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1. Introduction 

A knowledge of  the  flow field in and 
around a droplet  submerged in an unbounded  
fluid is of considerable pract ical  interest .  I t  
is usual to regard  the fluid as being unbounded  
if the  radius of  the droplet  is much smaller 
t han  t ha t  of the containing vessel (order of 
10 -a or less), otherwise one has to consider 
hyd rodynamic  forces due to the walls of  the 
vessel. 

Theoret ical  analysis of the flow field 
a round a droplet  in an unbounded  fluid have 
been l imited in the past  to cases when some 
par t icular  veloci ty  profile is pos tu la ted  at  a 
large distance from the droplet .  Examples  
for such solutions are the solution of Hada-  
mard  (1) - Rybczynsk i  (2), for uniform 
veloci ty  profile and the solutions of  G. I .  
Taylor  (3), for shear flows. 

In  this work the flow fields interior  to a 
droplet  and exter ior  to it  are solved for the 
case when the veloci ty profile a t  a large 
distance from the droplet  is quite arbitrary. 

The t e rm 'droplet '  is used th roughou t  this 
work, even though the solutions are ap- 
plicable to spherical solid particles, droplets 
or bubbles.  

2. Statement of the problem 

Consider a droplet  which is submerged in 
an unbounded  fluid. The droplet  moves with 
constant  veloci ty  U. The undis turbed  velo- 
ci ty field F~o is Stokesian, but  o ther  than  
t ha t  is quite arbi t rary .  

A spherical coordinate system is used, 
whose center  coincides with the center  of 
mass of the  droplet,  and moves with the 
constant  veloci ty  U. 

The fluids involved are homogeneous,  
isothermal,  Newton ian  and of constant  
densities. Surface-act ive-agents  are assumed 
to be absent.  The flow around the droplet  is 
creeping, namely,  the iner t ia  terms in the 
equat ions of  mot ion are negligible. 

Wi th  these suppositions, the equat ions of 
mot ion  and  the equat ions of cont inui ty  are 
as follows : 

for the  cont inuous fluid 

V2s = • Vp, [1] 
# 

and 
v .  ~ = 0, [2] 

for the  inter ior  of the  droplet  

w~' = ~ vp' ,  [3] 

and 
v �9 ~' = o, [4] 

where ~ aud ~' are the velocities exter ior  to  
the  drople t  and interior  to it, respectively.  
p and p' are the pressures and # and #'  are 
the respect ive viscosities. 

The bounda ry  conditions for an observer  
moving wi th  the center  of mass of  the droplet  
are as follows: 

a t r =  c~ 
~ = ?~  - t? [5] 

on the interface 

~* = ~Y* [6a] 

z~(~) -- ~(n) = ~ + tn [6b] 

_ t ,  
v n = 0, [6el 

where the  star  indicates t h a t  the  functions 
are eva lua ted  at  the  interface;  tn is a un i t  
vec tor  normal  to the interface:  ~(n) and  
~ )  are the  normal  stress vectors :  based on 
the velocities ~ and ~' respectively,  R1(0, q~) 
and R~_(O, ~) are the principal radii and a is 
the  surface tension. 

3. The solution 

The solution of the  basic equat ions subject  
to the bounda ry  conditions, has to yield 
explicit ly the flow fields interior to the  
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droplet  and exter ior  to it, and the general 
equat ion of the interface. However ,  the 
mathemat ica l  t r e a tmen t  of solving simultane- 
ously the  flow fields and the equat ion of the  
interface is excessively difficult. Therefore,  
an i tera t ive  procedure  is adopted  here. Fi rs t  
the droplet  is pos tu la ted  to be spherical and 
the flow fields are de termined  using only  six 
of the boundary  conditions. Later ,  the 
seventh boundary  condit ion is used for 
determining the deviat ion of the interface 
from spherici ty and its dependence on the 
various flow parameters .  The interface thus  
de termined  can be used for determining a 
second i terat ion of the fl0w fields. 

3.1. The first iteration 

Based on exper imenta l  observat ion it is 
known tha t  small droplets or bubbles are 
near ly  spherical. Therefore,  we begin the 
calculations by  assuming a spherical droplet .  
Using Lamb's  general solution for Stokesian 
flows, the  veloci ty and pressure fields are as 
follows : 

Outside the droplet :  

'~ = ~o~ + v 1,7] 

where 

v =  

(n 2) n + 1 ~p_n_~ 1 
2 n ( 2 n  ~ i ) #  r~Vp-n-~ + n(2n  .... 1)/t 

? 

and 

p - - ~ p  ,~ ~. [9] 

[nside the droplet :  

n + 3  + 
2(u + 1) (2n + 3) # '  

and 

n 

(n + l) (2n + 3) ,u' 

r ~ Vpn 

r pn} [10] 

P' "- ff_~ Pn,  [11] 
n = O  

where Z= n-  ~, r  n-  ~, p-  n -~, Zn, q)n and pn are 
solid spherical harmonics of degree - n - 1 
and n, respectively,  which havc  to be 
determined.  

The spherical harmonies  are convenient ly  
de termined  by  t ransforming the bounda ry  

conditions in the following way  (Appendix A) : 

v ' * ' t r =  V*'~r+ v~-+ . # = 0  [12a, b] 

[rav;1 * r ~v~l* [ r a r ~ r l  * 
Or] [ r - ~ -  ] = L Or J [12 c] 

[12d] 

F ro m  eq. [12c]: 

@ [ u ( n +  1) a .^, n ( n - - l )  , 

, ] u ( n +  1) a , ( u +  1 ) ( n +  2) 05_n_ 1 
+ = 2 / ~ ( 2 ~ a  ~) P-n-1  a 

[ n(n + 1)a ~ ,  n ( n - - 1 ) O n ,  ] 
n- ~ l 2 # ( 2 n  + 3) Pn + a 

[14c] 

From eq. [12d]: 

[n(n+ * * ~*].  1 ) ( Z n -  Z -n - l ) ]  = Z [n(n + l )Zn 
n=l  n= - ~  

[14d] 

[e. Vx ~']* - [~. Vx F]* = [e. Vx ~ ] *  

[~- Vz(~ x ~'(r))]* - [~' Vx(~ x ~(,,))]* 
[~ �9 V x ( ~  x ~oo(r))]* [ 1 2 e l  

[~. Vx ~'(r)]* --  [~' Vx +(,)]* = [~" Vx ~(r ) ]*  [12f] 

where ~(r) and ~'(r) are based on ff and ~', 
respect ively and ~( r )  is based on the  un- 
pe r tu rbed  veloci ty  ~ .  

The seventh  bounda ry  condit ion is used 
in section 3.3 and is discussed there.  

Since the unper tu rbed  veloci ty  field ~ is 
a solution of the Stokes' equation,  it  can be 
expressed b y  the general  solution of Lamb, 
i .e .  

n ~  - c o  

n + 3  
V ~ r2V ~ + ~n + 2 ( n +  1 ) ( 2 n + 3 ) ~  Pn 

- -  ~ ~ [ 1 3 ]  (n + 1) (2n  + 3) # Pn ' 

c ~  c ~  where Z~, q)~, and p,  are ye t  unde te rmined  
solid spherical harmonies.  

Subst i tu t ion  of eqs. [7], [8], [10] and [1.3] 
into eqs. [12], one obtains (Appendix B): 

F ro m  eq. [12a]: 

n=l 2 ( 2 n  + 3)#" Pn + ~(/~n = 0 .  [14a] 

F ro m  eq. [12b]: 

~ [ ~ ( n + l )  , n + l  , ] 

~ [ n a  ~ ,  n ~ , ]  [14b] 
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F r o m  eq. [12e] : 

i•[2n(n+l)(n+2) , 

a @-n-i 

2 ~  , 
+ - -  (n - -  l)  n (n  + l) q)n -l- 

a 

~ = ~ _ ~ [  2 ( n - 1 )  n ( n  

F r o m  eq. [12f] : 

( n + l ) ~ ( n - - 1 ) a  , 
# ( 2 n  - -  1) P - n - ~  

n~(~ + 2) ~a -1 
i t ' ( 2 n  + 3) p n] 

~ ,  n~(n + 2) a ~ * ]  

[14el 

~ { n ( n  4- 1) [~t(n - -  1) Zn  "4- (n  -]- 2)  Z - n - i ] }  
n = l  

= [ ( n - - 1 )  n ( n + l ) Z n  ] ,  [14f] 
n ~  - o o  

where X ~ #' /#.  
The solution is now cont inued by  defining 

the  solid spherical harmonics in the following 
way  : 

p ~  = A n  i t '  a - n - i  r yt ~ n ( O ,  ~ ) ;  

P - n - 1  = A - n - 1  it a n r - n - 1  S n ( O ,  (P); 

qSn = B~ a - n + l  r n Sn(O, ~o); 

qS_n_ i = B _ n _  i an+ ~ r - n - i  Sn(O , (P); 

Zn = Cn a - n  r n Sn(O, (P); 

Z - n ~ l  : C - n - 1  a n+l r - n - 1  Sn(O, q)), [15] 

where S~, are surface harmonics of  order n, 
'a '  is the radius of  the spherical droplet  and  
A n ,  B n ,  Cn etc. are ye t  unde te rmined  coeffi- 
cients. The nota t ion  used above is an 
abbreviat ion,  bu t  one must  keep in mind 
t ha t  the  p roduc t  A ,  Sn(O, ~v), for example,  
represents  2 n -t- 1 terms, t ha t  is: 

A n Sn(O , ~) = ~" (Am cosm ~0 + ~inm sinm~0)pm (cos0). 
m=0 [16] 

In  an analogous manner ,  the  solid spherical 
harmonics of  the unper tu rbed  flow field ~ ,  
namely  those in eq. [13], can be defined: 

Pn~ 2(2nn + 3) ~ n # a _ n _ ~ r n S n ( O ,  cf) 

1 
O n = -~ fin a-n+~ r~tS,n(O, 99) 

1 
Z n  --  n ( n  + 1) ? n a - n r n S n ( O ' ( P ) '  [17] 

where anSn(O,  q~), f l~S, (O,  ~) etc., are an 
abbrevia t ion  of 2 n -}- 1 terms,  analogue to 
eq. [16], and where n = -  ~o to -~c~. 
Notice t ha t  p~,  ~b; ~ Z~ and Z_~ cannot  be 
de termined  f rom this definition. This, how- 

ever, is no l imitat ion since these par t icular  
spherical harmonics  do no t  contr ibute  to the 
unpe r tu rbed  veloci ty  in eq. [13]. 

The coefficients A "~ m C m ~, Bn ,  n, etc. of the 
solid spherical harmonics  in eq. [15] are 
de termined  by  subs t i tu t ion  of eqs. [15] 
th rough  [17] into eqs. [14]. Using the ortho- 
gonal i ty  propert ies  of the  surface harmonics,  
there  are obta ined six l inearly independent  
equat ions from which the coefficients are 
de termined : 

(2 n - - 1 )  (2 n + 3) [ ( 2 n + 3 )  m m] 
Am = n O  + ~) [ (2n  --  1) an + fin [ lSa]  

~ = [18b] 
2(2n + 3i 

Am __ (i - -  2 n) 
- n - 1  (i t  + 1) 

• ~2 a"n_ ~ + (1 + ~) ) 

[is c] 
1 B m 

- n - 1  n + 1 

1 /t m + ( 2 n _ l )  fl~n]}] [% (2n 

[18d] 

(2n  + 1) [18el 
Cm = Y~'2 n (n  + l )  [A(n- -  1) + (n + 2)] 

Y - n - 1  Yn (n  - -  - -  

C~-tn-1 n ( n  "4- 1) d n ( n  4- 1) [;t(n - -  1) 4- (n -4- 2)] 
[18f]*) 

where n ~ 1 to oo. The coefficients with the 
carat ,  e. g. A~", are similar to  the  above, with 
O~ n replacing ~ etc. 

In  order  to proceed wi th  the solution, the 
coefficients an, fin and ?n have  to  be deter- 
mined from the known unpe r tu rbed  veloci ty  
dis t r ibut ion at  infinity, ~ .  F o r  this purpose 
we mul t ip ly  eq. [13] b y  a uni t  vector  in the 
radial  direction i~, viz. 

~oo ' / r  = - ~  2 # ( 2 n +  3) r P n  + [19] 

and 

~} [20] ~" Vx~)oo : {n(n  + 1) Z n . 

*) Subst i tut ion of n = 1 in eq. [18f], and rec~lling tha t  
m ? -2  ~ 0, yields C_m~ = 0. This implies tha t  there is no 

torque acting on a droplet,  since the  torque is given by 
T = -- 8 ~  V(r~Z_2). 

1 m 
For  large values of  ~, one obtains c m: = - -  ~-) '1  ' 

since one has to subst i tute  first )t = co in eq. [18f], and 
then n = 1. 
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Subst i tu t ion of eqs. [17] in eqs. [19] and 
[20], and recalling t ha t  ~ n - l ( 0 ,  ~0) ~- ~-~n (0 ,~) ,  
yields : 

/~  [ (~__)/t, + 1 (__~)n-- 1 
~ - ~ .  = ~ + fl~ 

r - n- ~- 

and 
~o r ~*g 

] 
[22] 

The coeNeients  an, fin, yn, ~ - ~ - i ,  fl n-1 
and y - n - i  can readily be de termined  
from eqs. [21] and [22] by  using the ortho- 
gonali ty propert ies of the Legendre poly- 
nomials. 

Thus, the coefficients in eqs. [15] have been 
de termined in terms of the known coefficients 
of the unper tu rbed  veloci ty  distribution.  

This completes the solution for the veloci ty 
distr ibution outside the  droplet  (eqs. [7, 8, 15 
and 1.8]) and inside it (eqs. [10, 15 and 18]). 

3.2. The settling velocity 

The sett l ing veloci ty  can now be deter- 
mined by  writ ing a three balance on the 
droplet  : 

4x 
3 a~(q" ~ ) g k - - 4 ~ V ( r a P 2 ) - - - O '  [23] 

where the first expression is the buoyancy  
ibrce and the second one is the drag [Happel 
and Brenner (5), p. 6511. The expression for 
p_~ is, in general:  

P-. 2 = # a r- 2[A~ 2 Pl(cos0) + A[~cos~ P~l(COS0) 

+ ~ 2 sin ~ P~t (cos 0)]. [24] 

By subst i tu t ing eq. [24] in eq. [231 and 
equat ing the  corresponding vectors  we obtain : 

a z g 
A~ .... 3# (O' e); A ~  A l e = 0 .  [25] 

Since for the  unpe r tu rbed  flow V(r ~ p_~) 
= 0 we must  have,  by  eq. [17] tha t  ~ ~ = 0, 
and eq. [18] results in 

AO _ 1 
- - 2  

A[z 2 ( 1 + ~ ) [ ~  

~i i __ 1 
--2 

We set now to determine the three  com- 
ponents  of  the terminal  sett l ing veloci ty  of  
the droplet ,  in terms of known coefficients 
and parameters .  

Fi rs t  express eq. [5] as follows: 

' ~  voo u = ~ - ( v ~  + uyi  + u ~ )  

Multiplying the above by  a unit  vec tor  in 
the radial  direction [r 

Vco " [r : g ~ "  tr -- ((fix cos~ P~ (cosO) 

+ UysinFP~(eosO) + UzPi(cosO)]. [27] 

Expand ing  V~ �9 ir in a series analogue to 
eq. [21], with coefficients gn, _fin, etc., sub- 
st i tut ing into eq. [27] and using the ortho- 
gonal i ty  propert ies of the Legendre poly- 
nomials, we obtain 

2 (~' Q) a2g 1 + 2  0 52 0 [282] 
Uz - 3 # 2 + 3 2  +f l~ l+  2 ~ 3 ~  ~1 

52 ~i 
~ = t~ + 2 + ~  [2Sb] 

52 ~ [28 c] U~ = _~i + 2 - + ~  ~"  

Note  t h a t  in order to solve the coefficients 
0 ,  _fi~, ~], etc., one has merely to solve 
the following integrals: 

2Jr ~ 
3 

4~ f I ([?~176 c~ [292] 
0 0 

( 7  + + " -~[a!  

3 
- 4 n  f I ( F ~ ' 5 )  sin2Oc~ [29b] 

0 0 

3 
4~  f f (V~ sin2OsincpdOdq)" [29e] 

0 0 

The formula t ion  presented above is quite 
general and is applicable also for the  ease 
when ~oo = co at  r---- 0. In  the event  t ha t  
~ is finite everywhere  in the  field, eqs. [28] 
can be wri t ten  in vectorial  no ta t ion  and  the 
coefficients de termined in a simplified manner  
as follows : 

[r L=0- E +2L-o E30] 
since all o ther  solid spherical harmonics  do 
not  have  any  contr ibut ion.  Similarly, we 
obta in  : 

[ l V p o o ] r  = 0 [ ~ 7 p ~ ~  . [31] 
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S u b s t i t u t i o n  o f  eqs. [17] i n t o  eqs. [30] a n d  
[31] yields: 

and 
~ + ~ ] ) .  [32b] = ' 0  a . ( r  + 

Then the expression for the terminal  settling 
velocity is merely :. 

U--  2(q ' --  e)a~g (1 + )~) + [?~]r=0 
3# 2 + 32 

+ 2# 2 ~ 3 ~  [Vp~]r=o. [33] 

The drag force on a spherical droplet 
suspended in an unbounded fluid for the case 

S u b s t i t u t i n g  eq. [38] in eq. [37] and  
recal l ing t h a t  

1 0~Sn 1 0 [ . ~ aSh\  
- -  [~m~-) + ~ ( ~ + 1 ) & = o  

sin 20 ~ + sinO ~0 

we readily obtain:  

1 1 1 2 + ~ [ n ( n + l ) - - 2 ] L n S n  . [39] 
-R~-I + R~ -- a n=l 

S u b s t i t u t i o n  o f  eq. [39] in to  b o u n d a r y  
cond i t ion  [35], we o b t a i n  (Append ix  B) :  

2 + 3 2  3 
Y~ = 2~ #a ~ z -  [F~]~=0 + ~ a -i-% ~ [vp~]~=0. 

[34] 

This  resul t  is a genera l i za t ion  o f  F a x e n ' s  
law for  a spher ical  part icle .  This  l aw is a 
pa r t i cu l a r  case o f  eq. [34] w h e n  ~ = c~. 

3.3. The equation o/the interlace 
Thus far only six of the boundary  con- 

ditions have been utilized for solving the 
flow fields in and around a spherical droplet. 
The seventh boundary  condition, i. e. 

v(r)" tr + Tee(r)" tr -- V(r)" tr = a + [35] 

is n o w  used  for  de t e rmin ing  the  e q u a t i o n  o f  
the  in terface .  This  ne w  in te r face  m a y  t h e n  
be used for  ca lcu la t ing  the  ve loc i ty  fields o f  
the  second  i te ra t ion .  

The  rad ius  o f  nea r ly  spher ical  d rople t s  m a y  
be r ep re sen t ed  b y :  

r = al l  + ~(0, qo)], [36] 

where I ~(0, ~) [ ~ 1. 
Landau and Li/shitz (6) derived the follow- 

ing expression : 

1 1 2 2~  

1 1 a ~  1 0 sin 0 ~ -  . 
a s in20 O~ ~ + sinO O0 

Let  the deviation function ~(t?,p) be 
described by a sum of surface harmonies as 
follows : 

$(0,9) = ~ Ln Sn(O, ~o), [38] 

where the nota t ion  is analogue to eq. [16]. 

2(n + 1) r + 2 ) r  1 + {n~ + 3n -- 1) ~ .  
a - - ( 2 n - -  1)/~ P-n- z  

a r oo* * . (~' -- q) g a Pl(cos0)} (P. + P-1 +Po- -P-1 )  tt 

- -  ~ 2 +  n ( n +  1 ) - - 2 ] L ~ S ~  . [401 
] A t  n = l  

S u b s t i t u t i o n  o f  eqs. [15], [17] a n d  [18] in 
eq. [40], a n d  using the  o r t h o g o n a l i t y  p rop-  
erties o f  the  surface ha rmonics ,  we ob t a in  
an  infinite set  o f  l inear ly  i n d e p e n d e n t  
equat ions .  The  first o f  these  equa t ions ,  
n a m e l y  for  n = 0, y ie lds :  

c~* , , , 20" 
Po +:P~I +P0 - - P - l - -  a 

The second equation, for n = 1, yields an 
identi ty.  This implies t ha t  the assumption 
of a spherical droplet is correct up to second 
term in eq. [36]. 

Solving the equations with n = 2, 3, . . . ,  
c~, for L~', we finally obtain:  

1 1 

(n 2 + n , - - 2 )  n ( n +  1 ) ( 1 + ~ )  

• [(4n a+  6n 2+ 2n + 3) 

+ (4n ~+ 6n 2 - 4 n - 6 ) ]  

+ (~ +6n 2+ 2n--3) X+ (4n ~+ 6n ~ -4n) ]  
] 

[41] 

and  s imilar  express ions  for  L~ ~. Not ice  t h a t  

L ~. is a t  least  o f  o rder  0(1/nZ). 
The  dev i a t i on  f r o m  spher ic i ty  func t ion  is 

t hus  o b t a i n e d  b y  subs t i t u t i on  o f  eq. [41] 
in to  eq. [38]. 

when the velocity distr ibution far from the 
co droplet is V~, i s  o b t a i n e d  by s u b s t i t u t i o n  o f  2 n ( n  - -  ] )  (s , ( n  ~ n - -  3 ) a  o o ,  

- -  - -  Pn 
eq. [33] into the expression for the drag: a (2 n + 3)# 

2 (n + l) (n + 2) , ( n 2 + 3 n - - 1 )  , 
a ~5-n-1 + (2n -- l)/~ P-n-1 

=] a (2n + 3)/*" iOn 
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4. Examples 

The usefulness of the solution presented 
herein is now demonstrated by solving the 
flow fields, settling velocity and the deviation 
from sphericity for two simple flows which 
were solved by G. I. Taylor (3a, 3b), and for 
Poiseuillian flow, which was not solved pre- 
viously. 

~.1. Couette flow 
The unperturbed velocity distribution is 

given by : 
~ - -  G ( y  + 1) i - -  U i ,  [42] 

where l is the distance of the center of the 
droplet from the point of zero velocity and 
G is the shear. 

Y 

Fig. I. Couette flow 

Multiplying eq. [42] by a unit vector in the 
r direction tr: 

'v~ " tr = (G 1 - -  U) s in0 cos~o + G r sin20 sin~0 coscp 

G a  r 2 
(G l - -  U) cos ~0 P~ (cos0) + 6 ~  a sin 2 ~0 P2 (cos 0) .  

H e n c e  

a a [43] 

Similarly, 

Hence 

~ ' V x ~ =  -- Ga r~cosO. a 

y~ = -- Ga [44] 

Substitution of eqs. [43] and [44] in cqs. [18], 
one obtains the coefficients A~, B~, A1_2, B1_2, 

-2 /~2 2 2 A2, 2, A 3, B a and C1 ~ All other coefficients 
are identically zero. Substitution of the 
coefficients into eqs. [7] through [11], using 
eqs. [15], the velocity fields are obtained. 

The settling velocity is readily obtained 
from eqs. [28]: 

G -  ~ Gl, G = G o. [45] 

The deviation from sphericity is obtained 
from eq. [41] as follows: 

f.~ = G a #  16 + 192, 
3~ " ~6(1 +~)" 

Finally, the radius is given by:  

r = a[1  + L22 s i n 2 ~  P~(cos0)]  

= a l l +  Gatt 1 6 +  192 x y ]  
16(1 +,~) r ~- " [46] 

Eqs. [45] and [46] are the familiar results 
of Taylor (3) for a neutrally buoyant  droplet 
in Couette flow. 

4.2. Hyperbolic flow 
The unperturbed velocity distribution is 

given by 

~ = ~ z i -  ay] - -  Ux; Uy]. [47] 

Using a procedure entirely analogue to 
that  in section 4.1, it is easy to obtain the 
required coefficients, i. e. 

fl~ = Ga 3 ;  f i l l =  --  Ux'~ ~ l l : :  Uy [48] 

from which the settling velocity and the 
deviation from sphericity are calculated, 
namely : 

Ux-- Uy 0 

r ==a[ 1-b 2Gal~ 16+ 19"~ ] 
o" 16(1 + 2 )  s i n 2 0 c ~  [491 

which are the familiar results of Taylor (3). 

4.3. PoiseuiUe flow 

Use a spherical coordinate system which 
is centered at the center of mass of the 
droplet (fig. 2). In this system the unperturb- 
ed velocity distribution is: 

~5oo = ( Uo [1 -- (~-o)2 sin20 -- ( 1~-0 ) 2 

2rb cosq~sinO]-- U} ~ [50] 

where U 0 is the maximum velocity which is 
at a distance b from the droplet and where 
R o is the distance to the point of zero veloc- 
ity. 
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i 

Z t Z~ 
U, 

,~ .b = 

X 

Fig. 2. The geometry and coordinate systems used in the 
analysis 

Mul t ip ly ing  eq.  [50] b y  a un i t  v e c t o r  in the  
r d i rec t ion  tr, one ob ta ins :  

~o~ " [~ Uo [cos 0 r : - - ( ~ )  sin20 cos 0 

b 2 

Similar ly ,  one ob ta ins  the  fol lowing pro-  
d u c t :  

. 2 b r  
�9 Vx  (;~ = u o ~ sin 0 sin ~v. 

Reca l l ing  t h a t  : 

cos0 = PI (cos0) 

sin 0 = P~ (cos 0) 

3 sin0 cos0 = P21(cos0) 

and  
2 

sin 2 0 cos 0 = ~- [P1 (cos 0) -- P3 (cos 0)] 

one obta ins  : 

{[ ( b ) 2  2 a 2 (~_)2]p~(cos0) v ~ ' t r =  U0 1 - -  - ~ o  5 Rz 2 

oos     (oos0t 
3 ~o ~ a 

2 a "~ r 2 (~-) Pa (eosO) P~(cos 0)} [51] 

Uo 2 a b  [r~ 
~ - w ~ =  R o ,  ~ - %  - '~in~P'~(~~176 [5~] 

H e n c e  : 

and  

o 
6r 1 = - -  ~ -  U o  

~ = 2 ab 
- ~ -  Uo R d  

^~ 2 a b  
~/1 = Uo Ro 2 

[53] 

A ~ B ~ A~, B 1, A ~  ~ A~ B~ Al_a,Bla,A~ BOa 

and C1. 
All o the r  coefficients  are  iden t ica l ly  zero.  

S u b s t i t u t i o n  o f  t he  coeff icients  in to  eqs.  [7] 
t h r o u g h  [11] and  using eqs. [15], the  ve loc i ty  
fields a re  ob ta ined .  

T he  se t t l ing  ve loc i ty  is ob t a ined  f rom 
eqs. [28], 

Ux = Uy = O 

U =  U z =  2 ( e ' - - e )  a3g 1 + 
3 tt 2 + 3 ~  

( b~ 2~ a ~ ) 
+ U~ 1 [54] 

Ro 2 2 + 3 A Roo ~ " 

The devia t ion  f rom spher ic i ty  is ob ta ined  
f r om eq. [41] : 

L 1 = _  #Uo ab 19X+16 
a Bo ~ 12~ + 12 

LO ~Uo  ( a ) ~  11~+10 
- ~  ~ o  2 o z + 2 0 "  

Fina l ly ,  t h e  rad ius  is g iven  b y :  

r = al l  + L~ cos~P~(cos0) + L ~ Pa(cos0)] 

I~U o a b  19~+ 16 
= a  1 - -  ~ Ro 2 1 2 , ~ +  12 cos ~oP~(cos0) 

#Go [a~_'~ 2 112+ 10 pa(eos0)]. 
+ a \Bo]  20~+20  

[55] 

Eels. [54] a n d  [55] h a v e  no t  been  d e r i v e d  
prev ious ly .  

To  i l lus t ra te  t he  d e v i a t i o n  f rom spher ic i ty ,  
eq. [55] was e v a l u a t e d  for  the  fol lowing 
condi t ions  : 

#U~ 2; a _0.316; b - ~ -  = R0 R 0  = 0.o8 

2--~0 

and  t he  resu l t ing  shape  is dep ic t ed  in fig. 3. 

S u b s t i t u t i o n  o f  eqs. [53] in eq. [18] one  
ob ta ins  the  coefficients  
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Fig. 3. The deviation from sphericity of a droplet sub- 
merged in an unbounded Poiseu i l l e  flow, with/~ Uo/a ~ 2, 

a i R  o ~ 0.316,  b / R  o ~ 0.08, 2~-+0 

O n e  s h o u l d  n o t e  t h a t  t h e s e  c o n d i t i o n s  a r e  
n o t  p h y s i c M l y  m e a n i n g f u l .  T h e  v M u e  o f  
# U o / a  h a s  b e e n  d e l i b e r a t e l y  e x a g g e r a t e d  in  
o r d e r  t o  m a k e  t h e  d e v i a t i o n  f r o m  s p h e r i c i t y  
v i s i b l e .  U n d e r  c o n d i t i o n s  w h i c h  a r e  p h y s i c a l -  
l y  m o r e  r e a l i s t i c ,  t h e  d e v i a t i o n  f r o m  s p h e r -  
i c i t y  wi l l  h a v e  a m u c h  s m a l l e r  a m p l i t u d e .  
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S u ~ t ~ t a r y  

A solution is presented for the flow fields interior and 
exterior to a single spherical droplet submerged in an 
unbounded fluid, for the general case when the unper- 
turbed velocity is S tokes ian  but otherwise quite arbi- 
trary. 

A general equation for the terminal settling velocity 
is derived which contains as special cases the solutions 
of H a d a m a r d - R y b c z y n s k i ,  T a y l o r  and others. The drag 
force on a spherical droplet is also formulated. This 
equation contains as a special case the law of F a x e n .  

The function describing the interface and its deviation 
from sphericity is derived. This may be used for deter- 
mining more accurate flow fields in an iterative proce- 
dure. 

Z u s a m m e n / a s s u n g  

Das Problem der Str6mungsfe]der in ciner unbegrenz- 
ten Flfissigkeit wird sowohl innerhalb wie auBerhalb eines 
einzelnen kugelfSrmigen Tropfens ffir den allgemeinen 
Fall gel6st, wenn die ungest6rte Gesehwindigkeit durch 
die S tokessche  Gleichung angegeben werden kann, aber 
sonst willkiirlich ist. 

Es wird eine allgemeine Formel fiir die Geschwindig- 
keit, die nach langer Zeit erreicht wird. angegeben. Sic 
enth~ilt als Spezialfall die L6sungen yon H a d a m a r d -  
R y b c z y n s k i ,  T a y l o r  u. a. Die schleppende Kraft, die auf 
den Tropfen einwirkt, wird formuliert. Diese Formel 
enth/ilt das Gesetz von F a x e n  als Spezialfall. 

Die Funktion der Grenzfl~che und ihre Abweichung 
yon der Kugelform wird bestimmt. Sie kann zur Bestim- 
mung genauerer Str6mungsfelder in einem Iterations- 
verfahren angewendet werden. 
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Appendix A 

The boundary conditions for the first iteration are as 
follows: 

, t ,  
v r ~ v r ~=0 [A-I] 

ii* ~' * [A-2] 

:~ ( r )  V( r  ) . :  a + = t r ,  [A-3] 

_ �9 _ t  

where Z(r ) and ?(r) are based on ~ and v ,  respectively. 
From these boundary conditions the following vec- 

torial equations can be obtained: 

.... r V . ~ *  - -  - -  r V . Y *  

~ .  V x ~ *  ~ ~ .  V x ~ ' *  

_ ,  t ,  
�9 V x  (~ x ~(r)) = ~ " V x  (~ x r(r)) 

- -*  V t ,  
�9 V x ~ ( r )  ~ ~" X r ( r  ) 

~(r)" tr - -  r(r ) " tr = a + 

But since 
V - ~ '  --  0 

Ir av; , r V .~ '*  : \ - ~ - ]  

Also, 

and 

�9 V x  ~ ' *  = [~ �9 V x  ~']* 
_ t ,  _+ * 

�9 V x  (~ x Z(r) ) : [r" V x  (r x V(r)) ] 

~' * = [~ . V x  ~(r)]* �9 V x  r(r ) 

, *  p *  

T(r) " ~ r - -  Trr  " 
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Similar expressions can be written for 6 and ~(r). Equat- 
ing the two sets, together with eqs. [A-l] through [A-3], 
one obtains: 

V f  ~ V~. 

rOUt] rr 0v;] * 
~-~J = L ~-rJ 

[~. Vx ~]* = [~. Vx ~']* 

[~,. vx  (~ x %.))]* = [ ~ .  Vx (~ x ~,)]* 

- -  * ~ * 

[f~. Vx n(r)] = [f~. Vx ~0.)] 

~rr -- Trr = a + . 

Recalling tha t  q5 = voo + V, we obtain the following 
set of transformed boundary conditions: 

v r ~ 0 

[rO': l  * [rOY,1 * [rOVoo,1 * 
~ - r l  - L ~ - r J  = L  ~ r  J 

[~. Vx ~']* - -  [e .  Vx V]* = [e .  Vx ~oo]* 

s * _ _ * - - - 
[~. Vx (~ x ~(r)] - -  [~" Vx (r x v(r)) ] = [r. Vx (r x V(r ) ~)] 

_ * _ * 

[~. Vx ~i~)] - -  [~" Vx ~(,)] = [~" Vx ~(~)~] 

T :  r + * = a + , 

where f(r) and f~(r) are based on F and v~o, respectively. 

Appendix B 

Lamb's solution for Sto]cesian flow is: 

Vx(~Zn) + V~n + 2(n + 1)(2n + 3)# 
~ - o o  

n r Phi �9 
- (n+ 1)(~n + 3)s 

Happel and Brenner (5, p. 63) showed that :  

~ ' t r  ~ 2 / ~ ( 2 ~ + 3 )  r p n + - 7  n 

r Ovr ~ [ n ( n + l )  r 2 p n +  n ( n - - 1 )  ] 
Or = n =  -~_~t2 ~ (2n + 3) r ~n 

~ ' V x ~ =  ~ n ( n +  1) Zn 
n ~  - o o  

and 
o o  

2n 2 + 4n + 3 n(n + 2) r~ Vpn]" 
/ ~ ( n + l ) ( 2 n + 3 )  ~pn q ~(n + l ) ( 2 n  + 3) 

The following relations are easy to prove: 

# ~ ( n - - 1 ) n ( n + l ) Z n  �9 Vx f(r) = r n =  _ 

_ ~  [ 2 ( n - - 1 )  n ( n + l ) ~ n  
�9 Vx (~ x f(r)) = -- # n - - ~  r 

n~(n + 2) ] 
+ ( 2 n + 3 ~  rpn 

_ ~  [ 2 n ( n - - l )  
f r "  t~ = ~ r ~n + 

n _ - o o  

(n ~ --  n --  3) ] 
/~(2n + 37  rpn  ] 
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