
GROUPS WITH REGULAR ELEMENTARY 2-GROUPS OF AUTOMORPHISMS 

P. V. Shumyatskii UDC 519.45 

In the early 1960's there arose in the theory of finite groups the following 

Conjecture. Suppose ~ is a finite solvable group, V is a subgroup of A~t~ C~(V) = ~ 

(IVI~I~I)=4 , and ]Vl is the product of /% primes, not necessarily distinct. Then the nilpo- 

tent length of ~ is at most /%. 

It is well known that if the pair V , ~ satisfies the conditions of the conjecture and 

]Vl--2, then ~ is Abelian. Shult [4] showed that the conjecture is true if V is an ele- 

mentary 2-group. Bauman [2] proved that if V is a four-group, then the commutant of 0 is 

nilpotent. Many other cases of the problem have also been studied [3, 5, 6]. Almost all of 

the results depend on the theory of representations of finite groups. In the present paper 

we suggest another approach, which does not require that G be finite. Here consider the 

case where V is an elementary 2-group and ~ is periodic. 

THEOREM i. There exists a function ~(~) of two natural variables such that any K- 

step solvable, periodic group ~ admitting a regular elementary group of automorphisms of 

order 2~ has an invariant series 

C-=~-~Hz-~... ~_H~+,=¢, 
in which the factors are nilpotent and the nilpotent length of ~ /~+~ is at most ¢(~,KI , 

THEOREM 2. Suppose ~ is a periodic group admitting a regular elementary group of auto- 

morphisms of order ~r~ . If some term of the derived series of ~ having a natural subscript 

H, t is hypercentral, then ~ has an invariant series ~ = ~ _ ~ . . .  ~ +¢ 4 in which all of the 

factors are hypercentral. 

It is easy to see that these results are stronger than those of Shult and Bauman. More- 

over, they show that in some cases the conjecture can be significantly strengthened. 

In connection with Theorem 1 it is appropriate to mention that for any integers fL >i 2 

and ~< >.~ there exists a K-step solvable, periodic group admitting a regular elementary 

group of automorphisms of order ~a. 

We also mention that the approach suggested in this paper enables us to obtain a gen- 

eralization of the theorem of Kreknin and Kostrikin [i] which says that the nilpotent length 

of a K-step solvable Lie algebra admitting a regular automorphism of prime order P does not 

exceed some number A(~ K} depending only on p and K . It can be shown that a #<-step solv- 

able Lie ring /~ admitting a regular elementary group of automorphisms of order ~ has a 
tL 

system of ideals 

/, -D _~... _~ / . + ~  O, 
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such that i[<~'~= ~ L~+ 4 for # __~ ~ ~ /%. 

This paper comprises three sections. In Sac. 1 we establish some general properties of 

an elementary 2-group of automorphisms, in Sac. 2 we prove the main results, and in Sac. 3 

we make concrete the arguments of the preceding sections in the case of a four-groups of 

automorphisms. 

The author thanks N. F. Sesekin for helpful discussions that aroused his interest in 

this subject. 

!_" ..... An Elementary 2-Group of Automorphisms 

If I is an element of any group and 1531 is odd, then j~i denotes an element ~ of 6~> 

such that ~2= JD . 

Proposition i.i. Suppose V is a group of automorphisms of order 2 a of a periodic 

group ~ . Assume that each element of £C(V)_ has odd order. Then ~ has no involutions. 

Proof• We proceed by induction on /%. Suppose f~={ and ~ is an involution of V . 

Assume ~ contains an involution ~ . If ]0'&£1 is even, then an involution of ~-& d> is con- 

tained in ~QC~/], which contradicts the hypothesis of the proposition. Suppose l~.&ul is odd. 

Then (b~'&]~[.b is contained in ~(V) and is an involution. 

Now suppose ~= K >. ~ and the proposition has been proved for JZ~X-4 . Suppose L/ is 

an involution of ~(~) . If ~ contains involutions, then, by what was proved above, some of 

them are contained in ~CLf) . Note that ~=~), is obviously a V-admissible subgroup of ~, 

and V induces on it a group of automorphisms of order less than ~ . Then, by the induc- 

tive assumption, CM(V) contains involutions, which proves the proposition. 

Proposition 1.2. Suppose ~ is a periodic group without involutions and 6f is an auto- 

morphism of order 2. Let~={~6~' ~g~=~}. Then ~=CC(~),~=~.~CU). 
4 _ ! 

Proof. Suppose ~ is any element of ~ . Put~=(d~£$D-'< ~ , ~4=(J$.~f~)z , ~=(~-~)~. 
It is clear that ~= ~ =~4' and it is easy to see that ~ 6 ~ ~ ~(Lf). 

Proposition 1.3. Suppose V is a regular elementary group of automorphisms of order ~ 

of a periodic group C- ; ~/ is a subgroup of index 2 inV , and U~Y- kX/ . Then: 

a) if ~ ~Cr(k~/], then o~5 ~---/5 -f; 

b) C&(W) is an Abelian subgroup of ~ ; 

c) each element $b of C&(~/) is weakly closed in C&(h/),. i.e., for any ~ in ~, /5~6 

05<~/) if and only if £~= £, 

Proof• Assertions "a" and "b" follow directly from the previous propositions. Let us 

prove "c." 

Suppose ~ 6  C~(~/) . if fl---{, then & is Abelian by Proposition 1.3, "b," and 

~DY=~ . Assume fl= I<~2 and the assertion is true when f~K-4. Suppose ~/6~/~H = 

0~(~) , and V~ ~/ are the subgroups of ~t M induced by the actions on ~ of the groups 

~, ~/, respectively. By Proposition 1.2, ~=~, where ~&~ ,~W=~-{. We have$~=~ A~: 

(~)~=- ~l{ , hence SD ~-- ~i . If ~=-~/ , then {= ~(VI=<(W) =- OC<~/], hence 53= 

and ~= ~ If V~'~/ , then IV: ~3= ~ • It is clear that IVl <Iv] , and therefore, by 

the inductive assumption, ~g=~ and 53~----~ . 
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LEMMA 1.4. Suppose ~ is a periodic group without involutions, ~/ is a four-subgroup of 

Ag&~ ~ , and ~ , ~ , J/ are involutions of V • Assume ~ is an element of ~ such that 
-¢ 

~=- ~ . Then there exist uniquely determined elements ~, ~ of 0~(0]) , CG(Lf/~ , respec- 

tively, such that ~J---- -¢ 

Proof. p u t ~ . _ ~ ) , ~ = { £ 6  C_ ;.~Yi=.~-~#..<~ 3. By Proposition 1.2, ~ = ~ A  2 , where 

~ 2  '~2" Also, ~2=~1~1 , where ~ 6 ~ , ~ 6 ~ , and in view of the V-admissibility 

of ~ we may assume that ~ ~ ~ and ~ ~ ~ . Since ~,~f~----$, we have(~2~4/z1~=(/z-11. 
. or 

/ - ~  - ~  J?-~ ^ 
Using ~@~Z and applying the automorphism ~ to fg6~£ "l~'f' we obtain the relation 

~1~<~ ~ ~ , ~£~ ¢~4~,~==~I~4 < Iq . Since in a periodic group without in- 
volutions there is no nonidentity element conjugate to its inverse, it follows easily from 

the last equality that~ ~i=~ ~. Then relation~ (i)~ assumes the form d~6~-~-- -6~ ~-~, hence ~¢6 

the pair 0.., ~ obviously satisfies the conclusion of the lemma. 

Now assume the pair ~, ~ also satisfies the conclusion of the lemma. Then ~;~(-~ 

%. Applying to ~$;~ the automorphism ~ , we obtain ~;~¢=( ~-~-f~1 " It fol- 

lows easily that ~z~ is conjugate in ~ to its inverse, hence ~f£~=$ • Then ~= ~ and 

and ~= ~ . The lemma is proved. 

Proposition 1.5. Suppose the conditions of Lemma 1.4 are satisfied and ~ is a ~- 

admissible subgroup of $ such that ~ ~ ~. Then ~ , ~ 6 T 

Proof. This follows from the y -admissibility of ~ and the uniqueness of the pair 

~b, ~ proved in Len~na 1.4. 

LEMMA 1.6. Suppose ~ is a periodic group without involutions, ~ is an elementary 

subgroup of order f~ of ~&~ ~, and ~ is the set of all maximal subgroups of \/ . Then 

there exists an ordering ~ V~...~ V~a_~ of the set ~ such that C =cjv).cj~/z~.....OcT 

Proof. When ~=~ the lemma is obvious. Suppose fl=~,V#-- - {~/,~,~1 ; % and I; are the 

same as in Lemma 1.4, ~ ; and ~ is any element of ~ . By Proposition 1.2, for some $~ 

in $~ we have J~ ~3~ . Clearly ~ ~ % ' hence, by Lemma 1.4,~=0~ 20~ , where ~b and 

are elements of ~ ~ ~ and ~N~3 , respectively. Then ~-~=60~¢ o This shows that 

since (~-~-.~3) ] ~ - ~ 3  . Therefore ~G (2~% and = = ~ ~ %, as required. Note 

that we have proved that when /~=~ any ordering of the set ~ satisfies the conclusion of the 

len~na. 

Now suppose that f~>~ and the lemma has been proved for I~]~ 2 a-~ • Let VI be any 

element of ~ . By the inductive assumption, there exists an ordering ~/~/,...,~V0/2r~-4_¢ of 

the set of maximal subgroups of satisfying the desired conditions. For each ~ =4,2,...,2-I 
there exist two elements of ~ , different from ~ , containing ~/~. We assign to one of them, 
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arbitrarily, the number 2~ , and to the other the number -~+~. It is easy to see that we 

obtain as a result an ordering of ~ . We will show it is the desired one. Put ~=C~(~), 

{~&~4. By the inductive assumption, ~=%' ... -£4 where X; , 44&~ 

- . } and a-' # Suppose ?; is a four-subgroup of V such that ~/~ n ~ =~ ~ , 6~., ~ , 

~6 ~ ~ ~ ~ , ~ ~ ~+~, ~-~ & ~ !~-~ @. By the assertion of the lemma for ~=2 proved 

above we have %~=4 ~ ~z 4 , where 

Thus we have shown that 

cc  ,n xz=  ¢ ( v # ,  

c.,-= q-¢.¢.q.¢.@ . . .  
Since when /~=2 any ordering of U satisfies the conclusion of the lemma, we have ~.~.~+ = 

~,+/ ~ for any K in {4, I~...~ n-~- ~}. But then ~g~+~=~- ~ , hence ~_~.~, 

%'~9'...° ~ 4 The lemma is proved. 

LEMMA 1.7. Suppose ~ is a periodic group without involutions and V is an elementary 

subgroup of order Z :~ of A~F ~ . If N is a normal V-admissible subgroup of ~, then 

%,/vl--- o vl.,v/,v. 
Proof. We proceed by induction on fg. Suppose /%=4 and ~ is an element of C such 

that ~N~C~/N(V) . If ~f is an involution of V , then ~D-~ ~ ~. But J~=~T~(S~)~(~-%) ~, 

_~ i 
where ~(~ ~f2~C(~f ) . consequently,~E~JV).N/N. Now suppose rE= K >,~ and the lemma is 

true for /Z~g-4 . Suppose J is an involution of V • PutH=~C_(~f) and let ~ be the sub- 

group of ~U~ H induced by \/. Clearly ~j~---CH(~t/) and J~/l ~2tL-4 Assume J~ is an ele- 
_i 

ment of ~ such that~E (°JG//C(V) . As above, in the equality~=~(~i2(~ ~ we have 

(~-~D)[6~ ,~-~g(~-~)-2~{ It is easy to see that ~'(HON)6CH/Hn~ , hence, by the 

inductive assumption, ~=~#, where i ~ ~H(~/) . ~ ~ .  But then I~'~C~(V)'~//~. Thus 

we have shown that CC~/N(V)~G(~).~/N. The reverse inclusion is obvious. 

Recall that if 0~ is an automorphism of an arbitrary group $, then ~,~ denotes the 

subgroup of ~ generated by all elements of the form £-~X~, where ~ e ~ . It is known that 

~ 3  is always normal in ~ and can be defined as the smallest normal g-admissible sub- 

group CO of ~ such that ~L induces the identity automorphism of the factor group ~/~ 

If A is a group of automorphisms of a group ~, we put ~A=2A [0~,~] 
# 

Proposition 1.8. Suppose A is a group of automorphisms of a group $ and ~ is a nor- 

mal A -admissible subgroup of ~. Then ~A'/~///V c_ (~//%/)A" 

LEMMA 1.9. Suppose ~ is a periodic group admitting a nontrivial regular elementary 

group of automorphisms of order 2 ~ . Then there exists a periodic group ~ admitting a 
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regular elementary 2-group of automorphisms of order at most ~-~ having a subgroup iso- 

morphic to the factor group ~/~V" If the K-th term of the derived series of ~ is trivial 

or hypercentral, then the K -th term of the derived series of ~ is the same. 
~A-# 

Proof. Suppose A is an abstract elementary group of order . For each ~ in V~ 

we define V~ to be the group of automorphisms of ~/E~] induced by the action of V on ~ . 

Clearly l~!~i A-~. We take as ~ the direct product of the factor groups ~/~], ~ #  

Suppose ~P is a homomorphism from A into A ~  such that the restriction of ~ ~ to each 

factor ~,~ agrees with V~- using eemma 1.7, it is easy to see that ~(A ~)= ~ . Since by 

Remak's theorem ~/~V is embedded in ~ , the lemma is proved. 

2. Main Results 

In this section and the next, Lemma 1.7 will be used without explicit reference. 

Suppose V is a regular elementary group of automorphisms of order ~ ~ , ~ ~ 2 , of a 

periodic group ~, and ~,V~...~ \~ is a fixed ordering of the set of maximal subgroups 

of V , and let ~ : 0 ~ ( ~ ,  0~2~--4 ,  where V =V~ ~'~={0~y~...~2~-4}. 
We introduce on ~ a binary operation = as follows: If % and ~ are elements of ~, then 

= = j . .  

where ~) is defined by the conditions ~V~ V~ ~ My and ~ ~ I ~  ~ I .  

It can be verified directly that (~o) is an elementary 2-group and ~#~-{4,2,..., 

Suppose ~X/ is a subgroup of V • Put ~(~={6J~ ; ~K/~ Vc0} • It is easy to see that 

~C~X/)-is a subgroup of ~. 

Proposition 2.1. Suppose ~ is any subgroup of ~. If ~/----¢~ V¢ , then ~-~.=~(~/). 

Proof. This follows from the definition. 

Proposition 2.2. Suppose CL and ~ are any elements of ~ and ~ , ~0, respec- 

tively. Then 6-4~L~ can be uniquely represented in the form ~-¢L2~----~ ~, where 0v I ~ ~ , 

~ ~.~. 

Proof. It is clear that we need only consider the case 0~ {%,~0 el. Suppose ~x/=~fl 

V u and ~G~-~ ~6V -~/. Then U'~V -~K/ and #-~ ~C(~. ') . By Proposition 1.3, 

"a," (~-f~-----~'~-~$, hence, by eemma 1.4, there exist elements Ov~ of C$(Lf 4) and C of 

CG.( ~" (/~ such that ~-~------~ . By Proposition 1.5, Cul and C are contained in ¢~(~/) 

hence ~6~G_(V~,C6 Cc(V~,o~,~ , as required. 
The element C whose existence is asserted in Proposition 2.2 will be denoted by ~ ~ ~. 

If A and ~ are nonempty subsets of ~ and ~ . ~ O, respectively, then we put A ~ -- 

(~;~A~ ~] . Now suppose A~,A I, .... A~ are nonempty subsets of ~, ~,..., ~ , respec- 

tively, where og~ ~ ~o~,. o~ 6~ • ., • . By induction we put /~ *~*.,.~/~$=~4*Az,,.~A ~*~ for 

z>~3 • 
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LEMMA 2.3. Suppose ~ is an automorphism in V ~-~" Then 

Proof. Suppose oL6~--~(~0">~ and ~6Q(<~f>) . Clearly o~o~-~(<~>) • It follows 

easily from Propos'ition 2.2 that ~j~ normalizes the subgroup <~6~-~<0">~>. Since, by 

Lemma 1.6, & is generated by the subgroups of the form ~) , ~)~ , we see that <~;c~- 

~(~f>~> is normal in ~ . It is clear that &~ induces the identity automorphism of the 

factor group ~/<~ 9 o£ ~ ~- ~(<~>)>, hence [~,~ <~ }o~ 6 ~- ~(~>)> . We will establish 

the reverse inclusion. Suppose o£ is an element of ~ such that ~f~ ~oL , and let ~b be any 

element of ~ . Then, by Proposition 1.3, "a," ~L ~= ~-~ . Since extraction of a square root 

in ~ is possible, we have Q~=~rO~-l~r~Ll, hence ~ ~ [~)~ . The lemma is proved. 

Proposition 2.4. Suppose ~ and ~ are elements of ~ and ~ , respectively, and let 

Q be the normal closure of ~,6 in the group ~,~>. Then Q is the commutant of <~,~>. 

Proof. Note first that, by Proposition 1.5, ~ e <~,6> , so that the proposition is 

properly formulated. By Proposition 1.3, "c," the elements Co and ~ con~nute if and only if 

• ~--{ , which implies the desired result. 

Proposition 2.5. Let ~----<~ ~ ~ ~? 6 ~2~>. Then <~> is the commutant of ~ • 

Proof. The inclusion ~,~<~e> is a direct consequence of the previous proposition and 

the commutativity of the subgroups ~=L ,o~ • If the reverse inclusion is false, there exist 

, ~ but this contradicts elements ~ and ~ of ~=~ and respectively, such that ~ ~ ~ ~" , 

the previous proposition. The proposition is proved. 

Suppose K is a nonnegative integer, ~(~) is the K-th term of the derived series of ~, 

and ~) is an element of~ . Put ~*-- _~ ~ C.-f~, ) 
LEMMA 2,6. Suppose ~ is a subgroup of ~ and ~4 is some coset of ~ Suppose 

also that ~ is a positive integer and ~ ~-A L)$ is a partition of >-~, into two disjoint 

subsets. If 

Proof. Suppose ~6 ~6 " , where ~6~, and 0~6/, ), where ~e~4 

2.2, ~-~0J6 = O0~IC, where O& %o~0~6%. 

By Proposition 

, ~(S) 
On the other hand ~-~ 6 , where 

S=<~-,t i f  ~Oe Z3 ~ 

'~ ~f ~ A ,  

s s 
hence, by eropositio~ 1.5, ¢~e  C--~ and CE ~ o ~ .  Since, by Proposition 2.5, C~ ( ¢ ~ ' - " ) ~ =  

~ " ,  we conclude that % , ~ e < / . ~ ~ , >  and ~ -~6  ~ < / . ~ ;  ~ e  X ~ > ,  as required. 

Suppose Z = C~ (Cd'~) is the centralizer of the ~ - th  term of the derived series of C-, 

and let ~ ,=  Z n C-~ ~ ~ ~2. Assu~e that P is a nonempty subset of ~ and o~ is an element 

of ~ Then ~[p] is defined to be the smallest integer ~% such that p~ C~(~" • ). 
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If A is any subset of D, then by ~O3 we mean the following subset of A: {~ eA ;~[P] 

~[P] for each j~ in A}. 

if ~ is a nontrivial subgroup of ~, then ~.[~_~ is the largest number /~. such that 

~-~ has a system of generators 6 ~I ~'''''~ for which ~,[jO]>~ ~ , ~ ~j_~ % . 

Suppose d 

D~ ~ D D D f ;  ={0} (2) = ~ ~ • ~ ~+~ 

is any nest of d i s t i n c t  subgroups of CJ, denoted b y h  . Then (P ,B)  is the i n t e g r a l  pro- 

cession C~,,e~, . . . .  , ~ ? o f  dimension 2 ~ - ~  defined as fo l lows:  

I" 

l~m.~r~-z; 

I 0 , if ~t%=0 ~ 
I&~_<~-Z, 

If a nest ~y of the form (2) is such that for any other analogous nest ~= we have (g~y)-~ 

#P,J~), then instead of [g~) we will write ~{P) . Here the symbol ~ is to be understood 

in the sense of the lexicographic order defined on the set of all integral processions of 

dimension ~- 

Now suppose P is a nonempty subset of Z for some ~ in ~ and ~ is a nest of the 

form (2) By Proposition 1.5 and Proposition 2.2, for any ~ in ~# • we have the inclusion 

~*~/ ~ %o~, hence the expression#pe~)5) makes sense. We choose from each set 

(~ _~÷~0] an element j~ , ~ / l  . Viewing ~ as a vector space over the field of 

0 , . = o .~... j~ be the two elements, we note that ~ ~i ,. • J~t% is a basis of ~ Let ~ ~4 J~;z 

representation of ~ in this basis, I~ ~{,i<...~-~$~/%" Put =-j~Z~D],I~Z~EL ; 

~ = ~ 4  ' ~ = J ~ 6 '  ~ - ~ "  

LEMMA 2.7. Suppose 0<61~ 6Z~4.....~6~$. Then ~p, 5 ) > / / D . ~ , . . . * / ~ l , ~  ) where 

Proof. Note first that the statement of the lemma makes no sense if 3..< ~ . We will 

show that under the conditions of the lemma 5"I i . Suppose S = 0 . Then .,i.= 0 and p con- 

sists of the identity element of ~ . But then [P~) is the zero procession, which contra- 

dicts the condition 0 ~-64. Suppose ~= Y . Then ~=#~ for some Z in {~,2,.. 0,ft] , whereas 

~O]=0 in view of the commutativity of ~A ' which again leads to a contradiction 0~$~ ~0 . 

Now suppose S>.~ and ~/)~ =(~,~, .... ~z~_,~,(~*C*...~Z/~,~)=(~,~,...,~zn_3). For each ~in ~%-- 

~ +~ , where 4~ "~5-4, we put 

W ' 
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Let H~-<L¢; ~ n - ~  >,2~ ~ 5 • It is not difficult to show that P ~ CSH ~) , 

2~ ~ ~ 5" Since ~ ~2~" "~ ~i we obtain from Lemma 2.6 the inclusion ~/V(H~) , 

~_~_~s. ~onsequently. <pr,>~_ ~ H ~ .  hence, by Proposition ~.~,P,q is contained in 
C;(Hs). By the same reasoning, 

P'C" C-, ... ,P" q gH, / .  
The last inclusion shows that for ~'62 we have ~ @ ]  > ~ ~DeF- . ,  . "  C_] , and i f  ~E~]  = ,  

_~Z[/D*(*..." C_], then (~'~z- ~+q)[P'~ ~(~-2-n~.+y)[P + ~ * . . . *  C- l .  Thus for { ~ @ ~ b2 we have 

~,_, ~ , . ,  and i n  t h e  c a s e  ~, _ = ~ , _ ,  we also have . %  ~ ~,," 
Let us now assume the lemma is false and ( 'P,~)~ ( ' P * q ' . . . C ,  ~ }" Then, by what was 

proved above, $gj=-~.,if #~j~i(b~-#). Let ~ be the largest number such that ~@ ~. It 

is easy to see that it is also the largest such that ~I 6 ~" Suppose first that /I~ ~ tL-#. 

The equality.~2 = ~ means that ~_~+~)~O]_---(~+~q~.. ~] , hence ogle( ~- ~m~) 

[P'q~...~f~. But, by Proposition 2.2, the set p~ q*...e /~ is contained in ~.%, .... , ~? 

~ , hence o~D~C*.°.~Fg~---0. Theno~IEP]--0, which contradicts 0~-~ ~ ~2. The proof 

for t~=tl-# differs from the above only in that we cannot use the equality ~2~=-~t~ ' since 

it is absent. This is inessential, since when I~ }=~ the same argument yields _q=Z and 

~t~P] > ~ ,[P-~3. The lemma is proved. 

Suppose f~ and K are nonnegative integers, /Z>. ~ . We denote by ~,x the set of all 

integral processions ~=(£~'~2"" " %~-$) of dimension 2t~-3 whose coordinates satisfy these 

conditions : 

I) if ~= O, then ~2=~ -- ...=J~_~ =0 ;  
2) O - ~ _ < ~  ~ 

3) if .151=#0 , then Y ~ B 2 n ~ _ 4 ~ f f ~ / 4 ;  ~ / v ~ / C - Z  ; 

4) if ~_~#0, then Y_~m~_~ ~-% ~_~_~-Z. 

I t  can be shown that I~/z,RI=~+AC/~,K~, where 

~ ( a , ~  = 2 - - - T - - - .  
\ re-4 ~ 

LEMMA 2.8. If p is a subset of C C~CK)), then 

6(P) e Fg,~,~: . 

Proof. Suppose ~(#~ =(~I~£2,,.. ,/5~_ a) . It is clear that to prove the lemma it suf- 

fices to establish the inequalities $[~ _$ ~< ~2r~f4' $~f7~ <~/%-~ . If ~4---- 0 , then $(p) is 

the zero procession and the lemma is true. Suppose ~> 0 and ~ is a number for which Jg~r~-4 > 

~=m+4 Let 5 be a nest of the fom (2) such that (P,5)=6(P). Our aim is to show that 
under these assumptions there exists a nest ~! of the form (2) such that (~3)>(P~I)" We 

would then, of course, have a contradiction to the definition of $(P) . Supposeot~(~-~+4 ) 

[~3. Then for any & in ~t~+~-~iz we have2[P3 <<[P ~ Put/2=<Q~+z~o¢> , and as the 
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desired nest ~q! take the sequence ~"~ 13~'~ 13.. .~ ~"~o.,~'-~. ~_~r~+~'~,,._D%+;l 

s t  easy to  - -  

lemma is proved. 

Let 

Proposition 2.9. 

th hypercenter of ~. • 
Y 

/" 
Suppose~ ~,] = (~, 

The 

Suppose ~ is a natural number. Then C~(~In~ v is contained in the /~ -  

Proof. This follows from Proposition 1.8. 

Suppose ~o< ~ <...<)~mCn,~ is the lexicographic ordering of the set ~/bn,~. 

LEMMA 2.10. If /) is a nonempty subset of % , where Aef2 , and $(19)=z<~, where 0 ~  

ZI#fI,K) , then P ~ 0~r{~). A 

Proof. We proceed by induction on ~ . If ~= 0 , then. ~(P) is the zero procession and 

DIP3--0 • Therefore, ~7 contains a proper subgroup ~ such that any element j~ of ~ such 

that/g~D-]>0 is contained in ~-~ • By Proposition 2.1 and Lemma 2.3, there exists an auto- 

morphism ~ in V # such that [E,~]~<<,~E~-~-',> hence pcO~(~j,~])~{~. Suppose 
~>0 and assume that if Q is a subset of ZV, where V6 ~ , /. is any normal V ~-admissible 

subgroup of ~, ~=~//., and Q is the image of ~ in ~ with $~)~$(~ then Qc ~ ~.~(~--). 

Suppose ~ is a nest of the form (2) such that (~)=~), and let~,~Z,"-,~- be a basis of 

such thatj~ ~(~2f-~+~][P~,~r% Then, by eemma 2.8,/~9]-~j~EQ]-~-..~P~[P~ , and 

0 <~/~4[~] , since g~0 . Let --~ ~' ... ~ be the representation of ~ in this basis, 

• , ,/=6~ - - , 

where Y~/~ ~ ~ . Then, by Lemma 2.7, (~_,,3) ~${P),, hence, by the inductive assumption, ~_~ 

~_{(~) . By Proposition 2.4, the commutant [~,~_~] is contained in ~%_{(~) • Using this 

fact and arguing as in the proof of eemma 2.8, we obtain ~{~)~ ~ ~(P), where -Z is the 

image of ~_~ in ~=~0/z~_~). Again by the inductive assumption,~$_ '= <~-~) ,or ~_~ 

C2~_~.. Repeating this argument,9-~ times, we obtain #~- 0~(G), where %=5-f~-~ 

< Since ~/~, it follows that ~q t~) • The iemma is proved. 

COROLLARY 2.11. ~)) ~ ~ (~) , where Z_-- ~m(~'~). 
K 

COROLLARY 2.12. If ~---- 4 , then ~ is nilpotent with nilpotent length at most 

Theorem 1 and Theorem 2 follows from Corollaries 2.11, 2.12, Proposition 2.9, and Lemma 

1.9. 

Remark. It is easy to see that, in fact, we have also proved 

Proposition 2.13. Suppose V is a regular elementary 2-group of automorphisms of a peri- 

odic group ~ . Assume there is a natural number J< such that C~C~(a~)~{ Then there exists 

an automorphism 0" in V ~ such that C##[~])~$. 
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3~ A Four-Group of Automorphisms 

There is no doubt that the estimate for ~(~,K} indicated in Corollary 2.12 is not the 

best possible. In the present section, without setting for ourselves the goal of obtaining 

an unimprovable estimate, we will show that 

In th is  section, V is a regular four-group of automorphisms of a periodic group ~ , 
V#---{~f,,~,,Lf3t, < = C ~ l , q ~ a & 3 ,  and Zt~(~ (~v,) is the ~ - t h  hypercenter of the ~-th 

term of the derived series of ~ . 

LEMMA 3.1. ~UI=~. 

Proof. By Lemma 1.9, the factor group ~/~ has a regular automorphism of order 2 and 

therefore, by Proposition 1.3, "b," is Abelian, hence ~II~ ~f. We will prove the reverse 

inclusion. By Lemma 1.6, ~v=/V4/~ , where N~--<~-V, 4 ~ .  By Len~na 2.3, [?~] = 

<~,~3>. Now suppose ~G~I" Since O~E[~], there exist elements ~,~2,...,$ s and C I, 

C£,..., ~S of ~ and % , respectively, such that O~=~q~ZC ... ~S~5. Using Proposition 1.3, 

"a, and applying to ~ the automorphism < , we obtain 6b=~ ~ ~q.. g' O~Z= x 

g~"" gs ~- ~ ~ ¢''" g$ ' hence O~g~ ~(#. But, by Proposition i.I, 1~2,l is odd, hence 

0~6~ (4). Since (L was chosen from ~I arbitrarily, we conclude that ~?c ~(~). Analogously, 

~Z ~ ~3 ~ ~(1) , and the lemma is proved. 

LEMMA 3.2. Suppose K is a nonnegative integer. Then: 

b) if K> ~ , then C~(~(K~)~ ~(~, where ~=~-4, 

Proof. We will first prove "a." Since when ~=0 it is obvious, we may assume ~=S >I ~ 

and assertion "a" holds for K ---~ ~-4 . Suppose, for definiteness, that 0~- / Put ~([~(~)/~ 

Clearly ~C_ C6(</~ ,~2>) . By Lemma ) , hence <Q~a>~g(<V ,~2>) , 

and therefore, by Proposition 2.2 and Proposition 1.5, Q1 ~%¢ %C<21, Sa>>n q. Since, by 

Proposition 1.3, "b," % is Abelian, we have ~ 3 ~  %(<~ ~ ~3>) . But, by Lemma 2.3, 

is precisely [6, Therefore, by the inductive ass=ption, = C 

(~) . Then, by Proposition 2.4, the commutant [QI ~ is contained in ~2s_4(~ ) • Using the 

commutativity of ~ , it is easy to see that ~Z9.4(~) also contains the commutant [~, <~q~ 

~9>] Since, by Latona 2.3 /~1,~>=[gZ, ~(s"}] • , , on applying the inductive assumption to 

the factor group ~-= 0-/~$-~(~ we obtain Q1 ~ ~Zel (~.~, where ~1 is the image of Q4 in ~ . 

But then ~ ~(~). By the same reasoning, @Z and Q3 are contained in ~(~), which, in 

view of Lemma 1.6, proves "a." 

Let us turn to the proof of "b." When K = { it follows immediately from Lemma 3. I. 

Suppose K----~ and assume that "b" holds if K ~ 5-4 . Put ~=C&/gs)/~ ~-m ; {~/~ . 

It is clear that &~- ¢~, hence [~Pg~ ~_ ~Is_~(C-) . Analogously, [p~_ ~-4(~), hence, 
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in view of the commutativity of ~ and Lemma 1.6, [PI' 6&~s-'~ ~ ~Z 5-~C~) " By the inductive 

assumption, applied to ~ , we have ~ ~ ~(~) , where ~=~$-4 and ~ is the image of /D in 

~ . Consequently, ~ ~ C~g_1 (~). Analogously, ~,~3 ~ %~-4 (~-~' hence, by Lemma 1.6, 

COROLLARY 3.3. If ~ is a periodic group admitting a regular four-group of automor- 

phisms, then ~(~C~)~ %L 1 ~(~)) for K= ¢,~ .... 

COROLLARY 3.4. The commutant of a /<-step solvable, periodic group admitting a regular 

four-group of automorphisms is nilpotent of length at most f~-K-#. 
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