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STRUCTURE OF POWERS OF GENERALIZED INDEX SETS 

V. L. Selivanov UDC 517.11:518.5 

In this article we generalize the results of [1-3] in order to relate problems concern- 

ing index sets more closely with the theory of complete numerations [4] and treat ordinary 

multiple reducibility from a single viewpoint. 

Let A = (A,~) be a numerated set and let the set S be arbitrary. The set M~(A,S) 

of all maps from A into S has two naturalorderings, which we denote by ~ and gM in order to 

emphasize their relationship with the corresponding concepts in [i]. Specifically, for ~,~E~ 

I~,S) we set ~ if ~o~o~ (here o denote compositionofmaps and ~ denotesredu- 

cibilityofnumerations), and ~M~ if ~=~o~ for some morphism ~ from 4 into A ~M~ 

implies that ~ . Among other things, we will study the preorders ~m and ~M We 

note that we recover the case of "ordinary" index sets by taking S={0,/} , in which case 

we identify ~(A,$) with the family of all subsets of A and ~0~ with the index set 

°¢-l({aEA I~(QI=~}). We will use some of the terminology in [i]. 

i. AUXILIAKY CONCEPTS 

We introduce some concepts needed to study the preorders ~m,~ If (~; ~) is a 
_ F ~  X - - - ' "  P preordered set, then the closure of a set X c p in (P; ~) is the set [XJ~-~E l (XE  

]. Let f be maps from n into a preordered set then is  equiva-  

lent  to @ i f  Two preordered sets CP; > and 

are equivalent if there exist monotone maps ~:P~P~ ~t: p,_~p whose composite ~'o 

is equivalent to the identity map of ID; and ~o ~, equivalent to the identity map of ~' 

Let ~be a nonempty set. By a discrete generalized semilattice (more precisely, an ~ - 

discrete semilattice) we mean any algebraic system (~;~, I~}~E f) satisfying the following 

conditions: i) ~ is a preorder on ~ ; 2) ~Ef I~ ~) ; 3) for all ~,~ EF, ~b, the 

proposition ~LT~ (%£&A~ZA~Z A (ff6/2~A~ A ~ - - ~ ) A ( ~ E ~ A ~ - - ~  ~ 

~V~=~ is valid in ~. 

The element % , whose existence is asserted in 3), is defined uniquely up to equivalence 

in (~; ~ ) , so that we can define binary operations ~(6E~) on ~ (~(~,~)~f) such that: 
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cl or UC,, (~,~)~I~,~,~'' EP, 6,b' "E~) . According to this definition ~ = [Z~L/~] . Discrete 

generalized semilattices may thus be regarded as systemslP;c,{~}~Ei) , where the ~i , which 

are called the generalized upper bound operations in ~p; c__ ) , satisfy the above conditions. 

if such ~ are given, it is easy to define generalized upper bound operations d~ ~) with 

any number /Z>~ of arguments; for /Z=# , e.g., it suffices to set ~ I~, ~, 3' ~)~ 

~(U~I~i[Xl,~),~3),~) If ~=~I [~ U~] and ~I,...~6~ , then the sets {~I, .... ~] and 

{"(~)~ .,X~);~E_F} form a discrete pair in the sense of [i Sec. I]. We also observe that 

if (~;=,{U~}) is a preorder with generalized upper bound operations, then (~;~,{[~]}) 

is a discrete generalized semilattice. 

We define yet another concept A semilattice with discrete closures is a system (~;r- 

U,I~E I) satisfying the conditions: 

a) ~ is a preorder on the set ~ ; 

c) ~ (~6/) is the closure operation in C~;--) , which by definition means that 

The above concepts are interrelated. Indeed, in any semilattice with discrete closures 

(~.~,~,{~}) we can define the operations ~: ~I~,~)~U~) If now ~ is any sub- 

set of ~ , closed with respect to all of the ~, ~ (it suffices for this that ~f 

[~]~__~) then (p~ ~ IU~}) is a discrete generalized semiattice (the verification is 

rivial) . 

We will also need the following modifications of the above definitions A system (~; ~--- • ! 

l~/}~.7e ~ > is called a 2-discrete generalized semilattice if it satisfies conditions i)-3) 

(with i replaced by ~7~ , and 3) is taken for all ~,/,b~,j! 67 with ~/~, /~/ A system 

(~;~,{~/~,TE ~ ) is called a semilattice with 2-discrete closures if it satisfies con- 

ditions a)-e) (with i replaced by ~j ), where e) is taken over all ~,/, b '7 ~Ef$ ~4/'~/', 

As above, generalized upper bound operations L/~ ° can be defined in any 2-discrete generalized 

~emilattice, and any semilattice with 2-discrete closures will induce 2-discrete generalized 

semilattices. 

2. THE OPERATIONS ~s 

In this section we consider some questions involving complete numerations. Throughout 

this article, $ denotes an arbitrary set with at least two elements; ~$) is the family of 

all maps from the natural numbers ~into ~ ~ ~ is the reducibility relation in ~(~); @ 

denotes direct sum of numerations on ~[$)';~=(~) is a numerated Kleene set; ~7----I~ ) 

is a numerated Post set; ~ is a universal partial recursive function (p.r.f.), i.e., 

~<~>=~(y) , where < P is a Cantor function used to encode pairs. 
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To each element sES we associate the unary operation ~S 

rule: if VE/-/(~), ~/~ then 

on /v/(S) by the following 

Clearly, "b/'~(pS~))=q.,/~U{S~ (for simplicity, we sometimes abbreviate /)/..,'D) to #,~,,~ ). 
The operation Ps may be regarded as a modification of the operation of taking the completion 

of a numerated set [4]. We state several properties of the p£ (the obvious proofs are 

omitted). 

The first property shows that the PS generalize the operation of pf~-cylindrifica- 

tion. Numerations V-~--~{0,4} are identified with the subsets {fLE~I ~(fz)=/), 

i. I£ S=~O,I}, ~EH(S) , then p0(~}=pr~I~},p~(~}=~r~(7), 

2. Fs is the closure operation on ~($);~) for all $ and ££S, 

t l 
Let us verify, e.g., that ~,V~[$),~4#-~(~).<~(~] (the assertions ~-<p£(#),~s~s(~)~/Vs(~ ) 

are proved just as simply). Let f be a generalized recursive function (g.r.f.) reducing 

9 to V ~ and let ~ be any g.r.f, satisfying 

Then the g.r.f. ~rl,<~(f~),O> reduces ~(9) to ~(~'). 

Remark. We note that the assertion VV~)I(9~<~$(~))A(9~<I)t-~/O$[~,<~IDS(#t))A~s/DS(#)~/2~(~))) holds 

effectively, i.e., if we are given, e.g., a g.r.f, reducing ~ to ~t , we can effectively 

find a g.r.t, reducing /DS(9 ) to /Os(9I) for all ~ , SES, ~,91£/-/(S) Many of the other 

assertions in this paper are also effective in an analogous sense. 

3. For any $~ , ~£~(S)~ ~s (~) is the smallest numeration over ~ , which is complete 

with respect to the particular element S , i.e., Ps (~) is complete relative to $ , and if 

~! and ~i is a complete numeration in ~(S) relative to £ , then ~s(9)~ ~P, 

4. The closure of the set {~s(9) Ig£~) ~)E/'/[S)} in (/'/(S)~..<) coincides with the set of 
all complete numerations in ~($), 

5. If I is a set and F : S - - ) T ,  Se$" , then ~OpS(~) =~(~)(~o~), 

In order to formulate the next two results, we recall that numerations OlE~(Sl),,..~ 

~(~t~) can be put in correspondence with their product ~i~,,,~I)m~/'/(~I~..,~$ m) according to the 

-~ ~ , rule: (~i~,,,(~)'~ I ..... ~r~>~-(~r..,~m ~) where < ) is the coding function for £~ -tuples. 

In addition, to each function ~:$m--~S we associate a function ~9~',(/'/$)m---~/-/($) defined 

6. For arbitrary sets SI,...,SnZ and any , ,£~,~)~6//(S~)(/~b~fTZ) we have: ~(~ ..... Sm ) 

. .  

This follows from property 3 and the well-known fact that if ~/£,I'/(S~) is complete 

with respect to $~E$~ then ~/~...~I)~ is complete with respect to ($I ..... $m)' 
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7. The set of all complete numerations in ~(S) is closed under all the operations 

~ (~',~--~$~t~f). This follows from 3, 5, 6. 

In order to formulate the next three results, we recall a few definitions. If 

V~($), E~--8 then the set E is said to be 9-enumerabie if ~'~(E) is recursively enumer- 

able. A numeration V corresponds to a preorder ~V on the set S which is defined by ~ i  

if for every V -enumerable ~__~ , xEE implies that fE~. It is clear that if ~ / ~  

then the element ~8 is not ~ -related in this way to the other elements in ~ It 

follows ~rom ~<~t that ~ (~--$~.<¢tI). We now study the relationship between the 

preorders ~q and ~s(V ) on $ • 

8. For any ~--$~ SE$~ #E~(S) we have 

This is a simple consequence of properties 1 and 5. Property 8 easily implies: 

9. A set E c__ 8 is ~s (V) -enumerable if and only if ~(~s~)~E or s~E and 

is ~ -enumerable. 

i0. For any ~,~,SES, ~E~{$) we have 

i 
i . e . ,  ~pS(V ) i s  t he  s m a l l e s t  p r eo rde r  on $ which c o n t a i n s  "-~V ,and  i s  such t h a t  the  e lement  

S is less than or equal to all of the elements in ~V 

If ~V~ , then ~</~(~)~ is implied by ~fis(~) Let ~ and i~V) . Then 

~@) S and property 9 implies that $~(~)~ It follows that ~s(V ) ~ . We now verify 

that ~ps(~)~"~J~--<~V(6~<~A~~P)). Let ~/~(~)~ ; if ~S , the assertion is obvious. 

Thus assume that ~f$ ; we then have to verify that ~-~<~ The assumption ~4~$ 

implies that there exists a V -enumerable subset ~ - - S  such that ~,$~E Let ~ 

be ~ -enumerable and ~ .  We then have $~ Ef]~ and E~ is ~ -enumerable. By 

property 9, ~ is ~s~) -enumerable; but then ~p~(~)~ and ~ EO~ imply that 

~ E ~  ~ . lhus, we derive that ~ from the assumption that ~ ,  and ~ is V - 

enumerable. Therefore, ~ ' 

1t .  We have ps(¢)~c@p'~p~(~)~ofvp~(~)~ fo r  a l l  SE8, V,~,~EH(S),  

This fo l l ows  from 3 and [4, P r o p o s i t i o n  10, p. 163].  

Let ~ be a g.r.f, reducing p$(~) to p$,(~'~ ; let i be any g.r.f, which satisfies 

for a l l  r / z t / z ,~EN By the r e c u r s i o n  theorem, t h e r e  e x i s t s  a g . r . f .  O(nz~/Z) such t ha t  

i ~'O(m,a)-----~?,t~,O(m,~)n) . We claim that the function ~, defined by ~<f??,~>~--~t<O(f~,~),~, 

is a g.r.f, reduci g ~(~) to V t Indeed, assume that <t~,~>¢~t~ , i.e., f~O~,tg~>~ 

J 
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~f~ Then (~$,~')f~C~ff$f~),t~>--$'. On the other hand, ~C#~ja)=~ and therefore <Cir,,n}, 

~>¢~rr~, ~93~)~CO?f~/~),/z>=S. But we must have (pS1~? ~C~m,f~l,/z>=~ps~)<C(/Tf~fg),/Z> , which con- 
tradicts $>S . We have verified that ~ is a g.r.f. It follows that ~C#.4,~)----~ for all 
/T~/g E/V and ~l~<C(/R,~},~>---~ffc(nz.r~),~>= ~<l?l~/Z>. These equalities imply: 

We now s t a t e  a p r o p e r t y  t h a t  g e n e r a l i z e s  a p r o p e r t y  possessed by the /'r/ - jump opera -  

t i o n .  First, some notation: If ~: S--~&, ~)E,/'/(8) , then the symbols ~ denote the direct 

sum ~ ~K of the following sequence of numerations: ~0 ~-~' ~+~ ~ ~ o O K The case of an 

t7~ -jump is recovered by specializing to ~=~0,~}, ~(~)=/~ ~(/)=~, 

13. If ~: $--~$ is a map without fixed points, two numerations ~I~),~S~(~ ~) with 

~/~$ are not comparable, and therefore ~(~)~ ~ 

Assume that /~s(~)~/~s,(~) . Then ~$(~)~<~f by property 12. Therefore (property 3), 

the numeration ~ @  is complete. In addition, we see easily that ~ ~ But it 

is easily seen that there exists no numeration ~. with the property that ~0~..<~ . Indeed, 

let the g.r.f, f reduce ~o/..~ tO / . i '  t .~o/ . ,L=jL/of  By the recursion theorem for complete 

numerations [4, p. 161], ~fCC)=~C for some number C . But then /.IC=/2f(Cl= ~[/.IC) , i.e. 
~CE S is a fixed point of the map ~ , contrary to assumption. 

The following important result follows from properties 2, ii, 12. 

Proposition i. The structure (H(S);~,~,{~s}$E$) is a semilattice with discrete 

closures. 

COROLLARY. Let ~ be the set of all complete (with respect to S e $ ) numerations in 

H($); and let HI($)~$U $ ~5 be the set of all complete numerations in ~($). Then 

(~{$); "< ' {~S} SE$ ) is a discrete generalized semilattice. 

We conclude this section by noting another application of the ~5 operations. That is, 

they can be used to find examples (more "explicit" than in [4, 5]) answering a question posed 

by A. I. Mal'tsev (it turns out that the first of these assertions was known to Yu. L. 

Ershov). 

Proposition 2. i) Let ~ be a ~,~ -complete set regarded as a numeration ~: ~ ~ ~O~/}. 

Then the numeration @ is complete relative to both 0 and i. 2) The standard numeration of 
o 

the class ~,o is complete rela rive to any subset of ~,~. 

The proof is a simple application of the Tarski--Kuratowski algorithm, together with 

property 3. 

3. LrNIVERSAL NUMERATED SETS 

Consider a structure (~(~,$);"<n~) for a class of numerated sets. The numerated set 

-----I~,=¢) is said to be universal if the numeration ~ is complete and there exists an infinit~ 

computable sequence of nonempty pairwise disjoint ~¢ -enumerable subsets of ~ . The map 

~¢:~onto~ induces an inclusion ~ --~oo¢ of ~p(~,S) onto N~C~,~)=H(~) which 

we denote by 
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THEOREM i. The following conditions are equivalent for the numerated set A: 

i) ~ is a universal numerated set; 

2) for every set ~ , the closure of the image of the set ~(A,~) in (//{~}~) 
under the map ~ coincides with the set of all complete numerations in ~(~) 

It is easy to see that this is just a convenient reformulation for our purposes of the 

universality theorem in [4, p. 267]. 

We note also that the closure of the set ~.[~6~a~(A,S)l ~I=@ (where a is a dis- 

tinguished element inAs£S ) in (~(;);~) coincides with the set of all numerations in 

~($) which are complete relative to the element Sf~, Together with Proposition 1 and 

its corollary, this gives: 

COROLLARY.......t... If A is universal then (~(A~S)~m~{~se$) is a discrete generalized 

semilattice which is equivalent to (/~7(S);~{/-/s}se$). 
The standard examples of universal numerated sets include ~ and the numerated set 

provided by the family {~{X}IX6~ } with a principal computable numeration. We note also 

that if A is a universal numerated set and ~ is a complete numerated set, then their 

product 4 ~  is a universal numerated set. 

4. THE OPERATIONS ~ 

We now come to our main goal, which is to study ~p~,S);~m) for another simple, 

natural class of numerated sets. However, this requires some preliminary work similar to 

that in Sac. 2. 

Fix a creative set 

f~ on ~(S) defined by 

Then we can associate to each element ~ 6S a unary operation 

Clearly, ~F[,~(~V)=~U{Z~]. We note some properties of these operations ~, which will 

will be helpful in what follows. Most of them are dual (in an appropriate sense) to the 

properties of the operations PS In most cases, the proofs reduce to simple manipulations 

using the fact that ~ is creative, and we therefore omit them. 

i. For the case when 9={0,1} we have ~°(~)=~x?, ~1(~7)= ~,~- (a numeration ~£/'/(~) 
is identified with the corresponding subset of ~ , and for ~,~c~ we have ~x~-[<~,~>] 

2. is  the c losure  opera t ion  on for  a l l  $ and 

In order to derive an analog of property 3 in Sac. 2, we introduce the following defini- 

tion. A numeration ¢6H[S) is said to an element ~65, if for arbitrary g.r.f. ~ and recur- 

sively enumerable set (r.e.s.) 6 there exists a g°r.f. ~ such that for all ~6~ 

I 9/(f) , if X~dg; 
9~(x)  = , i f  Z E ~ ,  t " 

A numeration is said to be cocomplete if it is cocomplete with respect to some ~6~. 

3. For all {6 S , 9 6~($) the numeration ~(~) is the smallest numeration over ~ which 

is cocomplete relative to ~ . 
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4. If T i~ a set and ~:8--T,~ , then ~of~(~) =~f~)I~°~). 

5. For arbitrary sets S/,.,.,Stt I and arbitrary ~ ~S~,~H:~):/~</7~ we have: ~(~' ..... ~m) 

suffices to verify that be a g.r.f 

satisfying /2~'V/]'~'---,-](a,/]')e~ for all L/,/./'~N Then the g.r.f, taking the number 

~,...,~>,~ into ~f~/,~ (~,~)>~..,,<~rn,~(?j~m,~/~> (where ~ and '~ are g.r. functions 

inverse to the pair-coding function) gives the required reduction. 

6. The set of all cocomplete numerations in ~($) is closed under all the operations 

M: 
The duality of the operations ~S and q~ can be seen in the following description 

of the preorder ~#(~) on 

7. For arbitrary ~$, ~'(~) we have 

= , t K E ,  I V C ) if 

8. The set Ec__S is ]k:(~'l-enumerable if and only if Ef]~(~)=-: or ~E 

and E is ~-enumerable. 

9. For arbitrary ~,]~ES, ~E~(S) we have ~<~(~)]~-~ ~]vI~--<~A~(~)), 

i.e., ~_~#f~) is the smallest preorder on $ that contains ~ and is such that all elements 

in ~ are less than or equal to 

If ~] then ~(@] follows from ~(~I Let ~ ,  XC~(~V); then ~V] 

implies that ~(~) ~ and ~C ~ )  implies that ~<~#(~)~ , by property 8. Hence 

~-<~*~ q. 
We now verify that ,~7~ly)]---~~/(#~<~]A,T_,£~7~l~7~) ), The case when ~<9] is 

obvious. It therefore remains to prove that ~(9)~ ~,~ implies ~?] Since ~V~ 

here exists a V ~ -enumerable set ~$ such that ~e~ ~f . Let ~ be a g -enume 

able set and let ~ . Then ~U~ is 9 -enumerable and ~6~ U ~ By property 8, 

the set ~'-(J~ is ~(l)) -enumerable. Since ~<f#(V)]' ~6EU2~ 7 , we have ~ - U _ O ,  
But J¢~ , and therefore y~ . ~ .  Thus, the assumptions that o2?e.D, and ~ is V-enumerable 

imply that ~6_~ • 

5. THE OPERATIONS ~S 

The compositions of the operations /o S and ~(~'~e$') , which we denote by ~: ~ ~:~ 

~°~, will be important. We therefore note some properties of the operations ~$ ~ all of 

which (except for one) follow easily from property i and the corresponding properties of the 

operations PS' ~ 

i. For arbitrary ~,~ ~, ~H(~) we have ~(~7#~)~t~(/~).  

We indicate only the reducing functions, leaving the routine verification to the reader. 

We define the r.e.s. ~ by t~e/V]~dom~.AZ~(:~)~). Let : be a g.r.f, which /TZ -reduces G 

to $ , and let ~ be a g.r.f, satisfying 

322 



~ , if ZE ¢~OFFL ~ ,  

~hen the g.r.f. :~.~I~,~>,&~> reduces the numeration ag'~) 

Let~be any g.r.f, satisfying 

aeacz~ = ~ z  <ge~lz),¢(ccp 

~Z. <~7~ 7 (~) ~ - in all remaining cases. 

to the numeration ~t(~$O)o 

if ~(~) e dam ~ and &X) iS enumerated 
in O~/Tt~ before g[agl is enumerated in ~ j 

(we assume in such definitions that some method has been chosen to effectively enumerate 

the corresponding sets during the stepwise construction [in this case, ~O1 ~ and ~. ]). 

Then the g.r.f. J~7.</g{~£),O> reduces ~(pSV) to pS(~). 

Remark. It is easy to construct examples that show that the operations P9 ' PS' (and 

also ~,~') do not commute in general. 

;,~(~-)×$ (cf.  [1, Theorem 2] ) .  

3. ~$ is the closure operation on (HIS);-<) for arb i t rary  S and S,~eL 
A numeration in H{S) is said to be 2-complete relative to S,~6S if it is complete 

with respect to S and cocomplete with respect to 

A numeration is said to be 2-complete if it is 2-complete with respeht to some $,~ £ S 

4. ~s~{~) is the smallest numeration over ~ which is 2-complete relative to 8,~ 

g~ ¢¢0 5. If ~ is a set and ~:~--~f, o~,~eS, then ~o (~)=~s) (~0~). 

6. For arbitrary sets $I .... ,$m and any $~,~S~, ~£~(~)(/~b~<~Z)we have: 

zc~, ..... ~ )  (%~'G) ®. . ~ l ~ ) )  = ~ 'G)~ . . . ~z  ~ U~). 
cg , . . . , s~  ) ' s~ s, s ~  

7. The set of all 2-complete numerations in /~($~ is closed under all of the operations 

~ l ~ :  Sm--~8 ,  m>~/)  ' 
8. ~s~(¢) i s  the sma l l e s t  preorder  on ~ which con ta ins  ~<¢ and i s  such tha t  every 

element in ~ ~ is  g r ea t e r  than or equal  to 8 and l e s s  than or equal  to ff 

10. z/{e)-< %,(~ ) z;(e> for all v,~%~l,~),s,s,~,~eS, s'#s, ~'÷~, 
' t '  ,) 

It follows from / 9 $ { ~ P ) ~ < p s , ( ~  1) and S'~S that /gS(~ffg)W ~ (9 (See. 2, property 

12). Let the g.r.f. ~ reduce ~{~) to ~Y~(~), and let the reeursively enumerable 

set 0 be defined by ¢Y_-~ {<~,~/>I(~dOFII~A?J~N[~)6$)VTdf<~g[£P~}. 
Let ~ be a g.r.f. ~ -reducing ~ to ~ and let ~ be any g.r.f, satisfying 

{ 5bZ,~<'y,Z(~ )> . if Zf(~,g[aT)> is enumerated in 
~X,~)= before X is enumerated in dOFll~,; 
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(in particular, ~,~,=~ if ~¢O~Otrg~'A'~,~(,,~)>¢ ~), 
By the recursion theorem, there exists a g.r.f. C such that ~C~x]=~,c{~)). We claim that 

the g.r.f. ~.~<C(~)~(~)> reduces ~(~#~) to ~ . In order to prove this, we first verify 

that 

Proceeding by contradiction, assume that ~p<C(X),~I~g)>~ E . If ~f<C(~),z(~)> is computed 

in ~ before ~ is in ~00%~, then ~.~,(~)q<C(~)~Z[~}>and therefore t=(~)f~(X)j~)>=(~)~(~)($~) = 

(~S~#?)<C(~),~>-~#~/)f~[~),~{~)>=~ which contradicts the assumption ~ .  If ~ is computed 

in ~Ofg~ before ~f<~(~),~(~)> is computed in $ , then ~C(~)(~)=<~)~,,C(~£)>~. By the 
definition of @,~ we have ~,C(~>£f, and therefore ~=(~#~)<~(~), ~<~C(~)>>=(¢~)~) 

t l 

(~T~>(~)<$~]~ =(~V)f<C(~),~(~)>=~ z, We have thus verified (i). 

It follows from (i) that ~C(~(Z~)=~[~)~/Z<$~C(~)>>) and ~(~£~9~ A~(~)£$~-~<~,C(~)>E~ --~ 

~<~,g~)>E ~), whence 

Using (I) and (2), we find that V~ ((~D#sg)U~=(17s~i#)<O[UC),~(~)~=(~$/)f<CI~),~(oc)>=~#~f~$~ fg), 
~)>) , as claimed. 

The next proposition follows from Properties 3, 9, and i0. 

Proposition 3. The structure (HI$)I~<,~,{~}s,~E$) is a semiiattice with 2-discrete 

closures. 

COROLLARY. Let ~J be the set of all 2-complete numerations in /'/(S) with respect 

to $,~E$ ; let ~I$)~,~$ ~S ~ be the set of all 2-complete numerations in ~($) . Then 

(~($);~{~S ~}$~E$ ) is a 2-discrete generalized semilattice. 

6. 2-D-NIVERSAL NUMERATED SETS 

We now consider ~ap(A,S); ~) for another natural class of numerated sets. A numer- 

ated set A=(Ajoc) is said to be 2-universal if the numeration o~ is 2-complete and there 

exist a g.r.f. ~ and a computable sequence {EK} of ~-enumerable subsets of A such that 

~f~(K)EE \~#~ En? for every K~N, 

Property 8 in Sec. 5 implies that the classes of universal and 2-universal numerated 

sets are disjoint. Examples of 2-universal numerated sets include ~ and the numerated 

set provided by the family {¢,{$C},NI~EN} with a principal computable numeration. If A 

and ~ are, respectively, a 2-universal and a 2-complete numerated set, then ~ @ ~ is 2- 

universal. 

THEOREM 2. The following conditions are equivalent for every numerated set h: 

i) A is a 2-universal numerated set; 

2) for every set $ , the closure of the image of the set ~ (A,$) in I~IS);~ < ) 

under the map ~ (cf. See. 3) coincides with the set of all 2-complete numerations in 

H(S  . 
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We first prove that I) + 2). Let the numeration oC be 2-complete with respect to the 

elements a,~C ~ ; then ~(~)m:~ by property 4, Sec. 5. If fl is a map from ~ into $, then 

~9o~)-~9o~ and ~0,,'~(o~)= ~,~¢~') (~9o~) (property 5) The numeration ~D°oC =- ~Otgs (~ooC) is 

therefore 2-complete with respect to ~(~), ~(~) . It remains to show that if ~ is a 2-complete 

numeration in HIS) then ~00C~ ~ for a suitable fl: ~--~$ . Assume that ~ is 2-complete 

with respect to $,~E $ ; we then define the map ~ by 

s K>~O 

It follows from the description of the preorder ~<~a(9) (property 8, Sec. 5) that ~O{CZ)=S s 
~($ )=~. It remains to check that ~oo6- 9 . We have ~KIoC~(K)E~ ~U#~< ~nz ) , and therefore 

~K~(~oE)~K)=~{oCf(K))=~K) , i.e., ~ reduces V to ~occ . In order to prove that ~o~ it 

suffices to verify that~o~ ~ IV)( property 4, See. 5). Let the r.e.s. O be defined by 

O~-{~E~l~K,rfg~KAeC~E~O~m)} ; let ~be a g.r.f, f~-reducing ~ to ~, and let f be any 

g.r.f, satisfying 

'=  z.cK, k 

where K is the first number for which i was enumerated in oc'I(dx) in some simultaneous 

stepwise enumeration of the sequence {~-I(E~)}. we verify without difficulty that the g.r.f. 

~i.~'f((~),O> reduces ~oe( tO i, St(V). 

We now prove that $ ~-~ A and let ~ be the identity map from A into S By condition 

2, the numeration flo~c= ~C is 2-complete. Now let S={~{~},~I£E~}, be a ~ -principal 

computable numeration of S • The numeration V is 2-complete relative to ~,~ . By condition 

2, there exists a map ~I~--+$ such that ~ooC_= ~ Clearly, the sequence {~},~{{K], 

N}(/<E~) and the g.r.f. ~ satisfying the condition ~K Iq~UQ=iK}) demonstrate that the numer- 

ated set ($;V) is 2-universal. Let the g.r.f, f reduce ~ to ~o~ . We then easily see 

from ~o~_=~ that the existence of the sequence I~K},EK ~--~-/(ffK) and the g.r.f, flo~ 

prove that the numerated set A1 is 2-universal. 

Xhe next result follows from the proof of Theorem 2 and the Corollary to Proposition 3. 

COROLLARY. Let ~I be E-universal and ~{~ E~(~,~)[~I~S,~(~)=~} (where ~,~E~:Q,~EA 

are the elements with respect to which the numeration ~ is 2-complete). Then(~(A,$);~,{~}S,~E$) 

is a 2-discrete generalized semilattice which is equivalent to (~($1;'-<,{~J}S,~e$). 

7. REFLECTIVE N~RATED SETS 

We will henceforth consider the structure (~a~(A,S)I~M) for two new natural classes 

of numerated sets. The numerated set ~=-(A~) is said to be reflective if the numeration 

is complete and there exist morphisms ~I~7, ~' ~" from A into A such that: 
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i )  ~;o~,~/'o~/ are the identity maps on A ; 

2) ~ l , r ~  0 , ' ~  C/~/ are disjoint o~-enumerable sets. 

Examples. ~ is reflective. If C is a finite family of finite subsets of ~ such 

that (C;~--) has a smallest but not a largest element, then the numerated set (A,~) , 

formed by the family of all computable enumerations in ~(~) together with a principal 

computable numeration is reflective. If the numerated sets A and ~ are respectively reflec- 

tive and complete, then A~ is reflective. The family {¢~{~}I~EN} equipped with a 

principal computable numeration is not a reflective numerated set. 

EHEOREM 3. If ~ is reflective and ~$----{~ ~Map(A,S)I~I~}=~} aeA (where ~ES, 

is the element with respect to which the numeration ~ is complete), then (M~(A,~)~M, 

(~$I$E$) is a discrete generalized semilattice. 

We first define the binary operations ~($E8) 

then the element ~$I~,~)EMGpIA,~) (more briefly, 

on Map(A,S). If $ES,~0,~EM~(A,S) 
~S ) is defined for (zeA), by: 

[ 
~(:~) ~ ~ S if 

~0~¢~£ (~), if L ze {o,13. 

We claim that ~S(~,~f) is the generalized upper bound of the elements ~0,~I in (Mgp(A, 

~);~<M,~$}) (cf. Sec. I). Indeed, by property I0 in Sec. 2 and condition 2) in the above 

definition, we have Q ¢ ~  U ~ /  , and therefore ~E~ . We further have ~(j~)= 

~L~;~)=~(~) i.e., themorphism ~ ~-reduces ~ to 6)S (~i=~o~) . Let ~o~M~ 
cEP S and let ~(~0,/) be a morphism ~-reducing ~ to ¢ Then the map ~:A ~ 

A , defined by 

is a morphism from A to A which ~ -reduces 8s to ~ (this follows easily from the reflec 

tivity of A ). Finally, let ~E~SI ~ Sifts and assume that the morphism ~ M-reduces 

to ~S It follows at once from ~l~S that ~(~)6 ~ .  for some ~E[0~4} . Together with 

property i0, Sec. 2, and the fact that ~ is a monotone map from (A;~<~) into (A;..~) 

[4, p. iii], this implies that ~ c _ ~  , whence the morphism ~,~o~ ~-reduces ¢ 

to ~ • 

We note some additional properties of reflective numerated sets A° 

1, If X~A is an ~-enumerable set, then its image ~ IX) under the map ~ C/7-0,/1 
is also ~-enumerable, and a ~-index for the set ~-/(c/~ (X)/ can be found effectively in 

terms of a Of-index of the set ~-l(~)° 

This follows from the readily verified assertion 
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We define a sequence I~},i~;} of morphisms from A into A by 

2. The sequences of morphisms {~}, {~;} are computable; ~'. ~ is the identity 

on A for every K6~ • 

3. The sets ~ K ~  (K6N)are pairwise disjoint. 

It suffices to prove that ~K~[~ (K<~l--~'~f]~:~=~). This can be done by a simple 

induction on ~. 

4. Every reflective numerated set is universal. 

It follows from 1-3 than [~a~ is a computable sequence of nonempty disjoint ot -enumer- 

able subsets of A 

5. If r is a set and ~ :  S - ~ r ,  S6$,~OO,~6~CLp(A,S), 77°eD(?9o,~O,)'=~fs)(~)"~Oo,~=~).. 
P r o p e r t y  4 and t h e  C o r o l l a r y  to  Theorem 1 imply  t h a t  g e n e r a l i z e d  u p p e r  bound o p e r a t i o n s  

can be  d e f i n e d ,  i n  a d d i t i o n  t o  t h e  o p e r a t i o n s  ~?s on ( ~ g ~ ( j , ~ ) ~ < r a  , [ ~ } s e $  ) , f o r  a 

r e f l e c t i v e  nu m era t ed  s e t  ~ . These  o p e r a t i o n s  a r e  c l o s e l y  r e l a t e d .  

6. For any S£$ , o, e 4ep(A,S) the enumerations ~(~o,~) °°~ and p$((~9ooo£)e(~o~) ) 
are equivalent. 

We also note that property 2 can be used to define the operations ~ even for infinite 

sequences of elements in ~p(~,$) , which is useful in some problems. Indeed, if ~ 6 

~a~(~,S),KE/~, then ~S =~S (~o'~''") is defined by 

S , if 

t h i s  c a s e  w e  a l s o  h a v e  

~6~ K , 

8. 2-REFLECTIVE NUMERATED SETS 

We now consider another class of numerated sets. A numerated set A----(A,~) is said 

to be 2-reflective if the numeration o6 is 2-complete and there exist morphisms ~0' 4;',~i ' ~I 

from ~ into A and oC-enumerable subsets B 0,C 0,~, C!----~ such that: 

40 are the identity on A" i) the maps ~;0 , o 

Condition i) implies that ~0' ~ and injective, and 2) says that ~fg F ~O n ~r/,~ ~ = ~, 

Examples. The set ~ is 2-reflective. If C is a finite family of finite subsets 

of ~ that contains at least two elements and is such that IC; ~) has a minimal element 

and a maximal element, then the numerated set defined by ~ as in the corresponding example 

~n Sec. 7 is 2-reflective. If A1 is 2-reflective and ~ is 2-complete, the ~I ~ B is 2-reflec- 

tive. The numerated set {~,{~],~l~E~} with a principal computable numeration is not m- 

~eflective. 

THEOREM 4. If A is m-reflective and ~ (where S,~6S~, 

and ~6 A are the elements with respect to which the numeration ~ is 2-complete), then 
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(~o~pIA,S); -~<~f , {~$}S,{65)  is a 2-discrete generalized semilattice. 

We first define binary operations ~$ on M~(A,$)- If S,~$,~,~E ~p(A,S) 

we define the map ~s ~-- ~7 (~0' ~! ) by: 

(~ )  ~ ( , ¢ )  , ~f z ~  Z~; "- C z , 

The map ~J(~o,~)6M~(A,S) is ,,ell defined, since the 2-reflectivity of A implies that 

(~0U4,~\~, ~I\~,~U Of)is a nontrivial decomposition of the set A . The map~(~o,~)6 

PJ, since ~6~U~/,~o~ ! . Following the proof of Theorem 3 and using the appropriate 

properties in Sec. 5, we verify without difficulty that the ~ are generalized upper bound 

operations in (M~(A,S); ~,{~J]). 

We note some additional properties of 2-reflective numerated sets A\. 

i. If X_~A is ~-enumerable then the same is true of ~(X)uE~ [&=~/) , and a ~- 

index for the set ~-I(~(X) U ~) is given effectively in terms of a ¢f-index for the set 

~ (X) • 

This follows from the easily verified assertion 

The sequences {~],[~;},i/~l are defined as in Sec. 7 and also possess properties 

2, 3 in Sec. 7. We also define the sequences {E~}~ {~} of subsets of A by 4 =4 1 

follows from l above that 

2. The sequences {~J~[~} of ~g-enumerable subsets of A are computable. 

3. EK--~,~K--g\ & for every K6~, 

We give the proof by induction on K . The assertion is obvious for k = i. Let 

~6,~K=EK \~ ; then ~(~)~ (<) , whence EK÷~(~) U~-x~/(~K)U~=6+ f. We also have 

E~+f\~+I=~I{~K)U4)x(~(F~) u01)=~(~)\~/(~) since ~ n 4 =  ~ . Further, ~/~)\~(~)= 

~(EKx~K)_ , since ~7 is injective. But ~\~K=~K , and therefore EK+! \~K+~--~/(~) = 

= J~K + I 
4. For any K~r/~E/V with K~f~ , we have ----EKf'l~r/.l=~f-1 ~ , 

i f  s u f f i c e s  to v e r i f y  t h ,  t This  is  a lso  proved 

by a simple induction on K. 

5. Every 2-reflective numerated set is 2-universal. 

We define the sequence {~KI of elements of ~ by ~K~/K~2) (KEN) The computabilit 

of the sequence of morphisms [~} implies the existence of a g.r.f. ~ such that ~K (~ 

o~(K)). Properties 3 and 4 then easily imply that ~K {dKgEa\mU Era) , which together with 

property 2 gives the required result. 
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The analogs of the other remarks made at the end of Sec. 7 are also valid. 

9. MULTIPLE REDUCIBILITY 

The above results also make it easy to study multiple (~ - and ~ -) reducibility. 

Let AI=(~, ~) -be anumerated set, A a nonempty set. and let %~6~gp(A~gp(A,$)) we say 

that ~ is multiply PT-reducible to ~ (%..<:~) if thereexistsag.r.f, f such thatf fig- 

reduces ~(~) to ~(~L) for every P~6~ The relation .~ of multiple ~-reducibility 

is defined analogously (with the g.r.f, f replaced by a morphism ~:~--A )° 

We first analyze the special case when A = ~ and %6 is the identity numeration of 

in which case ~<m and ~<M coincide. The "usual" multiple ~2 -reducibility [4] is recov- 

ered by specializing to $~={0,{} We define the binary operation ~ on ~g~(~,~O(~$~and 

the unary operations~ ~¢ for ~,~6~(A~$) as follows: if £~(A,~ap(N~S))~ ~£~ 

then (% e0)75 ~-- ~"(m) E~)~C~L) , ~ )  m~---p~{~L) (~t), C.c@r//uC--'6W{x. ) (%}b). 

Proposition 4,,,.,,, The algebraic systems (N09(A~NI~@(A/,S)); ~ . , e ,  {p~}, {z~ }) and (N~p~A/, 

a r e  naturally isomorphis. 

Here the word "natural" means that the isomorphism is given by mutually inverse maps 

~p(A,~(~,$))~-~d~I~gp(~,~)), whose composition "interchanges the arguments." The verifi- 

cation is trivial. 

• • .<~ COROLLARY The structure (~apIA,~piN, S));~,~, {p~ }) is a semilattice with discrete closures; 
(~0~p ( A, Nc~p (~/,~)); ~ '~ *~ "~r~,~, [Z~ ~ ) is asemilatticewith2-discrete closures (cf. secs. 1,2,5). 

If we are given a numerated set ~--IA,o() then the numeration o~: ~ ----~A induces an 

inclusion ,~ : ~gQ(~.S) ---~ ~llp(/~,$) for every set $ ; the imbedding ~ in turn induces an 

inclusion %: M~pIA,~p{~,~))--~o~IA,~{I~(/~,~)) for every A, 

THEOREM 5. If AI is universal, then the closure of the image of the set ~p(m~p (~,~)) 

in (~(m~p(~,S));-~ra ) under the map ~< coincides with the closure of the set ~(%)I~ 

6~,$),~(~p(~9))} . The same result is valid when "universal" is replaced by "2- 

universal" and ~90 is replaced by ~:. 

Consider the diagram 

M~p(A,~o_p (A,S)I = McLp (A,M~zp fA, S)) 

Map(A,Nap(N,S)) = kp(N, Nap(A,S)), 

where the horizontal maps are natural equivalences. It is easily verified that the diagram 

commutes and that f~m~-~I%)<~ra~I~) for every F, G£~apIA,N~oIA,S}). The required result 

follows from this, Theorems i, 2, and Proposition 4. 

Remark. The following generalization can easily be proved by using properties 5 in 

Sees. 2, 5, Let 7_c~p[~,$)~ V~-{%£~p{A, M~p(A,S))IVa£A (the function ~-~(%){Q) 

is contained in r)} Then the closure of the image of the set V in (~p(A,~ap(Njg))%~) 

(/c-)t~£f,, , %E Mo.;l:)(A,~lo..io(/"~',~']} } if A is universal. Coincides with the closure of the set {~@ 
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In particular IV;~< ~ "=m) has a natural discrete generalized semilattice structure. Similar 

results hold for 2-universal sets .~ and for the operations ~ 

The relation "~14 can be analyzed in the same way. We define the binary operations 

~ on ~(A,~o(~,$)) for the case when ~ is reflective [and the binary operations ~ 

if ~ is 2-reflective] as follows: 

G ;O 

for arbitrary ¢,¢6~p(A~S), ~-~G¢ M~D(A,~o.p(A,~)), ~L6A. 

THEOREM 6. If N is reflective then ~pi~,~p~,~));~<M,{s~} ) is a discrete generalized 

semilattice. If ~ is 2-reflective then is a ~ discrete gener- 

alized ser~ilat tice. 

The analog of the remark to Theorem 5 is also valid. 

1. 

2. 

3. 

4. 
5. 
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