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STRUCTURE OF POWERS OF GENERALIZED INDEX SETS

V. L. Selivanov UDC 517.11:518.5

In this article we generalize the results of [1-3] in order to relate problems concern-
ing index sets more closely with the theory of complete numerations [4] and treat ordinary

multiple reducibility from a single viewpoint,.

Let A= (A,oc) be a numerated set and let the set S be arbitrary. ‘The set M@(A,S)
of all maps from /4 info J has twonatural orderings, which we denoteby <, and Sy in crder to
emphasize their relationship with the corresponding concepts in [1]. Specifically, for ¢, t/e MO’7O
M,S) we set Q< (// if Yo < 5/1006 {here o denote composition of maps and € denotes redu-
cibility of numerations), and stMgﬁ if 30=$ﬂoqb for some morphism gb from A into A ﬁéMQZ/
implies that ¢)$,n¢ . Among other things, we will study the preorders <, and SM . We
note that we recover the case of "ordinary" index sets by taking S: {0,{} , in which case

we identify MCLP (A,S} with the family of all subsets of Aand (pocL with the index set

-1
x ({CZEA l 50(0)=/}). We will use some of the terminology in [1].
1. AUXILIARY CONCEPTS
We introduce some concepts needed to study the preorders <,,%4y . If (P, =) is a

preordered set, then the closure of a set X € P in (P, C) is the set ‘:X]#{{/E/DH:CEX (re

Y /\gt;:l})}. Let ¢, ¢ be maps from 7 into a preordered set (ﬁ,;C;,’)5 then ¢ 1is equiva-
lent to L// if Vxep(¢($)§'¢($)A([/($) ='P(x)). Two preordered sets (P,E) and (,D’;I;")

are equivalent if there exist monotone maps Y:P—P) ¢': P'—>p whose composite ('oy

is equivalent to the identity map of D., and (fo ¢’ equivalent to the identity map of P' .

Let [be a nonempty set. By a discrete generalized semilattice (more precisely, an I -
discrete semilattice) we mean any algebraic system (,D;E’ {pi}é(-:[) satisfying the following
conditions: 1) < is a preorder on P ; 2) Vie/ (,ZZI cP) ; 3) for all 4e'€l, (i, the
proposition Yg Vg]z‘# (e FAT=zAy=zA (el rz=t AYE =S DV 5,17‘:, Ateg—ic
.Z?‘JZ‘C_:y)) is valid in Z

The element 7 , whose existence is asserted in 3), is defined uniquely up to equivalence
in (J; =) , so that we can define binary operations Y (i€l) on P (UZ (x’y):: Z) such that:
DYy (z,g) ; if T,yst, t€lngy;] then Ylzy)=Ts if wy(2y)=y(z.y), i# i, then Uy(z)y’)
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1) 11 v 1) . . PP
€Z or Uy (x,y )_::_.y(z‘,y,z,y €P, (i’€]) . According to this definition Fg = [lz,n,g(/b] . Discrete
generalized semilattices may thus be regarded as systems (p;E,{U(:}[;e[), where the {; , which
are called the generalized upper bound operations in (P, &), satisfy the above conditionms,

1f such U[ are given, it is easy to define generalized upper bound operations U;’”

with
any number /22& of arguments; for =4 , e.g., it suffices to set [[ (,, 29 ,$4)-——"
“é(‘[z(‘ji (z,z)Thx,) - If ,D=L&)I [’W} 4] and ,..,L€F , then the sets {z,...,T,] and

{u&"‘)(ac,,...,ﬂfm)“d} form a discrete pair in the sense of [1, Sec, 1]. We also observe that

if (#; ;*{Ui}) is a preorder with generalized upper bound operatioms, then (J; C_:,{[mgaé]})
is a discrete generalized semilattice.
We define yet another concept. A semilattice with discrete closures is a system (Q;E,

U’{(Pi}i,e[) satisfying the conditions:
a) = 1is a preorder on the set Q, y
b) Voy,2€ld (TegAyeg ~—~ Tuycz);
c) gﬁé (éeI) is the closure operation in (Q;E.) , which by definition means that

.yl (2= ¢, (D) (@Y —0. @)= G (Y)A g9, (T)= g @);
d) Vel Vx,g,zeﬂ QD= YUZ — QLIS YV @) 2);
e) Vf,-flﬁg(%((r)g%(d},) —*%(‘ZJ)EJJ,) tor all ¢l'el,i%,

The above concepts are interrelated. Indeed, in any semilattice with discrete closures
g;=,u, {(pb}) we can define the operations {;° a-(_fgg ‘_%(gjug) . If now [ is any sub-

set of a closed with respect to all of the U' 94 (it suffices for this that .U[
X3

[’Lrbgdﬂgp) then (D, ;,iuﬂ.}) is a discrete generalized semiattice (the verification is
rivial).

We will also need the following modifications of the above definitions, A system ( 1 &,
&}}5‘/ el) is called a 2-discrete generalized semilattice if it satisfies conditions 1)-3)
(with i replaced by 1,/) , and 3) is taken for all b/ i / "el with é=r"1/ / / . A system

(@ = U, W@/}b'/e'[) is called a semilattice with 2-discrete closures if it satisfies con-
ditions a)-e) (with i replaced by 1// ), where e) is taken over all ¢ /, ,/ e[ é#o,/’;f——/
4s above, generalized upper bound operations //4/ can be defined in any 2-discrete generalized
semilattice, and any semilattice with 2-discrete closures will induce 2-discrete generalized
semilattices.
2. THE OPERATIONS As

In this section we consider some questions involving complete numerations. Throughout
this article, S denotes an arbitrary set with at least two elements; A(8) is the family of
all maps from the natural numbers /Vint:o :S ;< ig the reducibility relation in /‘/(S), &
denotes direct sum of numerations on /‘/(S) "3 /K=(K,2) is a numerated Kleene set; Jl= (/7,02)
is a numerated Post set; Z is a universal partial recursive function {(p.r.f.), i.e.,

5<;p’y>=zx(é/) , where < 2> is a Cantor function used to encode pairs.
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To each element SGS we associate the unary operation JPg on //(S) by the following
rule: if \’E/‘/(S) .Jfé/V then

S . i zddmZ,
005(‘)))% ~ { V%({E) otherwise,

Clearly, "bflg(ps\))=f(,n,9 VU{S} (for simplicity, we sometimes abbreviate 71’(58) to fqg,fm ).
The operation Ps may be regarded as a modification of the operation of taking the completion
of a numerated set [4]. We state several properties of the /DS (the obvious proofs are
omitted).

The first property shows that the Jg generalize the operation of pm -cylindrifica-

tion. Numerations v-,/\/-»{g'i} are identified with the subsets {neNl \)(/Z)"—“f}.
1. 18 S={g1},VeHI(S) , then p,(V)=pm (V) p, (v)=pm (V).
2. Py is the closure operation on 6‘/{3);6) for all § and seS.

, ' 7 .

Let us verify, e.g., that ¥,V G.//(S),\)s\’-»/%(\))s/%(ﬁ (the assertions \IS,DS(\)),%/%(V)S/JS(\))
are proved just as simply). Let 70 be a generalized recursive function (g.r.f.) reducing
y to V' and let ?, be any g.r.f. satisfying

2 = G . if ngdomZ,
44 ﬂé/,fﬂ(ﬂ) otherwise ,
Then the g.r.f. %fl,<g(ﬂ),0> reduces g (V) to /DS(V').
. ’ !

Remark. We note that the assertion Vv,v’(Vs/?s(V)A(%V*,gM’ sps(x) ))Apsps(v)\@(\))) holds
effectively, i.e., if we are given, e.g., a g.r.f. reducing v to V' , we can effectively
find a g.r.t. reducing /os(v) to ,DS(V’) for all 3 ,S€S. V.\)’G HI(S) . Many of the other
assertions in this paper are also effective in an analogous sense,

3, For any SES , \}Q//(S)) Ps (V) is the smallest numeration over ¥ , which is complete
with respect to the particular element S , i.e., ,DS(V) is complete relative to § , and if

'

V<V and V' is a complete numeration in A (S) relative to &, then Ps WM<y

4. The closure of the set {Ps(\))]ses} \)ef/(S)} in (/‘/{S),s) coincides with the set of
all complete numerations in /‘/(S)

5. If 7 is a set and 50:3“"7, seS | then 500/05(\1) =,U’0(9)((P°1)).

In order to formulate the next two results, we recall that numerations \)ﬁH(S,),,..,VmE
H(Sm) can be put in correspondence with their product \;®,..®vmeﬁ(§x..,x8m) according to the
rule: (V,@,,,@\)m)<.1‘,,...,.’l’m>*-‘r“(1),.’l;,...,\£n:'m)‘ , where < > 1is the coding function for /M -tuples.
In addition, to each function (ﬁS "'""S we associate a function p* (//3)”1—"/‘/(3) defined
by ¥V V) S 9o (V,0...0V,).

6. For arbitrary sets 3,,..., S,,z and any sze‘S},VZe/f{Si) (/ébSITL) we have: /D(S,.-~1S,,,)

(5, (1)8... @2, ()2 08..82, ().

This follows from property 3 and the well-known fact that if \%’G//{Sé} is complete

with respect to S;ES‘: then V,I@,..@ Vn,z is complete with respect to (S,,...,S,,.,).

318



7. The set of all complete numerations in /‘/(S) is closed under all the operations
g% (p:8"—8,m>1).  This follows from 3, 5, 6.

In order to formulate the next three results, we recall a few detinitions., If
veH(S), ESS thenthe set £ is said to be vy —enumerabie if V-'(E) is recursively enumer-—
able. A numeration ¥ corresponds to a preorder &, on the set S which is defined by l's‘,g
if for every y ~enumerable fES ’ xEE implies that yef It is clear that if .Z”Ff "m;\)
then the element .’Z‘ES is not ¥ -related in this way to the other elements in § . 1t
follows from V< v/ that Vx‘y’é{ (a;'sgé{—»zsy,g/). We now study the relationship between the

preorders <, and éPs(") on
8. For any EQS, se&, veH(§S) we have

_/ omWE) . it sgE
£)=<¢ .
o) (£) pm (V) . it sef.

This is a simple consequence of properties 1 and 5. Property 8 easily implies:

9. Aset £ES is /75(17) -enumerable if and only if ’U(ggos\))gf or S?’f and £
is y -enumerable.

10. For any x,é/,seS,Ve//(S) we have

—-——D <
2, Y w\yé,N(zw SA Y€ ug (psV)),
i.e., S/’sw) is the smallest preorder on S which contains =y ,and is such that the element

Sis less than or equal to all of the elements in /mgv

If "L‘S‘,g , then {BSPS(V)% is implied by V:sps(&’) . Let Z<;5S and é(G ‘Yﬂg(l?s\’) . Then

Iépsm S and property Y implies that 55&(07 . It follows that .’!J«-‘Spsw)y . We now verify
that £SP$My“*£$yyv($sv3/\ye'zﬂy(ps\))). Let *Z‘{‘ps(wy ; if <, S , the assertion is obvious.
Thus assume that x#,s ; we then have to verify that 93$91/ . The assumption a:#,,s
implies that there exists a Y -enumerable subset £ESS such that SL‘EE,SQ(E . Let D&§
be V —enumerable and Z€// . We then have S?./ £nm and £NJ) is  —enumerable. By
property 9, £NJ is ,DS(V) —enumerable; but then $$’os(wy and ZT€ £NJ imply that
ye Enpcl . Thus, we derive that y€j7 from the assumption that zeﬁ, and 7 is Y -
enumerable. Therefore, ‘Z'évy ‘

11. We have P;(V)S<@®p=A0V)SCvaM)sB for all sef, vix,8€/(S).

This follows from 3 and [4, Proposition 10, p. 163].
12. 1f 5,8'%€S, V,V'€H(S), ps(V)<p, (V)  and S'#S . then A<V,

Let 70 be a g.r.f. reducing /OS(V) to /DSI(VI) ; letg be any g.r.f. which satisfies

G . i f<zn>gdomZ,

zg(fﬂ,ﬂ,ﬁ)= { Q?m - otherwise

for all /ﬂ,rz,.ZE/V . By the recursion theorem, there exists a g.r.f. C(ﬂz,/z) such that
J

Zoim n) =2 m.,Cm, ) We claim that the function b, defined by /l,</72,/2> :5%(0{!72,/&),42

b ! W LA, ’ )

'1s a g.r.f. reducing ,%(V) to ¥ . 1Indeed, assume that <m,/1>¢daﬂz/l, , i.e., 7”<C(/77,/L),/l>¢
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dom& . Then (IDS,\?');B<C(”Z,/’L),/Z>=S,. On the other hand, zmﬂfﬂ and therefore <C(H1,n),

(4
n>¢dom§, %V)(Ch,n,),n>=s. But we must have (/75,\)') 7['<C(m’n)’n>= (,OSV)<C(/TI,/Z),/Z> , which con-
tradicts §%S§ . We have verified that A is a g.r.f. It follows that Zcmw)=2’m for all

mneN and gps,9’}f(c(m,fz),m=V’§f<c(m,n),n>= V’%(ﬂl,fl) . These equalities imply:
(pV)<m,n> = (pY)<C rm,m), n>=(p V' W<e lm,m>=V frcm, >,

We now state a property that generalizes a property possessed by the /7 —jump opera-
tion. First, some notation: If ¢! 8—’5, VeA(S) , then the symbols V’p denote the direct

. . . —_ —
sum ngo V¢ of the following sequence of numerations: Qox—\}, \)K,Hs—- @Yo \),( . The case of an

m -jump is recovered by specializing to 8={_0,{}, Q) =1, ¢H=0.

13. If ¢; S—§ is a map without fixed points, two numerations ,Cfg(\) p),ps,(l)‘p) with
S'#S are not comparable, and therefore /75(}’,0)%{\}’0.
’)

Assume that ,Ds(t)so)sps, (v Then /Ds(;) Hy? by property 12, Therefore (property 3),

the numeration ILI%V‘” is complete. In addition, we see easily that Yo S . But it
is easily seen that there exists no numeration M with the property that SODIUSIU . Indeed,
let the g.r.f. 75' reduce g&o/l to /1:300/1 =/,107L7 . By the recursion theorem for complete
numerations [4, p. 161], /d]f(C);'/JC for some number ¢ . But then /.[C=/£17[)(C}= plucy , i.e.
/JCG S is a fixed point of the map ¢ , contrary to assumption.

The following important result follows from properties 2, 11, 12.

Proposition 1., The structure (H(S);s,@,{ps}ses) is a semilattice with discrete

closures.

COROLLARY. Let /72 be the set of all complete {(with respect toSES) numerations in
H(S)7 and let /‘/, ($) :SLGJS "L/S be the set of all complete numerations in 4 (§). Then
(/7;{5/ S {HS} se$ ) is a discrete generalized semilattice.

We conclude this section by noting another application of the Pg operations, That is,
they can be used to find examples (more "explicit" than in [4, 5]) answering a question posed
by A. I. Mal'tsev (it turns out that the first of these assertions was known to Yu. L.

Ershov).

Proposition 2. 1) Let G be a ZZ —complete set regarded as a numeration G: /V - {0,/}‘
Then the numeration & 1is complete relative to both 0 and 1. 2) The standard numeration of
the class 2: is complete rela tive to any subset of 2:

The proof is a simple application of the Tarski—Kuratowski algorithm, together with
property 3.

3. UNIVERSAL NUMERATED SETS

Consider a structure (MQP(A,S);$,E) for a class of numerated sets. The numerated set
A= (A,d) is said to be universal if the numeration « is complete and there exists an infinite
computable sequence of nonempty pairwise disjoint o -enumerable subsets of A . The map
< 2 A induces an inclusion ¢ — o  of MaP(A,S) onto MG.P (/V,S)=/’/(S) which
we denote by %
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THEOREM 1., The following conditions are equivalent for the numerated set A:

n A is a universal numerated set;

2) for every set S , the clogure of the image of the set MO,P(A,S) in (H(S};S)
under the map &; coincides with the set of all complete numerations in H(S) .

It is easy to see that this is just a convenient reformulation for our purposes of the
uyniversality theorem in [4, p. 267].

We note also that the closure of the set /%:--WeMap (A,S)l (/)(a)s‘g} (where @ is a dis-
tinguished element inA\SQS ) in (H(S),S) coincides with the set of all numerations in
/—/fﬁ which are complete relative to the element 365’. Together with Proposition 1 and
its corollary, this gives:

COROLLARY. If A is universal then (MQP(A’S);smﬁ{’Ds}seS> is a discrete generalized
semilattice which is equivalent to (/L/7 (S), =, {HS}SGS )

The standard examples of universal numerated sets include K and the numerated set
provided by the family {gz‘,{x} [1‘6/\/} with a principal computable numeration. We note also
that if A is a universal numerated set and B is a complete numerated set, then their
product /‘%® ﬁ is a universal numerated set,

4, THE OPERATIONS gz‘

We now come to our main goal, which is to study (M&P(A,S),‘Sm) for another simple,
natural class of numerated sets. However, this requires some preliminary work similar to
that in Sec. 2.

Fix a creative set £ . Then we can associate to each element fES a unary operation

¢ on ,L/(S) defined by

4
Vo o, if g
y 4

(Qz‘v)<a?,g/> ;{ cif o gek.

Clearly, mg (Qf\))='ﬂu}¥}(}{2f} . We note some properties of these operations gt , which will
will be helpful in what follows. Most of them are dual (in an appropriate sense) to the
properties of the operations /75 .  In most cases, the proofs reduce to simple manipulations
using the fact that g is creative, and we therefore omit them.

1. For the case when S=i@)/} we have 20(0)=Vx§ . 9/(\1) = -V_"“E; (a numeration \)E/L/(S)
is identified with the corresponding subset of N , and for O,‘Z'Q/V we have ('SX’G’::{<CE,£/>,|
TecAyer))

2. g‘? is the closure operation on (HfS);S) for all S and Z‘QS

In order to derive an analog of property 3 in Sec. 2, we introduce the following defini-
tion. A numeration VEH(S) is said to an element JES, if for arbitrary g.r.f. f and recur—
sively enumerable set (r.e.s.) & there exists a g.r.f. g, such that for all zeN

{v/’(m) , i zdo;
¢

F@ = . if zed.

A numeration is said to be cocomplete if it is cocomplete with respect to some Z‘GS
3. For all LZES ,VEH(S) the numeration gf(v) is the smallest numeration over Y which

is cocomplete relative to r.
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plt)

4. 1f 7 is a set and 90-'3—"7',2(6‘9 , then yogf(\’) =Q (gﬂ"\’).

m
]
(gé’(v,)@...éagf’"(xf,n))sg {V,)@...@gf”!(v ). )
It suffices to verify that grin(ghy)@.. 80"V, )<g ’(v,)&..@f’(;;,) . let @be a g.r.f
satisfying Uef{vUef “"9(11,1)—)65 for all (,J€N . Then the g.r.f. taking the number
€L, B3P into <[—’z}:9('z\'rp?));m'<£xm79(‘zxm;§’)>> (where ¢ and ¥ are g.r. functions

inverse to the pair-coding function) gives the required reduction.

5. For arbitrary sets S;,.,.,S and arbitrary z‘je%,\/&-eﬁ(&){/ﬁsm) we have: ga"!’“"tm)

6. The set of all cocomplete numerations in A4 (§) is closed under all the operations

9% (p: 8™, m=>1).

The duality of the operations /g and Qt can be seen in the following description

of the preorder égt(V) on §
7. For arbitrary EQ(S, ve 4(8) we have

VIEXE . w 14F,

1y ==l
(g <E) VIE)XE | i LeE.

8. The set £CS§ is gf(;?) —enumerable if and only if £N "{ﬂg (92")’)=¢ or fe£

and £ is V -enumerable.
9. For arbitrary .’Z’,y,lzes, ve H(5) we have .ngz‘w)%“”'x é,;y‘/(fsyﬁ//\a?e ‘L/Lg(gtw),

i.e., ‘égfw; is the smallest preorder on 8 that contains ...<.9 and is such that all elements

in WV are less than or equal to Zj'

1f wsvy then x“gl‘w? follows from vs;gf(v) . Let z,‘s\,‘y, ;ngg (gfv) ; then féyy
implies that zfégfw)y and 3?6‘1/@{?%’) implies that xs?*(V) , by property 8. Hence
ZSotyd.

We now verify that ‘r“‘égt(y)y —»xs.vyV(z‘sVyAxe ‘Zﬂg(yf\/)). The case when Z'Svy is
obvious, It therefore remains to prove that xsgtmg, zf%\’.% implies acs,f/ . Since té‘,g
here exists a V -enumerable set £ S8 such that tek£, ysff . Let /€S bea Y -enume
able set and let L€/ . Then FUJZ is V -enumerable and t€L U . By property 8,

N . < -
the set £UD is g°(V) -enumerable. Since f\yftw% L€ LU | we have ;65 vz,

But yﬁ/E , and therefore (5/6_.{7 . Thus, the agssumptions that .Z'Eﬂ, and /2 is y -enumerable
imply that yeﬂ .

5. THE OPERATIONS 'L:

The compositions of the operations . and (i[{g’Z:’ 3) , which we denote by '7,52" H ZS"‘:
/DS“'?Z: will be important, We therefore note some properties of the operations Zsﬁ , all of
which (except for one) follow easily from property 1 and the corresponding properties of the
operations /L, Qz‘ .

1. For arbitrary S,f¢ S, VeH(§) we have /O‘S(QtV)Egz‘%V).

We indicate only the reducing functions, leaving the routine verification to the reader.
We define the r.e.s. 0 by {.Z’E/\/]mEdO/TZ@lAZa?”(‘T)Ef} . Let 7pbe a g.r.f. which 7 -reduces @
to £ , and let 9 be a g.r.f. satisfying
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_ g it z¢domZ,
Qy('t) - { %Z.é?{ft)-orherwise.

Then the g.r.f. %.’&«5@),0%%’2‘)) reduces the numeration /O‘S(Q#V) to the numeration gt(psy’).

Let i be any g.r.f. satisfying

¢ , o if ’Z(ﬁ)g{ and /(.ZC) ddﬂﬂli;
- llé&l‘)fl{d‘)}! if Z{SE)EdOﬂZg and [(\’Z) is enumerated
hiz)~ in dﬂl’ﬂg before Z(f) is enumerated in 55
A2.<0,7(T)> - in all remaining cases.

(we assume in such definitions that some method has been chosen to etfectively enumerate
the corresponding sets during the stepwise construction [in this case, @om Z and £ ).

Then the g.r.f. M.</I.{.T),0> reduces Qé(PSW to /DS(QZLV).

Remark, It is easy to construct examples that show that the operations /DS ./.75, (and
7

also gt, gt ) do not commute in general.

2. For S={0,l} we have: g%(ﬁ)=/0/77()))xg, QO,OI(V)=P/77'(V)"§'77 ¢/%70(V)=pm(V)xg, g{ﬂ(\))=

IDﬂZ(?)Xf (cf. {1, Theorem 2]).

3. Zst is the closure operation on (H(&;S) for arbitrary S and S,Z‘ES.

A numeration in H(S) is said to be 2~-complete relative to S,Z‘ES if it is complete
with respect to § and cocomplete with respect to ¥

A numeration is said to be 2-complete if it is 2-complete with respect to some S,ZZ€S

4. Zst(\/) is the smallest numeration over V which is 2-complete relative to Sj .
1 . . k] z‘ _ w‘h

5. If J is a set and P S 7, b,Zle S, then SOozS(V) —”W(SJ (@ov).

6. For arbitrary sets S,,..,,Sm

(i},;--,ﬁm} (th

(85 +2Sm) S}
7. The set of all 2-complete numerations in H(§) is closed under all of the operations

p* (¢ $"—8, m=1),

8. s'LtN) is the smallest preorder on S which contains -€V and is such that every
S

and any 35,2%65[; , V&.G/‘/(SI;) ({<ism) we have:

7 (0.5 (5, )= 1 (y)8... 0 1% (v,).
m 1 '

element in /uzg\) is greater than or equal to § and less than or equal to 7.

9. Zst(\))scCCB/G-‘-ZJ(V)SOCVZ:(V)S/é for all S,7€8, Vpot,B€H(S),

10. 27(v)< zj'{v’}—»zj(u}ss}’ for all WWeH(R),5.5/42€S, §'#s, 1+t
It follows from ps(gfl)) S/Ds;(ng:}’) and S,%S that /:75(9'2"\))(9#(9,) (Sec. 2, property

12). Let the g.r.f. freduce /Ds(gf;)) to gi‘/(y’)' and let the recursively enumerable

set G be defined by 6.—:{<£,§/>l(xedama?'/\zi"{:c)eg)vzké/,z{zbef}.
Let A be a g.r.f. /M -reducing & tof and let 9 be any g.r.f. satisfying

%Z.;p<y, wx)> . if Z/’<y,z(x)> is enumerated in &
Z - )= before T is enumerated in 0M ;§ ;
! d AZ. <£§ (CE), /Z< Z, g/?— otherwise
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(in particular, £, =@ if xgdom Entf<y,2(x>4 ¢).

By the recursion theorem, there exists a g.r.f. C such that 25(-'8:2‘?(1‘,6(@)'

the g.r.f. A2 fye <C(x), Z{X)> reduces ,os(g*‘y’) to ¥/ . In order to prove this, we first verify

We claim that

that
Yz (tf<c @), 2@>¢ £). 1)

Proceeding by contradiction, assume that 'L%’<C((L‘),'Z(w)>€§’ . If %f@(x),z($)> is computed
in g before & is in dom &, then zm)(w)#’@(x),z(z)) and therefore zf=(g2‘V)f'<L’m,z{x)>=(gtv)zcm(zx)=
(/DSQZ‘VKC(Q},’l(-f))-‘-(yéyi)?[@(z),’Z(\Z‘)>=f,, which contradicts the assumption ¢'#4. If Z is computed
in dgmZ before ’”7£<0{$),'z(£)> is computed in f , then 20(@(’1.’2)=<[§[£),/3<1,;C($)>7 . By the
definition of @,/ we have /A<Z,C(T)>E, and therefore 2‘=(gtV)<£’£’(:c), /L<$,c($)>>=(gfs!)za

1 $)
(M#éggtvkar)w =(9t"')70<0($),’£(13)>=éf We have thus verified (1).
It follows from (1) that VT(%(@('Z\?):%M),/K@L’@P)) and V,z(.reda/ﬂﬁf A'L%@)ﬁ{«(ﬁcw»q?-ﬂ
A<T,ClT>E £), whence

Vz((,osgf\’):c = (pgW)<c@), uz>). (2)

Using (1) and (2), we find that V.i!? ((’Z;V)I% %QZ‘)’)<0($),Z(1)> =(gtV,)]P<C($),7(-’E)>=VZ%(C[CE),

2(Z)>), as claimed.

The next proposition follows from Properties 3, 9, and 10.

Proposition 3. The structure (/'/(S);&,@, {’Zj}szzes) is a semilattice with 2-discrete
closures.
COROLLARY. Let /L//s be the set of all 2-complete numerations in H(S) with respect

to S,Z,‘G.S ; let /7’2(5)7—;1}%5 HSZL be the set of all 2-complete numerations in /L/(S) . Then

]
(/'/2 (3);S, {»HS }5,563) is a 2-discrete generalized semilattice,

6. 2-UNIVERSAL NUMERATED SETS

We now consider \Map(A,S);sm) for another natural class of numerated sets. A numer-
ated set /%= (A,oc) is said to be 2-universal if the numeration o is 2-complete and there
exist a g.r.f. gand a computable sequence {EK} of & —enumerable subsets of A such that

\N{J £_ for ever enN.
<geENU £ y kel

Property 8 in Sec. 5 implies that the classes of universal and 2Z-universal numerated
sets are disjoint. Examples of Z2-universal numerated sets include /T and the numerated
set provided by the family {¢, {58},/\”2')6/\/} with a principal computable numeration, If A
andg are, respectively, a 2-universal and a 2-complete numerated set, then A ®B is 2-
univetrsal,

THEOREM 2. The following conditions are equivalent for every numerated set A\:

1) A is a 2-universal numerated set;
2) for every set S , the closure of the image of the set MU,P (A,S) in (H(S),s)

{\l
under the map f& (cf, Sec. 3) coincides with the set of all 2-complete numerations in

H(S).
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We first prove that 1) + 2). Let the numeration « be 2-complete with respect to the
elements Q,ge A; then Zag(o()‘é'm& by property 4, Sec. 5. If ¢ is a map from /4 into O , then

@b

sﬂozf(oc)awoc and o7 )= Z”ﬁ'(wv“) (property 5). The numeration @oX=1Y,,,

(Pex) is
therefore Z-complete with respect to (@), @(5) . It remains to show that if y is a 2-complete

numeration in A (S)  then Yea=Yy for a suitable ¢: A—S§ . Assume that v is 2-complete
with respect to S,féi S ; we then define the map ¢ by

§ . if arstU
@) = v o if 2 \u g
t . if j’kﬂz(maem\ :ceE/\:z:eE ),

it follows from the description of the preorder < lgw) (property 8, Sec. 5) that v@)=s,
#6)=F. Tt remains to check that @ecc = V . We have VK(OCQ(K)EE \ U £, ), and therefore

V/(( oL K)= Pl (K)=V, ), i.e. reduces V to Yox . In order to prove that gex <V it
K b)
suffices to verify that@eo € ’Zst(\))( property 4, Sec., 5). Let the r.e.s. & be defined by

o {&/ENlJK,mG’R%KAo%/EEKHEm)} : let Abe a g.r.f. /M -reducing 6 to &, and let fbe any

g.r.f, satisfying
Fiy) Az, (K,/Ng))— otherwxse, ,

vhere K is the first number for which y was enumerated in ec'/(é;c) in some simultaneous
stepwise enumeration of the sequence {d’{(Eg}} . We verify without difficulty that the g.r.f.

Xy.<7['((y),0> reduces (oxX to ’L§(V).

We now prove that S:A and let ¥ be the identity map from A into S . By condition
2, the numeration ¢oo=o is Z2-complete. Now let S={¢,{$},N¥£€N}, be a V -principal
computable numeration of 8 . The numeration V is 2-complete relative to ﬁ,/\/ . Bycondition
2, there exists a map WA—»S such that ¢exX=V . Clearly, the sequence {.DK},.//}:{{K},
/\/} (keN} and the g.r.f. f satisfying the condition Yk (V/l(/()={i<}) demonstrate that the numer-
ated set (S;V) is 2-universal. Let the g.r.f. / reduce vV to ¢ex . We then easily see
from Pox=y that the existence of the sequence {fk},EK :§0_/(./7K) and the g.r.f. fo/L
prove that the numerated set A\ is 2-universal.

The next result follows from the proof of Theorem 2 and the Corollary to Proposition 3.
COROLLARY. LetA\ be 2-universal and /Z?g:{(p eMap(A,S){t,v(aH,(pff)#} (where S,Z‘ES;Q,;EZA
are the elements with respect to which the numeration oc is 2-complete). Then (Map (A'S);é’{pst}sjes)
is a 2-discrete generalized semilattice which is equivalent to (HZ(S);s,{Hst}S,{,ES)'
7. REFLECTIVE NUMERATIED SETS
We will henceforth consider the structure (Map(A’S);S > for two new natural classes
of numerated sets. The numerated set A\= (/4,&) is said to be reflective if the numeration

X is complete and there exist morphisms q%’qb*’ sb' 9?* from A into A such that:
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1) ?%*oqu,qe*oqb’ are the identity maps on A ;

C‘ . * »* .
2) mn,g‘?% , ”bﬂg /5’ are disjoint & —enumerable sets.

Examples. K is reflective. If C is a finite family of finite subsets of A such
that (C;c_:) has a smallest but not a largest element, then the numerated set (/4,0() ,
formed by the family of all computable enumerations in H(C) together with a principal
computable numeration is reflective, If the numerated sets A and 5 are respectively reflec-
tive and complete, then AQB is reflective, The family {¢,{(C} [:CG N} equipped with a

principal computable numeration is not a reflective numerated set,

THEOREM 3. If A is reflective and ,75;={g0 cMap(AS)lp@=s} a€A  (where s€S,

is the element with respect to which the numeration o is complete), then (Map (A,S);QM,
{ps}sés) is a discrete generalized semilattice.
We first define the binary operations QS(SES) on Ma,p (A,S). If SES, cpo,zﬂe MQP(A,S)

then the element 95(%,%)€MQP(A,S) (more briefly, &, ) is defined for (xeA): by:

S

- R L7 E AR L
&) {goqu’L(aJ), if Ze mg‘?bj, ce {01},

We claim that @S (4,9} is the generalized upper bound of the elements @4, in (Map (A,

S);$ ,{/D > (cf., Sec. 1). Indeed, by property 10 in Sec, 2 and condition 2) in the above
M1ls s
definition, we have (Z¢’t[l§29€ U ’Ulgqb, , and therefore QSGIZZ . We further have %9%(;2:):

%c;-’?;q?(x).:%(x) i.e., the morphism ‘?g’ M -reduces g to &, {gpc-:&:’goqb(;) . Let ¢,¢<, ¢,
SIJE,DS and let Z{{(}-—-O, /} be a morphism M -reducing ()ﬂb: to 50 . Then the map M;A e
A , defined by

- a . i rdugFuugd;
Y {Z/g Gb;(x), i T€ mggqﬁf, I

is a morphism from A\ to A\ which M —reduces 95 to ¢ (this follows easily from the reflec
tivity of A ). Finally, let sﬂéfg,; 8'#S and assume that the morphism 2/ M -reduces (,0
to &, . It follows at once from §'#S8  that Z/(G)E’L/quz- for some (€{01} . Together with
property 10, Sec. 2, and the fact that # is a monotone map from (A;suc) into (A;éoc)

[4, p. 111], this implies that 'mg w;_(mgqb& , whence the morphism qb;ow M -reduces g//
to (pl'/ .

We note some additional properties of reflective numerated sets A.

1. 1f XEA 1is an « -enumerable set, then its image Qﬁ (X) under the map f?‘z (i=0,1)
is also & —enumerable, and a @ -index for the set oc_/((ﬁ: (X)) can be found effectively in
terms of a # -index of the set oc"/(X),

This follows from the readily verified assertion

Veed (ze%} (X) =z mg ) n bl (D)eX),
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ye define a sequence {{/{J,i#ﬁ:} of morphisms from A into A by
— —_ —_—
Yad Y mbolf, Yred Wyt
2. The sequences of morphisms {%}? {1//,( } are computable; @lf s I 1is the identity
K IS
on /4 for every KEN .
3. The sets _/Z,ﬁ,(ﬁm,g% (ke N ) are pairwise disjoint.
1t suffices to prove that YK VYm (K<m—¢-ﬂ,<ﬂﬁ”z=¢). This can be done by a simple
induction on K.
4. Every reflective numerated set is universal,.

It follows from 1-3 that {DK} is a computable sequence of nonempty disjoint o ~enumer-

able subsets of A
5. If ] is a set and %15_*7, 565,900#;5 MCLP(A,S), ¢0@ ((/%,W) S”(S)(w P, ¥ 90)

Property 4 and the Corollary to Theorem 1 imply that generalized upper bound operations

can be defined, in addition to the operations & on (Map (A,S);Sﬂ“ {/%}Ses) , for a
reflective numerated set A . These operations are closely related.

6. For any SES ,%’%eMaP (,4,5) the enumerations @S(Wo,‘e) 9l and Ps((%od)e?((/l)od))
are equivalent.

We also note that property 2 can be used to define the operations ¢ even for infinite

]
sequences of elements in MaP(A,S) , which is useful in some problems. Indeed, if §0K€

Map (A,S), k€N, then 6,=6, (,9,...) is defined by
S, if J:i
@(x):—‘{ * ) 20 K’
s Q¥ () it ze'Z,

In this case we also have @5(500,(,07,“‘)”0( = O (Kﬂzo((ﬁ,(%c)),

8. 2-REFLECTIVE NUMERATED SETS

We now consider another class of numerated sets. A numerated set A = (A GL) is said
*
to be 2-reflective if the numeration o is 2—complete and there exist morphisms C;b CP Ce, Cp,
from A‘ into /4 and o —enumerable subsets 0 , 0,5 0 A such that:

1) the maps qb*oqb Cp*a qb are the identity on A

2) B2, wgB=B\C (=01, B,nB=n¢.

Condition 1) implies that q%v 9’37 and injective, and 2) says that ‘Lﬂ,g (7% n mng’ = ¢‘

Examples. The set /7 is 2-reflective, 1If 0 is a finite family of finite subsets
of /V that contains at least two elements and is such that (U, g) has a minimal element
and a maximal element, then the numerated set defined by 0 as in the corresponding example

in Sec. 7 is 2~-reflective. If A\ is 2-reflective and ﬁis 2-complete, the A\@B is 2-reflec-
tive. The numerated set {¢,{CE},N|£BEN} with a principal computable numeration is not 2-

teflective.
THEOREM &4, If A is 2-reflective and ,27 {(peMap(A SN w{a)=S, 9’3(5) ZA} (where 3555 a,
&nd géA are the elements with respect to which the numeration « is 2-complete), then



(MQ,P (A S), \M‘#&'D }sfes) is a 2-discrete generallzed semilattice.
We first define binary operations @ on Map(AS If SZSES %,596 M&P (A S)
we define the map @f Qt(%,% by:

LS o zd B,V 5,
&St(sc):: p.P; (2) it TeB; N 6
t it zel, u6’

The map @t(%,(pf)EMap (/4,8) is well defined, since the 2-reflectivity of A implies that

(BuB, B
4

/g t

properties in Sec. 5, we verify without difficulty that the 95 are generalized upper bound

operations in (MO—P (4,5); QM,i'E;t})

0 5 0 L:,U U,) is a nontrivial decomposition of the set A . The map 6§t(900,g0,)e

, since aeﬂguﬂ,, geé’on C/ . Following the proof of Theorem 3 and using the appropriate

We note some additional properties of 2-reflective numerated sets A\

1. 1f XSA is « -enumerable then the same is true of %(X)U(/‘; ((=01) , and a -

index for the set ec’(qb(X U 0 ) is given effectively in terms of a & -index for the set

7(X) -

This follows from the easily verified assertion
Yee A (2P, (X)U G~ zeB; A(qb;(x)eX vzel}).

*
The sequences {U{(}‘{% },{_/7/(3 are defined as in Sec. 7 and also possess properties
2, 3 in Sec. 7. We also define the sequences {EK}, {/:;(} of subsets of A by £0:—‘30,

/<+/A¢(£ )UU /Z;:: 6; ’ﬁ;ﬂ:—#?(/-;)ug, It follows from 1 above that

2. The sequences {EIJ’{E(} of « —enumerable subsets of A are computable,
= =
3. EK_FK,_DK EK\/Z;( for every KeN.

We give the proof by induction on K . The assertion is obvious for k = 1, Let

EDF ﬂK=EK\€ ; then 4‘?(&)2‘73(/‘;) , whence £ qb{f) U6‘3¢’(F)UC’ Fkﬂ We also have

K- 'K? K+

bt Ny = (BUEJUCNRBIE) . UC)=PENR(R) since tg@nl=g . Further, PUEND(E)=

7

@(EK\F _, since Cé is injective, But EK\€<=‘D/< , and therefore EKH\E(H=<#3(ZZ<}=
=Lers

4., For any K,meN with K#mM , we have fﬂf /L;ﬂ/cm,

By 3, if suffices to verify that V)(\V//n (K(/n“*EKﬂf /l; /C;?) . This is also proved
by a simple induction on K.

5. Every 2-reflective numerated set is 2-universal.

We define the sequence {dx} of elements of A by (Z/K:MK((Z) (KEN) . The computabilit
of the sequence of morphisms {Z/{(} implies the existence of a g.r.f. such that \V/K (CZ/K=

ocg(/()). Properties 3 and 4 then easily imply that Yk (d;‘GEK\mL;'e]K Em) , which together with

property 2 gives the required result,
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The analogs of the other remarks made at the end of Sec. 7 are also valid.

9, MULTIPLE REDUCIBILITY
The above results also make it easy to study multiple (/7 - and M -) reducibility.
Let A= (A,GC) ~be a numerated set, A a nonempty set, and let F.,E'E Map(/\,Map{A,S)) . We say
that F is multiply /77 -reducible to G (Fs:z G) if there existsag.r.f. 7[ such t:hatf m -
reduces F(?L) to G(,?L) for every 2€A . The relation é;; of multiple M -reducibility
is defined analogously (with the g.r.f.f replaced by a morphism ¢A\-—A )e

We first analyze the special casewhen A= N and & is the identity numeration of N
in which case s:z and é* coincide. The "usual"” multiple /M -reducibility [4] is recov-
7 )
ered by specializing to b={0,f} . We define the binary operation & on Map(A,Map(A(SD and
. ¢
the unary operations [, T, for ¢, € Map(A,S) as follows: if F,QeMaP(/\,Map{N,S)), re A,

then (FOG)IAZ= F(n)®6(), (,‘D;F)';{,:/ggow(ﬁm, (ﬁfé’;)wzzg (Fa).

Proposition 4. The algebraic systems \Map(/\, Maep (N,SD, S;{,@, {/’7:0}, {{Sg’}) and (MGP(/V,

Map (A,S)); ém,@,\P(p‘),{%g}) are naturally isomorphis.
Here the word "
MQPM,MOP(N,S)):—’ Map(/V,Map(A,S), whose composition "interchanges the arguments.'" The verifi-

cation is trivial.

natural' means that the isomorphism is given by mutually inverse maps

COROLLARY. The structure (MQP(A,MQP (N,S)),é; 16?, {,D;}) is a semilattice with discrete closures;
(Map (/\,MQP (N,S)); S:; ,@, {i:ﬁ} ) is a semilattice with 2—-discrete closures (cf. secs. 1,2,5).

If we are given a numerated set A\-’-‘(A,o() then the numeration o N ——A induces an
inclusion ‘sz;t Map (A,S)—‘ M(lp(/\/, §) for every set § ; the imbedding % in turn induces an

inclusion gcc: MQPM?MQ-PM’S}) —*MQP(A,MQP(MS)) for every /1

THEOREM 5. 1If A\ is universal, then the closure of the image of the set MQP(A,MQP (A,S))
in WRD(A,MQP (N,S)); €;1) under the map {/i coincides with the closure of the set {/50{;)‘?9
EMD,P(A.S),FGMO-,D({(_\,MQP(A/,S))} . The same result is valid when "universal" is replaced by '"2-
universal” and ,D"o is replaced by %;"

Consider the diagram
Map (A, Map (A,$)) == Map (A,Map (A,S)
4| %

Map(A, Map (N, $) == Map (N, Map (A,9)),

vhere the horizontal maps are natural equivalences. It is easily verified that the diagram

% *
commutes and that FsmGﬂga({F)~$m’%(G} for every F,GQ.MQPM,MOP(A,SU. The required result
follows from this, Theorems 1, 2, and Proposition 4.

Remark. The following generalization can easily be proved by using properties 5 in
Secs. 2, 5, Let 7tMap(A,$), VelFeMapiA, Map(AS)[VaeA (the function A—F(R)@
is contained in 7)} . Then the closure of the image of the set V in (Map(/\,Map(/\/,S’)),s:,)

toincides with the closure of the set {/g:p(F)‘(FET"' Fe Map(/\, Map (N80 if A is universal.
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In particular (V;é;;) has a natural discrete generalized semilattice structure. Similar
*
results hold for 2-universal sets A and for the operations Zi

The relation S; can be analyzed in the same way. We define the binary operations

" : *y

8, on Map(A,MbP(A,b» for the case when A is reflective [and the binary operations 9¢
if A is 2-reflective] as follows:

(8, (6= 8, (Fa,60), 6! (F.6)2= 6, (Fa,60)

for arbitrary ¢,¢€ MQP M,S) , 5, FE M(},p (A, Map (A,S)), 2e AN
THEOREM 6. 1f Al is reflective then (MapA,Mapid,S));<
semilattice. If A is 2-reflective then (MQP{A,NMP{A,SH

{8,

, }) is a discrete generalized
g;’{é‘g}) is a 2-discrete gener-

*
M
5

alized semilattice.

The analog of the remark to Theorem 5 is also valid.
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