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Abstract. This paper studies the iteration of maps of the interval which have 
negative Schwarzian derivative and one critical point. The maps in this class 
are classified up to topological equivalence. The equivalence classes of maps 
which display sensitivity to initial conditions for large sets of initial conditions 
are characterized. 

There has been recent interest in the relationship between the "chaotic" asymp- 
totic behavior of complicated solutions to ordinary differential equations and 
physically unstable phenomena such as those encountered in fluid flow [21]. This 
has led to numerical studies of a variety of systems of differential and difference 
equations which appear to have large sets of initial conditions yielding com- 
plicated asymptotic behavior. The mathematical theory of Axiom A "strange 
attractors" provides a satisfying description of some systems which do have 
complicated asymptotic behavior, but there is little overlap between the numerical 
studies referred to above and the class of systems with Axiom A attractors. 
Perhaps the "Lorenz system" [16], is the only example of an explicit system of 
equations used in a physical problem for which there is a convincing argument 
that a large set of its solutions have complicated asymptotic behavior. 
Nonetheless, the numerical studies of such examples as the "Henon" map [9], the 
mechanical systems studied by Holmes and Moon [11], the "strange attractor" of 
Spiegel [26], and the density dependent population models of [8] all provide 
evidence for the prevalence of complicated solutions in systems near those with 
homoclinic tangencies. From a practical point of view the distinction between 
trajectories tending to complicated periodic orbits with very long periods and 
trajectories with aperiodic asymptotic behavior may be slight, but we would like to 
understand the extent to which numerical computations of strange attractors reflect 
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the mathematical properties of the systems being studied. This paper aims to study 
some of these mathematical questions in the simplest situation in which they arise : 
the iteration of a single real valued function of"quadratic" type. In this context we 
give a reasonably complete topological picture of what is involved in chaotic 
behavior and sensitive dependence to initial conditions while failing to answer the 
outstanding question about their prevalence. 

1. Introduction 

There have been many numerical studies of the asymptotic properties of the 
iterates of a real function f : I ~ I ,  I = [ 0 ,  1]. The quadratic functions fa(x) 
=ax(1-x), 0_a_<4, have been studied intensively. These numerical investi- 
gations indicate that there are many functions f which have typical solutions with 
complicated asymptotic behavior. For example, the calculations of Shaw [24] 
indicate that for the quadratic family, there is a set of as  [3, 4] of large measure for 
which the typical trajectories have positive Liapounov exponents. This leads one 
to speculate that in some suitable class of one parameter families of maps £ : I ~ I ,  
each family has a set of parameter values of positive measure such that the 
corresponding maps have trajectories which depend sensitively to initial con- 
ditions. We give our definition of sensitive dependence. 

Definition. Let X be a metric space with a measure/~ and f : X ~ X  a continuous 
map. Then f has sensitive dependence to initial conditions if there is a set Y CX of 
positive measure and an e >0  such that for any xe  Y and neighborhood U of x, 
there is y e U and n ~ 0 with d(fn(x), f"(y)) > ~. 

Certainly other definitions of sensitive dependence are possible, but this one is 
suitable for our purposes. We shall specify a class of maps f :  I ~ I  for which we can 
give a precise topological characterization of when they have sensitivity to initial 
conditions. 

Two maps f 9 :X ~ X  are topologically equivalent if there is a homeomorphism 
h :X~X such that hf=gh. A topological equivalence h maps f-trajectories to 
9-trajectories. For the maps which we study, sensitivity to initial conditions will 
depend only on the topological equivalence class of the map. We shall give a 
complete enumeration of the topological equivalence classes having sensitivity to 
initial conditions. Thus we are able to focus the question of the prevalence of 
sensitivity to initial conditions in rather sharp terms. Let us proceed to describe 
these results precisely. 

The Schwarzian derivative [4] of a function f :  I - , I  is defined by Sf(x) 
f"(x) 3(f~(x)12 

- f'(x) ~ \ ~ ]  . We shall work with the class of functions C defined by 

1) f : I ~ I  with f ( 0 ) = f ( 1 ) = 0  and feC3(I). 
2) f has a single local maximum c = c s. The function f is strictly increasing on 

[0, c] and strictly decreasing on [c, 1]. f"(c)<O. 
3) The Schwarzian derivative of f is negative: for all x e I -  {c}, Sf(x)< 0. We 

explain below the significance of 3), which we call the Schwarzian condition. 
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Throughout  the paper the symbol "c" means the critical point of whichever map is 
under discussion. If there is ambiguity we write c s for the critical point of f It is 
clear that many of our results hold for larger classes of function than those in cg 
and we occasional indicate results which hold in greater generality, but for the 
most part we focus attention on cg. Here the theory we describe is most complete. 
Note that quadratic functions have negative Schwarzian derivative since their 
third derivatives are zero. 

A primary reason for working with negative Schwarzian derivative is Singer's 
theorem. To state this theorem recall a couple of definition. A point x ~ I is periodic 
with period n if f"(x) = x but f i(x) ~ x for i < n. A periodic point x of period n is 
(one-sided) stable if there is a non-trivial interval U with f"(y)--,x for all ye  U. An 
interval is non-trivial if it has positive length; a trivial interval is a point. A 
necessary condition for x to be stable is that tDf"(x)[ < 1. A sufficient condition for 
x to be stable is that IDf"(x)l < 1.We denote the derivative o f f  by either f '  or D f  as 
convenient. 

Theorem (Singer [25]). Let f : I ~ I  have negative Schwarzian derivative. For every 
stable periodic point x of period n, there is an i < n and a critical point c or endpoint 
of I such that ya [c, fi(x)] implies fk"(y)~ fi(x) as k~oo.  

The proof of Singer's theorem is based upon several facts about Schwarzian 
derivatives which we list here and use later: 

t) S(fog) (x) = Sf(g(x)). (g'(x)) 2 + Sg(x). If S f  is negative, then S f  ~ is negative for 
all n>0.  

2) If S f  is negative, then lf ' l  has no positive local minimum. If J = [a, b] is an 
interval on which f is monotone and x~J ,  then If'(x)[ >min  ([f'(a)t, If'(b)t). 

(x,~ - x d (x3 - x2)  
3) Denote (x~,x2,x3,x4)= (x , ,_x3) (x2_x~)  . S f  is negative if and only if for 

each x ~ < x 2 < x 3 < x 4  contained in an interval on which f is monotone, 
(xl, x2, x3, x4) < (f(xl), f(x2), f(x3), f(x4)). 

4) If f is a polynomial such that all zeros of f '  are real, then S f  is negative. 
The proof  of Singer's theorem rests upon the fact that an increasing function 

with negative Schwarzian derivative cannot have a stable fixed point between two 
unstable fixed points. Each stable periodic orbit has associated with it a critical 
point. 

Corollary. I f  f e~ ,  then f has at most one stable periodic orbit 
In Sect. 3, we prove that if f has a stable periodic orbit, then it is not sensitive to 
initial conditions. Thus the primary interest in sensitivity to initial conditions 
forces us to devote our attention to those f a ~  which do not have stable periodic 
orbits. The structure of these maps can be quite complicated. They are far from 
being hyperbolic or structurally stable, so the techniques used to study Axiom A 
dynamical systems are not sufficient for a topological characterization of these. It 
is here that the one-dimensionality is exploited in a rigorous way. Just as order of 
points on the circle leads to the theory of rotation numbers for homeomorphisms 
of S 1, the order on the interval leads to invariants of a map f : I - , I  with respect to 
topological equivalence. Milnor and Thurston [17] have introduced a language, 
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the kneading theory, which systematically exploits the order of the line in studying 
topological properties of a map under iteration. We shall use this language in Sect. 
2 to construct the topological classification of maps fEcg, so we introduce the 
necessary background from the kneading theory here. 

Milnor and Thurston study piecewise monotone  maps. The map  f : t ~ I  is 
piecewise monotone if it is continuous and there are 0 = c o < c a < . . .  < c z = 1 such 
that f[[c i_ ~,ct] is strictly increasing or strictly decreasing. Assume that the set 
{ci}tt=o is chosen as small as possible. Then the ct's are called turning points and the 
intervals Ii=(Q_l,ci) are called laps, Associated to each x e I  is a sequence 
A(x)= {A,(x)},~o, called the itinerary of x. The n-th term A,(x) is called the n-th 
address of x and is defined by A,(x )=t  i or C i as f"(x)~I  i or f"(x)=Q. The 
itineraries of the turning points are called kneading sequences. It  is easily seen that 
if h is an orientation preserving topological equivalence from f to g, then the 
kneading sequences of f and g must be the same. 

By introducing signs to the addresses, one can order these sequences in a way 
which is consistent with order on the interval. Define the sign e(I~) of the symbol I t 
to be + 1 or - 1 as f [ i  i is increasing or decreasing. The sign ~(Ci) is defined to be 0. 
Given a sequence _a = {a,},~= o of the symbols It, C~, define the invariant coordinate 
0(9) = {0,(_a)},~ o by O,(a) = ~(ao) ~(al)...e(a,_ 1)a,. If x~ I, we write O(x) = O(_A(x). We 
introduce an order of symbols by 

- C t <  - I t <  - C t _  1 < . . .<  - 1 1  < - C  o <°:c~ < C o <11 < . . . < l t < C  t . 

With this order of symbols, we order the sequences 0(a) lexicographically: 
0(9) < 0(b) if _a + _b and 0,(9)< 0,(_b) for the smallest n with a,  4= b,. The fundamental 
observation of Milnor-Thurston is the monotonicity of invariant coordinates : 

Theorem. Let f : I ~ I  be piecewise monotone. I f  x < y, then O(x)< O(y). 

The proof  of this theorem follows easily from the fact that the sign of O,(x) is 
+ 1 or - 1 according to whether f"  is increasing or decreasing at x. If x < y and n is 
the smallest integer with A,(x)~ A,(y), then f"  is monotone on the interval Ix, y]. 
One has f"(x) < f"(y) or f"(x) > f"(y) depending upon whether the signs of O,(x) and 
O,(y) are + 1 or - 1. 

For  a map fecg,  the itineraries of the endpoints are fixed, and there is one 
interior turning point c. The itinerary 2 of c we call the kneading sequence of f It 
plays a role for f analogous to the rotation number of a homeomorphism of the 
circle. In the first part  of Sect. 2, we discuss how 2 determines the itineraries of 
other points x e  I. We also examine which symbol sequences occur as the kneading 
sequence of some map fecg.  An important  role in these considerations is played 
by the shift map cl on sequences. If  _a = {a,},~=o is a sequence, then o'(9) =_b is the 
sequence obtained by dropping a o and renumbering: _b = {b,},~= o and b , = a , +  1. 
Using the monotonicity of the invariant coordinate and the shift map, we 
determine recursive conditions for a sequence _a of I 0, C, and I ,  to occur as the 
kneading sequence of fecg.  (We number the two laps o f f  as I o and I~ rather than 
11 and 12. ) 

The kneading sequence of f e c g  comes very close to being a complete invariant 
of its topological equivalence class. In the second half of Sect. 2, we show that the 
kneading sequence of f determines whether or not f has a stable periodic orbit. I f  
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f and g in cg have the same kneading sequence and do not have stable periodic 
orbits, then we prove that they are topologically equivalent. The earlier topologi- 
cal discussion determines that f and g have the same sets of itineraries, and the 
monotonicity of invariant coordinates implies that points with given itineraries 
occur in the same order on the interval. The analytic part of the argument which 
uses the Schwarzian condition is that each itinerary is assumed by just one 
point. There are no non-trivial intervals J for which f"yJ is monotone for all n. 
(Misiurewicz has suggested the name homtervaI for intervals with this property.) A 
topological equivalence from f to g is then constructed by associating points with 
the same itinerary. 

The kneading sequences of f~cg which do have stable periodic orbits are of 
three types. If_7 is the kneading sequence of such an f, then ~ )  is periodic of 
period n. If 7, is C and g has the same kneading sequence as f, then f and g are 
topologically equivalent. If 7, # C, then the possibilities depend upon the number k 
of Ii 's among 71 ..... 7,. If k is even, then the stable periodic orbit of f has period n 
and is stable either from one side or from both sides. This additional bit of 
information determines the topological equivalence class of f If k is odd, then the 
stable periodic orbit of f has period n or 2n, and this bit of information determines 
its topological equivalence class. 

Throughout Sect. 2, for xE1-{c}  we have occasion to look at the point y # x  
such that f(y)=f(x).  The point y is well defined since f is 2 to 1 on I -{c} .  We 
denote this point y by x'. If S C I - { c } ,  then we write S' for the set {yell there is 
xeS  with y # x  and f(y)=f(x)}.  One uses this map ..... in the following way. If 
ye(x, x'), one says that y is closer to c than x. We study the iterates of x, looking for 
ones which are closer to e. The induced map F of f is defined by F(x) = f"(x) with n 
the smallest integer such that f"(x)e(x, x'). The induced map is not defined at all 
points and it is discontinuous, but it has good expanding properties if f ~  cg. This is 
the basis of the analytic arguments in Sect. 2. 

In Sect. 3, we determine which fec£  have sensitivity to initial conditions. As we 
have already mentioned, if f ~  without stable periodic orbits, some have 
sensitivity to initial conditions and some do not. To understand this, we examine 
periodic points of f If p is a periodic point of period n, then we say p is central if f "  
is monotone on the interval [p, e] and Df"(p) >0. The central point p is restrictive if 
f"(c)e(p, p'). This means that f "  maps the interval (p, p') into itself. The condition 
for f~cg without a stable periodic orbit to have sensitivity to initial conditions is 
that there is an N such that f has no restrictive central points of period larger than 
N. This requirement can be expressed in terms of the kneading sequence 7 of f 
This condition is closely related to the decomposition of the non-wandering set of 
f into "basic" sets by Jonker and Rand [15]. Those fEcg without stable periodic 
orbits and a non wandering set with a finite number of basic sets have sensitivity to 
initial conditions. The f~cg which have an infinite number of basic sets have 
neither stal~le periodic orbits nor sensitivity to initial conditions. If fecg  has no 
stable periodic orbit and is not sensitive to initial conditions, then there is a Cantor 
set A such that almost all points xEI have orbits which are asymptotic to A and 

f tA  is a homeomorphism. The set A has partitions A = 0 Ai such that f permutes 

the sets A i and A~ have diameter as small as one pleases. A well studied example of 



138 J. G u c k e n h e i m e r  

such maps are f with topological entropy 0 and infinitely many periodic orbits 
[18]. 

The final section studies the relationship between sensitivity to initial con- 
ditions, topological entropy, and conjugacy to piecewise-linear maps of constant 
slope. The maps g,(x)=/~/2-#Ix- 1/21 have the properties that g(0)= g(l)= 0 and 
Ig',(x)l = #  for # # 1/2. These maps are said to have constant slope. Piecewise linear 
maps with constant slope larger than 1 have a special property in terms of ergodic 
theory, namely, they have invariant measures of maximal entropy which are 
absolutely continuous with respect to Lebesgue measure. Not all maps f s cg  are 
topologically equivalent to a piecewise linear map g,. We determine those which 
are. 

The topological entropy and growth numbers of the maps we study are 
equivalent [19]. The growth number 2 of f~cg is lim sup(Nk) 1/k where N k is the 
number of fixed points of fk. If h(f) is the topological entropy of f then 
h(f) = log 2. So we can work with growth numbers as easily as topological entropy. 

If 1 </~<2, the growth number o fg ,  is ~. If ~-2<#__<2, then g, has no restrictive 

central points in the interior of I. Thus i f f  has growth number larger than ]//2 and 
it does have restrictive central points, then f is not topologically equivalent to any 
gu. We prove a converse of this statement. If f s cg  has no restrictive central points 

then the growth number of f is larger than 1/2 and f is topologically equivalent to 
g~ with # the growth number of f. 

The next piece of this story has to do with the topological entropy of f and 

restrictive central points. We prove that if f has growth number larger than ]/2 
and a restrictive central point p which is not stable from just one side, then the 

n--1  

measure of maximal entropy for f is supported in I -  ~ if(J) where J = (p, p') and 
i = 0  

p has period n. This implies that if g~C£ is close to f, then g and f have the same 
topological entropy and the same growth numbers. Thus, most of the maps f ~  

for which the function 2(f) is not locally constant and 2(f) > ]/~ are topologically 
equivalent to piecewise linear gu. These f have sensitivity to initial conditions. 
Indeed, if f has sensitivity to initial conditions, then there is an n >0  and a 
subinterval J = [p, p'], p the closest restrictive central point to c, such that f"(J) C J 
and f"lJ is topologically equivalent to a piecewise linear gu" Thus sensitivity to 
initial conditions for fEcg is related to both topological entropy and topological 
equivalence to piecewise linear maps with constant slope. 

Consider a one parameter family faacg in which the growth number varies, say 
from 1 to 2. We are interested in studying the set S of a for which fa has sensitivity 

to initial conditions. We can write S-- ~) S, where S, is the set of a for which the 
~ = 0  

closest restrictive central point Pa of £ has period n. Then for a~Sn, f2[(P,,P'a) is 
topologically equivalent to a piecewise linear g, of constant slope. If the kneading 
sequence of f2t(P,, P',) does not remain constant for a~ S,, then the growth number 
of f~"l(P,, P',) is not locally constant at a. This suggests that the measure of the set S 
will be positive for all families f~ if and only if the measure of the set S = {al2(£) not 
locally constant at a} is always positive. 
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2. The Topological Classification 

In this section we give a topological classification of one dimensional maps with 
negative Schwarzian derivative and one critical point. There are two aspects to this 
classification, one topological and one analytic. The topological part of the theory 
can be applied to all continuous maps with one critical point while the analytical 
part relies strongly upon the Schwarzian condition to prove statements about the 
size of certain derivatives of f While much of this theory can be generalized to a 
class of maps with more than one critical point, we focus here on the one critical 
point case. 

The language we use in constructing our topological classification is that of the 
kneading sequences of Milnor and Thurston [17]. This terminology has been 
introduced in the previous section. Given two maps f and g, we want to determine 
whether f and g are topologically equivalent. A topological equivalence h with 
hf  = gh must map the critical point of f to the critical point of g. Therefore, h maps 
the orbit of the critical point of f to the orbit of the critical point of g in an order 
preserving way. This implies immediately that f and g have the same kneading 
sequences if they are topologically equivalent. The first part of our classification 
will determine the set of kneading sequences which do occur for maps fecg. 

The strategy of our proof will be to try to determine the extent to which the 
kneading sequence of f~cg determines its topological equivalence class. We find 
that this sometimes occurs, but sometimes the kneading sequence does not quite 
determine the topological equivalence class of a map. The dichotomy here is 
roughly between maps which have stable periodic orbits and those which do not. 
A nonsingular "periodic" kneading sequence occurs for two topological equival- 
ence classes, while all the maps f~cg with a given "aperiodic" kneading sequence 
are topologically equivalent to one another. The proofs of both these statements 
rely upon a determination of the itineraries which occur for a given map from its 
kneading sequence. This is done simultaneously with the determination of the 
possible kneading sequences in the topological part of the argument. In the 
periodic case, the points whose orbits tend to the stable period orbit form an open 
and dense set whose complement is topologically equivalent to a subshift of finite 
type. This can be analyzed quite explicitly. In the aperiodic case, we prove that the 
set {xlfn(x) = c for some n > 0} is dense. Using the monotonicity of the invariant 
coordinate, any topological equivalence defined on this set extends to a topologi- 
cal equivalence on all of I. 

Let us then begin our argument with an easy lemma. 

Lemma 2.1. Let f :I-~I have the single critical point c and assume that f(O) 
=f (1 )=0 .  Then x~ I  implies that O(x)<O(f(c)). (Here O(x) is the invariant 
coordinate of x and the order is the lexicographic order of invariant coordinates as 
explained in Sect. I.) 

Proof The point f(c) is the maximum value of f Thus x<__f(c) and the lemma 
follows immediately from the monotonicity of the invariant coordinate. 

Corollary 2.2. I f  a is the kneading sequence of a map f and a is the shift map on 
sequences, then 0(~i(9))<= O(a(.q)) for all i>___O. I f  b is the itinerary of any point x ~ I  
for f, then O(~i(b))_-< O(a(a)) for all i > O. 
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The topological part of our discussion centers on the extent to which converses 
to this corollary are true. The first statement almost characterizes the f-itineraries 
of points xeI .  

Proposition 2.3. Let f : I ~ I  satisfy f ( 0 ) = f ( 1 ) = 0 ,  f is C 1, and f has a single 
turning point c. Denote the itinerary of f(c) by 7_. I f  _a is a sequence of I o, 11 with the 
property that 0(c/(9))< 0(7_) for all i> O, then there is a point x E I such that _a is the 
itinerary _A(x). 

Proof. We deal separately with the cases in which c is periodic and c is not 
periodic. Assume first that there is no n > 0  with f~(c)=c. Then the sequence 2 ~ 
consists entirely of the symbols I0, and I~. We shall examine the sets 
L = {xtO(x) < 0(9)} and U = {xlO(x) > 0(9)}. We assert that each of these sets is non- 
empty and open unless _a is the itinerary of an endpoint. Then the connectedness of 
I implies that there is y ~ I - { L w U } .  We must have _A(y)=a. If _a is one of the 
sequences {Io, t0 .. . . .  I0,...} or {11,Io, to , . . . , I  o .... }, then A(0)=a or A(1)=_a. 
Otherwise 0 e L  and l e  U. 

Assume x EL. Then there is a smallest n > 0 with A,(x)=t= a, since O(x)< 0(9). If 
a, = 11, then A,(x)= I o or C while if a, = I 0, then A,(x)= C or 11. If An(x ) =t= C, then 
there is a neighborhood V of x with Ai(y)=A~(x) for i<n and ye  V This implies 
that V CL and x is an interior point. Let m > 0  be the smallest integer with 
a"+l(a),,+~m . If An(x)=C, then fn(x)=c and m + n + l = j  is the smallest integer 
larger than n with Ai(x)#a i. Since f '~+l(c)#c, we have Aj(x)#C.  There is a 
neighborhood V of x such that y~ V implies Ai(y ) = A~(x) for all i<j  except i=  n. 
We then have VC L. We conclude that L is open. A similar argument establishes 
that U is open, proving the proposition when c is not periodic. 

Assume now that c is periodic with period n. Since f is C 1 and f'(c)=O, the 
orbit of c is stable. Therefore, there is a neighborhood V of c such that f"(V)C V. If 
V is small enough, then y~ V implies that Ai(y ) = 7i- 1 for all i > 0 with i ~ 0 (mod n). 
One also has A~,(y)=An(y ) for all i>0.  Thus points y~ V - { c }  have one of two 
itineraries ~ or fi depending upon Ao(y ). It is easily checked that these two 
itineraries ~ and ff satisfy the hypotheses for _a in the proposition. We also assert 
that there are no itineraries a between g and ff which satisfy the hypotheses of the 
theorem. Indeed, the only itineraries between _~ and _fi begin with the symbol C. 

Suppose now that _a is a sequence of I o and 11 such that 0(~i(_a))<0(~) for all 
i>0.  Once again denote by L =  {xlO(x)<O(9)} and U =  {xlO(x)>O(a) }. Let x~L,  
and let n be the smallest integer such that An(x ) ~ a n. If An(x ) 4: C, then x has a 
neighborhood V such that y s  V implies A~(y) =Ai(x ) for all i<__n. The set V is in L. 
If A,(x) = C, then it may happen that a"(_a) is one of the itineraries _~ or ft. In this 
case, x is an endpoint of L, but there is an interval V with left endpoint x such that 
y~ V implies A~(y)=A~(x)= a i for i<n, and f"(x) has itinerary ~ or £8 :A(f~(x)) 
= tr"(a). Then points of V have _a as itinerary and the proposition is proved. If r~"(_a) 
is not one of the itineraries _~ or if, then x has a neighborhood V such that y~ V 
implies Ai(y ) = A~(x) for i<  n, and fn(y) has itinerary _~ or _fi or fn(y)= c. Since 
0(o-n(_q)) cannot lie between 0(~) and 0(_fl), all points of V must belong to L. A similar 
argument implies that either U is open or immediately to the left of U there are 
points whose itinerary is _a. Thus we have one of three possibilities, but in each we 
find a y e I  whose itinerary is _a. This finishes the proof of the proposition. 
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Example. The hypothesis that f is C 1 is not used in the case when the critical point 
does not lie in a periodic orbit. If c is periodic, then some hypothesis is necessary. 

Consider the function gu(x)=#/2-#lx-½1. If we take/~=(1 + ~/5)/2, then g~(½) 

=(1 + ]//5)/4, g((1 + 1/~)/4) = ( -  1 + ]//5)/4, and g( ( -  1 + ]//5)/4) = ½. Thus 1 is per- 
iodic with period 3. If x is near ½ then g3(x) >_ ½. For any n, the points immediately 
to the right of ½ have itineraries with Ai(x)=I o or 1 1 as i---2(mod3) or 

i-=0, 1 (mod 3) and i < n. Since the slope of g" is _+ 1 _ ~  except at the turning 

points, any two distinct points eventually lie in different laps. In particular, for any 
x # ½, there will be an n such that g" has a turning point between ½ and x. Thus x 
will not have the itinerary _a=IlllloI~IlI o .... 

The sequence a is an itinerary which Proposition 2.3 says should exist, as we 
now show. The itinerary of ½= c is CI~IoCI~I o . . . .  A check of the hypothesis of 
Proposition 2.3 shows that for i - 1 ,  2, 0 (mod 3) we do have O(ai(9))< 0(_7) where 
? =I~IoCl~IoC .... Thus Proposition 2.3 is not valid for the map g. It follows that 
g is a map with the property that it is not topologically equivalent to any smooth 
function f : I - , I .  In Sect. 4 we shall find smooth maps which are not topologically 
equivalent to any of the piecewise linear maps gg(x) = #/2 - #[x - ½[. This question 
of topological equivalence to g is closely related to the question of sensitive 
dependence to initial conditions. 

Proposition 2.3 does not yet characterize all of the itineraries of a map fEcg. 
There are two types of itineraries which must be described: those which contain 
the symbol C, and those itineraries _a for which there is an n with o-"(_a)=7. The 
itineraries _a containing C must have a"+l(_q)=22 if a,=C. The hypotheses of 
Proposition 2.3 give sufficient criteria for a to exist: if a, = C, 0(o-i(a)) < 0(22) for i < n, 
and o" ÷ l(_a)= ~, then there is an xe  I with A(x)= _a. The proof follows the argument 
of Proposition 2.3. The question of whether there are itineraries for which a(a)=22 
but a o # C is more delicate. For  functions f E Z  we shall prove that such itineraries 
exist if and only if f has a stable periodic orbit. Some analytic condition is 
necessary to decide whether or not such orbits exist from the kneading sequence of 
a map. Before turning to these analytic questions, we want to state a proposition 
similar to 2.3 which determines the set of kneading sequences which do occur for 

fEcg. 

Theorem 2.4. Let ~ be a sequence with the properties that 
1) 0(a~(22))<0(y) for all i>0,  
2) I f  ? j=C,  then ?~+k+l =?k for all k>O. 
Then there is a map f ecg such that 2 is the itinerary of f(c). 

Proof The proof of Theorem 2.4 is similar in spirit to that of Proposition 2.3. 
Consider a continuous one parameter family f,~cg, #e  [0, 1], such that fo(C)<C 
and fl(c) = 1. Denote by _~u the itinerary of f~(c). We seek # with flu =22. For  # =0,  
we have fi~=0, and for # = 1 ,  we have f i~=l ,  fi~=0 when i>0.  Denote by 

L = {#10(_fl") _-<22}. The set L is non-empty. Let v = sup/~. We want to see if fi~ = 7. If 

~ + 2 ,  there is a smallest n > 0  such that fl~#?,- If f l i#C for any i<n, there is a 
neighborhood V of ve [0, 1] such that # e V  implies that fl~ = fi~ for all i #  n. If 0(ff ~) 
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>0(2), then Vc~L=O. If 0(/3~)<0(2), then VCL. In either case, v is not in the 
boundary of L contrary to assumption. Therefore, if/~,~ :4: 7,, there is an j < n with 

v /~j - c .  

Now ff~ is the itinerary of fv(c) for f~, so f j+  1(c)= c. This implies that fi~+j + 1 
=/~, for all k > 0. Comparison with hypothesis 2) of the theorem reveals that j < n 
implies that _~=_//~, contrary to assumption. Therefore j=n .  This allows us to 
determine y. The itinerary/?~ is periodic with period n + 1 and fl~ = C whenever 
i--n (mod n + 1). Now f~ is differentiable, so the orbit of c is a stable periodic orbit. 
For  # sufficiently close to v, f ,  has a stable periodic orbit of period n + 1 containing 
a point Pu near e. For  # close enough to c, we have I f2+l(c)-pur<[c-pul  and 

2(n+  1) if/, ( c ) -pu l<lc -p , I .  These inequalities imply that the itinerary _flu is still 
periodic of period (n + 1), and it satisfies/?~ =/3~ for i = n (rood n + 1). Now one of 
the itineraries fl" is larger than ff~ and one is smaller. Therefore, one of the fl" lies in 
L and one does not. The fl"~ which lies in L satisfies 0(fl "1) < O(y_) and the flu2 which 
does not lie in L satisfies 0(7_) < 0(flu2). Now ff~ is the only sequence _5 which satisfies 
1) and 2) and 0(fl "~) < 0(_5) < 0(/3~9. Therefore, we must have 2 =/~ul since y #/3~ and 
y satisfies 1) and 2). But then there is #1 = #  with ff"~ =y  as was to be proved. 

With Lemma 2.1, the proof of Theorem 2.4 clearly implies the following result 
which is stronger than the statement of 2.4 : 

Corollary 2.5. Let fu~cg, #~[0,1]  be a continuous one parameter family with 
fo(C) < c and f l (c)= 1. I f  g : I - , I  is a continuous map with a single turning point, and 
9(0)=9(1)=0, then there is a #~[0, 1] such that fu and g have the same kneading 
sequences. For every sequency 7_ satisfying hypotheses 1) and 2) of Theorem 2.4, 
there is a # such that f ,  has kneading sequence 6__ and 2 = a(.O.). 

Let us turn now to the analytic investigation of maps fscd.  Our goal is to 
prove that there at most two topological equivalence classes among the maps with 
a given kneading sequence. If the kneading sequence is "periodic", then there are 
two topological equivalence classes; otherwise, there is just one. The negative 
Schwarzian condition plays a dual role in that it restricts f to have at most one 
periodic orbit, and it prevents non-trivial intervals from existing on which f "  is a 
homeomorphism for all n. It is possible that a larger class of maps than cg satisfies 
this last property (for instance, the negative Schwarzian condition might be 
replaced merely by f ~  C2). 

Theorem 2.6. Let f s~ .  I f  there is a non-trivial interval J such that f"]J is a 
homeomorphism for all n, then f has a stable periodic orbit 7. 

The proof of this theorem is quite long, so we isolate several steps as lemmas. 
Assume that J is a maximal interval such that f ' l J  is a homeomorphism and that 
f does not have a stable periodic orbit. 

Lemma A. For all m+-n, fm(d)~ f , ( j )  has no interior. 

Proof If f m ( j ) ~ f , ( j )  has non-empty interior, then for each k>0 ,  fk is a strictly 
monotone function on the interval fm(J)wf"(J).  If m > n and xef~(J)c~f"(J),  then 
fm -,(x)E fm+ (m - ,)(j)c~fm(j). Inductively, fz(,,- ,) +,(j)c~f(l- ~)(m - ,)+,(j) has non- 

empty interior. Denote by K the set ~ fl(, ,- ,)+,(j).  Then K is an interval since it 
l > 0  

is connected. Moreover, fklK is strictly monotone for each k > 0 and f~-" (K)C K. 
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Therefore f ro- ,  is a homeomorphism of K into itself, and fro-,, must have a stable 
fixed point in the closure of K. This proves Lemma A. 

Now denote by K ,  = L, u J w R ,  the largest interval containing J on which f "  is 
a homeomorphism. We denote the length of an interval K by l(K). 

l(fk(J)) > l(J) l(fk(J)) > l(J) 
Lemma B. I f  k < n, then l(fk(r,) ) = l(L,) or i(fk(R,)--- 5 = t(R,)" 

Proof This is a direct consequence of the negative Schwarzian derivative of f ;  the 
map  fk  is a homeomorphism of K ,  with negative Schwarzian derivative. Therefore 
IDfkl has no local minimum in the interior of K,. If J = (a, b) and ]Dff(a)1% Iofk(b)], 
then [Dfk(x)] >]Dfk(y)[ for all x~J  and ye  {~. Integrating this inequality over J 
and either L,  or R,  gives the conclusion of Lemma B. 

The strategy of the remaining part  of the proof  will be to find bounds on the 
lengths of some of the images of J. We shall find a constant c~ > 0 and a sequence 
ki---,oo with l(f~(J))>o~. Since Lemma A implies that the fk,(j) have disjoint 
interiors, this contradicts the fact that I has finite length and suffices to prove the 
theorem. We make one final reduction before proceeding further. If  i f(J) has c as 
an endpoint for some n > 0, then we replace J by f f  + re(j) for any m > 0. Thus we 
may assume that c is not an endpoint of any f"(J). With this reduction, we split the 
remainder of the argument into two cases. In the first there is an n > 0, such that 
i f(J) is closer to c than all other fi(j). In the second, for each n, there is an i >  n 
such that f i( j)  is closer to c than if(J). 

Lemma C. Suppose that n > 0  has the property that i+n and xe  fi(J) implies 
if(J) C (x, x'). Assume that c is not in the closure of if(J). Then there is an ~ > 0 such 
that l(f~(J)) > o~ .for all i > O. 

Proof We may assume that n = 0  by replacing J with if(J). This may change c~, 
but if the lemma is true with i f(J) in place of J,  then it is true for J. Now we have 
assumed that c is not an endpoint of J,  so there is a point ~ between J and c and 
k > 0 with fk(~) = c. Denote by J '  the interval on the opposite side of c from J with 
f(J) = f ( J ' )  and by M and m '  the intervals joining J and J '  to c. If ff(L,)  or i f(R,) 
has c as an endpoint, then it contains M or M'  and hence ~ or 4'- Therefore 
c~f"+k(L,) if i f(L,) has c as an endpoint, and similarly for R,, There is an N such 
that K N does not have 0 or 1 as an endpoint because the images of J are all distinct. 
For  n ~ N ,  both endpoints of K,+k+ 1 are in the interior of K,,. It follows that the 
endpoints of if(L,), i f(R,) must be one of the points fi(c), 1 < i < k  when n>N.  
When n is chosen so that c is contained in i f(L,) or i f(R,) then this interval 
contains M or M'. Therefore, when n > N, i f(L,)  and i f (R,)  each contain one of the 
intervals f~(M), 1<i<k.  Define fl=minl(S) with S one of the intervals fi(M), 
1 <i<_ k, fi(L~), i< N, or fi(Ri), iX N. Then fl is a lower bound for l(ff(L,)) and 
l(f"(R,)). Using Lemma B and noting that l(L, + z) < l(L,), l(R, + 1) < l(R,), we find a 
positive lower bound e for I(ff(J)). 

Assume now that for each N, there is an n > N such that f"(J) is closer to c than 
f(J) for l <  n. We want to find a sequence k, such that the lengths of the fk,(j)  are 
bounded away from zero. As we noted above, this will finish the proof  of the 
theorem. We shall find the sequence k, inductively, starting with k 0 = 0. Suppose 
that k 1 . . . . .  k,_ 1 have been chosen so that k i is closer to c than f~(J) for l<k~. 
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Denote by 0 < a =  min [f'(x)[ and f l= min l(fk~(J)). Suppose further that if 

K m = L m u J u R  m is the maximal interval containing J on which fm is monotone 
l(Lm) , l(Rm) 

and m > k._ 1, then ~ < a 2 a n u / ~ -  < a 2. With this notation, we have the final 

lemma: 

Lemma D. I f  k,~ is the smallest integer I such that f l ( j )  is closer to c than fk.  ~(j), 
then (fk,(j)) > ft. 

The first assertion is that if k,+ 1 is the smallest integer such that fk,+l(j) is 
closer to c than fk~(j), then l(f k"÷ l(j))> al(fk.(j)), To prove this assertion, denote 
by S the set {x[fi(x)q~(x,x ') for i < k , +  1 -k~}. Then fk"(J)(S, but the ends of the 
maximal interval containing fk~(j) on which fk,~ ~-k. is monotone are not in S. 
The component  of S containing J has endpoints which each satisfy one of the 
equations fk"*~-k~(X)=X or x'. At a solution of fk~*~-k'~(X)=X we have 
[DS k~÷~-k"(x)l > 1 and at a solution of fk~+~-k.(X ) =X' we have IDf k"~l-k~(x)l > a 
since f has no stable periodic orbits. Now S contains no critical points of fk.+~-k., 
SO the negative Schwarzian condition implies IDfk"+~-~"(x)l >a for all xefk"(J). 
Hence l(f k~ ÷ ~(J)) > al(fk"(J)). 

Denote m=k,  and fm(Km)=((, tl). Our next assertion is that csf~(Km). If 
c~f~(Km), then either f~(Rm) or fm(Lm) is between fro(j) and c, say f"(Rm). There is 
an i <  m with fi(tl)= c. Since f i (R,) joins c to fi(j),  and f i ( j )  is farther from c than 
f~(d), we have f~(e~)( f i (R~)  or f~(R~)(  (fi(em))'. Now f~-i f i (R~) is monotone,  
so f ~ - i  has a stable fixed point in fi(R~) or (fi(Rm))'. This contradicts the 
assumption that f has no stable periodic orbit, so c~fm(R,,) or c~f~(L~). 

Assume now that cEf~(Rm). Then we assert that l(fm(Rm)) l(R~) l(fm(j)) > / ~ .  Since 

cEfm(Rm), fm(Rm) contains fk.+1(j) or (fk.+~(j)), where k.+ 1 is the smallest 
integer with fk.+ ~(j) closer to c than fk.(j). The estimate of the first paragraph 
gives I(f k. + ~(J)) > at(f~(J)). Therefore t(f~(Rm)) > a2l(f"(J)). Since we assumed 

l(R,.) l(f"(R.~)) I(R~) ~ 
that a 2 > / - ~ ,  we have l(fm(j)) > l(J) 

Still assuming that csfm(R,.), the last paragraph and Lemma B imply that 
l(f"(Lm)) I(Lm) 
t(f"(J)) < / - ~ - "  We assert that f"(Lm) contains fk._~(j) or (fk.-~(j)),. This 

assertion will prove the lemma, since l(fk"+~(J))>r then implies that 
t(L~) 

l(fm(L~))>ra. Together w i t h ~  < a  2, we obtain l(fm(J))>a-lr>r, as was to 

be proved. So we finish the proof  of Lemma D by showing that f~(Lm) contains 
fk._ ~(j) or (fk.-~(j)),. With ~ the left endpoint of L~, there is an i <  m with fi(~)= c. 
I f M  is the interval joining f k , .  ~(j) to c, then f(Lm) contains M or M'  because f i( j)  
is at least as far from c as fk,- ,(j) .  Now fro-ill(L,,  ) is monotone and f"(J)C M or 
M'. Therefore, if f~(~)~M, then f"~-~ has a stable fixed point. Moreover, if 
f,~(~)~fk.~(j), then f , , - i  maps the interval fk"-~(J)wM monotonely into itself. 

1 This step in the argument is essentially due to Misiurewicz. 
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Similarly, fm(~)¢(fk~_ I(j)), Thus fm(~) is farther from c than fk ,  ~(j) and fm(Lm) 
contains either fk , -  l(j) or (fk~_ l(d))," This completes the proof of Theorem 2.6. 

With Theorem 2.6, we take up the question of topological equivalence of maps 
in c~. Assume that f~cg. Denote byy  the itinerary off(c). I f f  has a stable periodic 
of period n, and p is the closest point in this stable periodic orbit to c, then f2n is 
monotone on the interval (p, c) and f2,(p, c) C (p, c). It follows that the sequence _7 is 
periodic with period n. Conversely, suppose that 2 is periodic of period n. Then fk 
is monotone on the interval (f"+ 1(c), f(c)) for all k>  0 since the endpoints of this 
interval have the same itineraries. If f"  ÷ 1 (c)4 = f(c), then Theorem 2.6 implies that f 
has a stable periodic orbit. If f"+ 1(c)= f(c), then c lies in a periodic orbit which is 
stable, or f(c) lies in an unstable periodic and Singer's theorem implies that f has 
no stable periodic orbit. We conclude that if._? is periodic, then f has a stable 
periodic orbit unless f(c) lies in an unstable periodic orbit. This last possibility 
occurs if and only if there are itineraries allowed by Proposition 2.3 whose 
invariant coordinates lie between those of c and fn(c). Thus, one can determine from 
the kneading sequence of f whether or not f~  c6 has a stable periodic orbit. 

Proposition 2.7. Suppose that f, g~C~ have the same kneading sequence and that f 
does not have a stable periodic orbit. Then f and g are topologically equivalent. 

Proof. The discussion preceding the proposition implies that g does not have a 
stable periodic orbit. Theorem 2.6 implies that the sets {x[f"(x)= c for some n => 0} 
and {ylg~(y)=c for some n>=0} are each dense in 1. Propositior, 2.3 and the 
discussion following its proof imply that the sets of f-itineraries and g-itineraries 
are the same. [Note that Theorem 2.6 implies that if x :t: c, then the f-itineraries of 
f (x)  and f(c) are different. So x 4= c implies that O(x) < O(c) in Lemma 2.1.] Theorem 
2.6 also implies that each f-itinerary and each g-itinerary is assumed by just one 
point. Thus we can define a bijection h : I ~ I  by the requirement that the 
f-itinerary of x is the same as the g-itinerary of h(x). The monotonicity of invariant 
coordinates implies that h is monotone. Since h is 1 -  1 and onto, it is a 
homeomorphism of I. 

We end this section with a discussion of the topological equivalence classes of 
f e ~  which do have stable periodic orbits. These results were discovered 
independently by Singer and Woltb. To begin, we shall state a proposition related 
to Theorem 2.6 for the wider class of C 2 maps. 

Proposition 2.8. Suppose f ~ CZ(I) and that U C I is a finite union of open intervals 
which contains all the critical points of f I f  f l I -  U has no stable periodic orbits 
then the set Ev= {x~ I [ f " ( x )~ I -U}  is totally disconnected (i.e'., contains no non- 
trivial intervals). 
Remark. The proposition allows a stable periodic orbit in I - U  provided all 
nearby points asymptotic to the stable orbit have trajectories which contain points 
of U. Such a periodic orbit is stable from only one side. 

Proof. Let ~ be the distance from I - U to the set of critical points. Then 6 > 0 since 
it is the distance between two disjoint compact sets. Suppose that J C E v is a non- 
trivial interval which is a component of E v. We shall denote K , 3 J  a maximal 
interval with the properties that (1) f(K,)c~fJ(K,) has empty interior if i4=j and 
i,j<n, and (2) f ( K , ) C I - U  for i<n. Write K ~ = L . w J u R .  and K . =  [~.,r/.]. The 



146 J. G uc ke nhe ime r  

points ~.,t/. each satisfy one of the equations fi(x)=f./(~.), f i(x)=fi(tl .)  or 
f~(x)~aU for some j < i < n .  Note that Lemma A of Theorem 2.6 implies that 
fn ( j )~ fm( j )  has no interior for m 4= n. 

We shall establish an estimate of the "non-linearity" of f "  on the interval K .  
similar to that used in the proof  of the Denjoy theorem about diffeomorphisms of 
S 1 with irrational rotation numbers. A similar estimate also appears in Sect. 3. 
Denote by/5 the Lipschitz constant of log IDf(x)[ on the set I -  U. For  any x, y~K. ,  
we have 

t t - - i  

Df~(x) = ~ log IDf(/~(x))[ - log IDf(fi(y)t 
log Df"(y) i= 0 

n - - 1  

<= fi Z Ifi(x)-- fi(Y)] 
i = 0  

< fil(I - U) < fi 
since the intervals (f*(x), fi(y)) have disjoint interiors and are contained in I -  U. 
This estimate implies that there is a constant ~ > 0 such that 

' l(L.) l(f'(R.)) l(R.) l( f  (L.)) < ~ and - < c~ for i_< n 
l(f~(J)~--) l - ~  l(ff(J)) l ~  - " 

We now want to prove that J and U can be chosen so that fi(K,)c~U+-O for 
some large n and i<n.  First, observe that E v = E  v if V =  {x] there is ye  U with 
Ix, y] c~E v = 0}. If  we enlarge U to F, then all points of the boundary of V lie in E v. 
Now each component  of V contains a component  of U, so V still has finitely many 
components. It is open since E v is closed. Thus we may replace U by V without 
changing E v or invalidating any of the hypotheses for U. Since U has a finite 
number of boundary points, there is an n > 0  such that i>n  implies f lU)  has no 
points in the boundary of U. Replacing J by f~(J) we may assume n = 0. 

Let K be an open interval containing J. Then we assert that (K-J)c~Ev+O. 
There is x e K - E  v since J is a component  of E v. So there is an n such that 
f"(x)E U. Assume that n is chosen as small as possible. Then there is y e K  such that 
f"(y) is in the boundary of U, hence in E v. Now fi(y) cannot be in U for i < n since 
n was chosen to be minimal, so y~ E v. This argument shows that each component  
of ( K - J )  intersects E v. It  follows that I(L,)~O and l(R,)~O. 

Consider now f"(K,). Since fi(K,)c~ U = 0 for i<n, and U contains the critical 
points of f, f "  is monotone on K,. If  f"(L,)c~U4=O, then we assert that f"(L,) 
contains a component  of U. Look at f"({,). If  ~, is periodic of period m < n, then ~, 
is in E v. If fi(~.)= fj(tl .  ) with j < i, then f" (~ . )=  f"-i+J(rl~)~ I -  U. If fi(~.) is in the 
boundary of U for i<n, then ~. is in E v. In all cases, f " ( ~ . ) ~ I - U .  Since f "  is 
monotone on L., it must contain a whole component  of U. Now if n is sufficiently 

large, the estimate l(f"(J)) > c~- l l(f"(L.)) ~ gives t(f"(J)) > t = t(I) since l(L.)~O 

as n---,oe and l(f"(L.))>minl(Ui)=),, U i a component  of U. This is absurd, so 
f"(L.)c~ U = 0 for n sufficiently large. Similarly f"(R.)c~ U = 0 for n sufficiently large. 
Indeed, we may pick n large enough that l(f f  + ~(L.)) < 7 and l( f  "+ I(R.))<7- 

Choose N large enough that fN(KN)c~U=O, (fN+I(LN))<7, and 
I(fN+I(RN))<7 when n>N.  If n is large enough, there are N < i < j < n  such that 
fi(K.)c',fJ(K.).l = O. Denote j -  i by m. We assert that, for all k > i, f "  + k(j) and fk( j)  
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lie in the same component of I - U .  If m+k<__n and ink ,  then f(k-~(fi(K,) 
c~fJ(K.)).O implies that fm+k(j) and fkU) lie in the same component of U. 
Suppose that the assertion is true for all l < k  with m + k > n .  Then 
fm+k-l(Km+k_.l)csU=O and fm+k-l(Km+k_l) and fk-l(Km+k_l) lie in the same 
component of U. There is l <m + k - 1  such that fm+k-l(Km+ k_ 1)c~fZ(K,~+k_ 0+0, 
Therefore fm+k(K,,+k_Oc~fl+l(K,,+k_l)+O. Since l(f"+k(L,,+k_l))<7 and 
l(f" + k(R m + k - 1 )) < ;~, all points of fm + k (Km + k - 1) C~ I -- U lie in the same component 
o f / - U .  This must be the component of I - U  which contains f~+ 1(Kin+ k_ 1), 
which by the inductive assumption is the component of I - U  which contains 
fk(K,,+k-1)" Therefore f,,+k(j) and fk(j) lie in the same component of I - U .  

Now K={xJfk(x) lies in the same component of U as fi+k(j) for O<_k<<_m 
= j - i }  is an interval containing J since f is monotone on each component of 
1 - U .  Moreover fmlK is monotone. In the last paragraph, we proved that 
f~+km(J)CK for all k>0.  If fmIK is increasing, then fi+km+,,(j) ties to the right of 
fi+k,,(j). If f " [ K  is decreasing, fi+am+,,(d) lies to the left offi+km(J). In either case, 
there is a point x ~ K which is a limit point of f~ + kin(j) as k-* oo. Then f"(x) = x and 
x is a stable fixed point of fm  Moreover fk(x)e I -  U for all k > 0, contradicting the 
fact that f has no stable periodic orbits approached by points in I - U. This proves 
the proposition. 

Let us reconsider f~cg with a stable periodic orbit. Singer's theorem implies 
that there is an interval U containing c such that all x e  U have orbits which tend to 
the stable periodic orbit, and U contains a point in the periodic orbit. Note that if 
the periodic orbit attracts from only one side, then we must take U closed, a 
situation which we discuss in more detail below. Proposition 2.8 implies that if J is 
a non-trivial interval on which f~ is monotone for all n, then there is an n with 
f"(J) C U. This implies that points of d tend to the stable periodic orbit of f If 
E s = {xlf"(x) does not tend to the stable periodic orbit of f} ,  then E c is totally 
disconnected. 

Let U C I be the maximal interval containing c and consisting of points whose 
orbits tend to the stable periodic orbit of f If this periodic orbit is stable from both 
sides, then U is an open interval (a, a') and one of the end points of U is periodic. 
Let n be the smallest integer with f"(U)c~U.t=O. Then f"(U)C U, f"(a)=a or a', 
f"t U is a map with one critical point [xe  U implies fi(x),t = c for i <  n] and all orbits 
of f"lU tend to a stable periodic orbit. Since f "  has a fixed point p in U, this must 
be the stable periodic orbit. There are different kneading sequences in the cases 
when Df"(p) is positive, zero, and negative. 

Lemma 2.9. Let f g~C~ have stable fixed points Ps and Po" Assume that if x is in the 
interior of I, then f"(x)~p f and g"(x)~pg. Assume further that f ' (pf)  and g'(pg) have 
the same sign or are both zero and that Pc = Pg = 0 if pf or pg is in ~I. Then f and g 
are topologically equivalent. 

Proof We shall consider one case and leave the others to the reader. If f ' (Pl)  > 0, 
then the interval [Pc, co] has the property that f[Ps, cs] C [Pc, co]" Define h to be 
any strictly increasing function of If(co), cf] onto [g(%), co]. Then h extends to a 
homeomorphism of [-Pc, co] onto [pg, %] by the formula h(f"(x))=g"(h(x)) and 
h(pl) = h(pg). Extend h to [P¢, Pl] by h(x') = (h(x))'. To define h on [0, Pl) and (p~,.ll, 
pick points xe(0,pl)  and ye(O, pg) and define h to be any strictly increasing 
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function of [x,f(x)] onto [y,g(y)]. If z6(O, pl), there is a unique n~N with 
f"(z)~ [x, f(x)). Define h(z) by h(f"(z)) = g"(h(z)). Since f[[0,  Pz] and 9110, pg] are 
homeomorphisms, this formula is well defined. Finally set h(0)=0 and h(x') 
=(h(x))' for x~(p) , l ] .  One easily checks that h so defined is a topological 
equivalence of f to g. 

The other cases are similar. If Ps = c1, then one defines h first from an interval 
[x, f(x)]  onto an interval [y, g(Y)] for arbitrary choices of x e (0, cs) and y E (0, %). If 
f ' (pz)<0,  then one begins by defining h from the i n t e r v a l  [cf, f2(cf)] onto 
'[c o, 92(%)]. The extensions of h to topological equivalences are then uniquely 
determined. We leave the details to the reader. 

Return now to consideration of f eed  with a stable periodic orbit, U the 
maximal interval containing c consisting of points tending to the stable periodic 
orbit, and n the least integer with f '(U)C U. We next ask the extent to which the 
kneading sequence of f determines the integer n. There are two different 
possibilities if n is even. The itinerary of f(c) could be periodic with period n/2. 
This case occurs if f"/~(U) and U share a common endpoint. If f has kneading 
sequence .7, and 7i=I0 for i>0,  then f has a stable fixed point since f maps the 
interval [0,c] into itself in an orientation preserving way. If f has kneading 
sequence y and ?i=I1 for i>  1, then f maps the interval (c, f(c)) into itself in an 
orientation reversing way. Either there is a stable fixed point or there is a stable 
periodic orbit of period 2. Thus if f has a kneading sequence .7 such that a(~) is 
periodic of period n, then f has a stable periodic orbit of period n or 2n. Period 2n 
can occur only if the number of Ii 's  among yl, . . . ,  Yn is odd. 

With these observations, we can determine the topological equivalence classes 
associated to a "periodic" kneading sequence. Suppose that y is a periodic 
sequence of period n and that 7 is the itinerary of f(c). We shall say.7 is of positive 
or negative type if the number of I i ' s  among 7o,...,~1~_~ is even or odd and of 
critical type if y,_ 1 = C. If.7 is of positive type, then there is a closed interval U 
containing c such that f"(U)C U, f"(~ U)C ~ U and f "  has a stable fixed point pc U 
with Df"(p)>0. There are two possibilities: the stable fixed point is an interior 
point of U or it is an endpoint of U. Each of these possibilities represents a 
different topological equivalence class, but if f and g have kneading sequence 2' 
and the same possibility occurs for f and g, then we assert that they are 
topologically equivalent. This follows easily from 2.3, 2.8, and 2.9. 

Define a topological equivalence in stages. Proposition 2.3 implies that the set of 
f-itineraries and g-itineraries are the same. Proposition 2.8 implies that if xe I  
satisfies f"(x) ~ I - U for all n > 0 ; i.e. x e E z, then there are no other points of I with 
the same itinerary. But f"(x)~ U if and only if o -"+ ~(_A(x)) =_7, so we can determine 
whether f"(x)~ E~ from its itinerary. The same considerations apply to g and we 
can define a homeomorphism h : E ~ E  o by the property that the f-itinerary of x 

and the g-itinerary of h(x) are the same. We extend h to the set U f-i(Uz) by first 
i>o  

defining h to be a topological equivalence from f"tUz to g"]Uo using Lemma 2.9. 
For  each component of f-i(U) other than U, there is a j< i  with fJ  mapping 
f-~(U) homeomorphically onto U. We can then define h on this component of 
f-i(U) by h(f~(x))=gJ(h(x)) and the requirement that the f-itinerary of x and the 
g-itinerary of h(x) are the same. We leave it to the reader to check that h so defined 
is indeed a topological equivalence from f to g. 
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locus of c# 

'I 
I II I I  I 
1 If I I  I 
I ti 11  I 

..... 1 II I 1  .... I 
ABCD E C D E C  DEC ,u, 

Fig. 1. A : 2 positive type, one sided stable orbit; B : y positive type, two sided stable orbit; C : _7 critical 
type; D: _7 negative type, period 2 = period stable orbit; E : _~ negative type, period _7 = ½ (period stable 
orbit). Intervals D are closed on the right, intervals E are open 

Ify is of critical type, then the period of its stable periodic orbit is n and the fixed 
point off"l g is the critical point off, an interior point of U. The construction of the 
preceding paragraph can be applied to give a topological equivalence from f t o  g if9 
has the same kneading sequence as f. Finally, ify has negative type, there are two 
possibilities. Either the stable periodic point o f j  has period n or period 2n. In either 
case, the stable fixed point o f f f  o r f  2" is an interior point of U, and the construction of 
topological equivalences can be applied. Ifg has the same kneading sequence as f, and 
if the stable periodic orbits f and g have the same period, then f and g are 
topologically equivalent. This discussion is summarized by the following theorem. 

Theorem 2.10. Let f, g~C~ have the same kneading sequence 7_. Either both f and 9 
have stable periodic orbits or neither does. I f  f and g do not have stable periodic 
orbits they are topologically equivalent. I f  f and g do have stable periodic orbits, 
then a(7) is periodic with period n. I f  7 has positive type, then the stable orbits of f 
and g have period n. Then f and g are topologically equivalent if their stable orbits 
are both stable from one side or both stable from both sides. I f  y is of critical type, 
then f and g are topologically equivalent. I f  7 is of negative type, then the stable 
periodic orbits of f and g have period n or 2n. The maps f and g are topologically 
equivalent if and only if these periods are the same. 

Remark. This theorem can be best understood in terms of the bifurcation diagram 
of periodic orbits in a one parameter family (see [6]). This diagram is illustrated 
above for the points in the stable periodic orbits of period 2". The curves show the 
locus of periodic points in a one parameter family f~. 

3 .  O n  S e n s i t i v e  D e p e n d e n c e  

In this section we want to establish conditions as to when a particular map has 
sensitivity to initial conditions. 
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Definition. A map f : X ~ X  of a compact metric space with measure # has 
sensitivity to initial conditions if there is a set K C X  and an 5>0  such that (1) 
#(K) > 0, and (2) if x e K and U is a neighborhood of x, then there is y~ U and n > 0 
with d(f~(x), f"(y)) > 5. 

In all of our considerations, we wilt have X = I with the usual metric and 
Lebesque measure. Maps in cg which give stable periodic orbits will not have 
sensitivity to initial conditions. This is a corollary of the following theorem: 
Theorem 3.1. Let f ecg and let U be a neighborhood of c. I f  Ev= { x l f " ( x ) e I - U  
.for all n ~ 0} contains no non-trivial intervals, then the Lebesque measure of E v is O. 

Reduction. We shall first reduce to the case in which one of the endpoints of U is 
periodic. Note that U 3 V implies that E v C Ev. Therefore, if the theorem is true for 
E v, VC U, then it is true for E v. We seek now (a, b) = VC U such that (1) f(a) = f(b), 
(2) a or b is periodic, and (3) E v contains no intervals. 

We obtain V in stages. First, assume U =(x, y) with f (x )<f(y) .  Then pick 
ze [y, c) with f ( z ) = f ( x )  and replace U by (x, z). Then the first hypothesis for V is 
satisfied. Now assume that ~ and ~' are the points of E v closest to c. Then 
f(4) = f(4') since ~ e E v and f (~)=  f(4') imply f"(~')e I -  U for all n > 0 and since U 
satisfies (1). Assume that there is no stable fixed point in U. Then there is an n such 
that f "  fails to be a homeomorphism on the interval (3, c). There is an ~/~ (4, c) and 
an n > 0 such that f"(t/) = c and f "  is a homeomorphism on the interval (~, ~7) = K. If 
f~(~) and ~ fall on the same side of c, then the interval f"(K) = (f"(~), c) contains K 
in its image because f"(~) is as far from c as 4. Thus f "  has a fixed point a in (4, t/). If 
f"(~) and ~ lie on opposite sides of c, then f ' (~')  and 4' lie on the same side of c and 
f "  has a fixed point a in the interval (~', 0'). Provided f has no stable periodic orbit, 
we take V= (a, a') as the set we seek. 

If there is a stable periodic orbit o f f ,  then at least one of its points p must lie in 
since E v has no intervals. I fp  is in the boundary of U and U is symmetric with p' 

its other endpoint, then (1)-(3) are satisfied. So assume pc U is of period n and that 
no other points in the orbit of p lie in the interval (p, p'). Denote by V the 
component o fp  in {xlfk~(x)~p as k ~  oo}. Then Singer's theorem implies that ca  K 
This implies that if x~V, then x ' e K  If xeV, then fk"(x)eU for some k>0 ,  so 
E v C E v and we may replace U by K One of the endpoints of V is easily seen to be a 
fixed point of f "  since f "  must map the boundary of V to itself. If f has a periodic 
point p of period n such that f "  is monotone on (p, c), Df"(p) = 1, and p is stable 
from one side, then p is the limit of periodic points q,,. If S = {xlfi(x)=p for some 

i}, Um=(q~,q'~) and g=(p,p'), then Eu= U Ev,,wS. 
rn>O 

Proof of Theorem. We assume now that the neighborhood U of c in the theorem 
satisfies the following properties: U is an interval (a, b) with (1) f (a)= f(b), (2) a is 
periodic with f"(a)= a and Df"(a)> 1, (3) E v has no intervals. The proof of the 
theorem has two further steps. The first proves that f is "uniformly expanding" on 
E v in the sense that there is a k such that IDfk(x)l > 1 for all x~E  v. The second part 
of the argument then estimates the "thickness" of the Cantor set E v. This is seen to 
be finite, and the theorem is an easy consequence of this fact. 

We seek a value of k such that IDfk(x)]>l for all x~E v. Consider the sets 
k 

E k = I - ~ f -  ~(U). Each E k is a finite union of closed intervals, E v = f i  Ek, and fk 
i = 0  k=O 
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is a local homeomorphism on E k. The negative Schwarzian derivative of f implies 
that inf {Dfk(x)l is assumed at a point of the boundary of E k. Thus we seek k for 

X~Ek 

which JDfk(x)f > 1 for all x in the boundary of Eg. 
Let ~ =< rain {I(fi(U)), 0 < i <= n; [a - ci, 1b - c[}. If  there is a stable periodic point 

pc  U, take ~ < t a - p i .  Since there are non non-trivial intervals in E v, there is a K 
such that each component  of E K has length smaller than ~. Now all points of the 
boundary of E K have orbits which eventually lie in the unstable periodic orbit 
containing a. Therefore, there is k > K  such that x~OE K implies [Dfk(x)[ > 1. We 
assert that also IDfk(x)[ > 1 for all x~ OE k. Suppose that x ~ ~E k - ~ E  K and that d is 
the component  of E k containing x. Assume that L u J w R  is the maximal interval 
containing x on which fk(x) is a homeomorphism. We assert that either L C EK or 
Lc',EK=O since f t  maps each component  Et-E(z_  i) onto U. Suppose L C E  K and 
consider fk(L). This set has the form f~(U) for some i>  0. If f has a stable periodic 
orbit containing pc  U, then l(f~(U))> i a -  Pt >= ~z for all i. If  f has no stable periodic 
orbit, then there is a ~ E (a, c) such that f"(~) = c since fn(a) = a and fn does not map  
the interval (a, c) into itself. It follows that in this case that fk(L) has the form f ( U )  
with i=< n. Thus, we have the estimate t(fk(L))> ~ in this case as well. Since l(fk(L)) 
_>~>/(L), there is a point y ~ L  with ]Dfk(y)[>l. If Lc~EK=O, then we have 
assumed that if y is the common endpoint of L and J, then [Dfk(y)[ > 1. The same 
argument we have used for L applies also to R. There are points y~L ,  z ~ R  with 
[Df~(y)I > 1 and IDfk(z)I > 1. Therefore, the negative Schwarzian condition implies 
tDfk(x)l > 1 if xEJ.  Thus tDfk(x)l > t for all x ~ E  v. 

We now come to the final part  of the proof  that E v has Lebesque measure zero. 
We have found an integer k such that IDfk(x)I > 1 for all X~Ek= {y l f ( x )E I  -- U for 
0 =< i =< k}. Since E k is compact, there is ,~ > 1 with IDfk(x)[ > 2 for all x ~ E  k. We want 
to estimate the sizes of the "gaps" in Et - E z + ~ which appear in the construction of 

E v as (~ E t. Suppose that d is a component  of Ez-Ez+ ~, and that K is the 
l = 0  

component  of E~ containg d. We assert that there is a constant 7 > 0 (depending 
only on f )  such that l(J)/l(K)> ~,. 

The constant 7 is obtained from "nonlinearity" estimates of the sort used in 
Proposit ion 2.8. If d and K are as above, then ft-- 1 is a homeomorphism on K and 
f + l ( d ) =  U. For  any x , y ~ K ,  we have 

Dfl+l(X) t t 
log DfT4q~-y) = ~=o ~ log IDf(f i(x))[-  ~=o ~ [l°gDf(f~(Y))[ 

l 

<= A E I f  i( x ) -  fi(Y)l , 
i = 0  

where A is a Lipschitz constant for the function log ]Df(x)] on I -  U. We use here 
the assumption that f ( K ) C t - U  for i<l.  Since IDfk(z)l>2> 1 for all z e E  k and 

t 1 2 
I ( f (K))  < 1 for all i__< l, we have ~ ~ ~ < - This gives the i= o If ( x ) -  f (Y)I = ~ )~-  1" 

final estimate that 

DfZ+l(x) < )~A for all x, y e K  
tog ~ = 2 - 1  
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This produces the estimate for t(J)/l(K): 

l(U) <l ( f t+l (J) )  __<exp/2A t l(J) 
1(I) = l(f  *+~(K)) ~2-1]  l(K) " 

if 7=exp ( - 2 ~ 1 ) I ( U ) ,  we have l(J)/l(K)>7. Thus, 

The theorem now follows quite easily: If m>  t is chosen such that every 
component of E~ contains points which are not in E,~, then l(Em)<(1-jl(E~). 
Iterating this estimate and noting that (t - y ) i ~ 0  as i ~  0% we find that t(Em)~O as 
m ~  oe. Thus E v has Lebesque measure zero. 

Theorem 3.1 implies that the sensitivity of feCg to initial conditions is deter- 
mined by the properties of the set 0 U i f (U), which we shall denote by A. We 

Unbhdofc i>=O 

remark that A contains the support of any invariant measure which is absolutely 
continuous with respect to Lebesque measure. In particular, if f e ~  has a 
(strongly) stable periodic orbit, then f does not have sensitivity to initial 
conditions. We want to examine f without stable periodic orbits and give 
topological criteria for sensitivity to initial conditions. 

Definition. The fixed point p of fn, n >  t, is central if (1) Dff(p)> 1, and (2) f'~ is a 
homeomorphism on the interval J=(p,c).  The central point p is restrictive if 
fn(J) C ~,  p'). As usual, the point p' is determined by f (p)  = f~ ' ) .  The point 0 is not 
considered a central point. 

We say a few words about the motivation for these definitions before 
proceeding further. If p is a restrictive central point of period n and if U = (p, p'), the 

tt--1 

i f (U)< U. This implies that the set U f i(U) is forward invariant for f and that a 
i = 0  

point x which maps into this set cannot escape. This is the basis of the "spectral 
decomposition" of non-wandering sets given by Jonker and Rand [15]. Here we 
shall interpret the restrictive central points as establishing barriers which prevent 
separation of points in orbits with nearby initial conditions. 

Theorem 3.2. Suppose f ecg has no stable periodic orbit. Then f has sensitivity to 
initial conditions if and only if there is an integer N such that n > N implies f "  does 
not have a restrictive central point. 

The conditions for p to be a central point and a restrictive central point can be 
determined directly from invariant coordinates. Thus this theorem does yield 
strictly topological criteria for determining whether feC~ has sensitivity to initial 
conditions. Before embarking upon the proof of this theorem, we shall discuss 
briefly the existence of central points. 

Let feCg have no stable periodic orbit. Then the theory of Sect. 2 implies that 
{xl f"(x)=c for some n>0} is dense in I. Therefore given N > 0 ,  we can find n > N  
such that the critical point x =~ c of f "  ÷ 1 closest to c satisfies i f ( x ) =  c. Then f "  has 
a fixed point q in one of the intervals (x, c) or (x', c) because i f (x)  - x and f " ( x ' ) -  x' 
have opposite signs. We do not expect, however, that Dff(q)>0. Let S be the set of 
points in the lap K of x for f "  such that f f (y)e  (y, y'), but fi(y)¢(y, y,) for i<  n. Then 
the ends of the lap K are not in S, so points of the boundary of S satisfy one of the 
equations f"(y) = y or f"(y) = y'. The points at opposite ends of interval in S do not 
both satisfy the same equation since f has no stable periodic orbits. This implies 
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that each of S and S' has one end fixed by f ' .  At one of them, D f" is positive and 
this point is a central fixed point for fn. The results of this discussion will be used 
below. They are summarized in the following lemma: 

Lemma 3.3. Let f ~cg have no stable periodic orbit. I f  U is a neighborhood of  c, 
there is an n such that f"  has a central fixed point in U. 
Proof of Theorem. Suppose that f ~  has no stable periodic orbit, but does have 
a sequence nk~ oO such that fnk has a restrictive central point Pk. Set Uk=(p k, p~). 

n k -  1 

For  almost all xe I ,  there is an N such that f"(x)e U fi(Uk) for n>N.  It  follows, 
i = 0  

that  there is a set K C I of full measure such that x e K implies that f"(x) has co-limit 

set in ~ , ~ 1  i U  f ( k ) ,  which we denote A. Now A contains no non-trivial intervals, 
k = l  i = 0  

nk + 1 - 1 n k -  1 

fi(Uk+l)C ~o fi(uk)' SO #k = max l(fi(Uk))~O as k~oo .  I f z>O,  choose k 
i = 0  i =  O~i<nk  

such that Pk < a Then x ~ K implies that there is N > 0 such that fn(x)~ U k. We can 
find a neighboorhood V of x such that fN(V)e U k and max (if(V))< e. Then for all 

O<i<N 

n, we have l ( f ' (V))<e since l(fi(Uk))<=pk<e. This proves that f does not have 
sensitivity to initial conditions. 

Consider now f~c~ with the properties that (1) f has no stable periodic orbit, 
and (2) there is an N > 0 such that f "  has no restrictive central fixed point when 
n > N. We shall prove that f does have sensitivity to initial conditions. 

The actual statement which we prove is that there is an ~>0  such that if J is 
any non-trivial interval, then there is an n with l(ff(J))>e. This easily implies 
sensitivity to initial conditions because x s J; l(f'(J))> e implies that there is y~ J 
with d(ff(x), f'~(y) > e/2. Moreover, since the set {Ylf'(Y) = c for some n >__ 0} is dense 
in I, we may assume that the interval J contains c. The lemma above implies then 
that J contains an interval (Pk, Pk) with Pk a central point for some iterate of f. 

The next step in the proof  is the following lemma: 

Lemma 3.4. Suppose fk  has no restrictive central point for k>n  and that p is 
central for f~. Then there is a central point q and a k such that q is closer to c than p, 
but fk(q, q,) 3 (p, p'). 

Before proving this lemma, let us see how it implies that the theorem is true. 
Beginning with p = q0, we can find a sequence {qk} of central points and integers n k 
such that f"k(q~,q'k) 3(qk_l,q'k_l) and qk is closer to c than q k - r  Then 
f,~+,k+... + nt(qk, q'k) 3 (p, p') and {qk} ~c .  Given any neighborhood V of c, there is a 
qk such that  (qk, q~)C V. Then we find n such that f '(V)3(p,p'). Using e<l(j~,p'), for 
any interval J, there is a k with l(fk(J)) > e. As we noted above, this suffices to prove 
the theorem. 

We now prove the lemma by the construction of a "return map". Assume that p 
is a central fixed point of f". Define the discontinuous map g:(p,p')~(p,p') by 
g(x) = fk(x) where k is the smallest integer such that fk(x)a(p, p'). Since p is non- 
restrictive, f "  does not map (p,p') into itself and g is discontinuous. Now g is 
defined almost everywhere on (p,p') and it is monotone on each interval not 
containing c on which it is continuous. At the two ends of such an interval, the 
values of g must approach p and p'. Consider now the two cases in which g has 
only two points of discontinuity, and the case in which g has more than two points 
of discontinuity. 
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i Fig. 2 p x c ×' p~ 

In the first case, there are points x and x' in (p, p') such that g is continuous on 
the intervals (p, x), (x, x'), and (x', p). On (p, x) and (p', x'), the value of g goes from p 
to p'. On (x,x'), g has a single critical point at c and g(y)~p as y ~ x  or x'. 
Consider now ff~°9 on the interval (x, x'). For some i, this map has a fixed point 
since ffi(g(x))=fn~(9(x'))=f"~(p)=p and for each yE(p,c), and there is an i with 
cE (f,,i(y), p). In particular, take i as small as possible with g(c)= y. Then we locate a 
fixed point q off"% 9 which is a central fixed point o f f  k (see Fig. 2). By assumption 
q is not restrictive, so fk(q, q,) contains a neighborhood of q. It is then evident that, 
for some l, fl(q, q,) contains the interval (p, q) and if(p, q)3 (p, p'). Therefore the 
lemma holds in this case. 

Now consider the case in which g has more than two points of discontinuity in 
(p, p'). Then there is a fixed point q of g in (p, p') at which Dg(q)>0. Choose q to be 
the closest fixed point of g to c with Dg(q) >0. If g(x)=f~(x) in a neighborhood of q, 
then we assert that q is a central fixed point of fk. If g is continuous on the interval 
(q,c), this is clear. If g is not continuous on (q,c), it has just one point of 
discontinuity y, and g(x)=fk+"(x) on (y,c). On (q,y), fk  gives the first return to 
(p, p'), while on (y, c) fk has not yet returned to (p, p'). In neither case can there be 
xE(q,c) which is a critical point o f f  k. 

Now the argument proceeds as in the previous case. The point q is not 
restrictive, so f~(q, q') contains a neighborhood of q. If U is a neighborhood of q, 
then there is an i such that f~k(U) contains (p, q) because the domain of g contains 
an interval with endpoint q on which g is increasing and takes the value p at the 
other end. But if(p, q) contains (p, p') since (p, q) contains a point of discontinuity 
for g. Thus the lemma and the theorem are proved. 

4. Topological Entropy and Piecewise Linear Maps 

Having established a topological criterion for the sensitivity to initial conditions of 
a map f e  cg, we want to explore further the relationship of this criterion with other 
topological properties of a map. Here we shall focus upon two issues which are 
seen to be closely connected with the sensitivity of a map. The first of these has to 
do with topological entropy, which is equivalent to the growth numbers of maps in 
the case we deal with. 

Definition. Let f : X ~ X  be a map of a set such that for each k, fk has a finite 
number, N k, of fixed points. Then the growth number of f is lim sup (Nk) 1/k. 
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The second issue we consider concerns those maps f~cg which are topologi- 
cally equivalent to piecewise linear maps g with Tg'] = #  constant. The interest in 
these maps g rests with the facts that their growth numbers are easily computed 
and that they posses invariant measures absolutely continuous with respect to 
lebesgue measure which have the largest possible entropy [20]. 

The first result we prove is a theorem whose proof is largely a series of 
computations. 
Theorem 4.1. Suppose f ~cg has a restrictive central point p fixed by fk, k odd. I f  
U=(p,p') and E v = {xtf"(x)~ I -  U for all n>0}, then the growth number of f i e  v is 

k ' l  
larger than the growth number of f U fi(u). 

i ~-0 
Corollary 4.2. I f  f ~cg has a restrictive central point p fixed by fk, k odd, then f has 
a neighborhood ql in ~ such that all maps in qZ have the same growth number. 

The proof of the theorem relies upon the characterization of the smallest 
itineraries which correspond to periodic orbits of each odd period. These were 
calculated in [6] and the entropy which we calculate here has also been calculated 
by Misiurewicz and Jonker-Rand [14]. From each periodic orbit of odd period k, 
we pick the largest point and then seek the one among these having the smallest 
invariant coordinate. The itinerary _a k of this periodic orbit is a periodic repetition 
of I l l  ooIlI1...I1. Any periodic orbit of period k contains a point whose invariant 

kZ2 
coordinate is at least as large as O(a.k). This is easily deduced from the fact that any 
cyclic sequence of I o, I1 of length k contains a block of 11's of even length. For a 
sequence which begins IlIoI~IL...IlI o, the larger l, the smaller the invariant 
coordinate. 21 • 

Using the above fact, we can explicitly describe a subshift of finite type which 
must be contained in E v. It is the subshift of finite type present when f has a stable 
periodic orbit with the itinerary described above. Partitioning I along this orbit, 
we obtain a Markov partition A~,...,Ak_ ~ for E v. If these sets are labelled in 
increasing order along I, then 

f ( A ( k +  1)/2) = A(k+ :)/2tJA(k - :)/2 

f ( A ( k + l ) / Z + t ) = A ( k _ l ) / Z _ t ,  0<_t<(k-3)/2 
f(A(k_l)/z_~)=A(k+l)/z+t+l, 0<_t<_(k-3)/2 

f(A1) = A(k+ 1)/2 WA(k+ 3)/2 U ' ' ' uAk-  i .  

The transition matrix of A has l's in the indicated positions : 

k - 1  

2 

k - 1  

2 

k-12 

k< 
/ 
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If we renumber the Ai's starting with A(g+ 1)/2 and then alternatively taking the 
next set to the left and to the right, the transition matrix is A shown below 

Direct calculation shows that the characteristic polynomial of A is P(t)= t 2~- t 21-1 
_ t e z -  2 + t2z- 3 - . . .  + t -  1 where we write 1-- ( k -  1)/2. Then P(t) (t + 1) = t 2~ + 1 
_ 2t2z-1 _ 1. The growth number of the corresponding subshift of finite type is the 
largest root 2 of P(t). Evaluating P(t) at t = 21/2, we find P(t)(t + 1)= - 1 .  

Thus 2 > 2 ~/2, which is the crucial estimate necessary to prove the theorem. 
The map f cyclically permutes the sets fi(U), 0 < i < k, U -- (p, p'). Therefore, all 

periodic orbits in ufi(U) have periods which are divisible by k. On each fi(U), fk 
has exactly one critical point. Therefore, the number of fixed points of f"k in 
k - 1  

U fi(U) is at most k. 2". This implies that the growth rate of f l  uf~(U) is at most 
i = 0  

21/k. Comparing this estimate with the one for 2 proves the theorem. 
In the theory of rotation numbers of diffeomorphisms of the circle, the 

rotations represent a distinguished set which one might regard as "normal forms". 
Given a diffeomorphism, one would like to change coordinates so that it becomes 
a rotation if possible. In the theory we are studying, perhaps the closest analog to a 
rotation is a piecewise linear map g, defined by 

{~x if 0 < x < ½  
gu(x)= # ( l - x )  if ½ < x < l .  

Clearly, ]g~(x)] = #  for all x + ½. It is known that 9u has an invariant measure v, 
absolutely continuous with respect to Lebesgue measure, whose entropy is log #. 
IIere log # is the topological entropy of g and p is the growth number of g. 

Not  every diffeomorphism of S 1 is conjugate to a rotation, but within the class 
of C z diffeomorphisms, those with irrational rotation numbers are. An analogous 
fact is true here - not every map fecg  is topologically equivalent to a gu' 
Topological conditions can be used to specify which equivalence classes are 
represented by a gu" The fundamental observation is the next simple proposition. 

Proposition. 4.3. I f  ~/2<~t <2, then the map 9(x)=#/2-#J½-xl  has no restrictive 
central points. 

Proof Let p be a central fixed point of gk k > 1. Then p' = 1 - p and gk is monotone 
on (p, ½). But IDgkJ > 2 by assumption, so ]gk(½) _ 9k(p)l > 2[½ -- P[ = 11 -- 2pl. Since 
[p'-p[ = [1-2p[, this implies that p,e(p, gk(½)) and p is not restrictive. 

Corollary 4.4. I f  f ecg has a restrictive central point and growth number larger than 
~ ,  then there is no tt such that f is topologically equivalent to g,. 
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We next want to establish a converse to these last statements which gives a 
positive criterion for a map f~cg to be topologically equivalent to one which is 
piecewise linear of constant slope. 

Theorem 4.5. Let f ~ have no restrictive central point. Then there is a #~(~/2, 2) 
such that f is topologically equivalent to the map g defined by g,(x)= /2/2 +/2. [½-x[. 

Proof. Since f has no stable periodic orbit, the set {xlfn(x)=c for some n>=0} is 
dense and the theory of Sect. 2 can be applied. We need only prove that there is a/2 
such that f and g~, have the same kneading sequence. Then f and g will be 
topologically equivalent. What we shall prove is that there is a unique kneading 
sequence with the growth number of f. This argument depends on the following 
lemma. 

Lemma 4.6. I f  Z 1 ~ 22 are topologically mixing subshifts of finite type, then the 
growth number of 21 is smaller than the growth number Z 2. 

Proof. Consider a common Markov partition for 21 and 2' 2 with transition 
matrices A and B. Now Z 2 - Z  1 is open in Z 2 and periodic points of X 2 are dense. 
Therefore N 2 - Z t  contains periodic points, and there is an n such that TrA n 
<TrB".  Now Z t CZ 2 implies (A")i <_(B")i for all n, i,j. The strict inclusion implies 

j - -  j . . . 

that (A")ij<(B")ij for some i,j and each n. We claim that there is an n for which 
(A")ij<(B")i ~ for all i,j. The number (B")i j is the number of sequences 
bio, bi~i2...bi,_~i, with biAj+ =1 for each O<=j<n and i---io, j=i , .  Topological 
mixing and Z~ + 2 2 gurantees that for n large there will be a chain of this sort with 
some a i ~ =0  for each i=i o, j=i , .  (This can be used as the definition of 

. j  j + I  . . . .  

topological mixing m this case.) Now if v is any vector with positive components 
and (A")ij<(B')~j for all i,j, then each component of A"v is smaller than the 
corresponding component of B"v. Taking v to be the eigenvector of A correspond- 
ing to its largest eigenvalue, we find that B has an eigenvalue larger than all 
eigenvalues of A. But the growth rates of Z~ and Z 2 are the largest eigenvalues of A 
and B. 

Using this lemma we now prove that there is only one kneading sequence with 
the growth rate of f~cg. Let _a be the kneading sequence of f and let b be another 
kneading sequence, say larger than _a. Between _a and _b is a periodic kneading 
sequence _d. Let g be a map with kneading sequence _d and let p be the restrictive 
central point ofg  farthest from c. The map g has a stable periodic orbit and hence a 
restrictive central point. Then the growth number of g is the growth number of 
glEv; U =(p, p'), Ev= {xlg~(x)~I - g for all n>0}.  The invariant coordinate of p 
must be larger than _a because O(c) lies between O(p) and 0(p') for g and 0(.a)_-< 0(d) 
= O(co). If the invariant coordinate of _a were larger than that of p, then f would 
have a periodic orbit with the same itinerary as p, and this point would be a 
restrictive central point. Now glE v is topologically equivalent to a subshift of finite 
type which is topologically mixing. We can find a proper subset of E v which is also 
a subshift of finite type, topologically transitive, and with growth rate at least as 
large as f Then the Lemma implies that g has larger growth number than f. 
Therefore, any map with kneading sequence _b has larger growth number than f 

Assume now that _b has a smaller invariant coordinate than _a. Then an 
argument similar to the one above implies that if g has kneading sequence _b, then g 



158 J. Guckenheimer 

has growth number smaller than that of f There is no other kneading sequence 
than the one of f with the same growth number. Let gu be the piecewise linear map 
gu(x) = # /2 -# - r½-x f  where # is the growth number o f f  The uniqueness argument 
then implies that g has the same kneading sequence as f since # is also its growth 
number. Finally, the results of Sect. 2 imply that f and g are topologically 
equivalent. 

Thus far, we have considered piecewise-linear maps with growth numbers in 

( ] ~ ,  2] and smooth maps with odd periodic orbits. Let us briefly describe the 
general situation, starting with the piecewise linear maps. Suppose g,(x)= + #/2 
- # ' 1 ½ - x l  with/~e(2 ~/2m, 21/2m-1]. Then all of the periodic orbits of g, except a 
finite number (one for each 2 i, i <  m) wilt have periods which are divisible by 2 m. 
There is a subinterval J of I, with an endpoint at the closest restrictive central 

point of g to 1/2 such that g2mjj is a piecewise linear map with slope in (1/~, 2]. 
The preceding theorems then apply to g2"lJ. Similarly, if the map f has periodic 
points of the form 2 re.k, k > 1 odd but not of the form 2 m- 1. k, then the growth 
number o f f  lies in the interval (21/2m+ 1, 21/2,,-1. The map f has a restrictive central 
point p of period 2", and if q is a restrictive central point closer to c than p, then f 
is not topologically equivalent to a piecewise linear map 9u. If no such q exists, 
then f is topologically equivalent to the q, with # the growth rate of f As a final 
corollary of the theory we have developed thus far, we have the following: 

Theorem 4.7. Let f ~c~. Then f has sensitivity to initial conditions if and only if 
there is a subinterval J C I and an n > 0 such that f~(J)C J and f ' t J  is topologically 
equivalent to a piecewise linear map g.(x) = #/2 - # .  Ix -½]. Here # is the growth rate 
of f"lJ and #e(] /2 ,2] .  

We turn now to one parameter families j~ of maps in ~ for some final remarks. 
An outstanding question about such families is the prevalence of parameter values 
v for which f~ is "chaotic". If one interprets "chaotic" as "having sensitive 
dependence on ititial conditions", then the theory we have developed can be 
applied to yield some new perspective on this problem. To cast the problem into 
the terms we desire, we make a "genericity" hypothesis for the family £ :  

Hypothesis. If J is a nontrivial interval in the parameter space of the family f~ such 
that v~, v2eJ imply that f~l and f,2 have the same kneading sequence, then J',~ has 
a stable periodic orbit. 

While it is not known that any family satisfies this hypothesis, it seems likely 
that the set of families in ck(I, off) which satisfy the hypothesis is generic set; i.e., a 
countable intersection of open dense sets. In any case we shall assume that all 
families we discuss do satisfy the hypothesis. 

Let f~. be such a family. If there is a set B of positive measure in the parameter 
space such that v~B implies that fv has sensitive depefidence to initial conditions, 
then there is a subset B and an n such that veB implies that f~" restricted to a 
suitable subinterval is topologically equivalent to a piecewise linear map of 
constant slope. With this n, we rescale the maps so that their domain of definition 
is I. We then have a family for which there is a set of positive measure in parameter 
space for which the members of the family are topologically equivalent to 
piecewise linear maps. 
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Interpret this via Theorem 4.5 in terms of growth rates. Using the hypothesis, 
the places where the growth rate function of a family fv is not constant are the 
parameter values v at which f~ is topologically equivalent to a piecewise linear 
function 9,. This suggests that one should study the growth rate function 
associated to a family: ),(v) = growth rate of f~. An alternative question to the one 
raised earlier is whether the function 7 is absolutely continuous. The discussion 
above suggest that the typical family fv has a set of positive measure in parameter 
space for which f~ has sensitivity to initial conditions if and only if the growth rate 

d9 
function g(v) has a distributional derivative dvv whose support has positive measure 

in the parameter space. Since we prove nothing, we refrain from a formal 
statement of this principle. It does motivate discussion of the growth rate function, 
however. 

One cannot expect a simple argument to prove that the growth rate function is 
absolutely continuous. The following example gives an upper bound of 1/2 for the 
H61der exponent of the growth rate function of the quadratic family f~(x) 
= vx(1 - x ) .  When v = 4, then f~ has growth number 2. All roots of the polynomial 
f ~ ( x ) - x  of degree 2 k are real. There is a sequence of values v,--,4 such that when 
v=%, 1/2 is periodic with period n and with O < f 2 ( ½ ) < f 3 ( ½ ) < . . . < f " - l ( ½ )  
< fn(½) = ½. These stable periodic orbits are the "largest of each period" in the sense 
of invariant coordinates. Since the derivative of 4x(1 - x )  at 0 is 4, one can estimate 
the way in which e n = 4 - v n ~ 0  as n-.oo.  For  any 6>0 ,  (4-6)nen-~0. For n large, 

f2 (i~., i f2(i~ we must have Jv.+l gJ~av.~TJ. 
We can also calculate the growth rate of f~. Partitioning I along the orbit of ~, 

we find that the rest of the nonwandering set of fv~ is topologically equivalent to a 
subshift of finite type with ( n -  1) x ( n -  1) transition matrix A n : 

i)" An= 1 

1 

The growth rate of fn is the largest root of the characteristic polynomial Pn(t) of A n. 
t n - i _ l  

Now P(t) = t n-  i _ t" -  2 1 = t"-  ~- The largest root of P(t) is ap- 
"" t - 1  " 

proximately 2 - 2 1  -n  Thus for the vn's we have the rough estimate for the growth 
rate function that 7(4)-7(vn)~2 t-n while 4 - v , ~ f i 4  -n for some constant ft. It 
follows that 7 will not be in the HNder class C ~ if c~ is larger than 1/2. In particular 
the growth rate function is not Lipschitz. More careful estimates will be necessary 

dy 
to determine whether or not the support of dvv typically has positive measure. 

There are two other "measure theoretic" questions which we ask concerning 
the theory developed in this paper. The first question is whether the set A for f e c g  

having an infinite number of restrictive central points always has Lebesgue 
measure zero. A positive answer would imply that if fEcg is not sensitive to initial 
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c o n d i t i o n s ,  t h e n  f h a s  n o  i n v a r i a n t  m e a s u r e  a b s o l u t e l y  c o n t i n u o u s  w i t h  r e s p ec t  to  

L e b e s g u e  m e a s u r e ,  T h e  s e c o n d  q u e s t i o n  is w h e t h e r  f s ~  sens i t i ve  to  in i t i a l  

c o n d i t i o n s  imp l i e s  t h a t  f d o e s  h a v e  a n  i n v a r i a n t  m e a s u r e  a b s o l u t e l y  c o n t i n u o u s  

w i t h  r e s p e c t  to  L e b e s g u e  m a s u r e .  Is s ens i t i v i t y  e q u i v a l e n t  t o  a b s o l u t e l y  c o n t i n u o u s  

i n v a r i a n t  m e a s u r e ?  
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