LITERATURE CITED

- H. Weyl, The Classical Groups, Their Invariants and Representations [Russian translation]. 1. IL, Moscow (1947).
- V. S. Drenski, "Representations of the Symmetric group and manifolds of linear algebras," Mat. Sb., <u>115</u>, 98-115 (1981).
 A. R. Kemer, "Nonmatrix manifolds," Algebra Logika, <u>19</u>. No. 3, 255-283 (1980).
 A. P. Popov, "Identities of tensor product of two copies of Grassman algebra," Dokl. 2.
- 3.
- 4.
- Bolg. Akad. Nauk, 34, No. 9, 1205-1208 (1981).

STRUCTURE OF POWERS OF GENERALIZED INDEX SETS

V. L. Selivanov

UDC 517.11:518.5

In this article we generalize the results of [1-3] in order to relate problems concerning index sets more closely with the theory of complete numerations [4] and treat ordinary multiple reducibility from a single viewpoint.

Let $A = (A, \alpha)$ be a numerated set and let the set S be arbitrary. The set Map(A, S)of all maps from A into S has two natural orderings, which we denote by \leq_m and \leq_M in order to emphasize their relationship with the corresponding concepts in [1]. Specifically, for $\varphi, \psi \in M_{\Omega D}$ (A,S) we set $\varphi \leq_{\pi} \psi$ if $\varphi \circ_{\alpha} \leq \psi \circ_{\alpha}$ (here \circ denote composition of maps and \leq denotes reducibility of numerations), and $\varphi \leq_M \psi$ if $\varphi = \psi \circ \phi$ for some morphism ϕ from A into $A \varphi \leq_M \psi$ implies that $\psi \leq_m \psi$. Among other things, we will study the preorders \leq_m and \leq_M . We note that we recover the case of "ordinary" index sets by taking $S = \{0, \ell\}$, in which case we identify Map(A,S) with the family of all subsets of A and $\varphi \circ \alpha$ with the index set $\propto'(\{\alpha \in A \mid \varphi(\alpha)=i\})$. We will use some of the terminology in [1].

1. AUXILIARY CONCEPTS

We introduce some concepts needed to study the preorders \leq_m, \leq_M . If $(\mathcal{P}; \sqsubseteq)$ is a preordered set, then the closure of a set $X \subseteq P$ in (P, \subseteq) is the set $[X] \rightleftharpoons \{y \in P | \exists x \in X \mid x \in P \}$ $(\varphi \land \psi \subseteq x)$. Let (φ, ψ) be maps from \mathcal{P} into a preordered set $(\mathcal{P}'; \subseteq')$; then φ is equiva-

lent to ψ if $\forall x \in P(\varphi(x) \equiv '\psi(x) \land \psi(x) \equiv '\varphi(x))$. Two preordered sets $(P; \equiv)$ and $(P'; \equiv')$ are equivalent if there exist monotone maps $\varphi: \rho \rightarrow \rho', \varphi': \rho' \rightarrow \rho$ whose composite $\varphi' \circ \varphi$ is equivalent to the identity map of ρ_1 and $\varphi \circ \varphi'$ equivalent to the identity map of ρ' .

Let I be a nonempty set. By a discrete generalized semilattice (more precisely, an I discrete semilattice) we mean any algebraic system $(P, \subseteq, \{P_i\}_{i \in I})$ satisfying the following conditions: 1) \subseteq is a preorder on \mathcal{P} ; 2) $\forall i \in I \ (\mathcal{P}_{i} \subseteq \mathcal{P})$; 3) for all $i, i' \in I, i' \neq i$, the $x \lor t \sqsubseteq y$) is valid in P.

The element Z , whose existence is asserted in 3), is defined uniquely up to equivalence in $(\mathcal{P}; \subseteq)$, so that we can define binary operations $\mathcal{U}_i(i \in I)$ on $\mathcal{P}(\mathcal{U}_i(x, y) \neq z)$ such that: $x, y \sqsubseteq u_i(x, y) \ ; \ \text{if} \ x, y \sqsubseteq t, \ t \in [ung u_i] \ \text{ then} \ u_i(x, y) \sqsubseteq t \ ; \ \text{if} \ u_{i'}(x', y') \sqsubseteq u_i(x, y), \ i' \neq i \ , \ \text{then} \ u_{i'}(x', y') \sqsubseteq u_i(x, y) \ ; \ i' \neq i \ , \ \text{then} \ u_{i'}(x', y') \sqsubseteq u_i(x', y') \sqsubseteq u_i(x', y') = u_i(x', y') \ ; \ i' \neq i \ , \ \text{then} \ u_{i'}(x', y') \sqsubseteq u_i(x', y') = u_i(x', y') \ ; \ i' \neq i \ , \ \text{then} \ u_{i'}(x', y') \sqsubseteq u_i(x', y') = u_i(x', y') \ ; \ i' \neq i \ , \ i' \neq i' \ , \ i' \neq i' \ ; \ u_i(x', y') = u_i(x', y') \ ; \ u_i(x', y') = u_i(x', y') \ ; \ u_i(x', y') = u_i(x', y') \ ; \ u_i(x', y') \ ; \$

Translated from Algebra i Logika, Vol. 21, No. 4, 472-491, July-August, 1982. Original article submitted March 31, 1981.

$$\begin{split} & \subseteq \mathcal{I} \quad \text{or } \mathcal{U}_{i'}(\mathcal{X}, \mathcal{Y}') = \mathcal{Y}(\mathcal{X}, \mathcal{Y}, \mathcal{X}, \mathcal{Y}' \in \mathcal{P}, i, i' \in I) \\ \text{generalized semilattices may thus be regarded as systems} \left(\mathcal{P}; \in [\mathcal{U}_i]_{i \in I}\right), \text{ where the } \mathcal{U}_i \text{ , which} \\ \text{are called the generalized upper bound operations in } (\mathcal{P}; \in [\mathcal{I}, \{\mathcal{U}_i\}_{i \in I}), \text{ where the } \mathcal{U}_i \text{ , which} \\ \text{are called the generalized upper bound operations in } (\mathcal{P}; \in [\mathcal{I}, \{\mathcal{U}_i\}_{i \in I}), \text{ where the } \mathcal{U}_i \text{ , which} \\ \text{are given, it is easy to define generalized upper bound operations } \mathcal{U}_i^{(n)} \text{ with} \\ \text{any number } \mathcal{I} \geq \mathcal{I} \text{ of arguments; for } \mathcal{I} = \mathcal{I} \\ \text{ e.g., it suffices to set } \mathcal{U}_i^{(\mathcal{U})}(\mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{I}) \Rightarrow \\ \mathcal{U}_i^{(\mathcal{U}_i}(\mathcal{U}_i(\mathcal{I}, \mathcal{I}, \mathcal{I}_2), \mathcal{I}_3), \mathcal{X}_i) \quad \text{ If } \mathcal{P} = \bigcup_{i \in I} [\mathcal{U}_{\mathcal{U}_i} \mathcal{U}_i] \text{ and } \mathcal{I}_i, \dots, \mathcal{I}_n \in \mathcal{P} \\ \mathcal{U}_i^{(n)}(\mathcal{I}, \dots, \mathcal{I}_n) | i \in I \} \text{ form a discrete pair in the sense of } [1, Sec. 1]. We also observe that if <math>(\mathcal{P}; \in [\mathcal{U}_i]) \text{ is a preorder with generalized upper bound operations, then } (\mathcal{P}; \in [\mathcal{U}_i \mathcal{U}_i]]) \\ \text{ is a discrete generalized semilattice.} \end{split}$$

We define yet another concept. A semilattice with discrete closures is a system $(Q; \subseteq, \cup, \{\varphi_i\}_{i \in I})$ satisfying the conditions:

- a) \sqsubseteq is a preorder on the set Q ;
- b) $\forall x, y, z \in \mathcal{Q} \ (x \subseteq z \land y \subseteq z \dashrightarrow x \sqcup y \subseteq z);$

c) $\varphi_i(i \in I)$ is the closure operation in $(Q; \subseteq)$, which by definition means that $\forall x, y \in Q \ (x \subseteq \varphi_i(x) \land (x \subseteq y \longrightarrow \varphi_i(x) \subseteq \varphi_i(y)) \land \varphi_i \varphi_i(x) \subseteq \varphi_i(x));$

- d) $\forall l \in I \ \forall x, y, z \in \mathcal{Q} \ (\varphi_i(x) \subseteq \mathcal{Y} \sqcup Z \longrightarrow \varphi_i(x) \subseteq \mathcal{Y} \lor \varphi_i(x) \subseteq Z);$
- e) $\forall x, x' \in \mathcal{Q} \ (\varphi_i(x) \equiv \varphi_{i'}(x') \longrightarrow \varphi_i(x) \equiv x')$ for all $i, i' \in I, i' \neq i$.

The above concepts are interrelated. Indeed, in any semilattice with discrete closures $(\mathcal{Q}; \subseteq, \sqcup, \{\varphi_i\})$ we can define the operations $\mathcal{U}_i : \mathcal{U}_i(x, y) \rightleftharpoons \varphi_i(x \sqcup y)$. If now \mathcal{P} is any subset of \mathcal{Q} , closed with respect to all of the $\mathcal{U}_i, i \in I$ (it suffices for this that $\bigcup_{i \in I} [ung \mathcal{U}_i] \subseteq \mathcal{P}$) then $(\mathcal{P}; \subseteq, \{\mathcal{U}_i\})$ is a discrete generalized semiattice (the verification is rivial).

We will also need the following modifications of the above definitions. A system $(P; \subseteq, \{P_{ij}\}_{i,j\in I})$ is called a 2-discrete generalized semilattice if it satisfies conditions 1)-3) (with i replaced by i'_{j}), and 3) is taken for all $i,j,i',j'\in I$ with $i'\neq i, j'\neq j$. A system $[l_i:\subseteq, \sqcup, \{\varphi_{ij}\}_{i,j\in I})$ is called a semilattice with 2-discrete closures if it satisfies conditions a)-e) (with i replaced by i'_{j}), where e) is taken over all $i,j,i',j'\in I, i\neq i,j\neq j$. As above, generalized upper bound operations U_{ij} can be defined in any 2-discrete generalized semilattice, and any semilattice with 2-discrete closures will induce 2-discrete generalized semilattices.

2. THE OPERATIONS P_s

In this section we consider some questions involving complete numerations. Throughout this article, S denotes an arbitrary set with at least two elements; $\mathcal{H}(S)$ is the family of all maps from the natural numbers \mathcal{N} into S; \leq is the reducibility relation in $\mathcal{H}(S)$; \bigoplus denotes direct sum of numerations on $\mathcal{H}(S)$; $\mathcal{K}=(\mathcal{K},\mathcal{X})$ is a numerated Kleene set; $\Pi=(\Pi,\pi)$ is a numerated Post set; $\widetilde{\mathcal{X}}$ is a universal partial recursive function (p.r.f.), i.e., $\widetilde{\mathcal{X}}<\mathcal{X},\mathcal{Y}>=\mathcal{X}_{\mathcal{X}}(\mathcal{Y})$, where < > is a Cantor function used to encode pairs.

To each element $s \in S$ we associate the unary operation P_s on $\mathcal{H}(S)$ by the following rule: if $v \in \mathcal{H}(S)$, $x \in \mathcal{N}$ then

$$(\varphi_{\mathsf{S}}(\mathsf{v})) x \rightleftharpoons \begin{cases} \$, \text{ if } x \notin \operatorname{dom} \widetilde{\mathscr{X}}, \\ \sqrt{\widetilde{\mathscr{X}}}(x) \text{ otherwise.} \end{cases}$$

Clearly, $\mathcal{W}g(\rho_{g}v) = \mathcal{U}gvU(s)$ (for simplicity, we sometimes abbreviate f(x) to fx, f_x). The operation ρ_s may be regarded as a modification of the operation of taking the completion of a numerated set [4]. We state several properties of the ρ_s (the obvious proofs are omitted).

The first property shows that the P_S generalize the operation of p_{ln} -cylindrification. Numerations $\gamma: \mathcal{N} \longrightarrow \{g, l\}$ are identified with the subsets $\{\pi \in \mathcal{N} \mid \mathcal{V}(\pi) = l\}$.

- 1. If $S = \{0, i\}, v \in \mathcal{H}(S)$, then $\rho_o(v) = \rho m(v), \rho_i(v) = \overline{\rho m(v)}$.
- 2. P_{s} is the closure operation on $(\mathcal{H}(S); \leq)$ for all S and $s \in S$.

Let us verify, e.g., that $\forall, \forall' \in \mathcal{H}(S), \forall \leq \forall' \rightarrow p_{S}(\forall) \leq p_{S}(\forall')$ (the assertions $\forall \leq p_{S}(\forall), p_{S}p_{S}(\forall) \leq p_{S}(\forall)$) are proved just as simply). Let f be a generalized recursive function (g.r.f.) reducing ψ to ψ' and let \mathcal{G} be any g.r.f. satisfying

$$x_{g(n)} = \begin{cases} \phi , \text{ if } n \notin dom \widetilde{x}, \\ \lambda y. f \widetilde{z}(n) \text{ otherwise }. \end{cases}$$

Then the g.r.f. $\lambda n. \langle g(n), 0 \rangle$ reduces $\rho_s(v)$ to $\rho_s(v')$.

<u>Remark.</u> We note that the assertion $\forall v, v' (v \leq \rho_s(v) \land (v \leq v' + \rho_s(v) \leq \rho_s(v')) \land \rho_g \rho_s(v) \leq \rho_s(v))$ holds effectively, i.e., if we are given, e.g., a g.r.f. reducing v to v', we can effectively find a g.r.f. reducing $\rho_s(v)$ to $\rho_s(v')$ for all S, $s \in S$, $v, v' \in H(S)$. Many of the other assertions in this paper are also effective in an analogous sense.

3. For any $S \in S$, $v \in H(S)$, $\rho_s(v)$ is the smallest numeration over v, which is complete with respect to the particular element S, i.e., $\rho_s(v)$ is complete relative to S, and if $v \leq v'$ and v' is a complete numeration in H(S) relative to S, then $\rho_s(v) \leq v'$.

4. The closure of the set $\{\mathcal{P}_{s}(v)|s\in S, v\in \mathcal{H}(S)\}\$ in $(\mathcal{H}(S);\leq)$ coincides with the set of all complete numerations in $\mathcal{H}(S)$.

5. If T is a set and $\varphi: S \to T$, $s \in S$, then $\varphi \circ \rho_s(v) = \rho_{\varphi(s)}(\varphi \circ v)$.

In order to formulate the next two results, we recall that numerations $v_1 \in \mathcal{H}(S_1), \dots, v_m \in \mathcal{H}(S_m)$ can be put in correspondence with their product $v_1 \otimes \dots \otimes v_m \in \mathcal{H}(S_1 \times \dots \times S_m)$ according to the rule: $(v_1 \otimes \dots \otimes v_m) < \mathfrak{X}_p, \dots, \mathfrak{X}_m > \rightleftharpoons (v_r \mathfrak{X}_p, \dots, v_m \mathfrak{X}_m)$, where < > is the coding function for m -tuples. In addition, to each function $\varphi: S^m \to S$ we associate a function $\varphi^*: (\mathcal{H}S)^m \to \mathcal{H}(S)$ defined by $\varphi^*(v_1, \dots, v_m) \rightleftharpoons \varphi \circ (v_1 \otimes \dots \otimes v_m)$.

6. For arbitrary sets S_1, \ldots, S_m and any $s_i \in S_i, v_i \in \mathcal{H}(S_i)$ $(i \leq i \leq m)$ we have: $\mathcal{P}_{(s_1, \ldots, s_m)}$ $(\mathcal{P}_{s_j}(v_j) \otimes \ldots \otimes \mathcal{P}_{s_m}(v_m)) \equiv \mathcal{P}_{s_j}(v_j) \otimes \ldots \otimes \mathcal{P}_{s_m}(v_m).$

This follows from property 3 and the well-known fact that if $v_i' \in \mathcal{H}(S_i)$ is complete with respect to $S_i \in S_i$ then $v_i' \otimes ... \otimes v_m'$ is complete with respect to $(s_1, ..., s_m)$.

7. The set of all complete numerations in $\mathcal{H}(S)$ is closed under all the operations $\varphi^* \ (\varphi: S^m \to S, m \ge 1)$. This follows from 3, 5, 6.

In order to formulate the next three results, we recall a few definitions. If $v \in \mathcal{H}(S)$, $\mathcal{E} \subseteq S$ then the set \mathcal{E} is said to be v-enumerable if $v'(\mathcal{E})$ is recursively enumerable. A numeration v corresponds to a preorder \leq_v on the set S which is defined by $x \leq_v \mathcal{Y}$ if for every v-enumerable $\mathcal{E} \subseteq S$, $x \in \mathcal{E}$ implies that $\mathcal{Y} \in \mathcal{E}$. It is clear that if $x \notin \mathcal{N} \mathcal{Q} v$ then the element $x \in S$ is not v-related in this way to the other elements in S. It follows from $v \leq v'$ that $\forall x \forall \mathcal{Y} \ (x \leq_v \mathcal{Y} \longrightarrow x \leq_{v'} \mathcal{Y})$. We now study the relationship between the preorders \leq_v and $\leq_{\mathcal{P}_{\mathbf{C}}}(v)$ on S.

8. For any $E \subseteq S$, $s \in S$, $v \in H(S)$ we have

$$(\varphi_{s}v)^{-1}(E) = \begin{cases} \frac{pm(v^{-1}E)}{pm(v^{-1}E)}, & \text{if } s \notin E, \\ \frac{pm(v^{-1}E)}{pm(v^{-1}E)}, & \text{if } s \in E. \end{cases}$$

This is a simple consequence of properties 1 and 5. Property 8 easily implies:

9. A set $E \subseteq S$ is $\rho_s(v)$ -enumerable if and only if $ug(\rho_s v) \subseteq E$ or $s \notin E$ and E is v -enumerable.

10. For any $x, y, s \in S, v \in \mathcal{H}(S)$ we have

$$x \leq_{\rho_{s}(v)} y \xrightarrow{} x \leq_{v} y \mathcal{N}(x \leq_{v} S \land y \in \operatorname{trg}(\rho_{s} v)),$$

i.e., $\leq_{P_{S}(V)}$ is the smallest preorder on S which contains \leq_{V} , and is such that the element S is less than or equal to all of the elements in mqV.

If $\mathfrak{X} \leq_{\mathcal{N}} \mathcal{Y}$, then $\mathfrak{X} \leq_{\mathcal{P}_{S}(\mathcal{V})} \mathcal{Y}$ is implied by $\mathcal{V} \leq_{\mathcal{P}_{S}(\mathcal{V})} \mathcal{I}$. Let $\mathfrak{X} \leq_{\mathcal{V}} \mathcal{S}$ and $\mathcal{Y} \in \mathcal{U} \mathcal{Q}(\mathcal{P}_{S}^{\mathcal{V}})$. Then $\mathfrak{X} \leq_{\mathcal{P}_{S}(\mathcal{V})} \mathcal{Y}$ implies that $S \leq_{\mathcal{P}_{S}(\mathcal{V})} \mathcal{Y}$. It follows that $\mathfrak{X} \leq_{\mathcal{P}_{S}(\mathcal{V})} \mathcal{Y}$. We now verify that $\mathfrak{X} \leq_{\mathcal{P}_{S}(\mathcal{V})} \mathcal{Y} \longrightarrow \mathcal{X} \leq_{\mathcal{V}} \mathcal{Y} \vee (\mathfrak{X} \leq_{\mathcal{V}} S \wedge \mathcal{Y} \in \mathcal{U} \mathcal{Q}(\mathcal{P}_{S}^{\mathcal{V}}))$. Let $\mathfrak{X} \leq_{\mathcal{P}_{S}(\mathcal{V})} \mathcal{Y}$ if $\mathfrak{X} \leq_{\mathcal{V}} S$, the assertion is obvious. Thus assume that $\mathfrak{X} \leq_{\mathcal{V}} \mathcal{S}$; we then have to verify that $\mathfrak{X} \leq_{\mathcal{V}} \mathcal{Y}$. The assumption $\mathfrak{X} \leq_{\mathcal{V}} \mathcal{S}$ implies that there exists a \mathcal{V} -enumerable subset $\mathcal{E} \subseteq S$ such that $\mathfrak{X} \in \mathcal{E}, S \notin \mathcal{E}$. Let $\mathcal{P} \subseteq \mathcal{S}$ be \mathcal{V} -enumerable and $\mathfrak{X} \in \mathcal{D}$. We then have $S \notin \mathcal{E} \cap \mathcal{D}$ and $\mathcal{E} \cap \mathcal{D}$ is \mathcal{V} -enumerable. By property 9, $\mathcal{E} \cap \mathcal{D}$ is $\mathcal{P}_{S}(\mathcal{V})$ -enumerable; but then $\mathfrak{X} \leq_{\mathcal{P}_{S}(\mathcal{V})} \mathcal{Y}$ and $\mathfrak{X} \in \mathcal{E} \cap \mathcal{D}$ imply that $\mathcal{Y} \in \mathcal{E} \cap \mathcal{D} \subseteq \mathcal{D}$. Thus, we derive that $\mathcal{Y} \in \mathcal{D}$ from the assumption that $\mathfrak{X} \in \mathcal{D}$, and \mathcal{D} is \mathcal{V} -enumerable. Therefore, $\mathfrak{X} \leq_{\mathcal{V}} \mathcal{Y}$.

11. We have $P_{s}(v) \leq \propto \bigoplus \beta \rightarrow p_{s}(v) \leq \propto \forall p_{s}(v) \leq \beta$ for all $s \in S$, $v, \propto, \beta \in H(S)$.

This follows from 3 and [4, Proposition 10, p. 163].

12. If
$$S, S' \in S, \forall, \forall' \in \mathcal{H}(S), \rho_{S}(\forall) \leq \rho_{C'}(\forall')$$
 and $S' \neq S$, then $\rho_{S}(\forall) \leq \forall'$.

Let f be a g.r.f. reducing $\rho_{s'}(v')$ to $\rho_{s'}(v')$; let g be any g.r.f. which satisfies

$$\mathcal{Z}_{g(m,n,x)} = \begin{cases} \phi , & \text{if } f < x, n > \notin dom \ \widetilde{x}, \\ \mathcal{Z}_{m} - & \text{otherwise} \end{cases}$$

for all $m, n, x \in N$. By the recursion theorem, there exists a g.r.f. C(m, n) such that $\mathscr{X}_{C(m,n)} = \mathscr{X}_{g(m,n,C(m,n))}$. We claim that the function h, defined by $h < m, n > \rightleftharpoons \widetilde{\mathscr{X}} \not + < c(m,n), n >$, is a g.r.f. reducing $\rho_{g}(v)$ to v'. Indeed, assume that $< m, n > \notin dom h$, i.e., $f < c(m,n), n > \notin dom h$.

$$\begin{split} & dom \, \widetilde{\mathscr{X}} \quad \text{Then} \quad (\rho_{\mathsf{s}}, \mathsf{V}') f < \mathcal{C}(m, n), n > = \mathsf{s}'. \text{ On the other hand}, \quad \mathscr{Z}_{\mathcal{C}(m, n)} = \emptyset \quad \text{and therefore} \quad <\mathcal{C}(m, n), n > \notin dom \, \widetilde{\mathscr{X}}, \ (\rho_{\mathsf{s}}, \mathsf{V}) < \mathcal{C}(m, n), n > = \mathsf{S}. \quad \text{But we must have} \quad (\rho_{\mathsf{s}'}, \mathsf{V}') \quad f < \mathcal{C}(m, n), n > = (\rho_{\mathsf{s}}, \mathsf{V}) < \mathcal{C}(m, n), n > , \text{ which contradicts} \quad \mathsf{s}' \neq \mathsf{s} \quad \text{We have verified that} \quad h \quad \text{is a g.r.f. It follows that} \quad \mathscr{Z}_{\mathcal{C}(m, n)} = \mathscr{Z}_m \quad \text{for all} \\ m, n \in \mathcal{N} \quad \text{and} \quad (\rho_{\mathsf{s}'}, \mathsf{V}') \quad f < \mathcal{C}(m, n), n > = \mathsf{V}' \quad \widetilde{\mathscr{Z}} \quad f < \mathcal{C}(m, n), n > = \mathsf{V}' \quad \mathsf{h} < m, n > . \quad \text{These equalities imply:} \end{split}$$

$$(\rho_{s}v) < m, n > = \langle \rho_{s}v \rangle < c \ (m, n), n > = \langle \rho_{s'}v' \rangle f < c \ (m, n), n > = v'h < m, n > .$$

We now state a property that generalizes a property possessed by the *m* -jump operation. First, some notation: If $\varphi: S \to S$, $\forall \in \mathcal{H}(S)$, then the symbols \forall^{φ} denote the direct sum $\bigoplus_{K \neq Q} \forall_{K}$ of the following sequence of numerations: $\forall_{0} \rightleftharpoons \forall, \forall_{K+1} \rightleftharpoons \varphi \circ \forall_{K}$. The case of an *m* -jump is recovered by specializing to $S = \{0,1\}$, $\varphi(0) = I$, $\varphi(I) = O$.

13. If $\varphi: S \to S$ is a map without fixed points, two numerations $P_{S}(v^{\varphi}), P_{S'}(v^{\varphi})$ with $S' \neq S$ are not comparable, and therefore $P_{S}(v^{\varphi}) \neq v^{\varphi}$.

Assume that $\mathcal{P}_{\mathbf{S}}(\mathbf{v}^{\varphi}) \leq \mathcal{P}_{\mathbf{S}'}(\mathbf{v}^{\varphi})$. Then $\mathcal{P}_{\mathbf{S}}(\mathbf{v}^{\varphi}) \leq \mathbf{v}^{\varphi}$ by property 12. Therefore (property 3), the numeration $\mu \neq \mathbf{v}^{\varphi}$ is complete. In addition, we see easily that $\varphi \circ \mu \leq \mu$. But it is easily seen that there exists no numeration μ with the property that $\varphi \circ \mu \leq \mu$. Indeed, let the g.r.f. f reduce $\varphi \circ \mu$ to $\mu: \varphi \circ \mu = \mu \circ f$. By the recursion theorem for complete numerations [4, p. 161], $\mu f(c) = \mu c$ for some number c. But then $\mu c = \mu f(c) = \varphi(\mu c)$, i.e. $\mu c \in S$ is a fixed point of the map φ , contrary to assumption.

The following important result follows from properties 2, 11, 12.

<u>Proposition 1.</u> The structure $(\mathcal{H}(S); \leq, \oplus, \{\mathcal{P}_{S}\}_{S \in S})$ is a semilattice with discrete closures.

<u>COROLLARY.</u> Let \mathcal{H}_{s} be the set of all complete (with respect to $s \in S$) numerations in $\mathcal{H}(S)$; and let $\mathcal{H}_{1}(S) \rightleftharpoons \mathcal{U}_{s \in S} \mathcal{H}_{s}$ be the set of all complete numerations in $\mathcal{H}(S)$. Then $(\mathcal{H}_{1}(S); \leq , \{\mathcal{H}_{s}\}_{s \in S})$ is a discrete generalized semilattice.

We conclude this section by noting another application of the ρ_s operations. That is, they can be used to find examples (more "explicit" than in [4, 5]) answering a question posed by A. I. Mal'tsev (it turns out that the first of these assertions was known to Yu. L. Ershov).

<u>Proposition 2.</u> 1) Let \mathfrak{G} be a $\sum_{2}^{\mathfrak{o}}$ -complete set regarded as a numeration $\mathfrak{G}: \mathcal{N} \longrightarrow \{\mathcal{O}, \ell\}$. Then the numeration \mathfrak{G} is complete relative to both 0 and 1. 2) The standard numeration of the class $\sum_{2}^{\mathfrak{o}}$ is complete relative to any subset of $\sum_{2}^{\mathfrak{o}}$.

The proof is a simple application of the Tarski-Kuratowski algorithm, together with property 3.

3. UNIVERSAL NUMERATED SETS

Consider a structure $(Map(A,S); \leq_{m_{c}})$ for a class of numerated sets. The numerated set $A = (A, \alpha)$ is said to be universal if the numeration α is complete and there exists an infinite computable sequence of nonempty pairwise disjoint ∞ -enumerable subsets of A. The map $\alpha: N \xrightarrow{\text{onto}} A$ induces an inclusion $\varphi \rightarrow \varphi \circ \alpha$ of Map(A,S) onto $Map(N,S) = \mathcal{H}(S)$ which we denote by \mathcal{F}_{α} .

THEOREM 1. The following conditions are equivalent for the numerated set A:

1) A is a universal numerated set;

2) for every set S, the closure of the image of the set Map(A,S) in $(H(S);\leq)$ under the map \mathscr{J}_{∞} coincides with the set of all complete numerations in H(S).

It is easy to see that this is just a convenient reformulation for our purposes of the universality theorem in [4, p. 267].

We note also that the closure of the set $P_{S} \neq \{\varphi \in Map(A, S) \mid \varphi(a) = S\}$ (where a is a distinguished element in $A \in S$) in $(H(S); \leq)$ coincides with the set of all numerations in H(S) which are complete relative to the element $S \in S$. Together with Proposition 1 and its corollary, this gives:

<u>COROLLARY.</u> If A is universal then $(M_{\Omega,P}(A,S); \leq_m, \{P_s\}_{s \in S})$ is a discrete generalized semilattice which is equivalent to $(H_{I}(S); \leq_{s \in S}, \{H_s\}_{s \in S})$.

The standard examples of universal numerated sets include \mathcal{K} and the numerated set provided by the family $\{ \emptyset, \{x\} | x \in \mathcal{N} \}$ with a principal computable numeration. We note also that if \mathcal{A} is a universal numerated set and \mathcal{B} is a complete numerated set, then their product $\mathcal{A} \otimes \mathcal{B}$ is a universal numerated set.

4. THE OPERATIONS q^t

We now come to our main goal, which is to study $(Map(A,S); \leq_m)$ for another simple, natural class of numerated sets. However, this requires some preliminary work similar to that in Sec. 2.

Fix a creative set ξ . Then we can associate to each element $t \in S$ a unary operation q^t on H(S) defined by

$$(\varphi^{t_{\mathcal{V}}}) < x, y > \rightleftharpoons \begin{cases} \forall x \ , \text{ if } y \notin \xi, \\ t \ , \text{ if } y \in \xi \end{cases}$$

Clearly, $ug(q^t v) = ug v U\{t\}$. We note some properties of these operations q^t , which will will be helpful in what follows. Most of them are dual (in an appropriate sense) to the properties of the operations ρ_s . In most cases, the proofs reduce to simple manipulations using the fact that ξ is creative, and we therefore omit them.

1. For the case when $S = \{0, l\}$ we have $q^{o}(v) = \forall x \,\overline{\xi}, q'(v) = \overline{\forall x \,\overline{\xi}}$ (a numeration $\forall \in \mathcal{H}(S)$ is identified with the corresponding subset of N, and for $q, \tau \subseteq N$ we have $\sigma \times \tau \rightleftharpoons \{\langle x, y \rangle | x \in \sigma \land y \in \tau\}$).

2. q^t is the closure operation on $(\mathcal{H}(S); \leq)$ for all S and $t \in S$.

In order to derive an analog of property 3 in Sec. 2, we introduce the following definition. A numeration $\forall \in \mathcal{H}(S)$ is said to an element $\notin \in S$, if for arbitrary g.r.f. f and recursively enumerable set (r.e.s.) \mathfrak{G} there exists a g.r.f. \mathfrak{q} such that for all $\mathfrak{x} \in \mathcal{N}$

$$\mathcal{V}_{\mathcal{G}(\mathcal{X})} = \begin{cases} \forall f'(\mathcal{X}) &, \text{ if } \mathcal{X} \notin \mathcal{O}; \\ f &, \text{ if } \mathcal{X} \notin \mathcal{O}. \end{cases}$$

A numeration is said to be cocomplete if it is cocomplete with respect to some $\mathcal{I} \in \mathcal{S}$.

3. For all $\neq \in S$, $\forall \in \mathcal{H}(S)$ the numeration $q^t(\forall)$ is the smallest numeration over \forall which is cocomplete relative to t.

4. If \mathcal{T} is a set and $\varphi: S \longrightarrow \mathcal{T}, t \in S$, then $\varphi \circ q^{t}(v) = q^{\varphi(t)}(\varphi \circ v)$.

5. For arbitrary sets $S_{1,...,S_{m}}$ and arbitrary $t_{i} \in S_{i}, v_{i} \in \mathcal{H}(S_{i})$ ($\neq i \leq m$) we have: $q^{(t_{1},...,t_{m})}$ $(q^{t_{i}}(v_{i}) \otimes ... \otimes q^{t_{m}}(v_{m})) \equiv q^{t_{i}}(v_{i}) \otimes ... \otimes q^{t_{m}}(v_{m}).$

It suffices to verify that $q^{(t_n,\dots,t_m)}(q^{t_1}(v_1)\otimes\dots\otimes q^{t_m}(v_m)) \leq q^{t_1}(v_1)\otimes\dots\otimes q^{t_m}(v_m)$. Let g be a g.r.f satisfying $\mathcal{U}\in\xi \vee \mathcal{U}\in\xi \longrightarrow g(\mathcal{U},\mathcal{U})\in\xi$ for all $\mathcal{U},\mathcal{U}\in\mathcal{N}$. Then the g.r.f. taking the number $\ll \mathcal{I}_{n,\dots},\mathcal{I}_{m},\mathcal{Y}$ into $\ll \{x_{i},q(\mathcal{I}_{x_{i}},\mathcal{Y})\},\dots,\ll \{x_{m},q(\mathcal{I}_{x_{m}},\mathcal{Y})\}$ (where ℓ and \mathcal{I} are g.r. functions inverse to the pair-coding function) gives the required reduction.

6. The set of all cocomplete numerations in $\mathcal{H}(S)$ is closed under all the operations $\varphi^* (\varphi; S^m \rightarrow S, m \ge 1)$.

The duality of the operations P_S and q^t can be seen in the following description of the preorder $\leq_q t_{(v)}$ on S .

7. For arbitrary $E \subseteq S$, $v \in H(S)$ we have

$$(q^{t}v)^{-t}(E) = \begin{cases} \sqrt{t}(E) \times \overline{\xi} &, \text{ if } t \notin E, \\ \overline{\sqrt{t}(E)} \times \overline{\xi} &, \text{ if } t \in E. \end{cases}$$

8. The set $E \subseteq S$ is $q^t(v)$ -enumerable if and only if $E \cap \mathcal{U}\mathcal{U}\mathcal{G}(q^t v) = \emptyset$ or $t \in E$ and E is v-enumerable.

9. For arbitrary $x, y, t \in S$, $v \in \mathcal{H}(S)$ we have $x \leq_{q^{t}(v)} \mathcal{Y} \leftrightarrow x \leq_{s} \mathcal{Y} \lor (t \leq_{s} \mathcal{Y} \land x \in \mathcal{I}\mathcal{R}(q^{t}v))$, i.e., $\leq_{q^{t}(v)}$ is the smallest preorder on S that contains \leq_{v} and is such that all elements in $\mathcal{U}\mathcal{R}\mathcal{Y}$ are less than or equal to t.

If $\mathcal{X} \leq_{\mathcal{Y}} \mathcal{Y}$ then $\mathcal{X} \leq_{q} t_{(\mathcal{Y})} \mathcal{Y}$ follows from $\mathcal{V} \leq_{q} t_{(\mathcal{V})}$. Let $t \leq_{\mathcal{Y}} \mathcal{Y}$, $\mathcal{X} \in \mathcal{ING}(q^{t}\mathcal{V})$; then $t \leq_{\mathcal{Y}} \mathcal{Y}$ implies that $t \leq_{q} t_{(\mathcal{V})} \mathcal{Y}$ and $\mathcal{X} \in \mathcal{ING}(q^{t}\mathcal{V})$ implies that $\mathcal{X} \leq_{q} t_{(\mathcal{V})} t$, by property 8. Hence $\mathcal{X} \leq_{q} t_{(\mathcal{V})} \mathcal{Y}$.

We now verify that $x \leq_{q} t_{(v)} \mathcal{Y} \to x \leq_{v} \mathcal{Y} \lor (t \leq_{v} \mathcal{Y} \land x \in \mathcal{TD}g(q^{t} \mathcal{Y}))$. The case when $t \leq_{v} \mathcal{Y}$ is obvious. It therefore remains to prove that $x \leq_{q} t_{(v)} \mathcal{Y}, t \leq_{v} \mathcal{Y}$ implies $x \leq_{v} \mathcal{Y}$. Since $t \leq_{v} \mathcal{Y}$ here exists a \vee -enumerable set $E \subseteq S$ such that $t \in E, \mathcal{Y} \notin E$. Let $\mathcal{D} \subseteq S$ be a \vee -enume able set and let $x \in \mathcal{D}$. Then $E \cup \mathcal{D}$ is \vee -enumerable and $t \in E \cup \mathcal{D}$. By property 8, the set $E \cup \mathcal{D}$ is $q^{t}(v)$ -enumerable. Since $x \leq_{q} t_{(v)} \mathcal{Y}, x \in E \cup \mathcal{D}$, we have $\mathcal{Y} \in E \cup \mathcal{D}$. But $\mathcal{Y} \notin E$, and therefore $\mathcal{Y} \in \mathcal{D}$. Thus, the assumptions that $x \in \mathcal{D}$, and \mathcal{D} is \vee -enumerable imply that $\mathcal{Y} \in \mathcal{D}$.

5. THE OPERATIONS r_s^t

The compositions of the operations P_s and $q^t(s,t\in S)$, which we denote by $z_s^t: z_s^t \rightleftharpoons P_s \circ q^t$, will be important. We therefore note some properties of the operations z_s^t , all of which (except for one) follow easily from property 1 and the corresponding properties of the operations P_s , q^t .

1. For arbitrary $S, t \in S$, $V \in H(S)$ we have $P_S(g^t v) = g^t(P_S v)$.

We indicate only the reducing functions, leaving the routine verification to the reader. We define the r.e.s. \mathcal{O} by $\{\mathcal{X} \in \mathcal{N} \mid \mathcal{X} \in \mathcal{d} \mbox{om} \widetilde{\mathcal{X}} \land \mathcal{D} \widetilde{\mathcal{X}}(\mathcal{X}) \in \xi\}$. Let f be a g.r.f. which \mathcal{M} -reduces \mathcal{O} to ξ , and let q be a g.r.f. satisfying

$$\mathscr{B}_{q(x)} = \begin{cases} \phi , \text{ if } x \notin dom \, \widetilde{\mathscr{X}}, \\ \lambda Z. \, (\widetilde{\mathscr{X}} | x) \text{-otherwise.} \end{cases}$$

Then the g.r.f. $\lambda x \ll q(x), 0 > f(x)$ reduces the numeration $\rho_s(q^t v)$ to the numeration $q^t(\rho_s v)$. Let h be any g.r.f. satisfying

$$\mathscr{X}_{h(x)} = \begin{cases} \emptyset, \text{ if } \widetilde{\tau}(x) \notin \xi \text{ and } \ell(x) \notin dom \widetilde{\mathscr{X}}; \\ \lambda Z. \langle \widetilde{\mathscr{X}} \ell(x), \tau(x) \rangle, \text{ if } \ell(x) \in dom \widetilde{\mathscr{X}} \text{ and } \ell(x) \text{ is enumerated} \\ \text{ in } dom \widetilde{\mathscr{X}} \text{ before } \tau(x) \text{ is enumerated in } \xi; \\ \lambda Z. \langle 0, \tau(x) \rangle - \text{ in all remaining cases.} \end{cases}$$

(we assume in such definitions that some method has been chosen to effectively enumerate the corresponding sets during the stepwise construction [in this case, $\dim \widetilde{x}$ and ξ]). Then the g.r.f. $\lambda x. \langle h(x), 0 \rangle$ reduces $q^t(\rho_s v)$ to $\rho_s(q^t v)$.

Remark. It is easy to construct examples that show that the operations ρ_s , $\rho_{s'}$ also $q^t, q^{t'}$) do not commute in general. (and

2. For
$$S = \{0, l\}$$
 we have: $q^{o} \rho_{0}(v) = \rho m(v) \times \xi, q^{o} \rho_{1}(v) = \rho m(\overline{v}) \times \xi, q^{\prime} \rho_{0}(v) = \overline{\rho m(v)} \times \overline{\xi}, q^{\prime} \rho_{1}(v) = \overline{\rho m(v)} \times$

12).

3. \mathcal{I}_s^t is the closure operation on $(\mathcal{H}(S); \leq)$ for arbitrary S and $s, t \in S$.

A numeration in H(S) is said to be 2-complete relative to $s, t \in S$ if it is complete with respect to s and cocomplete with respect to t .

A numeration is said to be 2-complete if it is 2-complete with respect to some $s, t \in S$. 4. $\mathcal{I}_{s}^{t}(v)$ is the smallest numeration over \vec{v} which is 2-complete relative to s, t .

5. If \mathcal{T} is a set and $\varphi: S \longrightarrow \mathcal{T}, S, t \in S$, then $\varphi \circ z_{S}^{t}(v) = z_{\varphi(S)}^{\varphi(t)}(\varphi \circ v)$.

6. For arbitrary sets S_1, \ldots, S_m and any $S_i, t_i \in S_i, v_i \in \mathcal{H}(S_i)$ $(I \leq i \leq m)$ we have:

$$\chi^{(t_1,\ldots,t_m)}_{(s_1,\ldots,s_m)}(\chi^{t_1}_{s_1}(v_1)\otimes\ldots\otimes\chi^{t_m}_{s_m}(v_m)) \equiv \chi^{t_1}_{s_1}(v_1)\otimes\ldots\otimes\chi^{t_m}_{s_m}(v_m).$$

7. The set of all 2-complete numerations in $\mathcal{H}(S)$ is closed under all of the operations $\varphi^* (\varphi: S^m \longrightarrow S, m \ge I).$

8. $\leq_{t_c(v)}$ is the smallest preorder on \mathcal{S} which contains \leq_v and is such that every element in rang \checkmark is greater than or equal to s and less than or equal to t .

9.
$$\chi_{s}^{t}(v) \leq \propto \bigoplus \beta \rightarrow \chi_{s}^{t}(v) \leq \propto \vee \chi_{s}^{t}(v) \leq \beta$$
 for all $s, t \in S, v, \alpha, \beta \in H(S)$.
10. $\chi_{s}^{t}(v) \leq \chi_{s'}^{t'}(v') \rightarrow \chi_{s}^{t}(v) \leq v'$ for all $v, v' \in H(S), s, s, t, t' \in S, s' \neq s, t' \neq t$.
It follows from $\rho_{s}(q^{t}v) \leq \rho_{s'}(q^{t}v')$ and $s' \neq s$ that $\rho_{s}(q^{t}v) \leq q^{t'}(v')$ (Sec. 2, property
Let the g.r.f. f reduce $\rho_{s}(q^{t}v)$ to $q^{t'}(v')$, and let the recursively enumerable

set G be defined by $G \Rightarrow \{\langle x, y \rangle | (x \in dom \widetilde{x} \land \iota \widetilde{x}(x) \in \xi) \lor \iota f \langle y, \iota(x) \in \xi \}$

Let h be a g.r.f. m -reducing σ to ξ and let q be any g.r.f. satisfying

$$\mathscr{X}_{g(x,y)} = \begin{cases} \lambda z. f < y, z(x) > , & \text{if } \tilde{z}f < y, z(x) > \text{ is enumerated in } \xi \\ & \text{before } x \text{ is enumerated in } dom \, \widetilde{\mathscr{X}}; \\ \lambda z. < l \widetilde{\mathscr{X}}(x), h < x, y \gg \text{ otherwise} \end{cases}$$

(in particular, $\mathscr{X}_{g(x,y)} = \emptyset$ if $x \notin dom \, \widetilde{x} \wedge \tau f < y, \tau(x) > \notin \xi$). By the recursion theorem, there exists a g.r.f. C such that $\mathscr{X}_{C(x)} = \mathscr{X}_{g(x,C(x))}$. We claim that the g.r.f. $\lambda x. lf < c(x), \ell(x) >$ reduces $\rho_s(q^t v)$ to v'. In order to prove this, we first verify that

$$\forall x \ (vf < c \ (x), \ v \ (x) > \notin \ \xi \). \tag{1}$$

Proceeding by contradiction, assume that $vf < c(x), v(x) > \in \xi$. If vf < c(x), v(x) > is computed in ξ before x is in $dom \tilde{x}$, then $\mathscr{X}_{\mathcal{C}(x)}(\mathfrak{X}) = f\langle \mathcal{C}(\mathfrak{X}), \mathfrak{T}(\mathfrak{X}) \rangle$ and therefore $t = (q^t v) f\langle \mathcal{C}(\mathfrak{X}), \mathfrak{T}(\mathfrak{X}) \rangle = (q^t v) \mathscr{X}_{\mathcal{C}(x)}(\mathfrak{X}) = (p_s q^t v) \langle \mathcal{C}(\mathfrak{X}), \mathfrak{T}(\mathfrak{X}) \rangle = (q^t v) f\langle \mathcal{C}(\mathfrak{X}), \mathfrak{T}(\mathfrak{X}) \rangle = t'$, which contradicts the assumption $t' \neq t$. If \mathfrak{X} is computed in $dom \widetilde{x}$ before $vf < C(x), v(x) > is computed in <math>\xi$, then $\mathcal{X}_{C(x)}(\tau x) = \langle l \widetilde{x}(x), h < x, C(x) \rangle$. By the definition of σ, h we have $h < x, C(x) > \xi \xi$, and therefore $t = (q^t \vee) < l \widetilde{x}(x), h < x, C(x) \gg = (q^t \vee) \mathcal{X}_{C(x)}$, $(\tau x) = (q^t \vee) < c(x), t(x) \gg = (q^t \vee) \mathcal{X}_{C(x)}$. We have thus verified (1).

It follows from (1) that $\forall x (x_{\mathcal{C}(x)}(x) = \langle l \widetilde{x}(x), h \langle x, \mathcal{C}(x) \rangle)$ and $\forall x (x \in dom \widetilde{x} \land v \widetilde{x}(x) \in \xi \leftrightarrow \langle x, \mathcal{C}(x) \rangle \in \xi \leftrightarrow \langle x, \mathcal{C}(x)$ $h \langle \mathcal{I}, \mathcal{C}(\mathcal{I}) \rangle \in \xi$), whence

$$\forall x ((\rho_s q^t \vee) x = (\rho_s q^t \vee) < c(x), z(x) >).$$
⁽²⁾

Using (1) and (2), we find that $\forall x ((\tau_s^{\dagger} \psi) x = (\rho_s q^{\dagger} \psi) < \mathcal{O}(x), \tau(x) > = (q^{t} \psi') f' < \mathcal{O}(x), \tau(x) > = \forall f' < \mathcal{O}(x), \tau(x) >$ $\mathcal{I}(\mathcal{I})$), as claimed.

The next proposition follows from Properties 3, 9, and 10.

Proposition 3. The structure $(\mathcal{H}(S); \leq, \mathcal{P}, \{z_s^t\}_{s, t \in S})$ is a semilattice with 2-discrete closures.

<u>COROLLARY.</u> Let \mathcal{H}_{s}^{t} be the set of all 2-complete numerations in $\mathcal{H}(S)$ with respect to $s, t \in S$; let $\mathcal{H}_{z}(S) \rightleftharpoons \bigcup_{s,t \in S} \mathcal{H}_{s}^{t}$ be the set of all 2-complete numerations in $\mathcal{H}(S)$. Then $(H_2(S); \leq, \{H_s^t\}_{s, t \in S})$ is a 2-discrete generalized semilattice.

6. 2-UNIVERSAL NUMERATED SETS

We now consider $(Map(A, S); \leq_m)$ for another natural class of numerated sets. A numerated set $A = (A, \alpha)$ is said to be 2-universal if the numeration α is 2-complete and there exist a g.r.f. \mathcal{G} and a computable sequence $\{\mathcal{E}_{\kappa}\}$ of \prec -enumerable subsets of A such that $\propto g(\kappa) \in E_{\kappa} \setminus \bigcup_{m \neq \kappa} E_{m}$ for every $\kappa \in N$.

Property 8 in Sec. 5 implies that the classes of universal and 2-universal numerated sets are disjoint. Examples of 2-universal numerated sets include $I\!\!I$ and the numerated set provided by the family $\{\phi, \{x\}, N \mid x \in N\}$ with a principal computable numeration. If A and ${\mathcal B}$ are, respectively, a 2-universal and a 2-complete numerated set, then ${\mathbb A} \otimes {\mathcal B}$ is 2universal.

THEOREM 2. The following conditions are equivalent for every numerated set A:

1) A is a 2-universal numerated set;

2) for every set S , the closure of the image of the set Map (A,S) in $(\mathcal{H}(S);<)$ under the map $\mathscr{F}_{\mathbf{x}}$ (cf. Sec. 3) coincides with the set of all 2-complete numerations in H(S).

We first prove that 1) + 2). Let the numeration ∞ be 2-complete with respect to the elements $a, b \in A$; then $\zeta_a^{\beta}(\alpha) \equiv \infty$ by property 4, Sec. 5. If φ is a map from A into S, then $\varphi \circ \chi_a^{\beta}(\alpha) \equiv \varphi \circ \alpha$ and $\varphi \circ \chi_a^{\beta}(\alpha) = \zeta_{\varphi(\alpha)}^{\varphi(\beta)}(\varphi \circ \alpha)$ (property 5). The numeration $\varphi \circ \alpha \equiv \chi_{\varphi(\alpha)}^{\varphi(\beta)}(\varphi \circ \alpha)$ is therefore 2-complete with respect to $\varphi(a), \varphi(b)$. It remains to show that if \forall is a 2-complete numeration in $\mathcal{H}(S)$ then $\varphi \circ \alpha \equiv \psi$ for a suitable $\varphi: A \to S$. Assume that \forall is 2-complete with respect to $S, t \in S$; we then define the map φ by

$$\varphi(x) \Rightarrow \begin{cases} s , \text{ if } x \notin \bigcup E_{\kappa}; \\ \nu_{\kappa}, \text{ if } x \in E_{\kappa} \bigcup \bigcup_{m \neq \kappa} E_{m}; \\ t , \text{ if } \exists \kappa, m (m \neq \kappa \land x \in E_{\kappa} \land x \in E_{m}). \end{cases}$$

It follows from the description of the preorder $\leq_{\chi_{\alpha}^{\beta}(V)}$ (property 8, Sec. 5) that $\varphi(\alpha)=S_{,\varphi(\beta)}=t$. It remains to check that $\varphi\circ\alpha\equiv v$. We have $\forall\kappa(\alpha g(\kappa)\in \mathcal{E}_{\kappa} \setminus \bigcup_{m\neq\kappa} \mathcal{E}_{m})$, and therefore $\forall\kappa((\varphi\circ\alpha)g(\kappa)=\varphi(\alpha g(\kappa))=v_{\kappa})$, i.e., g reduces V to $\varphi\circ\alpha$. In order to prove that $\varphi\circ\alpha\leq v$ it suffices to verify that $\varphi\circ\alpha\leq\chi_{s}^{t}(V)$ (property 4, Sec. 5). Let the r.e.s. \mathcal{O} be defined by $o\neq\{\varphi\in N\mid \exists\kappa,m(m\neq\kappa\wedge\alpha\varphi\in\mathcal{E}_{\kappa}\cap\mathcal{E}_{m})\}$; let h be a g.r.f. m-reducing \mathcal{O} to ξ , and let f be any g.r.f. satisfying

$$x_{f(y)} = \begin{cases} \emptyset, \text{ if } & \leq y \notin \bigcup_{\kappa \ge 0} E_{\kappa}; \\ \lambda Z. < \kappa, h(y) > - \text{ otherwise,} \end{cases},$$

where \mathcal{K} is the first number for which \mathcal{Y} was enumerated in $\infty^{-1}(\mathcal{E}_{\mathcal{K}})$ in some simultaneous stepwise enumeration of the sequence $\{\alpha^{-1}(\mathcal{E}_{\mathcal{K}})\}$. We verify without difficulty that the g.r.f. $\lambda \mathcal{Y} \leq f(\mathcal{Y}), 0 >$ reduces $\varphi \circ \infty$ to $\mathcal{I}_{s}^{t}(\mathcal{V})$.

We now prove that $S \rightleftharpoons A$ and let φ be the identity map from A into S. By condition 2, the numeration $\varphi \circ \propto = \infty$ is 2-complete. Now let $S = \{ \varphi, \{x\}, N \mid x \in N \}$, be a \vee -principal computable numeration of S. The numeration \vee is 2-complete relative to φ, N . By condition 2, there exists a map $\varphi: A \rightarrow S$ such that $\varphi \circ \propto = \vee$. Clearly, the sequence $\{D_{\kappa}\}, \mathcal{L}_{\kappa} = \{[\kappa], N\}$ ($\kappa \in N$) and the g.r.f. h satisfying the condition $\forall \kappa \ (\forall h(\kappa) = \{\kappa\})$ demonstrate that the numerated set $(S; \vee)$ is 2-universal. Let the g.r.f. f reduce \vee to $\varphi \circ \propto$. We then easily see from $\varphi \circ \propto = \vee$ that the existence of the sequence $\{\mathcal{E}_{\kappa}\}, \mathcal{E}_{\kappa} \rightleftharpoons \varphi^{-1}(\mathcal{D}_{\kappa})$ and the g.r.f. $f \circ h$ prove that the numerated set A is 2-universal.

The next result follows from the proof of Theorem 2 and the Corollary to Proposition 3. <u>COROLLARY</u>. Let A be 2-universal and $P_s^{t} \{\varphi \in Map(A, S) | \varphi(a) = S, \varphi(b) = t\}$ (where $S, t \in S; a, b \in A$ are the elements with respect to which the numeration ∞ is 2-complete). Then $(Map(A, S); \leq, \{P_s^t\}_{s,t \in S})$ is a 2-discrete generalized semilattice which is equivalent to $(H_2(S); \leq, \{H_s^t\}_{s,t \in S})$.

7. REFLECTIVE NUMERATED SETS

We will henceforth consider the structure $(Map(A,S);\leq_M)$ for two new natural classes of numerated sets. The numerated set $A = (A_{,\infty})$ is said to be reflective if the numeration M is complete and there exist morphisms $\phi_0, \phi_0^*, \phi_1, \phi_1^*$ from A into A such that:

- 1) $\phi_0^* \circ \phi_0, \phi_1^* \circ \phi_1$ are the identity maps on A;
- 2) $\operatorname{reg} \phi_0^{\phi}$, $\operatorname{reg} \phi_1^{\phi}$ are disjoint \propto -enumerable sets.

Examples. \mathcal{K} is reflective. If \mathcal{C} is a finite family of finite subsets of \mathcal{N} such that $(\mathcal{C};\subseteq)$ has a smallest but not a largest element, then the numerated set (\mathcal{A}, ∞) , formed by the family of all computable enumerations in $\mathcal{H}(\mathcal{C})$ together with a principal computable numeration is reflective. If the numerated sets \mathcal{A} and \mathcal{B} are respectively reflective and complete, then $\mathcal{A} \otimes \mathcal{B}$ is reflective. The family $\{\phi, \{x\} \mid x \in \mathcal{N}\}$ equipped with a principal computable numeration is not a reflective numerated set.

<u>THEOREM 3.</u> If A is reflective and $P_s = \{\varphi \in Map(A, S) | \varphi(a) = S\} a \in A$ (where $s \in S$, is the element with respect to which the numeration ∞ is complete), then $(Map(A, S); \leq_M, \{P_s\}_{s \in S})$ is a discrete generalized semilattice.

We first define the binary operations $\mathcal{G}(S \in S)$ on Map(A, S). If $S \in S$, $\varphi_0, \varphi_1 \in Map(A, S)$ then the element $\mathcal{G}_S(\varphi_0, \varphi_1) \in Map(A, S)$ (more briefly, \mathcal{O}_S) is defined for $(x \in A)$: by:

$$\Theta_{s}(x) \rightleftharpoons \begin{cases} s , \text{ if } x \notin \operatorname{rrg} \varphi_{0} \cup \operatorname{rrg} \varphi_{1}, \\ \varphi_{i} \varphi_{i}^{*}(x), \text{ if } x \in \operatorname{rrg} \varphi_{i}, i \in \{0, l\}. \end{cases}$$

We claim that $\theta_{s}(\varphi_{0},\varphi_{1})$ is the generalized upper bound of the elements φ_{0},φ_{1} in $(Map(A, S); \leq_{M}, \{P_{s}\})$ (cf. Sec. 1). Indeed, by property 10 in Sec. 2 and condition 2) in the above definition, we have $a \notin ug \notin_{0} U ug \#_{1}$, and therefore $\theta_{s} \in P_{s}$. We further have $\theta_{s} \#_{i}(x) = \varphi_{i} \oplus_{i} (x) = \varphi_{i}(x)$ i.e., the morphism $\#_{1} M$ -reduces φ_{i} to $\theta_{s} (\varphi_{i} = \theta_{s} \circ \#_{i})$. Let $\varphi_{0}, \varphi_{1} \leq_{M} \psi_{1}, \psi \in P_{s}$ and let $\Psi_{i}(i = 0, 1)$ be a morphism M -reducing φ_{i} to ψ . Then the map $\Psi_{i} A \rightarrow A$, defined by

$$\Psi_{(x)} \rightleftharpoons \begin{cases} a , \text{ if } x \notin \operatorname{vng} \varphi \cup \operatorname{vng} \varphi_{i}; \\ \psi_{i}^{*} \varphi_{i}^{*}(x) , \text{ if } x \in \operatorname{vng} \varphi_{i}; \end{cases}$$

is a morphism from A to A which M -reduces $\hat{\Theta}_s$ to ψ (this follows easily from the reflec tivity of A). Finally, let $\psi \in \mathcal{P}_{S'}, S' \neq S$ and assume that the morphism ψ M-reduces ψ to Θ_s . It follows at once from $S' \neq S$ that $\psi(\alpha) \in \operatorname{Ung} \phi_i$ for some $i \in \{0, i\}$. Together with property 10, Sec. 2, and the fact that ψ is a monotone map from $(A; \leq_{\alpha})$ into $(A; \leq_{\alpha})$ [4, p. 111], this implies that $\operatorname{Ung} \psi \subseteq \operatorname{Ung} \phi_i$, whence the morphism $\phi_i^* \circ \psi$ M-reduces ψ to φ_i .

We note some additional properties of reflective numerated sets ${\cal A}$.

1. If $X \subseteq A$ is an ∞ -enumerable set, then its image $\varphi_i(X)$ under the map $\varphi_i(i=0,1)$ is also ∞ -enumerable, and a π -index for the set $\infty^{-1}(\varphi_i(X))$ can be found effectively in terms of a π -index of the set $\infty^{-1}(X)$.

This follows from the readily verified assertion

$$\forall x \in A \ (x \in \mathcal{P}_i(X) \dashrightarrow x \in vug \, \mathcal{P}_i \land \mathcal{P}_i^*(x) \in X).$$

We define a sequence $\{\Psi_{\kappa}\}, \{\Psi_{\kappa}^{*}\}$ of morphisms from A into A by $\Psi_{0} \rightleftharpoons \Phi_{0}, \Psi_{\kappa+1} \rightleftharpoons \Phi_{1}^{*} \circ \Psi_{\kappa}; \Psi_{0}^{*} \rightleftharpoons \Phi_{0}^{*}, \Psi_{\kappa+1}^{*} \rightleftharpoons \Psi_{\kappa}^{*} \circ \Phi_{1}^{*}.$

2. The sequences of morphisms $\{\Psi_{\kappa}\}, \{\Psi_{\kappa}^{\star}\}$ are computable; $\Psi_{\kappa}^{\star}, \Psi_{\kappa}$ is the identity on A for every $\kappa \in N$.

3. The sets $D_{\kappa}, D_{\kappa} \neq vg \Psi_{\kappa}$ ($\kappa \in N$) are pairwise disjoint.

It suffices to prove that $\forall \kappa \forall m \ (\kappa < m \rightarrow D_{\kappa} \cap D_{m} = \emptyset)$. This can be done by a simple induction on κ .

4. Every reflective numerated set is universal.

It follows from 1-3 that $\{\mathcal{D}_\kappa\}$ is a computable sequence of nonempty disjoint \propto -enumerable subsets of A .

5. If
$$T$$
 is a set and $\psi: S \to T$, $s \in S$, $\varphi_0, \varphi_1 \in Map(A, S)$, $\psi \circ \Theta_s(\varphi_0, \varphi_1) = \Theta_{\psi(s)}(\psi \circ \varphi_0, \psi \circ \varphi_1)$

Property 4 and the Corollary to Theorem 1 imply that generalized upper bound operations can be defined, in addition to the operations \mathscr{O}_{s} on $(Map(A,S); \leq_{m}, \{\mathcal{P}_{s}\}_{s\in S})$, for a reflective numerated set A. These operations are closely related.

6. For any $s \in S$, $\varphi_o, \varphi_i \in Map(A, S)$ the enumerations $\mathcal{O}_S(\varphi_o, \varphi_i) \circ \alpha$ and $\mathcal{P}_S((\varphi_o \circ \alpha) \oplus (\varphi_i \circ \alpha))$ are equivalent.

We also note that property 2 can be used to define the operations Θ_s even for infinite sequences of elements in Map(A,S), which is useful in some problems. Indeed, if $\varphi_{\kappa} \in Map(A,S), \kappa \in \mathcal{N}$, then $\Theta_S = \Theta_S(\varphi_a, \varphi_a, \dots)$ is defined by

$$\Theta_{\mathsf{S}}(x) \rightleftharpoons \begin{cases} \mathsf{S} , \text{ if } x \notin \bigcup_{\kappa \ge 0} \mathcal{D}_{\kappa}, \\ \varphi_{\kappa} \psi_{\kappa}^{*}(x) , \text{ if } x \in \mathcal{D}_{\kappa}. \end{cases}$$

In this case we also have $\mathcal{O}_{S}(\varphi_{0},\varphi_{1},\dots)\circ \alpha \equiv \mathcal{O}_{S}(\bigoplus_{\kappa \geqslant 0}(\varphi_{\kappa}\circ \alpha)).$

8. 2-REFLECTIVE NUMERATED SETS

We now consider another class of numerated sets. A numerated set $A = (A, \alpha)$ is said to be 2-reflective if the numeration α is 2-complete and there exist morphisms $\phi_0, \phi_0^*, \phi_1, \phi_1^*$ from A into A and α -enumerable subsets $B_0, C_0, B_1, C_1 \subseteq A$ such that:

1) the maps $\varphi_0^* \circ \varphi_0, \varphi_1^* \circ \varphi_1$ are the identity on A; 2) $B_i \supseteq C_i, ung \varphi_i = B_i \setminus C_i \ (i=0,1), B_0 \cap B_i = C_0 \cap C_i.$

Condition 1) implies that φ_0, φ_1 and injective, and 2) says that $\mathcal{U}_0 \varphi_0 \cap \mathcal{U}_0 \varphi_1 = \phi$.

Examples. The set \square is 2-reflective. If \mathcal{C} is a finite family of finite subsets of \mathcal{N} that contains at least two elements and is such that $(\mathcal{C}; \subseteq)$ has a minimal element and a maximal element, then the numerated set defined by \mathcal{C} as in the corresponding example in Sec. 7 is 2-reflective. If \mathcal{A} is 2-reflective and \mathcal{B} is 2-complete, the $\mathcal{A} \otimes \mathcal{B}$ is 2-reflective. The numerated set $\{\emptyset, \{x\}, \mathcal{N} \mid x \in \mathcal{N}\}$ with a principal computable numeration is not 2teflective.

THEOREM 4. If A is 2-reflective and $\mathcal{P}_{S}^{t} = \{\varphi \in Map(A,S) | \varphi(a)=S, \varphi(b)=t\}$ (where $S, t \in S; a$, and $b \in A$ are the elements with respect to which the numeration α is 2-complete), then

 $(\operatorname{Map}(A, S); \leq_{\mathcal{M}}, \{\mathcal{P}_{s}^{t}\}_{s, t \in S}) \text{ is a 2-discrete generalized semilattice.}$ We first define binary operations \mathcal{Q}_{s}^{t} on $\operatorname{Map}(A, S)$. If $s, t \in S, \varphi_{0}, \varphi_{1} \in \operatorname{Map}(A, S)$

We first define binary operations Θ_s^c on Map(A,S). If $s,t \in S, \varphi_0, \varphi_1 \in Map(A,S)$ we define the map $\Theta_s^t = \Theta_s^t(\varphi_0, \varphi_1)$ by:

$$\theta_{s}^{t}(x) \rightleftharpoons \begin{cases} s , \text{ if } x \notin B_{o} \cup B_{r}, \\ \varphi_{i} \phi_{i}^{*}(x) , \text{ if } x \in B_{i} \setminus C_{i}, \\ t , \text{ if } x \in C_{o} \cup C_{r}. \end{cases}$$

The map $\Theta_s^t(\varphi_0,\varphi_1) \in Map(A,S)$ is well defined, since the 2-reflectivity of A implies that $(\overline{B_0 \cup B_1}, B_0 \setminus C_0, B_1 \setminus C_1, C_0 \cup C_1)$ is a nontrivial decomposition of the set A. The map $\Theta_s^t(\varphi_0, \varphi_1) \in P_s^t$, since $a \in \overline{B_0 \cup B_1}, b \in C_0 \cap C_1$. Following the proof of Theorem 3 and using the appropriate properties in Sec. 5, we verify without difficulty that the Θ_s^t are generalized upper bound operations in $(Map(A,S); \leq_M, \{P_s^t\})$.

We note some additional properties of 2-reflective numerated sets A.

1. If $X \subseteq A$ is ∞ -enumerable then the same is true of $\mathcal{P}_{i}(X) \cup \mathcal{C}_{i}(i=0,1)$, and a π -index for the set $\infty^{-1}(\mathcal{P}_{i}(X) \cup \mathcal{C}_{i})$ is given effectively in terms of a π -index for the set $\infty^{-1}(X)$.

This follows from the easily verified assertion

$$\forall x \in A \ (x \in \mathcal{P}_i(X) \cup \mathcal{C}_i \leftrightarrow x \in \mathcal{B}_i \land (\mathcal{P}_i^*(x) \in X \lor x \in \mathcal{C}_i)).$$

The sequences $\{\Psi_{\kappa}\}, \{\Psi_{\kappa}^{*}\}, \{D_{\kappa}\}$ are defined as in Sec. 7 and also possess properties 2, 3 in Sec. 7. We also define the sequences $\{E_{\kappa}\}, \{F_{\kappa}\}$ of subsets of A by $E_{o} = B_{o}$, $E_{\kappa+1} = \phi_{1}(E_{\kappa})\cup C_{j}; F_{o} = C_{o}, F_{\kappa+1} = \phi_{1}(F_{\kappa})\cup C_{j}$. It follows from 1 above that

2. The sequences $\{\mathcal{F}_{\kappa}\}, \{\mathcal{F}_{\kappa}\}$ of \ll -enumerable subsets of A are computable.

3. $E_{\kappa} \supseteq F_{\kappa}$, $\mathcal{D}_{\kappa} = E_{\kappa} \setminus F_{\kappa}$ for every $\kappa \in \mathcal{N}$.

We give the proof by induction on K. The assertion is obvious for k = 1. Let $E_K \supseteq F_K$, $\mathcal{D}_K = E_K \setminus F_K$; then $\phi_1(E_K) \supseteq \phi_1(F_K)$, whence $E_{K+1} = \phi_1(E_K) \cup \mathcal{C}_1 \supseteq \phi_1(F_K) \cup \mathcal{C}_1 = F_{K+1}$. We also have $E_{K+1} \setminus F_{K+1} = (\phi_1(E_K) \cup \mathcal{C}_1) \setminus (\phi_1(F_K) \cup \mathcal{C}_1) = \phi_1(E_K) \setminus \phi_1(F_K)$ since $UUQ \phi_1 \cap \mathcal{C}_1 = \emptyset$. Further, $\phi_1(E_K) \setminus \phi_1(F_K) = \phi_1(E_K \setminus F_K)_-$, since ϕ_1 is injective. But $E_K \setminus F_K = \mathcal{D}_K$, and therefore $E_{K+1} \setminus F_{K+1} = \phi_1(\mathcal{D}_K) = \mathcal{D}_{K+1}$

4. For any $K, m \in N$ with $K \neq m$, we have $E_K \cap E_m = F_K \cap F_m$.

By 3, if suffices to verify that $\forall_{\mathcal{K}} \forall_{\mathcal{M}} (\kappa < m \rightarrow E_{\mathcal{K}} \cap E_{\mathcal{M}} \subseteq F_{\mathcal{K}} \cap F_{\mathcal{M}})$. This is also proved by a simple induction on κ .

5. Every 2-reflective numerated set is 2-universal.

We define the sequence $\{d_{\kappa}\}$ of elements of A by $d_{\kappa} \neq \psi_{\kappa}(a)$ ($\kappa \in N$). The computabilit of the sequence of morphisms $\{\psi_{\kappa}\}$ implies the existence of a g.r.f. g such that $\forall \kappa (d_{\kappa} = \alpha g(\kappa))$. Properties 3 and 4 then easily imply that $\forall \kappa (d_{\kappa} \in E_{\kappa} \setminus \bigcup_{m \neq \kappa} E_{m})$, which together with property 2 gives the required result.

The analogs of the other remarks made at the end of Sec. 7 are also valid.

9. MULTIPLE REDUCIBILITY

The above results also make it easy to study multiple $(\mathcal{M} - \text{and } \mathcal{M} -)$ reducibility. Let $\mathcal{A} = (\mathcal{A}, \mathscr{L})$ -be a numerated set, \mathcal{A} a nonempty set, and let $\mathcal{F}, \mathcal{G} \in Map(\mathcal{A}, Map(\mathcal{A}, S))$. We say that \mathcal{F} is multiply \mathcal{M} -reducible to \mathcal{G} $(\mathcal{F} \leq_{\mathcal{M}}^{*} \mathcal{G})$ if there exists a g.r.f. f such that $f \mathcal{M}$ reduces $\mathcal{F}(\mathcal{X})$ to $\mathcal{G}(\mathcal{X})$ for every $\mathcal{X} \in \mathcal{A}$. The relation $\leq_{\mathcal{M}}^{*}$ of multiple \mathcal{M} -reducibility is defined analogously (with the g.r.f. f replaced by a morphism $\mathcal{P}: \mathcal{A} \to \mathcal{A}$).

We first analyze the special case when A = N and \propto is the identity numeration of Nin which case \leq_{m}^{\star} and \leq_{M}^{\star} coincide. The "usual" multiple m -reducibility [4] is recovered by specializing to $S = \{0, 1\}$. We define the binary operation \oplus on $Map(\Lambda, Map(N, S))$ and the unary operations $\mathcal{P}_{\varphi}, \overset{\tau}{\mathcal{I}}_{\varphi}^{\psi}$ for $\varphi, \psi \in Map(\Lambda, S)$ as follows: if $F, G \in Map(\Lambda, Map(N, S)), \lambda \in \Lambda$, then $(F \oplus G) \lambda \rightleftharpoons F(\lambda) \oplus G(\lambda), (\overset{\sigma}{\mathcal{P}}_{\varphi}F) \lambda \rightleftharpoons \mathcal{P}_{\varphi(\lambda)}(F\lambda), (\overset{\tau}{\mathcal{I}}_{\varphi}^{\psi}F) \lambda \rightleftharpoons \mathcal{I}_{\varphi(\lambda)}^{\psi(\lambda)}(F\lambda).$

Proposition 4. The algebraic systems $(Map(\Lambda, Map(N, S)); \leq_m^*, \Theta, \{\check{\mathcal{P}}_{\varphi}\}, \{\check{\mathcal{T}}_{\varphi}^{\psi}\})$ and $(Map(N, Map(\Lambda, S)); \leq_m, \Theta, \{\mathcal{P}_{\varphi}\}, \{\check{\mathcal{T}}_{\varphi}^{\psi}\})$ are naturally isomorphis.

Here the word "natural" means that the isomorphism is given by mutually inverse maps $Map(\Lambda, Map(\Lambda, S)) \rightleftharpoons Map(\Lambda, Map(\Lambda, S))$, whose composition "interchanges the arguments." The verification is trivial.

<u>COROLLARY.</u> The structure $(Map(\Lambda, Map(N, S)); \leq_m^*, \Theta, \{\rho_{\varphi}^*\})$ is a semilattice with discrete closures; $(Map(\Lambda, Map(N, S)); \leq_m^*, \Theta, \{\mathring{\tau}_{\varphi}^{\varphi}\})$ is a semilattice with 2-discrete closures (cf. secs. 1,2,5).

If we are given a numerated set $A = (A, \alpha)$ then the numeration $\alpha : N \longrightarrow A$ induces an inclusion $\mathcal{F}_{\mathcal{L}} : Map(A, S) \longrightarrow Map(N, S)$ for every set S; the imbedding $\mathcal{F}_{\mathcal{L}}$ in turn induces an inclusion $\mathcal{G}_{\mathcal{L}} : Map(\Lambda, Map(A, S)) \longrightarrow Map(\Lambda, Map(N, S))$ for every Λ .

<u>THEOREM 5.</u> If A is universal, then the closure of the image of the set Map(Λ , Map(A, S)) in $(Map(\Lambda, Map(N, S)); \leq_m^*)$ under the map \mathscr{G}_{∞} coincides with the closure of the set $\{\mathcal{F}_{\varphi}(F) | \varphi \in Map(\Lambda, S), F \in Map(\Lambda, Map(N, S))\}$. The same result is valid when "universal" is replaced by "2-universal" and \mathcal{P}_{φ} is replaced by $\mathcal{I}_{\varphi}^{\mathcal{Y}}$.

Consider the diagram

where the horizontal maps are natural equivalences. It is easily verified that the diagram commutes and that $F \leq_m^* \mathcal{G} \leftrightarrow \mathcal{G}_{\mathcal{A}}(F) \leq_m^* \mathcal{G}_{\mathcal{A}}(G)$ for every $F, G \in Map(\Lambda, Map(A,S))$. The required result follows from this, Theorems 1, 2, and Proposition 4.

<u>Remark.</u> The following generalization can easily be proved by using properties 5 in Secs. 2, 5, Let $T \subseteq Map(\Lambda, S)$, $V \rightleftharpoons \{F \in Map(\Lambda, Map(\Lambda, S)) | \forall a \in A \text{ (the function } \mathcal{X} \mapsto F(\mathcal{X})(a) \text{ is contained in } \mathcal{T})\}$. Then the closure of the image of the set V in $(Map(\Lambda, Map(\mathcal{N}, S)); \leq_m^*)$ coincides with the closure of the set $\{\beta_{\varphi}^*(F) | \varphi \in T, F \in Map(\Lambda, Map(\mathcal{N}, S))\}$ if A is universal. In particular $(\forall; \leq_m^*)$ has a natural discrete generalized semilattice structure. Similar results hold for 2-universal sets A and for the operations $\overset{*}{\tau}^{\psi}_{\varphi}$.

The relation $\leq^*_{\mathcal{M}}$ can be analyzed in the same way. We define the binary operations $\overset{*}{\theta_{\varphi}}$ on $Map(\Lambda, Map(\Lambda, S))$ for the case when A is reflective [and the binary operations $\overset{*}{\theta_{\varphi}}$ if A is 2-reflective] as follows:

$$(\stackrel{*}{\Theta_{\varphi}}(F,G))_{\lambda} \rightleftharpoons \Theta_{\varphi(\lambda)}(F_{\lambda},G_{\lambda}), (\stackrel{*}{\Theta_{\varphi}}{}^{\psi}(F,G))_{\lambda} \rightleftharpoons \Theta_{\varphi(\lambda)}^{\psi(\lambda)}(F_{\lambda},G_{\lambda})$$

for arbitrary $\varphi, \psi \in Map(\Lambda, S)$, $F, G \in Map(\Lambda, Map(\Lambda, S))$, $\lambda \in \Lambda$.

THEOREM 6. If A is reflective then $(Map(\Lambda, Map(\Lambda, S)); \leq^*_M, \{\hat{\theta}_{\varphi}\})$ is a discrete generalized semilattice. If A is 2-reflective then $(Map(\Lambda, Map(\Lambda, S)); \leq_M^*, \{\partial_{\varphi}^{\mathcal{Y}}\})$ is a 2-discrete generalized semilattice.

The analog of the remark to Theorem 5 is also valid.

LITERATURE CITED

- V. L. Selivanov, "On the structure of the degrees of undecidability of index sets," 1. Algebra Logika, <u>18</u>, No. 4, 463-480 (1979). V. L. Selivanov, "On multiple m -reducibility on index sets," in: Proc. Fifth All-
- 2. Union Conf. on Mathematical Logic [in Russian], Novosibirsk (1979), p. 137.
- 3. T. M. Kuz'mina, "Index sets and their applications in the theory of reducibilities," in: Proc. Fifth All-Union Conf. on Mathematical Logic [in Russian], Novosibirsk (1979), p. 79.
- 4. Yu. L. Ershov, Theory of Numerations [in Russian], Nauka (1977)
- 5. S. D. Denisov and I. A. Lavrov, "Complete numerations with infinitely many distinguished elements," Algebra Logika, 9, No. 5, 503-509 (1970).