitution of eqs. [15]
through [17] into eqs. [14]. Using the ortho-
gonality properties of the surface harmonies,
there are obtained six linearly independent
equations from which the coefficients are
determined :

m_ 2n—1)2n+3) [En+3) m, m
an= O o (et + 4] usa
. AP ,
B = = 5Gn Ty LSb]
" (1—2%)
A= T r

{ o Ao (2n + 3) + 7 (2n+1]+2l3m}
[ Y aT+7%

[18¢]

m oL

nelT Ty ]

— S leea 1)+ @n 1)1}
[18d]

1
{ﬁt’t"—l“L ETAG

B 2n + 1)
On' =7 wn + 1) [A(n —1) + (n + 2)]
e —1) (1 —2)

n(n+1)[An — 1) + (v + 2)]
{18£1%)

[18e]

Ponoa

m
¢ n+1)

—n-1"

where 7 = 1 to co. The coefficients with the
carat, e. g. 4y, are similar to the above, with
&y replacing o), etc.

In order to proceed with the solution, the
coefficients oy, fn and v, have to be deter-
mined from the known unperturbed velocity
distribution at infinity, #.,. For this purpose

we multiply eq.[13] by a , unit vector in the
radial direction i, viz.

©o

_ n o N oo
oy - By _::Z_w {———2M(2n+ 5" P +— o [19]
and
FVabe= > {n(n+ 1y} 120]

n=—oco

*) Substitution of #» =1 in eq.[18f], and recalling that
y7_"2 = 0, yields Cf”z = 0. This implies that there is no
torque acting on a droplet, since the torque is given by
T=—8auVdy_,)

1
For large values of A, one obtains O™, =

. m

5 Vie
since one has to substitute first A = co in eq. [18f], and
then n = 1.
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Substitution of eqs. [17} in egs. [19] and
[20], and recalling that S_,_1(0, ) = S (0,¢),
vields:

o ks pAREL F\R—1
Voo " by = Z [O‘% (7;) + ﬂn (;)

n=0
o (L) "+ (;)‘] Su(6,9) [21]

and

oo

TOT  FEA L T e I

n=1
(22]

The coefficients on, fu, Yns ¥—n_1, B-n_1
and y_p_1 can readily be determined
from eqs. [21] and [22] by using the ortho-
gonality properties of the Legendre poly-
nomials.

Thus, the coefficients in eqs. [15] have been
determined in terms of the known coefficients
of the unperturbed velocity distribution.

This completes the solution for the velocity
distribution outside the droplet (egs. [7, 8, 15
and 18]) and inside it (eqs. [10, 15 and 18]).

3.2. The settling velocity

The settling velocity can now be deter-
mined by writing a force balance on the
droplet:

47

a3 — o) gk —4nV(Edp.

S D=0,

(23]
where the fizst expression is the buoyancy
force and the second one is the drag [ Happel
and Brenner (5), p.65]. The expression for
P_, is, in general:

p.,=par *[A°, P (cost) + AL cos @ Pl (cosf)

+ A, sing Pl(cosG)]. [24]

By substituting eq. [24] in eq. [23] and
equating the corresponding vectors we obtain:

[25]

atg , , N
A%, == 3/{ (0 —o); A',=A4',—o0.
Since for the unperturbed flow (7% p>)
= 0 we must have, by eq. [17] that x_, = 0,
and eq. [18] results in

A‘lzz—ﬂ »7 ABad + 380 + 260
1 1
A Sii g Ak + ) + 26
At L s+ 3pY + 2. [26)

T2+ )

We set now to determine the three com-
ponents of the terminal settling velocity of
the droplet, in terms of known coefficients
and parameters.

First express eq. [5] as follows:

oo = Voo — U =TVoy — (Ugs + Uyj+ Uz k)
Multiplying the above by a unit vector in
the radial direction £,

b b=V,

oo

. Z_T — (U, cosg Pi (cos0)

+ U, sin @ Pi (cos0) + U, P {cost)]. [27]

Expanding V.. -, in a series analogue to
eq. [21], with coefficients an, fa, etc., sub-
stituting into eq. [27] and using the ortho-
gonality properties of the Legendre poly-
nomials, we obtain

oL 54

c=g o zgas TE g gy (28]
a1 54
U, =B+ 5578 [28b]
51
U,=8 + 5137 2. [28¢c]

Note that in order to solve the coefficients
0 0 1
o1, i, @1, ete.,, one has merely to solve

the following integrals:

) (—3)2+ B+ ﬁﬂz({%)#

« 2n m
= 4{[ [ (Voo B) cosOsin0dbdp  [29a]
oo
Ty 1 1
% :;) +é’1+5 )
3 2n n
. GJ [ (Vo,-5)sin®0 cosg b dp  [29b)
(V)
EAY a1 1 ¢
) ()
3 2n 7
—_TI I oo By sin?fsing dfde . {28¢]
(L)

The formulation presented above is quite
general and is applicable also for the case
when 4, = 00 at r = 0. In the event that
¥, is finite everywhere in the field, eqs. [28]
can be written in vectorial notation and the
coefficients determined in a simplified manner
as follows:

[Voolrmo = [VO ], [30]

since all other solid spherical harmonies do
not have any contribution. Similarly, we
obtain :

[Vﬁoo:]7=0 = [foo]r:() . [31]
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Substitution of eqs. [17] into eqs. [30] and
[31] yields:

[Voo]r 0
and
[P0 — 1007 (e 4

Then the expression for the terminal settling
velocity is merely:

=g k+Bli+ Bl [32a]

i+ ). [32b]

n_ 20 —9gaF QA4+ 4 =
U= 3 g a1 T Wel-o
a? A 1351

57““ 2F 34 ¥V Poolr=0 -

The drag force on a spherical droplet
suspended in an unbounded fluid for the case
when the velocity distribution far from the
droplet is V.., is obtained by substitution of
eq. [33] into the expression for the drag:

+3l
1+

A
[Voc]r— + 7 a?- 1+ 2 [ poo]r—
[34]
This result is a generalization of Faxen’s

law for a spherical particle. This law is a
particular case of eq. [34] when 4 =00

sz2n,ua

3.3. The equation of the interface

Thus far only six of the boundary con-
.ditions have been utilized for solving the
flow fields in and around a spherical droplet.
The seventh boundary condition, i. e.

e[ g] o
is now used for determining the equation of
the interface. This new interface may then
be used for calculating the velocity fields of
the second iteration.

The radius of nearly spherical droplets may
be represented by:

r= a[l + E(Bv (p)] s

where | £(0, @) | < 1.
Landau and Lifshitz (6
ing expression:
11 2 2
D N
1 1 0% 1 9 o0&
@ [sin20 e t g 30 (smG a6 )] - 37

Let the deviation function &(6, ¢) be
described by a sum of surface harmonics as
follows:

_% T _k -
1(7)-15? + Too(r) t,

(36]

) derived the follow-

=2 L 8u(8, 9),

n=1

£(0, ¢) [38]

where the notation is analogue to eq. [16].

Substituting eq. [38] in eq. [37] and
recalling that

1 @8, 1 9
sin2f dgt sinf 06

we readily obtain:

(Sl Ba

- )+n(n+ 1) S, =0

1 1 1 -

S A Aty {2 +n§1[n(n +1)— 2L, S,,} . [39]
Substitution of eq. [39] into boundary

condition [35], we obtain (Appendix B):

%{2n(n-1)z¢*+ P —n—3la «
1

@n+ 3 I

o n

_2(%-!—1)(n+2)q§>;< +(n2+3n—1) *
P -n-—1 (2n _ 1)[1 -n—1
2n(n —1) oo n?—n—3)a ocox
T P T @i e
_2(n+1)(n+2)®oo* M2+ 3n—1) oo«
a -n—-1 2n — 1) u —-n—1
a f— a
—I(Po +p_ +p0 p_t)——L) Mg)ﬂ—Pl(cosO)}

- % 2+ i fnn + 1) — 2] Ly, Sn}. (401

n=1
Substitution of egs. [15], [17] and [18] in
eq.[40], and using the orthogonality prop-
erties of the surface harmonics, we obtain
an infinite set of linearly independent

equations. The first of these equations,
namely for n = 0, yields:
o0 oo 2
po*+p—1*+p:_p_>:—_o;

a

The second equation, for n = 1, yields an
identity. This implies that the assumption
of a spherical droplet is correct up to second
term in eq. [36].

Solving the equations with » = 2, 3, ..,
ca, for L, we finally obtain:

1 1
nin+ 1)1+ 1)

m_
Lo T (m+n—2)

o‘mlu
x{ r

I
+ (4n®+ 602 — 4n — 6)]
By v
a

[(4n®+ 602+ 2n + 3)4

+

(&% + 6722 + 2n — B) A + (478 + 6n? — 4n)]}
[413

and similar expressions for L. Notice that
Ly is at least of order 0(1/n?).

The deviation from sphericity function is
thus obtained by substitution of eq. [41]
into eq. [38].
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4. Examples

The usefulness of the solution presented
herein is now demonstrated by solving the
flow fields, settling velocity and the deviation
from sphericity for two simple flows which
were solved by G. I. Taylor (3a, 3b), and for
Poiseusllian flow, which was not solved pre-
viously.

4.1. Couette flow

The unperturbed velocity distribution is
given by:

Fo, — Gy +Di—Ui, [42]
where [ is the distance of the center of the
droplet from the point of zero velocity and
G is the shear.

Fig. 1. Couette flow

Multiplying eq.[42] by a unit vector in the
r direction i,:

Boo * by = (Gl — U)sinb cosp + G rsin?0 sin cos @

= (Gl -~ U) cos ¢ P} {cosf) + %gsinZ(pl’g (cos 0) .

Hence
, N Ga
pi=Gl—U and g2= 6 [43]
Similarly,
FeVady == — Ga-L cosh.
@
Hence
MW= —Ga [44]

Substitution of egs. {43] and [44] in eqs. [18],
one obtains the coefficients A1, By, A%,, B,
A, B, A%;, B®;and (Y. All other coefficients
are identically zero. Substitution of the
coefficients into eqs. [7] through [11], using
eqs. [15], the velocity fields are obtained.

The settling velocity is readily obtained
from eqs. [28]:
Uy=p=6Gl, U,=U,=0. [45]
The deviation from sphericity is obtained
from eq. [41] as follows:
s  Gau 16+ 197

2 —_— —————
L= waza

Finally, the radius is given by:

r=afl + i; sin 2 @ Pi(cos@)]
Gayu 16 4+ 192 xy]

o 16(1+4)

Egs. [45] and [46] are the familiar results
of Taylor (3) for a neutrally buoyant droplet
in Couette flow.

—a [1 + [46]

4.2. Hyperbolic flow

The unperturbed velocity distribution is
given by

oy = Qi — Qyj— Ugi— Uyj. [47]

Using a procedure entirely analogue to
that in section 4.1, it is easy to obtain the
required coefficients, i. e.

Ga N
ﬂ::ASM; ﬁi:“Ux; ﬂi‘thy

[48]
from which the settling velocity and the
deviation from sphericity are calculated,
namely :

Uy = Uy =0
2Gap 16 + 194

o 16(1 + 4

7 o= a[l + sin? 6 cos2(p] [49]

which are the familiar results of Taylor (3).

4.3. Poiseuille flow

Use a spherical coordinate system which
is centered at the center of mass of the
droplet (fig. 2). In this system the unperturb-
ed velocity distribution is:

7 \?2 b \?
7 j— — R in2 - —
Voo = {UO[I (Ro) sin?6 (Ro)

Rr2b Cos ¢ sino] — U} k,
0

[50]

where U, is the maximum velocity which is
at a distance b from the droplet and where
R, is the distance to the point of zero veloc-
ity.
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i}

B
1

UO
A )
Fig. 2. The geometry and coordinate systems used in the
analysis

Multiplying eq. [50] by a unit vector in the
r direction f,, one obtains:
,.

2
Do " b = U, [cosﬂ — (7) sin%6 cos 6
(]

b \? 2rb .
— (ITO) cosf — —R"Teosﬁ sm@cosgv] — U cos®.

Similarly, one obtains the following pro-
duct:

FeVaiv, = U, 2];)0: sinf sing.
Recalling that:
cosf = P, (cos0)
sinf = P} (cos6)
3 sinf cosf = P;(cosﬂ)
and

sin%6 cos = %[Pl(cos 6) — P,(cos6)]

one obtains:

R b \? 2 a* [r\?
= _ = — = — )]
oty = U {[1 = () = 5 i (5) ] Pateost)
——% sz (—é) cos ¢ P} (cos0)
(1] \
2 a 12 r 2
+ 3(7 (7) P, (cos6) — U P, (cos 9)} [51]
0
_ 2ab (ry . "
PP, = Uy (;) sing Pl(cos6).  [52]

Hence:
=5 u(w)
— LU (—
%t 5 “\R,
bz
ﬁgzUO(l—Roz) U
2 ab
ﬁ;:—*gUo——O{
o_ 2 (L2
By = 5 Uo E (53]
and
e 2ab
= OTOZ_

Substitution of eqs. [563] in eq. [18] one
obtains the coefficients
Bl AO

Ay, B, A;, By, Ay, By, AL, BL,, ALy, BL A2,
and ;.

All other coefficients are identically zero.
Substitution of the coefficients into eqgs. [7]
through [11] and using eqgs. [15], the velocity
fields are obtained.

The settling velocity is obtained from

eqs. [28],

B,

UszyZO
2 —9)atg 144
U=Us=7% “ 2+ 37

b? 22 a
+U°(1—R_02_2+3/1‘R?)' (54]

The deviation from sphericity is obtained
from eq. [41]:

uwU, ab 194 + 16

1———._ ———
L= o Ry 124+ 12
10— nU, (_a_\)2 114+ 10
37 o \R,] 201+20°

Finally, the radius is given by:
r = a[l + L} cos ¢ P} (cosf) + LI P,(cos6)]

o R 124+ 12

U, ( a )2 117 + 10

6 \R,) 201+ 20

:a[l _ 4Ty ab 197+ 16-costpPé(cos0)

+ [55]

P,(cos 0)] .

Egs. [54] and [55] have not been derived
previously.

To illustrate the deviation from sphericity,
eq. [55] was evaluated for the following
conditions:

U, . a
= =% R

A0

L o0os

= 0.316; 7

and the resulting shape is depicted in fig. 3.
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Fig. 3. The deviation from sphericity of a droplet sub-
merged in an unbounded Poiseuille flow, with uU,jo = 2,
a/R, = 0.316, b/R, = 0.08, 1, — 0

~ One should note that these conditions are
not physically meaningful. The value of
u Uyjo has been deliberately exaggerated in
order to make the deviation from sphericity
visible. Under conditions which are physical-
ly more realistic, the deviation from spher-
ieity will have a much smaller amplitude.
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Summary

A solution is presented for the flow fields interior and
exterior to a single spherical droplet submerged in an
unbounded fluid, for the general case when the unper-
turbed velocity is Stokesian but otherwise quite arbi-
trary.

Ay general equation for the terminal settling velocity
is derived which contains as special cases the solutions
of Hadamard- Rybczynski, Taylor and others. The drag
force on a spherical droplet is also formulated. This
equation contains as a special case the law of Faxen.

The function describing the interface and its deviation
from sphericity is derived. This may be used for deter-
mining more accurate flow fields in an iterative proce-
dure.

Zusammenfassung

Das Problem der Stromungsfelder in einer unbegrenz-
ten Fliissigkeit wird sowohl innerhalb wie auBlerhalb eines
einzelnen kugelformigen Tropfens fur den allgemeinen
Fall gelost, wenn die ungestorte Geschwindigkeit durch
die Stokessche Gleichung angegeben werden kann, aber
sonst willkiirlich ist.

Es wird eine allgemeine Formel fiir die Geschwindig-
keit, die nach langer Zeit erreicht wird, angegeben. Sie
enthilt als Spezialfall die Lésungen von Hadamard-
Rybezynski, Taylor u. a. Die schleppende Kraft, die auf
den Tropfen einwirkt, wird formuliert. Diese Formel
enthilt das Gesetz von Fazen als Spezialfall.

Die Funktion der Grenzfliche und ihre Abweichung
von der Kugelform wird bestimmt. Sie kann zur Bestim-
mung genauerer Stromungsfelder in einem Iterations-
verfahren angewendet werden.
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Appendix A

The boundary conditions for the first iteration are as
follows:

vf=10"=0 [A-1]

= [A-2]
—_ _rt %k 1 1 \ - P
Ah o (Tl " If) i, [A3]

where 7, and -E('T) are based on 7 and &', respectively.

From these boundary conditions the following vec-
torial equations can be obtained:

5*.3},:5'*.@‘
¥ = — oV O*
F-Vao* =7 -Veo'*

- - T
FeVa(F xn(;) =7 -Vax(Fzx ey

_ %
=7 Va

* - E 1 1
wnet gL

R, R,
But since
V.-¢ =0
av; *
—rV-o'* = (fr—wa;—)
Also,
FoVav'* =7 - Veo']*
7 Va(Faiyy) = [ Ve s 7,0
FoVag,y = [F Vaz,l*
and
P ’ %

Ty " b= Tpp
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Similar expressions can be written for # and 7). Equat-
ing the two sets, together with egs. [A-1] through [A-3],
one obtains:

pF— ¥
r = r

P2 - [
or - or
[F-Vadl* =[F Ved'l*
[ Vo (F 2 )" = (2 - P2 2 7, )*

(& Va 1" = [7 - Var 71"

* sk 1 1
oy = Trr =G(’R_1+E>-

Recalling that ¢ = 7., + 7, we obtain the following
set of transformed boundary conditions:

%
v, =0

* *
VT = Vpop

SN )
or or or
[F-Vad'* —[F-VeVT* =[F- Vad,l*
(7 Ve e gyl — 7 Vo Fa gl =[F Ve oty o]
[F-Va f('r)] —[F- Ve f(r)]* =[F-Va f(T)oo]*

1 1
* * ’
TTT+TDOTT_1TT:G(FI E)’

where () and T..(;) are based on ¥ and &, respectively.

Appendix B

Lamb’s solution for Stokesian flow is:

. - _ n+ 3
v_z [Vx(?‘){n)+l7@n+ IO 1)(2n+3)M72Vpn

n=—c0

n -
Twr)@En+3u ”’"] '
Happel and Brenner (5, p. 63) showed that:

- - n n
v‘tr—;t=z__oo|:2—/‘(2"—"'3)rpn+7@n]
ovr nin + 1) nin — 1)
T = 2 [2y(2n+3)r21’”+ r (D”]
= —o00

FeVed= p nm+1)xm
=

and
=2 3 [0—17eEm+2m -1,
N=—00
2n + 4n 4+ 3 _ n(n + 2)

)rpn—}— r2l7pn].

T pr+ )20 +3 w(n + 1) 2n + 3)
The following relations are easy to prove:

Ferzip=-42 > m—Nam+1)

r =—03

FVeFaie)=—p Z [&___1%_."’(@@”
ni(n + 2;
T27»+—3)”’"]

oo

s _ M 2n(n — 1) @ n?—n—3) ]
Tl = rnzzw[ . n+ 47+ 3) 7 Pn
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