LITERATURE CITED

- i. H. Weyl, The Classical Groups, Their Invariants and Representations [Russian translation], IL, Moscow (1947).
- 2. V.S. Drenski, "Representations of the Symmetric group and manifolds of linear algebras," Mat. Sb., 115, 98-115 (1981).
- 3. A. R. Kemer, "Nonmatrix manifolds," Algebra Logika, 19. No. 3, 255-283 (1980).
- 4. A.P. Popov, "Identities of tensor product of two copies of Grassman algebra," Dokl.
- Bolg. Akad. Nauk, 34, No. 9, 1205-1208 (1981).

STRUCTURE OF POWERS OF GENERALIZED INDEX SETS

V. L. Selivanov UDC 517.11:518.5

In this article we generalize the results of $[1-3]$ in order to relate problems concerning index sets more closely with the theory of complete numerations [4] and treat ordinary multiple reducibility from a single viewpoint.

Let $A = (A, \infty)$ be a numerated set and let the set S be arbitrary. The set $Map(A, S)$ of all maps from A into S has two natural orderings, which we denote by \leq_{m} and \leq_{M} in order to emphasize their relationship with the corresponding concepts in [1]. Specifically, for $\varphi,\psi \in M\alpha\rho$ (A, S) we set $\varphi \leqslant_{\sigma} \psi$ if $\varphi \circ \chi \leqslant \psi \circ \chi$ (here o denote composition of maps and \leqslant denotes reducibility of numerations), and $\varphi \leqslant_M \psi$ if $\varphi = \psi \circ \varphi$ for some morphism φ from A into A $\varphi \leqslant_M \psi$ implies that $\varphi \leqslant_m \psi$. Among other things, we will study the preorders \leqslant_m and \leqslant_M . We note that we recover the case of "ordinary" index sets by taking $S = \{0,1\}$, in which case we identify $~\mathcal{M}ap(A,S)$ with the family of all subsets of A and $\varphi \circ \alpha$ with the index set $\alpha^{-1}(\{\alpha \in A \mid \varphi(\alpha)=1\})$. We will use some of the terminology in [1].

i. AUXILIAKY CONCEPTS

We introduce some concepts needed to study the preorders \leq_m, \leq_M . If $(P; \sqsubseteq)$ is a preordered set, then the closure of a set $X \subseteq P$ in $(P; \sqsubseteq)$ is the set $[X] \Rightarrow \{y \in P | \exists x \in X \mid x \in P \}$ $\{ \varphi \land \psi \in \mathcal{X} \}$. Let φ, ψ be maps from $\overline{\varphi}$ into a preordered set $\{\overline{P}; \subseteq'\}$; then φ is equivalent to ψ if $\forall x \in P(\psi(x)) \subseteq ' \psi(x) \land \psi(x) \subseteq ' \psi(x)$. Two preordered sets $(P; \subseteq)$ and $(P'; \subseteq')$ are equivalent if there exist monotone maps $\psi: \rho \rightarrow \rho'$, $\psi': \rho' \rightarrow \rho$ whose composite $\psi' \circ \psi$ is equivalent to the identity map of ρ , and $\varphi \circ \varphi'$ equivalent to the identity map of ρ' .

Let \overline{I} be a nonempty set. By a discrete generalized semilattice (more precisely, an \overline{I} discrete semilattice) we mean any algebraic system $(P; \subseteq, \{P_i\}_{i \in I})$ satisfying the following conditions: 1) \subseteq is a preorder on P ; 2) $\forall i \in I$ $(P_i \subseteq P)$; 3) for all $i, i' \in I$, $i' \neq i$, the proposition $\forall x \forall y \exists z \forall t$ ($z \in P_i \land x \in z \land y \in z \land (t \in P_i \land x \in \mathcal{I} \land y \in t \rightarrow z \in t) \land (t \in P_i \land t \in z \rightarrow t \in t)$ $x \vee t \subseteq y$) is valid in P .

The element Z , whose existence is asserted in 3), is defined uniquely up to equivalence in $(P; \subseteq)$, so that we can define binary operations $\mathcal{U}_i(i\in I)$ on $P(\mathcal{U}_i(x,y)=z)$ such that: $x,y \in U_i(x,y)$; if $x,y \in I$, $t \in [u \circ u_i]$ then $U_i(x,y) \in I$; if $U_i(x,y') \in U_i(x,y)$, $i \neq i$, then $U_i(x,y')$

Translated from Algebra i Logika, Vol. 21, No. 4, 472-491, July-August, 1982. Original article submitted March 31, 1981.

 $\forall x \in \mathcal{X}$ or $\mathcal{U}_{l'}(x', y') \equiv y(x, y, x', y' \in P, i, i' \in I)$. According to this definition $P_i' = [x \log U_i']$. Discrete generalized semilattices may thus be regarded as systems $(P, \in, {U_i}_{i\in I})$, where the U_i , which are called the generalized upper bound operations in $(P;\sqsubseteq)$, satisfy the above conditions. If such u_i are given, it is easy to define generalized upper bound operations $u_i^{(n)}$ with any number $n \geq 2$ of arguments; for $n=4$, e.g., it suffices to set $\mu_i^{(4)}(x_i, x_2, x_3, x_4) \rightleftharpoons$ $\psi_i(\psi_i(\psi_i(x_i,x_1),x_3),x_4)$. If $P=\bigcup_{i\in I} [\text{tang } \psi_i]$ and $x_1,...,x_n \in P$, then the sets $\{x_1,...,x_n\}$ and ${(\mathcal{U}_i^{(n)}(x_1,...,x_n))\,i\in\mathcal{I}}$ form a discrete pair in the sense of [1, Sec. 1]. We also observe that if $(P;=,\{u_i\})$ is a preorder with generalized upper bound operations, then $(P;=,\{v_i, v_j\})$ is a discrete generalized semilattice.

We define yet another concept. A semilattice with discrete closures is a system $(Q; \subseteq,$ $U, {\varphi_i}_{i \in I}$ satisfying the conditions:

- a) \subseteq is a preorder on the set $\mathcal Q$;
- b) $\forall x, y, z \in \mathcal{Q} \; (x \in z \land y \in z \rightarrow x \sqcup y \in z);$

c) φ_i ($i\in I$) is the closure operation in $(Q;\subseteq)$, which by definition means that $\forall x,y\in\mathcal{Q}\ (x\equiv\varphi_{i}\left(x\right)\wedge\left(\boldsymbol{x}\equiv y\longrightarrow\varphi_{i}\left(x\right)\equiv\varphi_{i}\left(y\right)\right)\wedge\varphi_{i}\varphi_{i}(x)\equiv\varphi_{i}\left(x\right)\:;\label{eq:psi}$

- d) $\forall i \in I \ \forall x, y, z \in \mathcal{Q} \ (\varphi_i(x) \in \psi \sqcup z \longrightarrow \varphi_i(x) \in \psi \lor \varphi_i(x) \subseteq z);$
- e) $\forall x, x' \in \mathcal{Q}$ $(\varphi_i(x) \in \varphi_i(x') \longrightarrow \varphi_i(x) \in \mathcal{X}')$ for all $i, i' \in I, i' \neq i$.

The above concepts are interrelated. Indeed, in any semilattice with discrete closures $(0, \subseteq, \cup, \{\varphi_i\})$ we can define the operations $u_i: u_i(x,y) \rightleftharpoons \varphi_i(x \sqcup y)$. If now P is any subset of \overline{u} , closed with respect to all of the $u_i, i \in I$ (it suffices for this that $\bigcup_{i \in I}$ $[mg\mu_j] \subseteq \mathcal{P}$) then $(P, \subseteq, \{\mu_i\})$ is a discrete generalized semiattice (the verification is rivial) .

We will also need the following modifications of the above definitions. A system $(P; \subseteq,$ $\{\mathcal{P}_{ij}\}_{i,j \in \mathcal{I}}$) is called a 2-discrete generalized semilattice if it satisfies conditions 1)-3) (with i replaced by $~ij$), and 3) is taken for all $~i,j,i',j' \in I~$ with $~i' \neq i,~j' \neq j~$. A system $({\ell};\equiv,{\iota},{\{\varphi}_{ij}\}_{i,j\in I}$) is called a semilattice with 2-discrete closures if it satisfies conditions a)-e) (with i replaced by $~ij~$), where e) is taken over all $~i,j,i',i',j' \in I,~i' \neq j,$ As above, generalized upper bound operations $\mathscr{U}_{\vec{\bm{y}}}$ can be defined in any 2-discrete generalized semilattice, and any semilattice with 2-discrete closures will induce 2-discrete generalized semilattices.

2. THE OPERATIONS P_S

In this section we consider some questions involving complete numerations. Throughout this article, S denotes an arbitrary set with at least two elements; $H(S)$ is the family of all maps from the natural numbers $\mathcal N$ into $~\mathcal S$; $~\leqslant~$ is the reducibility relation in $\mathcal H(\mathcal S)$; \bigoplus denotes direct sum of numerations on $H(S)$; $K=(K,\mathcal{X})$ is a numerated Kleene set; $\mathbb{\Pi}=(\mathbb{\Pi},\mathbb{\Pi})$ is a numerated Post set; $\widetilde{\mathscr{Z}}$ is a universal partial recursive function (p.r.f.), i.e., $\widetilde{\mathcal{X}}\langle x,y\rangle=\mathcal{X}_{\mathcal{T}}(y)$, where $\langle x\rangle$ is a Cantor function used to encode pairs.

To each element SE $\cal S$ we associate the unary operation $~\rho_{\cal S}~$ on $~\cal H(\cal S)$ by the following rule: if $\forall \in H(S)$, $\mathcal{I} \in \mathcal{N}$ then

$$
(\mathcal{P}_{\mathbf{S}}(v))x \rightleftharpoons \left\{\begin{array}{cc} S & , \text{ if } x \notin \text{dom } \widetilde{x}, \\ \sqrt{\widetilde{x}}(x) & \text{otherwise.} \end{array}\right.
$$

Clearly, $\forall \log(p_g\vee) = \forall n g \vee \vee \{s\}$ (for simplicity, we sometimes abbreviate $f'(x)$ to $\oint x, f_{x}$). The operation ρ_{s} may be regarded as a modification of the operation of taking the completion of a numerated set [4]. We state several properties of the $\rho_{\rm g}$ (the obvious proofs are omitted).

The first property shows that the P_S generalize the operation of ρm -cylindrification. Numerations $v:\mathcal{N}\longrightarrow\{0,1\}$ are identified with the subsets $\{n\in\mathcal{N} ~|~ v(n)=1\}$.

- 1. If $S = \{0,1\}$, $\forall \in H(S)$, then $\rho_o(\forall) = \rho m(\forall), \rho_f(\forall) = \rho m(\overline{\forall})$,
- 2. P_s is the closure operation on $(H(S); \leq)$ for all S and $s \in S$.

Let us verify, e.g., that $\forall, \forall' \in H(S), \forall \neq \rho(\forall) \neq \rho(\forall')$ (the assertions $\forall \leqslant \rho_{\epsilon}(\forall), \rho_{\epsilon}, \rho_{\epsilon}(\forall) \leqslant \rho_{\epsilon}(\forall)$ are proved just as simply). Let f be a generalized recursive function (g.r.f.) reducing γ to γ' and let φ be any g.r.f. satisfying

$$
x_{g(n)} = \begin{cases} \phi, & \text{if } n \notin \text{dom } \widetilde{x}, \\ \lambda y. f \widetilde{x}(n) & \text{otherwise.} \end{cases}
$$

Then the g.r.f. $\lambda \pi$. $\langle \mathcal{G}(\pi), \theta \rangle$ reduces $\rho_{\mathbf{g}}(\nu)$ to $\rho_{\mathbf{g}}(\nu')$.

Remark. We note that the assertion $V_{\psi, \psi'}(\psi \leq \rho_s(\psi) \wedge (\psi \leq \psi' \rightarrow \rho_s(\psi' \leq \rho_s(\psi')) \wedge \rho_s\rho_s(\psi) \leq \rho_s(\psi))$ holds effectively, i.e., if we are given, e.g., a g.r.f. reducing ψ to ψ' , we can effectively find a g.r.t. reducing $\rho_s(v)$ to $\rho_s(v')$ for all \int , $s \in S$, $v, v' \in H(S)$. Many of the other assertions in this paper are also effective in an analogous sense.

3. For any $s \in S$, $v \in H(S)$, $\rho_s(v)$ is the smallest numeration over v , which is complete with respect to the particular element S, i.e., $\rho_{s}(\nu)$ is complete relative to S, and if $\nabla \leq \nu'$ and ν' is a complete numeration in $H(S)$ relative to S, then $P_S(\nu) \leq \nu'$,

4. The closure of the set $\{\rho_s(v) | s \in S, v \in \mathcal{H}(S)\}$ in $(\mathcal{H}(S); \leq)$ coincides with the set of all complete numerations in $H(S)$,

5. If T is a set and $\varphi: S \to T$, $s \in S$, then $\varphi \circ \rho_S(v) = \varphi_{\varphi(s)}(\varphi \cdot v)$,

In order to formulate the next two results, we recall that numerations $v_i \in H(S_i),...,v_m \in$ $\pi/(S_m)$ can be put in correspondence with their product $\gamma_*\otimes...\otimes\gamma_m\in H(S_r^{\times}...^{\times}S_m)$ according to the r ule: $(\psi_1\otimes...\otimes\psi_m)<\mathcal{X}_m,...,\mathcal{X}_m>=(\psi_r\mathcal{X}_r,...,\psi_m\mathcal{X}_m)$, where $\langle\ \rangle$ is the coding function for π -tuples. In addition, to each function $\varphi: \mathcal{S}^m \to S$ we associate a function $\varphi^*:(\#S)^m \to \#((S)^n$ defined by $\phi^*(\nu_1,\ldots,\nu_m) \rightleftharpoons \varphi \circ (\nu_1 \otimes \ldots \otimes \nu_m).$

6. For arbitrary sets $S_1,...,S_m$ and any $s_i \in S_i'$, $v_i \in H(S_i)$ ($i \leq m$) we have: $P_{(S_1,...,S_m)}$ $(\varphi_{s}(V_1)\otimes\ldots\otimes\varphi_{s}(V_m))\equiv Q(V_1)\otimes\ldots\otimes Q_{s}(V_m).$

This follows from property 3 and the well-known fact that if $v_i' \in H(S_i)$ is complete with respect to $S_i \in S_i$ then $v'_i \otimes ... \otimes v'_m$ is complete with respect to $(s_{i},...,s_{m})$.

7. The set of all complete numerations in $H(S)$ is closed under all the operations φ^* $(\varphi: \mathcal{S}^m \longrightarrow \mathcal{S}, m \ge 1)$. This follows from 3, 5, 6.

In order to formulate the next three results, we recall a few definitions. If $\forall \varepsilon$ H(S), $\mathcal{E} \subseteq \mathcal{S}$ then the set \mathcal{E} is said to be \forall -enumerable if \forall ^{\prime}(\mathcal{E}) is recursively enumerable. A numeration ψ corresponds to a preorder \leqslant_γ on the set S which is defined by $x \leqslant_\gamma y$ if for every γ -enumerable $\mathcal{E} \subseteq \mathcal{S}$, $\mathcal{X} \in \mathcal{E}$ implies that $\mathcal{Y} \in \mathcal{E}$. It is clear that if $\mathcal{X} \notin \mathcal{X} \cap \mathcal{Y}$ then the element $~\mathscr{B}\varepsilon\,\mathscr{S}~\,$ is not v -related in this way to the other elements in $~\mathscr{S}~\,$. It follows from $v \le v'$ that $\forall x \forall y ~ (x \le v \ y \to x \le v \ y')$. We now study the relationship between the preorders $\leq y$ and $\leq_{p_{e}(y)}$ on \int .

8. For any $E \subseteq S$, $S \in S$, $V \in H(S)$ we have

$$
\varphi_{s}v^{\prime}(E) = \left\{ \begin{array}{ll} \frac{\rho m (v^{1}E)}{\rho m (v^{1}E)} , & \text{if } s \notin E ,\\ \frac{\rho m (v^{1}E)}{\rho m (v^{1}E)} , & \text{if } s \in E . \end{array} \right.
$$

This is a simple consequence of properties 1 and 5. Property 8 easily implies:

9. A set $E \subseteq S$ is $\rho_S (V)$ -enumerable if and only if $\mathcal{U}(\rho_S V) \subseteq E$ or $S \notin E$ and E is ν -enumerable.

10. For any $x,y,s \in S$, $v \in H(S)$ we have

$$
x \leq_{\rho_{\mathcal{S}}(v)} y \longrightarrow x \leq_{\mathcal{V}} y \leq x \leq_{\mathcal{V}} s \land y \in \text{Urg }(\rho_{\mathcal{S}} v),
$$

i.e., $\leq_{\rho_S(v)}$ is the smallest preorder on δ which contains \leq_{γ} , and is such that the element S is less than or equal to all of the elements in $\mathcal{U}\mathcal{U}$ V

If $x \le y$, then $x \le y$ is implied by $v \le \rho_s(v)$. Let $x \le y$ and $y \in v \circ y$, Then $x \leqslant_{R^{(1)}} s$ and property 9 implies that $s \leqslant_{R^{(1)}} y$. It follows that $x \leqslant_{P_s(y)} y$. We now verify that $x \leq_{\rho_S(v)} y \longrightarrow x \leq_y y \vee (x \leq_y S \wedge y \in wg(\rho_S v))$. Let $x \leq_{\rho_S(v)} y$; if $x \leq_y S$, the assertion is obvious. Thus assume that $x \not\leq y s$; we then have to verify that $x \leq y y$. The assumption $x \not\leq y s$ implies that there exists a \vee -enumerable subset $E \subseteq S$ such that $\mathcal{L} \in \mathcal{L}$, $s \notin \mathcal{E}$. Let $\mathcal{D} \subseteq S$ be \forall -enumerable and $x \in \mathcal{D}$. We then have $s \notin E \cap \mathcal{D}$ and $E \cap \mathcal{D}$ is \forall -enumerable. By property 9, $\epsilon \cap D$ is $\rho_s(v)$ -enumerable; but then $x \leq \rho_s(v)$ and $x \in E \cap D$ imply that $~\psi \in E \cap D \subseteq D$. Thus, we derive that $~\psi \in D~$ from the assumption that $x \in D$, and D is \forall enumerable. Therefore, $x \leq y$.

11. We have $\rho_{s}(v) \leq \alpha \oplus \beta \rightarrow \beta_{s}(v) \leq \alpha \vee \beta_{s}(v) \leq \beta$ for all $s \in S$, $v, \alpha, \beta \in H(S)$,

This follows from 3 and [4, Proposition 10, p. 163].

J

12. If
$$
S, S' \in S
$$
, $V, V' \in H(S), \rho_S(V) \leq \rho_{S'}(V')$ and $S' \neq S$, then $\rho_S(V) \leq V'$.

Let f be a g.r.f. reducing $\rho_{s}(v')$ to $\rho_{s'}(v')$; let g be any g.r.f. which satisfies

$$
Z_{g(m,n,x)} = \begin{cases} \phi & \text{if } f < x, n > \notin \text{dom } \widetilde{x}, \\ Z_m & \text{otherwise} \end{cases}
$$

for all $\pi,r,x\in\mathcal{N}$. By the recursion theorem, there exists a g.r.f. $\mathcal{C}(\pi,r,r)$ such that $x_{C(m,n)}=x_{O(m,n,C(m,n))}$. We claim that the function h, defined by $h\leq m,n>=\widetilde{x}/\langle C(m,n),n\rangle$. is a g.r.f. reducing φ (y) to V . Indeed, assume that $\langle m,n \rangle \notin \mathcal{Q}omn$, i.e., $\frac{1}{\langle n,n \rangle}$ d om \widetilde{x} . Then $(\rho_{s},v')f$ < $C(m,n),n>=s'$. On the other hand, $x_{c(m,n)}=p'$ and therefore $\langle C(m,n),n\rangle$ $m>\not\in dom\widetilde{x}, (\rho_g\vec{v})\lt c(m,n),n>=S.$ But we must have (ρ_g,\vec{v}') $\neq C(m,n),n>= (\rho_g\vec{v})\lt c(m,n),n>$, which contradicts $S \neq S$. We have verified that h is a g.r.f. It follows that $\mathcal{Z}_{(m,n)} = \mathcal{Z}_m$ for all $m,n \in \mathcal{N}$ and $(\rho_{g},v')\text{f}^{\prime} < c(m,n),n>=v'\mathcal{E}^{\prime} \text{f}^{\prime} < c(m,n),n>=v'h\text{f}(\pi,n)$. These equalities imply:

$$
(\rho_{s} \nu) < m, n > = (\rho_{s} \nu) < c (m, n), n > = (\rho_{s'} \nu') \text{ for } (m, n), n > = \nu' \text{ for } n > n.
$$

We now state a property that generalizes a property possessed by the $/77$ -jump operation. First, some notation: If $\varphi\colon \mathcal{S}\to \mathcal{S}$, $\psi \in \mathcal{H}(\mathcal{S})$, then the symbols ψ^{φ} denote the direct sum $\bigoplus_{K\geq 0} V_K$ of the following sequence of numerations: $V_0 \Rightarrow V$, $V_{K+1} \Rightarrow \varphi \circ V_K$. The case of an m -jump is recovered by specializing to $S = \{0,1\}$, $\varphi(0) = I$, $\varphi(1) = 0$.

13. If $\varphi: S \to S$ is a map without fixed points, two numerations $P_S(\nu^{\varphi}), P_{S'}(\nu^{\varphi})$ with $S'/\neq S$ are not comparable, and therefore $P_S(\nu^{\varphi}) \neq \nu^{\varphi}$.

Assume that $\rho_s(\nu^{\varphi}) \leq \rho_{s'}(\nu^{\varphi})$. Then $\rho_s(\nu^{\varphi}) \leq \nu^{\varphi}$ by property 12. Therefore (property 3), the numeration $\mu \Leftrightarrow v^{\varphi}$ is complete. In addition, we see easily that $\varphi \circ \mu \leq \mu$. But it is easily seen that there exists no numeration μ with the property that $\varphi \circ \mu \leq \mu$. Indeed, let the g.r.f. f reduce $\varphi \circ \mu$ to $\mu : \varphi \circ \mu = \mu \circ f$. By the recursion theorem for complete numerations [4, p. 161], $\mu f(c) = \mu c$ for some number C. But then $\mu c = \mu f(c) = \varphi(\mu c)$, i.e. $\mu c \in {\mathcal S}$ is a fixed point of the map ψ , contrary to assumption.

The following important result follows from properties 2, 11, 12.

Proposition 1. The structure $(H(S); \leq \theta, {\rho_s}_{s \in S})$ is a semilattice with discrete closures.

COROLLARY. Let H_s be the set of all complete (with respect to $s \in S$) numerations in $H(S)$; and let $H_1(S) = \bigcup_{s \in S} H_s$ be the set of all complete numerations in $H(S)$. Then $({\cal H}, (S)$; \leq , $\{H_{\leq s}\}\$ _{SES}) is a discrete generalized semilattice.

We conclude this section by noting another application of the ρ_s operations. That is, they can be used to find examples (more "explicit" than in [4, 5]) answering a question posed by A. I. Mal'tsev (it turns out that the first of these assertions was known to Yu. L. Ershov).

Proposition 2. 1) Let σ be a $\sum_{n=0}^{\infty}$ -complete set regarded as a numeration $\sigma: N \longrightarrow \{0,1\}$. Then the numeration \emptyset is complete relative to both 0 and 1. 2) The standard numeration of o the class $\sum_{i=1}^{\infty}$ is complete relative to any subset of Δ_{ρ} .

The proof is a simple application of the Tarski-Kuratowski algorithm, together with property 3.

3. UNIVERSAL NUMERATED SETS

Consider a structure $(Map(A, S); \leq_{me})$ for a class of numerated sets. The numerated set $A=(A,\infty)$ is said to be universal if the numeration ∞ is complete and there exists an infinite computable sequence of nonempty pairwise disjoint ∞ -enumerable subsets of A . The map $\alpha : \mathcal{N} \longrightarrow A$ induces an inclusion $\varphi \rightarrow \varphi \circ \alpha$ of $Map(A, S)$ onto $Map(N, S) = H(S)$ which we denote by $\mathscr{L}_{\mathscr{L}}$.

THEOREM 1. The following conditions are equivalent for the numerated set \mathcal{A} :

1) \overline{A} is a universal numerated set;

2) for every set \int , the closure of the image of the set $Map(A, S)$ in $(H(S); \leq)$ under the map \mathscr{J}_{∞} coincides with the set of all complete numerations in $H(S)$.

It is easy to see that this is just a convenient reformulation for our purposes of the universality theorem in [4, p. 267].

We note also that the closure of the set $P_S = {\varphi \in Map(A, S) | \varphi(a) = S}$ (where a is a distinguished element in \AA S ϵ S) in $(\mathcal{H}(\mathcal{S}); \leq)$ coincides with the set of all numerations in $\mathcal{H}(S)$ which are complete relative to the element $S\in\mathcal{S}$. Together with Proposition 1 and its corollary, this gives:

COROLLARY. If A is universal then $(M\alpha \rho(A, S); \leqslant_m, \{P_s\}_{s \in S})$ is a discrete generalized semilattice which is equivalent to $(H_1(S); \leq, \{H_s\}_{s \in S})$.

The standard examples of universal numerated sets include K and the numerated set provided by the family $\{\phi, \{x\} | x \in \Lambda\}$ with a principal computable numeration. We note also that if A is a universal numerated set and B is a complete numerated set, then their product $A \otimes B$ is a universal numerated set.

4. THE OPERATIONS q^t

We now come to our main goal, which is to study $(M\alpha \rho(A,S);\leq_m)$ for another simple, natural class of numerated sets. However, this requires some preliminary work similar to that in Sec. 2.

Fix a creative set ξ . Then we can associate to each element $\mathcal{I} \in \mathcal{J}$ a unary operation φ^t on $H(S)$ defined by

$$
(q^t v) < x, y > \Leftrightarrow \begin{cases} \forall x & \text{if } y \notin \xi, \\ t & \text{if } y \in \xi. \end{cases}
$$

Clearly, $\deg(q^t v)$ = $\deg v \cup \{t\}$. We note some properties of these operations q^t , which will will be helpful in what follows. Most of them are dual (in an appropriate sense) to the properties of the operations ρ_s . In most cases, the proofs reduce to simple manipulations using the fact that ξ is creative, and we therefore omit them.

1. For the case when $S = \{0,1\}$ we have $q^o(v) = v \times \vec{f}$, $q'(v) = \overline{v \times \vec{f}}$ (a numeration $v \in H(S)$ is identified with the corresponding subset of N , and for $\alpha \in \mathbb{R}^N$ we have $\sigma \times \tau = {\langle x, y \rangle}$ $x \in \sigma \land y \in \tau$ }).

2. q^t is the closure operation on $(H(S)_{\zeta} \leqslant)$ for all S and $t \in S$.

In order to derive an analog of property 3 in Sec. 2, we introduce the following definition. A numeration $\forall \epsilon \#(\mathcal{S})$ is said to an element $\sharp \epsilon \mathcal{S}$, if for arbitrary g.r.f. f and recursively enumerable set (r.e.s.) ϕ there exists a g.r.f. q such that for all $x \in \mathcal{N}$

$$
\mathcal{V}_{g(x)} = \begin{cases} \mathcal{V}^f(x) & , \text{ if } x \notin \mathcal{O}; \\ t & , \text{ if } x \in \mathcal{O}. \end{cases}
$$

A numeration is said to be cocomplete if it is cocomplete with respect to some $t \in S$.

3. For all $\neq \in S$, $\vee \in H(S)$ the numeration $q^{t'}(\vee)$ is the smallest numeration over \vee which is cocomplete relative to $~t$.

4. If $\mathcal T$ is a set and $\varphi : S \to \mathcal T,~ t \in S$, then $\varphi \circ q^{\vec{t}}(\nu) = q^{\varphi(t)}(\varphi \circ \nu)$.

5. For arbitrary sets S_1,\ldots,S_m and arbitrary $t_i \in S_i, v_i \in H(S_i)$ ($\neq i \leq m$) we have: $q^{(t_m,\ldots,t_m)}$ $(q^{t_i}(v_i) \otimes ... \otimes q^{t_m}(v_m)) \equiv q^{t_i}(v_i) \otimes ... \otimes q^{t_m}(v_m).$

 $\sum_{i,j=1}^{\infty}$ $\sum_{i,j=1}^{\infty}$ $\sum_{j=1}^{\infty}$ $\sum_{j=1}^$ satisfying $\mathcal{U}\in\mathcal{E}\vee\mathcal{U}\in\mathcal{E}$ \rightarrow $\mathcal{G}(\mathcal{U},\mathcal{U})\in\mathcal{E}$ for all $\mathcal{U},\mathcal{U}\in\mathcal{N}$. Then the g.r.f. taking the number $~f_{\pi_1,\dots,\pi_m}$, $g_{\pi_1,\dots,g}$ into $~f_{\pi_1,\dots,\pi}(x_1,x_2,\dots,x_m)$ (where ℓ and ℓ are g.r. functions inverse to the pair-coding function) gives the required reduction.

6. The set of all cocomplete numerations in $H(S)$ is closed under all the operations φ^* ($\varphi: S^m \rightarrow S, m \ge 1$).

The duality of the operations $\rho_{\rm S}$ and $q^{\,\,t}$ can be seen in the following description of the preorder $\leq_{\mathcal{A}(v)}$ on S .

7. For arbitrary $E \subseteq S$, $\forall \in H(S)$ we have

$$
(q^{\sharp}\mathsf{v})^{\mathsf{r}}(E) = \begin{cases} \mathsf{v}^{\mathsf{r}}(E) \times \overline{\xi} & \text{if } \mathsf{t} \notin E \\ \overline{\mathsf{v}^{\mathsf{r}}(E) \times \overline{\xi}} & \text{if } \mathsf{t} \in E \end{cases}
$$

8. The set $E \subseteq S$ is $q^{t}(v)$ -enumerable if and only if $E \cap \text{NLP}(q^{t}v) = \emptyset$ or $t \in E$ and E is V -enumerable.

9. For arbitrary $x,y,t \in S$, $v \in H(S)$ we have $x \leq_{q} t_{(v)} y \leftrightarrow x \leq_{v} y \vee (t \leq_{v} y \wedge x \in v n g (q^t v))$, i.e., $\leq_{0} t_{(y)}$ is the smallest preorder on S that contains \leq_{y} and is such that all elements in var γ are less than or equal to t .

If $x \leqslant$ then $x \leqslant_{\sigma t, y}$ follows from $\forall \leqslant Q^{\circ}(\nu)$. Let $t \leqslant_y y$, $x \in v$ ng $(q^{\nu} \nu)$; then $t \leqslant_y y$ implies that $t \leq_{\sigma t(s)} y$ and $\mathcal{R} \in \mathcal{U} \mathcal{U} \{ \varphi t \}$ implies that $x \leq_{\sigma t(s)} t$, by property 8. Hence $x \leq_{q} t_{(y)} y$.

We now verify that $x \leq_{q} t_{(y)} y \longrightarrow x \leq_{y} y \vee (t \leq_{y} y \wedge x \in v$ *19* $(q^{t'} y)$). The case when $t \leq_{y} y$ is obvious. It therefore remains to prove that $x \leq_{q} t_{(v)} y'$, $t \neq y'$ implies $x \leq_{y} y'$. Since $t \neq y'$ here exists a \vee -enumerable set $\mathcal{E} \subseteq S$ such that $f \in \mathcal{E}$, $y \notin \mathcal{E}$. Let $\mathcal{D} \subseteq \tilde{S}$ be a \vee -enumer able set and let $x \in D$. Then $E \cup D$ is v -enumerable and $t \in E \cup D$. By property 8, the set $\mathcal{L} \cup \mathcal{D}$ is $q^{t}(v)$ -enumerable. Since $x \leq_{q^{t}(v)} y$, $x \in \mathcal{L} \cup \mathcal{D}$, we have $y \in \mathcal{L} \cup \mathcal{D}$. But $\forall \notin \mathcal{L}$, and therefore $\forall \in \mathcal{D}$. Thus, the assumptions that $\mathcal{X} \in \mathcal{D}$, and $\mathcal D$ is \vee -enumerable imply that $\psi \in \mathcal{D}$.

5. THE OPERATIONS τ_s^t

The compositions of the operations \mathcal{P}_s and $q^t(s,t\in S)$, which we denote by $\tau_s^t: \tau_s^t \rightleftharpoons$ β_{s} ° φ^{τ} , will be important. We therefore note some properties of the operations ι_{s}^{τ} , all of which (except for one) follow easily from property i and the corresponding properties of the operations φ_{s} , g^{t} .

1. For arbitrary $s,t \in S$, $v \in H(S)$ we have $\rho_s(\varphi^t v) = \varphi^t(\rho_v v)$.

We indicate only the reducing functions, leaving the routine verification to the reader. We define the r.e.s. \emptyset by $\{x \in \mathcal{N} | x \in dom \tilde{x} \land n \tilde{x} | x \in \xi\}$. Let f be a g.r.f. which π -reduces \varnothing to ξ , and let q be a g.r.f. satisfying

$$
\mathcal{Z}_{\mathcal{G}(\mathcal{X})} = \begin{cases} \phi, & \text{if } \mathcal{I} \notin \text{dom } \widetilde{\mathcal{X}}, \\ \lambda \mathcal{I}. \widetilde{\mathcal{X}}(\mathcal{X})_{\text{otherwise}}. \end{cases}
$$

Then the g.r.f. $\lambda x. \ll q(x), 0, \gamma_1(x)$ reduces the numeration $\rho_{\epsilon}(q^{\nu} \nu)$ to the numeration $q^{\tau}(\rho_{\epsilon} \nu)$. Let h be any g.r.f. satisfying

$$
\mathcal{Z}_{h(x)} = \begin{cases}\n\phi, & \text{if } i(x) \notin \xi \text{ and } l(x) \notin \text{dom } \tilde{x}; \\
\lambda z. \tilde{\mathcal{Z}}l(x), z(x); & \text{if } l(x) \in \text{dom } \tilde{x} \text{ and } l(x) \text{ is enumerated} \\
\text{in } \text{dom } \tilde{x} \text{ before } z(x) & \text{is enumerated in } \xi; \\
\lambda z. < 0, z(x) > - \text{ in all remaining cases.}\n\end{cases}
$$

(we assume in such definitions that some method has been chosen to effectively enumerate the corresponding sets during the stepwise construction [in this case, $~\text{dom}~\widetilde{\mathcal{X}}~$ and $~\zeta$]). Then the g.r.f. $\lambda x.$ < $h(x),0$ > reduces $q^{t}(\rho_{s} \nu)$ to $\rho_{s}(q^{t} \nu)$.

<u>Remark.</u> It is easy to construct examples that show that the operations $\rho_{\rm e}$, $\rho_{\rm e'}$ (and also $q^-,q^{\,-}$) do not commute in general.

 $\overline{\rho\pi(\overline{V})\times\overline{\xi}}$ (cf. [1, Theorem 2]).

3. \mathcal{L}_s^t is the closure operation on $(H(S); \leq)$ for arbitrary S and $s, t \in S$.

A numeration in $H(S)$ is said to be 2-complete relative to $s,t \in S$ if it is complete with respect to S and cocomplete with respect to t .

A numeration is said to be 2-complete if it is 2-complete with respect to some $s,t \in S$. 4. $\mathcal{Z}_{S}^{t}(v)$ is the smallest numeration over \forall which is 2-complete relative to S,\vec{t} .

5. If \mathcal{T} is a set and $\varphi: \mathcal{S} \to \mathcal{T}$, $s, t \in \mathcal{S}$, then $\varphi \circ z_{\mathcal{S}}^{t}(\nu) = \nu_{\varphi(s)}^{\varphi(t)}$ ($\varphi \circ \nu$).

6. For arbitrary sets S_1, \ldots, S_m and any $S_i, t_i \in S_i$, $V_i \in H(S_i)$ ($\le i \le m$) we have:

$$
\gamma_{(s_1,\ldots,s_m)}^{(t_1,\ldots,t_m)}(\gamma_{s_i}^{t_i}(\nu_1)\otimes\ldots\otimes\gamma_{s_m}^{t_m}(\nu_m))\equiv\gamma_{s_i}^{t_i}(\nu_1)\otimes\ldots\otimes\gamma_{s_m}^{t_m}(\nu_m).
$$

7. The set of all 2-complete numerations in $H(S)$ is closed under all of the operations φ^* ($\varphi: S^m \longrightarrow S$, $m \ge 1$).

8. $\leq_{\iota_c^t(v)}$ is the smallest preorder on δ which contains \leq_{ι} and is such that every element in ϕ ηq ψ is greater than or equal to S and less than or equal to t .

9.
$$
\begin{aligned}\nz_{s}^{t}(v) &\leq \alpha \oplus \beta \to \zeta_{s}^{t}(v) \leq \alpha \vee \zeta_{s}^{t}(v) \leq \beta \quad \text{for all } s, t \in S, \quad v, \alpha, \beta \in H(S).\n\end{aligned}
$$
\n10.
$$
\begin{aligned}\nz_{s}^{t}(v) &\leq \zeta_{s}^{t'}(v') \to \zeta_{s}^{t'}(v) \leq v' \quad \text{for all } v, v' \in H(S), s, s', t, t' \in S, \quad s' \neq s, \quad t' \neq t.\n\end{aligned}
$$
\nIt follows from
$$
\begin{aligned}\n\beta_{s}(q^{t}v) &\leq \beta_{s} \cdot (q^{t'}v') \quad \text{and } s' \neq s \quad \text{that } \beta_{s}(q^{t'}v) \leq q^{t'}(v') \quad (\text{Sec. 2, property})\n\end{aligned}
$$
\n12). Let the g.r.f. f reduce $\beta_{s}(q^{t}v)$ to $\beta_{s}^{t'}(v')$, and let the recursively enumerateable

set 6 be defined by $\sigma = \{<\mathcal{I}, \mathcal{Y}>|\{\text{redom }\tilde{x}\wedge \tilde{x}(\mathcal{I})\in \xi\}\vee \tau\text{ for all }\xi\}.$

Let h be a g.r.f. m -reducing σ to ζ and let q be any g.r.f. satisfying

$$
\mathcal{Z}_{g(x,y)} = \left\{ \begin{array}{ll} \lambda z.f < y, \tau(x) > , & \text{if } \tau f' < y, \tau(x) > \text{ is enumerated in } \xi \\ & \text{before } x \text{ is enumerated in } \text{dom } \widetilde{x} \\ \lambda z. < \text{la } (\widetilde{x}), \text{h} < x, \text{y} \geq \text{ otherwise} \end{array} \right.
$$

(in particular, $x_{\sigma(\tau,\mu)} = \emptyset$ if $x \notin dom \mathcal{Z} \wedge \tau \nmid < y, \tau(x) > \notin \xi$).

By the recursion theorem, there exists a g.r.f. C such that $\mathscr{Z}_{\mathcal{C}(r)}=\mathscr{Z}_{\mathcal{A}(\mathcal{T}_{\mathcal{C}}(\mathcal{C}))}$. We claim that the g.r.f. $\lambda x.$ $\ell_f^2 < c(x), \ell(x)$ reduces $\rho_s(q^t v)$ to v' . In order to prove this, we first verify that

$$
\forall x \ (\tau \notin < c \ (x), \ \tau(x) > \notin \xi \). \tag{1}
$$

Proceeding by contradiction, assume that $\mathcal{U}_f^f\langle \mathcal{C}(\mathcal{X}),\mathcal{U}(\mathcal{X})\rangle\in \xi$. If $\mathcal{U}_f^f\langle \mathcal{L}(\mathcal{X}),\mathcal{U}(\mathcal{X})\rangle$ is computed in ξ before x is in $dom \widetilde{x}$, then $x_{\alpha,n}(xx) = \{x(x), y(x) > \alpha \text{ and } y(x) = \frac{1}{2}(q^{\alpha}y)\}$ $(\rho_s q^{\bar{\nu}}$ V)< $\mathcal{C}(x),$ $\mathcal{C}(x),$ $\mathcal{C}(x),$ $\mathcal{C}(x),$ $\mathcal{C}(x),$ $\mathcal{C}(x),$ which contradicts the assumption $t' \neq t$. If x is computed in d *gm.* \widetilde{e} before $~^v\!f$ $\!\!\!<$ $\!\!\mathcal{C}(x),$ $\!\!\mathcal{U}(\mathcal{X})>$ is computed in $~^g$, then $~^g$ $\!\!\mathcal{Z}_{\rho(\rho)}(xx)=<$ $\!\!\mathcal{E}(\widetilde{x}),$ $\!\!\mathcal{L}\mathcal{X},$ $\!\!\mathcal{C}(x)\!\!\!\!>$. By the definition of σ, κ we have $\kappa x, c(x) \times \xi$, and therefore $\kappa = (\rho^* \nu) \times \iota x, \kappa(x), \kappa \times x, c(x) \gg = (\rho^* \nu) \ell_{\alpha}$

It follows from (1) that $\forall x (\mathcal{Z}_{C(\mathcal{I})}(x)) = \langle \mathcal{Z}(x), h \langle x, \mathcal{C}(x) \rangle \rangle$ and $\forall x (x \in \mathcal{Z}) \land \forall x (\mathcal{Z}(x)) \in \mathcal{Z} \rightarrow \mathcal{Z}(\mathcal{Z}) \rightarrow \mathcal{Z}$ $h \langle x, c(x) \rangle \in \xi$, whence

$$
\forall x ((\rho_s q^t \nu) x = (\rho_s q^t \nu) < c(x), \nu(x) >).
$$
\n⁽²⁾

Using (1) and (2), we find that $\forall x \left((\alpha_s^t \nu) x = (\rho_s q^{t'} \nu) < l(x), \nu(x) > (q^{t'} \nu') \right) < l(x), \nu(x) > \nu' \ell' \ll l(x),$ $\mathcal{L}(\mathcal{L})$, as claimed.

The next proposition follows from Properties 3, 9, and 10.

Proposition 3. The structure $(H(S), \leqslant, \oplus, \{z_5^t\}_{s,t \in S})$ is a semilattice with 2-discrete closures.

<u>COROLLARY.</u> Let H_{s}^{b} be the set of all 2-complete numerations in $H(S)$ with respect to $S, f \in D$; let $\negmedspace \pi$, $\bigcup_{s} \bigcup_{s} H_{s}$ be the set of all 2-complete numerations in $H(S)$. Then $(H_2(S);~\leq,~\{H_S^t\}_{s,t\in S}$ ^t is a 2-discrete generalized semilattice.

6. 2-UNIVERSAL NUMERATED SETS

We now consider $(Map(A,S); \leqslant_m)$ for another natural class of numerated sets. A numerated set $A=(A,\infty)$ is said to be 2-universal if the numeration ∞ is 2-complete and there exist a g.r.f. $\mathcal G$ and a computable sequence $\{\mathcal E_k\}$ of ∞ -enumerable subsets of A such that $\alpha g(k) \in E_{K} \setminus \bigcup_{m \neq k} E_m$ for every $k \in N$.

Property 8 in Sec. 5 implies that the classes of universal and 2-universal numerated sets are disjoint. Examples of 2-universal numerated sets include \sqrt{N} and the numerated set provided by the family $\{\phi,(x),\wedge\mid x\in\mathcal{N}\}\$ with a principal computable numeration. If $\mathsf A$ and $~B$ are, respectively, a 2-universal and a 2-complete numerated set, then $~A \otimes B~$ is 2universal.

THEOREM 2. The following conditions are equivalent for every numerated set $\mathcal{A}:$

1) \AA is a 2-universal numerated set;

2) for every set S , the closure of the image of the set $Map(A, S)$ in $(H(S); \leq)$ under the map $\widetilde{\mathscr{L}}$ (cf. Sec. 3) coincides with the set of all 2-complete numerations in *H(S .*

We first prove that $1) \rightarrow 2$. Let the numeration ∞ be 2-complete with respect to the elements $a,b \in A$; then $\alpha_a^b(\alpha) = \infty$ by property 4, Sec. 5. If φ is a map from A into S , then $~\varphi\circ\chi_{a}^{\beta}(\infty)\equiv\varphi\circ\infty~~$ and $~\varphi\circ\chi_{a}^{\beta}(\infty)=~\varphi_{\varphi(a)}^{\varphi(\beta)}(\varphi\circ\infty)~~$ (property 5). The numeration $~\varphi\circ\infty\equiv~\chi_{\varphi(a)}^{\varphi(b)}(\varphi\circ\infty)$ is therefore 2-complete with respect to $~\varphi(a),~\varphi(b)$. It remains to show that if \vee is a 2-complete numeration in $H(S)$ then $\varphi \circ \alpha \equiv y$ for a suitable $\varphi: A \rightarrow S$. Assume that \vee is 2-complete with respect to $s, t \in S$; we then define the map φ by

$$
\varphi(x) \rightleftharpoons \begin{cases} s & \text{if } x \notin \bigcup_{K} E_{K} ; \\ \nu_{K} & \text{if } x \in \mathcal{E}_{K} \setminus \bigcup_{m \neq K} E_{m} ; \\ t & \text{if } \mathcal{I}_{K, m} \text{ (m \neq K} \land x \in \mathcal{E}_{K} \land x \in \mathcal{E}_{m} \text{).} \end{cases}
$$

It follows from the description of the preorder $\leqslant_{\cal{L}}\!\!\!\!\!\!\!\!b_{(\ell)}$ (property 8, Sec. 5) that $\varphi(\!\varrho\!\!\mid\!\! S_{\ell}$ $\psi^{(0)}=b$. It remains to check that $\varphi\circ\alpha\equiv\vartheta$. We have $\nabla\psi^{(\alpha)}g^{(\kappa)}\in\mathcal{L}_{\kappa}\setminus\mathcal{L}_{\mu}\subset_{\pi}$, and therefore \forall K $((\varphi \circ \mathcal{L})\mathcal{G}/K)=\varphi$ $(\infty\mathcal{G}/K)=\nu$ _K $)$, i.e., \mathcal{G} reduces V to $\varphi \circ \mathcal{L}$. In order to prove that $\varphi \circ \mathcal{L} \times V$ it suffices to verify that $\varphi \circ \alpha \leq \alpha_s^{t}(\gamma)$ (property 4, Sec. 5). Let the r.e.s. φ be defined by $\phi \Rightarrow {\psi \in N \mid \exists \kappa,m(m \neq \kappa \land \alpha \psi \in E_{\kappa} \cap E_{m}) }$; let \hbar be a g.r.f. m -reducing ϕ to ξ , and let f be any g.r.f, satisfying

$$
x_{f(y)} = \begin{cases} \phi & \text{if } \exp \notin \bigcup_{k \geq 0} E_k; \\ \lambda_{Z, \leq k, h(y) > - \text{ otherwise,}} \end{cases}
$$

where K is the first number for which \mathcal{Y} was enumerated in $\alpha^{-(1/2)}(E_{\kappa})$ in some simultaneous stepwise enumeration of the sequence ${c^{-1}(E_{\kappa})}$. We verify without difficulty that the g.r.f. $\lambda y. \langle f(y), 0 \rangle$ reduces $\varphi \circ \infty$ to $\tau_s^t(v)$.

We now prove that $S = A$ and let φ be the identity map from A into S . By condition 2, the numeration $\varphi \circ \infty = \infty$ is 2-complete. Now let $S = {\varphi, \{x\}, \mathcal{N} | x \in \mathcal{N}\}$, be a \vee -principal computable numeration of S . The numeration V is 2-complete relative to \emptyset, N . By condition 2, there exists a map $\varphi:A\to S$ such that $\varphi\circ\alpha\equiv \nu$. Clearly, the sequence $\{\mathcal{D}_k\}$, $\mathcal{D}_k\neq\{\kappa\},$ N } ($K \in \mathcal{N}$) and the g.r.f. h satisfying the condition $\forall K$ ($\forall h(K) = \{K\}$) demonstrate that the numerated set $(S; v)$ is 2-universal. Let the g.r.f. f reduce v' to $\varphi \circ \alpha$. We then easily see from $\varphi \circ \alpha \equiv \gamma$ that the existence of the sequence $\{\mathcal{E}_{\kappa}\},\mathcal{E}_{\kappa} \Rightarrow \varphi^{-1}(\mathcal{D}_{\kappa})$ and the g.r.f. $f \circ h$ prove that the numerated set Λ is 2-universal.

The next result follows from the proof of Theorem 2 and the Corollary to Proposition 3. COROLLARY. Let A be 2-universal and \mathcal{P}_{s}^{\neq} ($\varphi \in \mathsf{Map}(A, S)|\varphi(a)=S, \varphi(\beta)=t\}$ (where $S, t \in S$; $a, b \in A$ are the elements with respect to which the numeration \propto is 2-complete). Then $(Map(A,S);\leq, \{P^t_s\}_{s,t\in S})$ is a 2-discrete generalized semilattice which is equivalent to $({H_2(S);\leq,\{{H_S^t\}}_{{S_t}})_{{S_t}})_\in\mathcal{S}})$.

7. REFLECTIVE NUMERATED SETS

We will henceforth consider the structure $(Map(A,S);\leqslant_M)$ for two new natural classes of numerated sets. The numerated set $A=(A_{,\alpha})$ is said to be reflective if the numeration κ is complete and there exist morphisms ϕ_{q} , ϕ_{q}^* , ϕ_{q} , ϕ_{q}^* from $\mathcal A$ into $\mathcal A$ such that:

- 1) $\phi^*_{\rho} \phi_{\rho} \phi^*_{j} \phi_{j}$ are the identity maps on A ;
- 2) $\mathfrak{m}q \not\Rightarrow$, $\mathfrak{m}q \not\Rightarrow$ are disjoint α -enumerable sets.

Examples. K is reflective. If C is a finite family of finite subsets of N such that $(C; \subseteq)$ has a smallest but not a largest element, then the numerated set (A, ∞) , formed by the family of all computable enumerations in $~\cal H(C)~$ together with a principal computable numeration is reflective. If the numerated sets A and B are respectively reflective and complete, then $A\otimes B$ is reflective. The family $\{\phi, \{x\}\,|\, x\!\in\! \mathcal{N}\}$ equipped with a principal computable numeration is not a reflective numerated set.

THEOREM 3. If \vec{A} is reflective and $P_{\vec{S}} = {\varphi \in Map(A,S) | \varphi(a) = s}$ $a \in \vec{A}$ (where $s \in \vec{S}$, is the element with respect to which the numeration ∞ is complete), then $(\text{Map}(\mathcal{A},\mathcal{S});\leqslant_M,\mathcal{S})$ ${D_{\rm g}}_{\rm g}$ is a discrete generalized semilattice.

We first define the binary operations $Q_c(s\in S)$ on $\mathsf{Map}\left(A,\mathcal{S}\right)$. If $s\in\mathcal{S},~\varphi_q,\varphi_r\in\mathsf{Map}\left(A,\mathcal{S}\right)$ then the element $~\theta_{_{\!S}}(\varphi_{_{\!O}},\varphi_{_{\!J}})$ 6 Ma ρ (Å, S) (more briefly, $~\theta_{_{\!S}}$) is defined for (x e A); by:

$$
\theta_{s}(x) \rightleftharpoons \begin{cases} s & \text{if } x \notin \text{vng } \phi_{o} \text{ or } \text{vng } \phi_{j}, \\ \phi_{i} \phi_{i}^{*}(x), & \text{if } x \in \text{vng } \phi_{i}, \text{ is } \{0,1\}. \end{cases}
$$

We claim that $~\theta_{s}~(\varphi_{0},\varphi_{i})~$ is the generalized upper bound of the elements $~\varphi_{0}~,\varphi_{i}~$ in $(Ma\rho/ A,~$ $S;~s_{M}$, $\{\mathcal{P}_{s}\}\)$ (cf. Sec. 1). Indeed, by property 10 in Sec. 2 and condition 2) in the above definition, we have $q \notin \text{var} \notin V$ $\text{var} \notin \mathcal{P}_r$, and therefore $\theta_s \in \mathcal{P}_s$. We further have $\theta_s \notin \mathcal{P}_t(x)$ = $\varphi, \varphi_i^* \varphi_j(x) = \varphi_i(x)$ i.e., the morphism $\varphi_i^* M$ -reduces φ_i to θ_s $(\varphi_i = \theta_e \circ \varphi_i)$. Let $\varphi_o, \varphi_i \leq_M \varphi_j$ $\psi\in P_{c}$ and let $\psi_{\cdot}\left(\nu=Q,l\right)$ be a morphism M -reducing ψ_{\cdot} to ψ . Then the map ψ_{\cdot} A \longrightarrow A , defined by

$$
\psi(x) \rightleftharpoons \begin{cases} a & \text{if } x \notin \text{tng } \varphi_0 \cup \text{tng } \varphi_j; \\ \psi_i \; \varphi_i^* \; (x) & \text{if } x \in \text{tng } \varphi_i; \end{cases}
$$

is a morphism from A to A which M -reduces θ_s to ψ (this follows easily from the reflec tivity of A). Finally, let $\psi \in P_{S'}$, $S' \neq S$ and assume that the morphism ψ M-reduces ψ to \mathscr{O}_S . It follows at once from $s' \neq s$ that $\mathscr{V}(a) \in \mathscr{U}_Q$ for some $\mathscr{L} \in \{0, 4\}$. Together with property 10, Sec. 2, and the fact that ψ is a monotone map from $(A; \leqslant_{\mathcal{A}})$ into $(A; \leqslant_{\mathcal{A}})$ [4, p. 111], this implies that $~mg\,\psi \subseteq mg\,\phi_i^*$, whence the morphism $~\phi_i^*~\circ~\psi$ $~$ M -reduces ψ to φ_{i} .

We note some additional properties of reflective numerated sets A .

1. If $X \subseteq A$ is an α -enumerable set, then its image $\phi_i(X)$ under the map ϕ_i (*i=0,1*) is also \propto -enumerable, and a π -index for the set $\propto^{1}(\phi_{i}(\chi))$ can be found effectively in terms of a π -index of the set $\alpha^{-1}(X)$.

This follows from the readily verified assertion

$$
\forall x \in A \ (x \in \phi_i(X) \longrightarrow x \in vng \phi_i \land \phi_i^*(x) \in X).
$$

We define a sequence $\{\psi_{\kappa}\},\{\psi_{\kappa}^*\}$ of morphisms from \mathcal{A} into \mathcal{A} by
 $\psi_{0}^{\prime} \rightleftharpoons \phi_{0}^{\prime}, \psi_{\kappa+i}^{\prime} \rightleftharpoons \phi_{i}^{\prime} \circ \psi_{\kappa}^{\prime}; \psi_{0}^{\prime \doteq \phi_{0}^{\prime \prime}, \psi_{\kappa+i}^{\prime \prime} \rightleftharpoons \psi_{\kappa}^{\prime \prime} \circ \phi_{i}^{\prime \prime$

2. The sequences of morphisms ${ $\{\psi_\kappa^*\}, \{\psi_\kappa^*\}$ are computable; ${\psi_\kappa^*}$. ψ_μ^* is the identity$ on A for every $\kappa \in \mathcal{N}$.

3. The sets $\mathcal{D}_{\kappa}, \mathcal{D}_{\kappa} = \text{trig } \mathcal{H}_{\kappa}$ ($\kappa \in \mathcal{N}$) are pairwise disjoint.

It suffices to prove that $\forall K \forall m \ (\textit{K} < m \rightarrow \mathbb{D}_k \cap \mathbb{D}_m = \emptyset)$. This can be done by a simple induction on K .

4. Every reflective numerated set is universal.

It follows from 1-3 that $\{\mathcal{D}_{\kappa}\}$ is a computable sequence of nonempty disjoint α -enumerable subsets of A .

5. If T is a set and
$$
\psi : S \rightarrow T
$$
, $S \in S$, $\varphi_0, \varphi \in Map(A, S)$. $\psi \circ \theta_s (\varphi_0, \varphi_1) = \theta_{\psi(s)} (\psi \circ \varphi_0, \psi \circ \varphi_1)$.

Property 4 and the Corollary to Theorem 1 imply that generalized upper bound operations can be defined, in addition to the operations \mathscr{G}_s on $(\mathcal{M}(\rho,\{S\};\leq_{m},\{\mathcal{P}_s\}_{s\in S})$, for a reflective numerated set A . These operations are closely related.

6. For any $s \in S$, $\varphi_o, \varphi_i \in \mathsf{Map}(A, S)$ the enumerations $\mathscr{O}_S(\varphi_o, \varphi_i) \circ \alpha$ and $\mathscr{O}_S((\varphi_o \circ \alpha) \oplus (\varphi_i \circ \alpha))$ are equivalent.

We also note that property 2 can be used to define the operations Q_c even for infinite sequences of elements in $~\mathcal{M}ap~(A, S)$, which is useful in some problems. Indeed, if $\varphi_{\kappa} \in$ $\mathcal{M}ap~(A, S), \kappa \in \mathcal{N}$, then $\theta_s = \theta_s$ ($\varphi_a, \varphi, \dots$) is defined by

$$
\mathcal{G}_{s}(x) \rightleftharpoons \begin{cases} s & , \text{ if } x \notin \bigcup_{\kappa \geq 0} \mathcal{D}_{\kappa}, \\ \varphi_{\kappa} \mathcal{V}_{\kappa}^{*}(x) & , \text{ if } x \in \mathcal{D}_{\kappa}. \end{cases}
$$

In this case we also have $\mathcal{C}_{S}(\varphi_{o}, \varphi_{o}, \dots) \circ \alpha \equiv \rho_{S}(\bigoplus_{k \geq 0} (\varphi_{k} \circ \alpha)).$

8. 2-REFLECTIVE NUMERATED SETS

We now consider another class of numerated sets. A numerated set $A=(A,\infty)$ is said to be 2-reflective if the numeration ∞ is 2-complete and there exist morphisms ϕ^0_{θ} , ϕ^*_j , ϕ^*_j , ϕ^*_j from A into A and ∞ -enumerable subsets $B_0, C_0, B, C_1 \subseteq A$ such that:

1) the maps $\phi^*_o \phi^*_o, \phi^*_i \circ \phi^*_i$ are the identity on A ; 2) $B_i \supseteq C_i$, $\deg \phi_i = B_i \setminus C_i$ $(i = 0, 1)$, $B_o \cap B_i = C_o \cap C_i$.

Condition 1) implies that ϕ_q^0 , ϕ_q^0 and injective, and 2) says that $\mathcal{U} \mathcal{U} \mathcal{Y} \phi_q^0 \cap \mathcal{U} \mathcal{U} \mathcal{Y} \phi_q^0 = \phi$.

Examples. The set $\sqrt{ }$ is 2-reflective. If $\mathcal C$ is a finite family of finite subsets of N that contains at least two elements and is such that $(\mathcal{C}; \subseteq)$ has a minimal element and a maximal element, then the numerated set defined by $\mathcal C$ as in the corresponding example in Sec. 7 is 2-reflective. If A is 2-reflective and B is 2-complete, the $A \otimes B$ is 2-reflective. The numerated set $\{\phi, \{x\}, \mathcal{N} \mid x \in \mathcal{N}\}$ with a principal computable numeration is not 2-~eflective.

THEOREM 4. If A is 2-reflective and $P_s^t = {\varphi \in Map(A,S) | \varphi(a)=s, \varphi(b)=t }$ (where $s,t \in S;\alpha$, and $~6 \in A$ are the elements with respect to which the numeration $~\propto~$ is 2-complete), then

 $(MaD(A, S); \leqslant_{M}$, ${P}^{\circ}_{s}$, ϵ_{s} is a 2-discrete generalized semilattice.

We first define binary operations \mathscr{L} on MQp(A,S). If $S,L\in\mathcal{S}$, $\mathscr{L}_o,\mathscr{L}_o,\mathscr{L}\in\mathsf{MQP}\left(A,\mathcal{S}\right)$ we define the map $\varrho_s^t = \varrho_s^t (\varphi_o, \varphi_r)$ by:

$$
\varrho_s^t(x) \rightleftharpoons \begin{cases} \quad s \quad , \text{ if } \quad x \notin \mathcal{B}_o \cup \mathcal{B}_r \,, \\ \varphi_i \varphi_i^* \left(x \right) \quad , \text{ if } \quad x \in \mathcal{B}_i \setminus \mathcal{C}_i \,, \\ \quad t \quad , \text{ if } \quad x \in \mathcal{C}_o \cup \mathcal{C}_r \,. \end{cases}
$$

The map $\varrho_s^t(\varphi_o,\varphi_i) \in Map(A,S)$ is well defined, since the 2-reflectivity of A implies that $(\bar{\beta}_0\cup\bar{B}_r, \beta_0\setminus\bar{C}_p,~\beta_1\setminus C_r,~C_o\cup C_r)$ is a nontrivial decomposition of the set A . The map $\varrho_s^t(\varphi_o,\varphi_r)\in$ P_s^t , since $a\in\overline{\mathcal{B}_o\cup\mathcal{B}_f}$, $\theta\in\mathcal{C}_o\cap\mathcal{C}_f$. Following the proof of Theorem 3 and using the appropriate properties in Sec. 5, we verify without difficulty that the θ_s^t are generalized upper bound operations in $(\text{Map}(A, S); \leq_M, \{P_s^{\sharp}\}).$

We note some additional properties of 2-reflective numerated sets \mathcal{A} .

1. If $X \subseteq A$ is α -enumerable then the same is true of $\varphi_i(X) \cup C_i$ (i= $0,1$), and a π index for the set $\alpha^{-1}(\phi_i^2(X) \cup C_i)$ is given effectively in terms of a π -index for the set $\alpha^{-1}(X)$.

This follows from the easily verified assertion

$$
\forall x \in A \; (x \in \varphi_i(X) \cup C_i \leftrightarrow x \in B_i \land (\varphi_i^*(x) \in X \lor x \in C_i)).
$$

The sequences $\{\psi_{n}\}_{n}$, $\{\psi_{n}\}_{n}$, $\{\psi_{n}\}_{n}$ are defined as in Sec. 7 and also possess properties 2, 3 in Sec. 7. We also define the sequences $\{E_{\mu}\}, \{\tau_{\mu}\}$ of subsets of A by $\mathcal{L}_{\rho} = D_{\rho}$, $E_{\kappa+1} \Rightarrow \phi_1(E_{\kappa}) \cup C_1$; $F_{\kappa} \Rightarrow C_{\kappa}$, $F_{\kappa+1} \Rightarrow \phi_1(F_{\kappa}) \cup C_1$. It follows from 1 above that

2. The sequences $\{\mathcal{E}_{\kappa}\}, \{\mathcal{F}_{\kappa}\}\$ of ∞ -enumerable subsets of A are computable.

3. $E_k \supseteq F_k$, $D_k = E_k \setminus F_k$ for every $k \in \mathbb{N}$.

We give the proof by induction on K . The assertion is obvious for $k = 1$. Let $E_{\kappa} \supseteq F_{\kappa}$, $D_{\kappa} = E_{\kappa} \setminus F_{\kappa}$; then $\phi_j(E_{\kappa}) \supseteq \phi_j(F_{\kappa})$, whence $E_{\kappa+1} = \phi_j(E_{\kappa}) \cup C_j \supseteq \phi_j(F_{\kappa}) \cup C_j = F_{\kappa+1}$. We also have $E_{x+j}\vee F_{x+j}=(\psi_j(E_x)\cup C_j)\vee(\psi_j(F_x)\cup C_j)=\psi_j(E_x)\vee\psi_j(F_x)$ since $\psi_j(\psi_j)=\phi_j$. Further, $\psi_j(E_x)\vee\psi_j(F_x)=\psi_j(E_x)\vee\psi_j(E_y)$ $\varphi_{1}(E_{k}\times F_{k})$, since φ_{1} is injective. But $E_{k}\times F_{k}=\mathcal{D}_{k}$, and therefore $E_{k+1}\times F_{k+1}=\varphi_{1}(\mathcal{D}_{k})=$ $= J_{k+1}$

4. For any $K,m \in \mathbb{N}$ with $K \neq m$, we have $E_K \cap E_{m} = F_K \cap F_m$.

By 3, if suffices to verify that $\forall k \forall m \left(K < m \rightarrow \mathcal{E}_k \cap \mathcal{E}_m \subseteq \mathcal{F}_k \cap \mathcal{F}_m \right)$. This is also proved by a simple induction on K .

5. Every 2-reflective numerated set is 2-universal.

We define the sequence $\{d'_\kappa\}$ of elements of A by $d'_\kappa \neq \psi_\kappa(\Omega)$ ($\kappa \in \mathcal{N}$). The computabilit of the sequence of morphisms $\{\psi_{\mathcal{K}}\}$ implies the existence of a g.r.f. q such that \forall K $|\alpha|\leq$ $\alpha g(k)$. Properties 3 and 4 then easily imply that $\forall k$ $(d_k \in E_k \setminus \bigcup_{m \neq k} E_m)$, which together with property 2 gives the required result.

The analogs of the other remarks made at the end of Sec. 7 are also valid.

9. MULTIPLE REDUCIBILITY

The above results also make it easy to study multiple (m - and M -) reducibility. Let $A = (A, \infty)$ -be a numerated set, A a nonempty set, and let $F, G \in Map(A, Map(A, S))$. We say that F is multiply m -reducible to $G~(F \leqslant^*_{m} G)$ if there exists a g.r.f. f such that f m reduces $\mathcal{F}(\lambda)$ to $\mathcal{G}(\lambda)$ for every $\lambda \in \Lambda$. The relation $\leqslant^*_{\mathcal{M}}$ of multiple $\mathcal M$ -reducibility is defined analogously (with the g.r.f. f replaced by a morphism ϕ : $A \rightarrow A$).

We first analyze the special case when $A = N$ and ∞ is the identity numeration of N in which case \leqslant^*_{m} and \leqslant^*_{M} coincide. The "usual" multiple m -reducibility [4] is recovered by specializing to $\delta = \{0,1\}$. We define the binary operation Θ on $\mathsf{MQD}(N, \mathsf{MQD}(N, \mathsf{S}))$ and the unary operations $\rho_a,~\zeta_a$ for $~\varphi,~\psi\in$ MQD(\land, δ) as follows: if $\vdash,~\phi\in$ MQD($\land,$ MQD(\land, S)). $\lambda\in\bigwedge$ then $(F \oplus G) \lambda \rightleftharpoons F(\lambda) \oplus G(\lambda)$, $(\stackrel{\star}{\rho}_{\varphi} F) \lambda \rightleftharpoons \rho_{\varphi(\lambda)}(F\lambda)$, $(\stackrel{\star}{\epsilon}_{\varphi}^{\varphi} F) \lambda \rightleftharpoons \alpha_{\varphi(\lambda)}^{\varphi(\lambda)}(F\lambda)$.

Proposition 4. The algebraic systems $\langle Map(A, Map(X, S)); \leq m, \Theta, {\phi \choose \phi} \}$ { $\tilde{\sigma}^{\psi}_{\varphi}$ }) and (Map(N, $\text{Map}(\Lambda, \mathcal{S})$; $\leq_{\pi} \theta, {\varphi_{\theta}}$, $\{\varphi_{\theta}^{\varphi}\}\$ are naturally isomorphis.

Here the word "natural" means that the isomorphism is given by mutually inverse maps $M_{\alpha,p}(\Lambda, Map(N, S)) \rightleftarrows Map(N, Map(N, S))$, whose composition "interchanges the arguments." The verification is trivial.

<u>**COROLLARY**</u>. The structure $(Map(A, Map(N, S)); \leqslant^*, \theta, \{\rho^*_\varphi\})$ is a semilattice with discrete closures; $(Map~(A, Map(N, S)); \leqslant^*_{m}, \oplus, \{\stackrel{*}{\mathcal{I}}\stackrel{\varphi}{\varphi}\})$ is a semilattice with 2-discrete closures (cf. secs. 1,2,5).

If we are given a numerated set $A=(A,\alpha)$ then the numeration $\alpha: N \longrightarrow A$ induces an inclusion \mathcal{Y} : $\mathsf{MQP}(A,\mathcal{S})\to \mathsf{MQP}(N,\mathcal{S})$ for every set \mathcal{S} ; the imbedding \mathcal{Y}_1 in turn induces an inclusion \mathcal{G}_{\cdot} : Map(\land ,Map(\land ,S)) \longrightarrow Map(\land ,Map(\land ,S)) for every \land .

THEOREM 5. If A is universal, then the closure of the image of the set $Map(A, Map(A, S))$ in $({\rm Map}(A,{\rm Map}(N,\mathbb{S}))\,;\,\leqslant_m^*)$ under the map $~\mathscr{G}_\mathbf{c}~$ coincides with the closure of the set $\{\tilde{\mathcal{P}}_{\pmb{\varphi}}(F)\,|\,\varphi$ $\epsilon \text{Map}(A, S), \text{FeMap}(A, \text{Map}(N, S))\}$. The same result is valid when "universal" is replaced by "2universal" and $\tilde{\rho}_{\varphi}$ is replaced by $\tilde{\tau}_{\varphi}^{\ast}$.

Consider the diagram

Map(
$$
\Lambda
$$
, Map(A , S)) \Leftrightarrow Map(A , Map(Λ , S))
 \mathcal{L}
 $\downarrow \mathcal{L}$
 $\text{Map}(\Lambda, \text{Map}(N, S)) \Leftrightarrow \text{Map}(N, \text{Map}(A, S)),$

where the horizontal maps are natural equivalences. It is easily verified that the diagram commutes and that $F \leqslant^*_{m} G \leftrightarrow \mathcal{Y}_{\prec}(F) \leqslant^*_{m} \mathcal{Y}_{\prec}(G)$ for every $F, G \in \text{Map}(A, \text{Map}(A, S))$. The required result follows from this, Theorems 1, 2, and Proposition 4.

Remark. The following generalization can easily be proved by using properties 5 in Secs. 2, 5, Let $\mathcal{T} \subseteq Map(A, S)$, $\forall \Leftrightarrow$ $\{\mathcal{F} \in Map(A, Map(A, S))\mid \forall a \in A$ (the function $\lambda \mapsto \mathcal{F}(\lambda)(a)$ is contained in \mathcal{T})]. Then the closure of the image of the set V in $(Map(A,Map(N,S)), \leqslant^*_{m})$ coincides with the closure of the set $\{\tilde{P}_{\varphi}(F)|\varphi\in\mathcal{T},\ F\in\mathsf{Map}(\Lambda,\mathsf{Map}(\mathcal{N},S))\}$ if A is universal.

In particular $\setminus V;\leqslant_m$) has a natural discrete generalized semilattice structure. Similar results hold for 2-universal sets $A\!$ and for the operations $^u\! \dot{\varphi}$

The relation \leqslant can be analyzed in the same way. We define the binary operations θ on MQD(A,MQD(A,S)) for the case when A is reflective [and the binary operations θ , if \overline{A} is 2-reflective] as follows:

$$
(\stackrel{\star}{\theta}_{\varphi}(\digamma,\mathcal{G})\wedge\Rightarrow\theta_{\varphi(\lambda)}(\digamma\lambda,\mathcal{G}\lambda),(\stackrel{\star}{\theta}_{\varphi}^{\psi}(\digamma,\mathcal{G})\wedge\Rightarrow\Theta_{\varphi(\lambda)}^{\psi(\lambda)}(\digamma\lambda,\mathcal{G}\lambda)
$$

for arbitrary $\varphi, \psi \in Map(A, S)$, $F, G \in Map(A, Map(A, S))$, $\lambda \in \Lambda$.

THEOREM 6. If A is reflective then ${Map(A, Map(A, S))}_{s \le M}$, ${\{\phi_{\phi}\}}$ is a discrete generalized semilattice. If A is 2-reflective then $(Map(\Lambda, Map(A, S)), \leq \frac{*}{M}, \{\stackrel{\circ}{\mathcal{O}} \stackrel{\varphi}{\mathcal{O}}\})$ is a 2-discrete generalized semilattice.

The analog of the remark to Theorem 5 is also valid.

LITERATURE CITED

- *1.* V. L. Selivanov, "On the structure of the degrees of undecidability of index sets," Algebra Logika, 18, No. 4, 463-480 (1979).
- *2.* V. L. Selivanov, "On multiple m -reducibility on index sets," in: Proc. Fifth All-Union Conf. on Mathematical Logic [in Russian], Novosibirsk (1979), p. 137.
- *3.* T. M. Kuz'mina, "Index sets and their applications in the theory of reducibilities," in: Proc. Fifth All-Union Conf. on Mathematical Logic [in Russian], Novosibirsk (1979), p. 79.
- 4. Yu. L. Ershov, Theory of Numerations [in Russian], Nauka (1977)
- 5. S. D. Denisov and I. A. Lavrov, "Complete numerations with infinitely many distinguished elements," Algebra Logika, 9 , No. 5, 503-509 (1970).