
fA-SPACES 

Yu. L. Ershov UDC 517. ii 

Let A\=<A,~,..~ be an admissible set [4], let <~,~0,~> be an f-space [i], let ~ q A 

be a E-set, and let ~:5-~0 be an enumeration (mapping onto) of the basis X 0. 

The quadruple ~----<~,XO,~$:~> is said to be an fA-space if the following three con- 

ditions hold: 

i. If$~5 a<~--{~IC~A,~@is such that 

then the s e t  ~ C ~ { ~ l ~  ~ ha~ in < X , ~ >  a l e a s t  upper bound U ~  and U ~  X 0. 

Let ~O/Z~N~ {OIC@~* and (i) is valid for c}. 

2. The set a~-{e,&>Ice~)~$,6~, N&=uqc} is a E-set. 

3. For any ~EX the set ~--~{~I~S,qB~ is 9 E-set. 

Remark. Every fA-space is a f0-space [i]; indeed, #.C0~x, v and ~u~ is the least 

element in <~, ~> . 

a 

We mention the following two properties of the sets of the form ~ , ~ X : 

i. ~ ~ ; if <~'~ ~/'0 and ~E~ then ~0E~. 

2. If C ~ S',~ then C~CO,~ and <C,~>e~ implies B~ ~ • 

We denote by n% ~8) the collection of all E-sets ~t~ 5, satisfying conditions i, 2 

for B~. 

The correspondence ~, • S~ defines a mapping g: ~-'.%V(S); an fA-space~ is said to be 
complete if 8 is an onto mapping. 

Remark. From the general properties of f-spaces [i] if follows easily that 8 is a dif- 

ferently valued mapping. 

For any fA-space ~one can construct its completion ~in the following manner: we set 
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It is easy to verify that ~* is a complete fA-space; 8 is a homeomorphic imbedding of X into 

, is a homeomorphism of X 0 and X0*. ~e whiile ~ 0  

Proposition I. If ~ is a complete fA-space, C~ is a E-set such that c~Co~ for 

any C~C', then in <~,~> there exists a least upper bound ~NC for set ~C ~ {w~I~66}. 

We consider the set ~a~{Bl~ ,~c~C3~((c,~0>~ ~<B,~0~0~ . We show that ~D%(~) 

the facts that ~is a E-set and that~satisfies condition I follow at once from the defini- 

tion of~. We verify whether property 2 for~holds: if C~*, then we have 

By the E-sample principle [4], there exists ~(A such that 

VBec_-q%e d,~ 6o(C o = ¢ ^ <co, B~> e/_. ^ <B.6o> •/-.o'~ ^ 

We set C,,le~ L,,I ~, then from ~ 1 ~  (qOC-C) there follows that C~C. From Cl@~'and 

from the assumptions of the proposition there folows that there exists~4~ such that <Cf,~4>E/.. 

From the validity of 

there follows that NB~'~Bo=L.I'gC0~UV~,,==V~) 4 for any ~eC; consequently, CE~X,~ and 

L~WZ&~B 4 , and for BE $ such that <C,6~ ~/- we have w6 =L/9~_~V~4; ~4e~, consequently, 

E ~, and property 2 is verified. 

Since <(~},6>eL for any g@~, then Cc_~, and, as one can easily see, if ~ ~0' 

~0~ krL (6), then ~ ~ ~0 ' Since ~ is complete, there exists a (unique) element ~ E 

such that ~ ~- ~ . From what has been said above there follows that ~ == UWC. 

Let ~--'---<~,~0,~, ~;0' ~0--~0 > and @-~-~y, ~0,~-,W1: ~--~ Y0 > be two fA-spaces; let 

" X--~ ~ be a continuous mapping and 

Remark. The continuous mapping p can be restored from set L~: for ~ @ X we have 

A continuous mapping p : ~ --~ Y is said to be a computable mapping from ~ into ~ if L# 
is a E-set. By C(~,~) we denote the family of all computable mappings from ~ into ~ • 

We assume that ~ is a complete fA-space and that ~ ~0 ~ ~4 is a Z-set such that we have 

the condition 

Vc • B*(Sc e Con., ,~o~ pe e ¢,o%.,~4'). (2) 
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F .. From such a B we construct a mapping ~ --~ Y in the following manner: 

Let ~ X and C~{6~I~60~ <~0 ~ 64> ~ 8 A60~I~; C~ is a E-set. We show that C~ 

* =~ O. e C4)f%X,v . Sinc~e C 6 C~, we have 

v6, e c a6 ~ 6o(6e ~^6 = <6o,6,>̂ 6oe BX ); 

by the E-sample principle there exists i~ A such that 

we have C=?i~ C~ 

then 

e5 i. Consequently, there exist C 6 C~ and 6~ 

~ ~ , we have 

by the Z-s~anple principle there exists ~ such that 

such that <C~>e/.YA <~,6~5~ /.Y 
o 

since ~t~ 5~, we have ~ t  , and, ~onsequently,  by (2 )  

y,94 " 
By Proposition 1 in~ there exists ~lgiC~. We set ~Je~(~) =I-/'440~, ~"  )~. 

Proposition 2. The mapping ~5: ~--~ Y is a computable mapping from ~ into 

First we verify the continuity of the mapping la B . Let ~ ~, 64 & ~ and "~ ~ ~5~; 

~. The set is obtained from C~ as ~ from 0 in the pro__of of Proposition 

• Since 

Then t ~ ~[~ , ~ 00~,g ; let , , o b° be such~ that < ~ > 6 ~  ( i .e . ,  ~06~-- I I@0~ ). Then 

Consequently, ~ 6 SOlO C_ ~[~6,~ and the continuity of 'B is proved. 

The computability of PB follows now from the following easily verifiable equality: 

0 

Remark. a) ~ C /'~5; b) if ~ is a computable mapping from ~ into ~, then Llx satis- 

fies condition (2). 

We consider now the question when on the set C(~, ~) of all computable mappings from 

into ~ one can define a "natural" structure of fA-space. It is reasonable to restrict 

ourselves to the case when ~is a complete fA-space. 

Proposition 3. If C ~ {C~CE(%X %~, c satisfies condition (2)} is a E-set, then 

~(~ has a "natural" structure of an fA-set. 

For CE ~ we set ~ ~ ~; then v is an enumeration £-~t0[~,~, where C0~,~{%~\ ~}. 

A partial order on O(~) is defined in the following manner: for ~0, ~ t(~,~) 
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We show that the quadruple 

<£(~,~), C.o(.g,~) , ,~, -,, : O -- ~o(&~q > 
is a complete fA-space. 

First one has to prove that <~(~,~ ~0(~,~), ~> is an f-space. We establish at once 

condition I of the definition of an fA-space, from which there will follow this statement too. 

Let ~ £ 6 + and assume that there exists ~• ~(~,~) such that @~ ~ F for all £ 6 ~ . We 

set ~0~-U~ and we verify that for c o we have (2). Let ~ ~ ~_ and assume 

that ~C.~ C0~ ; then there exists ~0"= ~(~C) ; if ~ ~OC the--n ~ <~^,E~C.~U~ 

for some ~ e ~ and <~0, b4>&C for some ee~ . Then W~b~ ~[Ve](~0~ ~/~(~O ~ ; consequently, 
qg ~ Ii;($0~ ffor any 6.~DC; from herePC • C~ and c o satisfies condition (2). We show 

th'~t~G~2~Wi; for thls ~e :stablish theJ f:llowin~V%act, needed also later: for ~,~ 

we have 

I I ~ I I  I 

~.~c. ' ,~V<~,o,t~>e~2~"=~'<V<~o,~,> ¢. %~,o,~'%~o)A,~,~, ~ u-~ ?~"') (3) 

We note that from the definition there follows easily that ¢ C ¢' • 0 implies ~¢ ~ ~61 ; 

further, <60 ,6~>EC implies "~ ~; [~ (~0~0) ; the condition in the brackets means that q~4 ~ 

[q ¢ "3 (% ~O) ( ~ [V ¢ '] (90 0 ~ .6~ From these remarks there follows the implication from left to right 

in (3). 

Assume that the right-hand side of the equivalence (3) is true and let ~@~; then 

[~)=L/{W~I~60~0,~4~CA -~0~)0 ~ ) ~  let~0,6~>~and let "~0~)0 ~ ~; by virtue of 
_ to, " the right-hand side in (3), there exists ¢/'C C' such that W~ g[qg'q[W 0 ~[q6' 

EqG3[~) , from where Ew~3<~_~'][~ and ~q~l 

From the equivalence (3) there follows at once that J6=~{~({<6~,~>I)I <60,~4> ~- C } for 

any C 6 C ; thus, returning to the proof of the proposition, we obtain 

Property 1 is verified. 

From the fact that the right-hand side of the equivalence (3) is a E-relation, there 

follows that 

L o ~  [%,q>1%,e~e C., vco~. % } 

is a Z-set. If de C0%C(~,~),~ , £ e C , then ~ ~ UW&~=~-4¢4 ~](U~)A~:(U~WC; from here 

there follows that 

is a Z-set. Condition 2 is also verified. 
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Condition 3 also holds since for ~ C(8,~) we have 

~ =  /---. ~ • 

It remains to verify the completeness of the fA-space 

<C(,¢, ~-), Co(.~,~), .~, v.  C --. CoC~, ~-~ > 

(which will be denoted simply by ~(~,~)}. Assume that the E-set ~ ~ satisfies conditions 

1 and 2 for the sets B~. In particular, from condition 2 there follows that for any d ~ B* 

~e~o~¢[~), and, consequently, U~ satisfies condition (2). By Proposition 2, the mapping 

=/7 =5 ~Ub belongs to ~(~,~). A simple verification shows that ~u5 Pu~ 

Remark. If we consider the category ~A of fA-spaces (the objects of this category are 

the fA-spaces and the morphisms are the computable mappings), then it is easy to verify that 

in this category there exists a direct product ~ ~ for any two ~A-spaces ~ and ~. The nat 

natural character of the structure (when it exists) of the fA-space 6[~,~) is confirmed by 

the following two easily verifiable facts: 

I) the fA-spaces ~C~,~) 

category ~A ) ; 

2) the signification mapping 

is a morphism of F A 

and C[~,C(~,~)) (when they exist) are isomorphic (in the 

We indicate a series of sufficient conditions in order that the requirements of Proposi- 

tion 3 should hold. 

I. If ~0~,~4=~: , then C is a ~-set. 

Then, obviously, ~ = C~O~ B4~ 

In the formulation of the subsequent conditions we shall assume that the following con- 

dition holds: 

B" ~ Con. is a E-set (z~-Co~). 
0 ~,~o 

II. If in the admissible set~\there exists a E-function P such that P~={616eA, 
G ~} for all ~ A', then under the condition A-Con on ~ the set C is a E-set. 

Indeed, 

cE C ~ Vc'~ P(c)( 8c e ~j ' ,  ¢,o~,,.~oV .pc E 0o~ 

We consider two more conditions: for a natural number N 

III. 

N 
~0 \ {<~  .... ,~N~I{B 4 ..... ~N~6 C~t%~,~o t is a E-set (/k(N~-~or%); 

If there exists N such that ~ satisfies the condition A(N)-Con, while ~ satisfies 

condition Con(N), then C is a E-set. 
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Indeed, 

N 
5 0 

Some of the derived properties can be carried over to the space of computable mappings 

£{~,~). For example, we have the following 

THEOREM. a) For any admissible set ~ and for any natural number N the category ~ ~ 
A,N 

of complete fA-spaces, satisfying the properties /k(~)-C~rL and Con(N), is Cartesian closed. 

b) for an admissible set A,having a E-function P such that ~0J(~(Cb~=~]~EA,~c__,_.__ ,-(L})" 

category ~ of complete fA-spaces, satisfying the property A-Con, the is Cartesian 
,A- ~0q 

closed. 

Cartesian closedness means the existence of a direct product of objects and (in the con- 

sidered case) closedness with respect to the formation of the space ~(~,~). 

a) The following fact can be easily verified: 

If ~ satisfies property &(N)-Con while (the complete) ~ satisfies property Con(N), then 

~(~,~) (which exists according to III) satisfies the condition Con(N). 

It remains to verify that if ~ satisfies also the condition ,~N~-C0~, then also ~(~,~) 

satisfies condition A~N~-~. 

We show that C(~,~) satisfies even condition A-Con. If d e C* then ~ 80~¢(a,~),9 4=~ 

N N 4 N { N 

the latter is the E-condition. 

b) If the assumption of part b) of the theorem holds for ~, and ~ satisfies the con- 

dition A-Con, and (the complete) ~ satisfies condition A-Con, then for ~E ~ ~ we have 

the l a t t e r  is the E-condition. 

The proved theorem allows us to define for any admissible~the concept of a partially 

computable (or E-) functional of any finite type. Unfortunately, the family F o of all such 

E-functionals of any fixed type o need not have "good" (computable) enumeration, as it has 

been proved in [2] for predicates, but such an enumeration cannot be achieved even for the 

type (010) in certain admissible aetnA(there where universal E-functions are not present). 

Remark i. The families of Eo-predicates for predicates of type o, constructed in [2], 

have a natural structure of complete fA-spaces. 

Remar k 2. In the definitions of computability, instead of E-predicates over an admissible 

set one can use E-predicates over a E-admissible set [3]. 
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Remark 3. The sets ~ , ~ ,  constructed in [5], have a natural structure of com- 

plete fA-spaces. 

Remark 2 allows us to consider the complete f0-spaces [i] as a special case of complete 

fA-spaces for appropriate Z-admissible sets 

Namely, let S be an arbitrary infinite set, let ~ "=~(~)~<~[~)~ ~(~(S))~ be 

a Z-admissible set (consisting of }IF(S), i.e., all hereditarily-finite sets over S), in which 

the positive predicate variables run through all subsets of HF(S). Then any subset of HIm(S) 

will be a Z- (even &-) set. 

We have the following obvious 

4. The category ~:of complete fA-spaces is equivalent to the category Proposition 

F 0[SI of complete f0-spaces, having ~'a basis of cardinality <ISI._ 

Proposition 5. Let ~ be a complete fA-space and let ~; X --~ 

ping. Then there exists a smallest fixed point _~E ~ of this mapping. 

then the correspondence ~-+~ is a computable mapping from ¢[~,~) 

We prove the first part of the proposition. 

set (which is a Z-set) p q ~ such that 

i) ~e ~ (here b I is such that ~£=~); 

We verify that P satisfies properties 1 and 2 for B$. 

We verify property 2. 

ordinal, such that: 

be a computable map- 

If ~(~,~)"exists," 

into 

By Gandy's theorem there exists a smallest 

Property 1 is obvious. 

We define a transfinite sequence of sets ~ ~ ~ , ¢~, is an 

~" U~, for a limiting ~ • 

We define a transfinite sequence of points ~ ; 

for a limiting 8 provided 5/exists. 

By induction with respect to ordinals one establishes that for ¢6 e 07~&(~] Sa exists 

and %= ~ 

Gandy's theorem asserts that 

and the set of ~D ~--- {<6,4,> l~e 0%~(A\), ~E ~¢~} is a Z-set. 
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If C • ~ then 

by virtue of the E-sample there exists ~ ~ 0%~(~\) such that 

-- S~ , then CE C~cS~ and ~E ~ ~ for ~eE S such If ~0 ~ UO~,Oi'O~'O~') and C~%0 0 
that (g,~> E /.. Property 2 is verified and, consequently, P is B~ for some ~ X; it is 

easy to see that ~ ~ ~ and it is the smallest fixed point for M. 

The computability of the correspondence ~ ~--~ ~ ~ , when there ~(~,~) E 

is proved in a similar manner. 

~A exists, 

Remark. This rpoposition is valid also for E-admissible ~. 
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LINEAR GROUPS OF SMALL DEGREES OVER THE FIELD OF ORDER 2 

A. $. Kondrat'ev UDC 512.542 

In the "Kourovka Notebook" [4] V. D. Mazurov posed the following problem 8.39.a): to 

describe the irreducible subgroups of GL~ [2) for [~{0 • The cases n = 7, 8, and 9 of 

this problem were considered in [2, 3] and in as yet unpublished work by the author. In 

the present paper the solution of the problem is completed modulo the classification of finite 

simple groups. We prove the following 

THEOREM. Let V be a 10-dimensional vector space over~F(2),G=~ (V), H an irreducible 
subgroup of G all of whose composition factors are known simple groups. Then one of the 

following cases holds: 

(1)~/~A---~83Z Ss,where A is the stabilizer in G of a decomposition of V into a direct 

sum of five two-dimensional subspaces. All subgroups isomorphic to A are conjugate in G and 

A<$p~(2)~G. If H is not solvable then ~j~x~f~. 

(2) ~~5[£)% Sz, where B is the stabilizer in G of a decomposition of V into a 

direct sum of two five-dimensional subspaces. All subgroups isomorphic to B are conjugate 

and maximal in G. If H is not solvable then either ~=~, or ~ / ~  [~F(2)), 
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