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Bokut' [I] introduced the concept of a Lie algebraic equation over a Lie algebra and 

proved that any Lie algebra can be embedded in an algebraically closed Lie algebra, i.e., 

in an algebra in which any Lie algebraic equation with coefficients in this algebra is solv- 

able. He also raised questions about the validity of a similar assertion in other varie- 

ties of algebras, in particular, solvable Lie algebras. 

In the present paper we prove (Theorem 2) that any metabelian Lie algebra can be em- 

bedded in an algebraically closed metabelian Lie algebra. We make some natural changes in 

the concept of a Lie algebraic equation over a metabelian Lie algebra, which make the equa- 

tion conform to the metabelian structure of the algebra. 

The spirit of the present paper is close to that of [i] and the principal method is the 

method of compositions, due to A. I. Shirshov [2], applied to metabelian Lie algebras. 

We also prove that if each of two elements generates the same ideal of a free metabelian 

Lie algebra, then they are conjugate, to within a factor from the ground field, by an inner 

automorphism (Theorem i). This assertion is connected with a well-known theorem of Magnus 

to the effect that if in a free group each of two elements ~ and ~ generates the same nor- 
i! 

mal subgroup, then ~ =G-I~C , and also with the paper of A. L. Shmel'kin [3], in which it 

was shown that the Magnus theorem is not true for free solvable groups. 

i. A COMPOSITION FOR METABELIAN LIE ALGEBRAS 

Suppose L is a free metabelian lie algebra over a field ~ and has a set ~=I~ of 

free generators, ordered by their subscripts. We can take a basis of L consisting of the 

regular ~- and % -words on X, i.e., words of the form 

where oc 0>¢CI~<...~< ~s' the arrangement of parentheses being right-normed [4], Regular 

words of greater length are larger than words of smaller length, and regular words of the 

same length are ordered lexicographically from left to right. 

Any element ~E~ can be represented in the form ~=Zc°)q - ~(#), where ~°)C~\~ , 

fJ) It is clear that ~°)is a linear combination of ~ -words, ~) • a linear combination 

of regular ~-words. 

The largest regular word occurring in ~ with nonzero coefficient is called the leading 

word of ~ and is denoted by 

If ~-~ , then by a subword of gt we mean tt itself. Suppose C=~0 X~e I ... 27~s is a 

regular ~ -word, By the subwords of J- we mean If itself, the ~o-words Xwo,,.. , ~s' 
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and also the regular R1-words ~o~ ...~T~# where ~ , ,  .... # # )  i s  a subsequence of ( ~ 1 ' ' ' "  ' 

~s). The subwords  X~2, . . . .  X ~ s ,  and a l s o  2~, i f  X~o >X~2 , w i l l  be  c a l l e d  s t r i e t  ~dwords 

of t he  r e g u l a r  word a ' .  

Suppose f and ~ are nonzero elements of the algebra ~ . We define their composition 

({,f) . The following cases, which are not mutually exclusive, are possible. 

i) {(I~ 0 ,~fl)~0 . Suppose there exists a smallest regular R! -word d that con- 

rains and ~ as subwords, i.e., ~ is the leading word of elements ''' ~s and 
I 

{I~ ...Ip . If {=~#+,.. ;ff=~7+ .... ~,~, then the composition of { and ~ with respect 

toU is the element (~,~)=~-f~X~1...X~s-p-/~#1...~ . 

2) ~V)~O, ~,I,~0, ~")~ 0 . Suppose ~=/ contains ~(~ as a strict subword, i.e., 

is the leading word of ~ ~ ... ~s~ (e) , 5~ /. If ~=/~o+...~f~, then the composition 

of / and 9 with respect to ~ is the element (~)=og-i~-~LII£~ ~,..o~$~. 
as a = ~ 3) ~e=0 . Suppose ~ contains ~e, subword, i.e., /=~ /r °"~s' ~ = 

for some O~ ~$ Then the composition of fl and ~ with respect to ~ is the element 
-I -I 

({,~)=~ ~-/ ~, where ~ is obtained from ~by replacing ~f by ~ • 

In all other cases, { and ~ do not form compositions. 

It follows at once from the definition of composition that the leading word of a com- 

position is always strictly smaller than the word with respect to which this composition is 

formed. 

Suppose P={~} is a set of elements of the algebra ~ ; ~ is the ideal generated by 

this set; ~(P)={5~ is the set of leading words of the elements ~ and of the elements ob- 

tained from the ~f by means of all possible composition (in any number); $(°)(~) is the set 

of leading words of the linear combinations of the elements ~I~ ~ 6 S(p). 
LEMMA i. If {6~ , then f either contains a subword that is an element of $ (P) or 

contains a strict subword that is an element of S(°)(~) 
The proof of this lemma is similar to the proof of a lemma of A. I. Shirshov [2, Lemma 

3], and so we omit it. 

A set ~ is called closed under compositions if the composition of any elements ~,~j £ 

can be represented in the form 

where the ffK,~ are regular words, Rj is the adjoint multiplication operator, ~e ~ , and 

the leading words of all summands in the rlght-hand side are distinct (hence each of these 

leading words is smaller than the word with respect to which the composition is formed). 

COROLLARY. If an ideal R is generated by a set ~ that is closed under compositions, 

then ~ either contains a subword that is the leading word of some element ~ or contains a 

strict subword of the form ~(0) where S is a linear combination of elements of P 

2. IDEALS GENERATED BY A SINGLE ELEMENT 

Let us consider the case where the ideal ~ is generated by a single element ~ If 

~=~(o~ or ~=Z (n then ~ cannot form compositions with itself. Now suppose ~o)~ 0 
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Z~I)# 0 • In this case, ~ can form with itself only the composition of case 2), and ~ must 

contain ~i~) as a strict subword. If this condition is satisfied, consider the indicated com- 

position ~i=(~)=&-/75-o6-/~2~ , ~6~u) It is obvious that ZI also generates the ideal R, 

~o) --- Z(o) If ~ contains ~¢°~as a strict subword, we again consider the corn- and ~ < ~ , Z I 

position ~2=(?I,gi) , and so on. By induction on the leading word, we obtain an element Z I , 

that generates the ideal R and is such that ~#¢°)=Zi=), ~/ < E , and also either Z'= Z (°~ or 

else ~# does not contain [ioj as a strict subword. 

Arguments analogous to the one given above for the leading word also apply to the other 

regular ~7 -words occurring in the expansion of L and containing ~c0~ as a strict subword. 

Thus, we have the following 

LEMMA 2. Suppose R is an ideal of L that is generated by an element ~ . Then there 

exists an element Z~E~ which also generates R and is such that ~ ~ , ~(o~= ~o), and 

no regular ~7 -word occurring in ~contains ~coj as a strict subword. 

An automorphism ~ of an algebra L is called the inner automorphism corresponding to 

a6~ ~O if for any I£~ we have ~(~)=~+X~ a • It is known that the inner automorphisms 

form a normal subgroup of the group of all automorphisms of L. 

It follows immediately from the definition of composition in case 2) that the composi- 

tion ~I ={~,~) of an element ~ with itself is obtained by the action on the element ot-ZZ of 

some inner automorphism. Therefore, the element ~* mentioned in Lemma 2 also has the form 

'~,~"=13~f~) , where ~ is an inner automorphism. 

THEOREM i. Suppose each of the elements Z~ and ~z generates the same ideal R of the 

algebra L. Then there exist an element o6~ ~ and an inner automorphism ~ such that 

Proof. Obviously, the elements ~i = Zr and ~2 = cannot generate the same ideal. 

~/~) ~¢~) In these cases the elements %~ and Assume that ~, = Z~ # ~2 - ~  

~ do not form compositions with themselves. By Lemma i, ~ contains the subword ~2 ' and 

the subword ~ , i.e., ~=~ . Since the composition (~#, ~z), which in this case has the 

form o6~/~ - ~r2/~2 . lies in R and has a smaller leading word, it follows that (g~,T2)= 0, i.e, 

Now assume that ~z % 0~, ~ 0 • Since each of 'l s and g2 generates the same ideal, 

we have ~Im _~i0) --~__~ . Consider the elements ~;=p~ ~ (~), E~ =fia~z (Z2), defined by eemma 2, 

where the ~ are inner automorphisms. Since Z/ and Z z do not form compositions with them- 

selves we again have -~ - ~ ) = , Z/ = ~ Since the leading word of the composition ~, ~Z 

-i " - -  - #)= 0 or else e£ I Z, °~-/Z~z & is strictly smaller than %~ , it follows that either (~;, ~ 

( ~ )  contains, by Lemma i, the strict subword ~¢~ . But the latter alternative is im- 
I 

and * possible, since the regular ~ -words occurring in ~/ ~& do not contain the indicated 
-! 

strict subword. Thus, ~4 = ~" , i.e., % =~, ]3132 ~0[ ! ~92 (~';), 
The theorem is proved. 

3. ALGEBRAICALLY CLOSED METABELIAN LIE ALGEBRAS 

Suppose A is a metabelian Lie algebra over the field ~ and ,{~ U {~0) is a basis of 

this algebra, where the C~ are linearly independent modulo the commutant and where each ~. 
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/4 (0 

free 

bols 

any 

• Let Sa denote the free metabelian Lie product Sa=A * ~<~*...*~<G) of A and the 

Lie algebras ~ (~> with generators o>~. 

We associate with the elements ~/~ the symbols ~f, and with the elements ~. the sym- 

~ and consider the free metabelian Lie algebra ~ with free generators ~O.~U ~.} 

G} ' where O~, 0/ are ordered by their subscripts and ~>... > ~",, q >5" >~ for 

~,/, ~ . Let Q be the ideal of ~ generated by the set M consisting of the elements 

a i ~ . - ~ , j  o., K , if ~ ~ =  Y-~~, ~6~x~r in the algebra ,~ ; (1) 

(2) 

(3) 

Then 3m is isomorphic to ~ / Q  , and this isomorphism extends the mappings 0~ ' ' 

LEMMA 3. The set ~ is closed under compositions. 

Proof. Denote the free generators of ~ different from ~ ..... ~, by C Since C/ 

~., the elements of the set ~ can form compositions in case I) only under multiplication 
t 

by g.~ . For C.~ ~ C ~ Cj. consider the composition 

- 

--(%. 
where the og.. are structure constants of the Lie algebra A. 

t,] 

Compositions in case 2) can be formed only by the elements (3) among themselves. For 

these elements and ~ > K ~/ we also obtain 

- = _ 

The elements of ~ do not form compositions of type 3). 

The lemma is proved. 

Following [5], a regular word 6& of the algebra ~ will be called special if L& con- 

tains no subwords of the form ~.0~ i, ~6/ ,~6/, or strict subwords 

It follows directly from Lemma I that if ~E~ , then ~ is not special. Therefore, the 

of the special words in the algebra ~=~/Q are linearly independent and can be taken images 

as a basis of 

From the 

LEMMA 4. 

~o+~ , where 

By a Lie 

expression of 

of/9 lies in 

this algebra, which we do. 

algorithm for reducing words to regular form and Lemma i it is easy to obtain. 

Any element ~ of the algebra can be uniquely represented in the form {= 

fo is a linear combination of special words and ~ e 

algebraic equation (in ~ unknowns) over a metabelian Lie algebra A we mean an 

form p(~,.. ,~)=0 , where p~, p~A, and if the linear the part 

A, then it is contained in the annihilator of the commutant of A. 
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A metabelian Lie algebra B is called algebraically closed if every Lie algebraic equa- 

tion over B has a solution in B. 

The last condition in the definition of a Lie algebraic equation over a metabelian Lie 

algebra is necessary because if the linear part of an equation contains no unknowns and does 

not lie in the annihilator of the commutant of the algebra, then such an equation cannot 

have a solution in any metabelian extension of the original algebra. Therefore, ignoring 

similar cases, we consider only those Lie algebraic equations that are compatible with the 

metabelian structure of the algebra. 

If 0~=~.&t is an element of the annihilator of the commutant ~(~) , then A can be 

embedded in a metabelian algebra ~" in which v lies in the commutant. Indeed, consider a 

free metabelian Lie algebra F with free generators $C4, C~U~/Lt}U~4~, where 84< C < ~< 

~i and the ideal R of this algebra generated by the set M and the element 6~C 4 -- ~,~ 6~ Q 

This element, being multiplied by certain regular words, can form only compositions of type 

2) with the elements (i) and (2) of M. We have (CzC4--~)~ ] -- 828fgb 2. modulo the ideal 

generated by the set M in F, since v lles in the annihilator of the commutant A f~) of A. 
Since, by Lemma 3, the set M is closed under compositions, we obtain, by applying Lemma i, 

that the leading word of any element of R either is the leading word of some element of the 

ideal generated by M or else contains C or C . Therefore, the quotient algebra ~= F//~ 
i g 

contains a subalgebra isomorphic to A, and the image of the element 0"=~.o~ lies in the 

cormnutant of ~ . 
/% 

By embedding, if necessary, the algebra A in A" we will assume that any Lie algebraic 

= 0 over A satisfies the following condition: if ~(°)6 A , then [ O(o~ ~(0 equation P 

Suppose p = 0 is a Lie algebraic equation over ~ , ~ is one of the preimages of p in 

the algebra < , and N is the ideal of &, generated by the ideal Q and element f. By the 

observation made above and the definition of a Lie algebraic equation over A we have for 

two possibilities : 

' 

In case (li), we renumber the generators ~,...,~ so that ~,o~=~ Since each of ~ and 

~*, defined in Lemma 2, generate the same ideal, we may assume without loss of generality 

that ~ ~-i["* In view of Lemma 4, we may also assume that ~ ----- ~ 

LEMMA 5. Any element &~6 ~ can be represented in the form 

where the C. 
b 

Proof. 

are special ~ -words, L{ "~'°' "'<<65," J'i ~"" "<Tt, ~ ~ ~" 

Suppose LL6N Using, if necessary, the relation ~ /~ /- , we 

may assume that 
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w.ere are regular R -words, 

Since for any i ~  we always have ~ ~ F ~ (l) , it follows that ~0~ == 0 , hence 

the ~e~ are present only in those summands of (5) in which all other adjoint multiplica- 

Au) tion operators are absent. Since the ~ form a basis of the commutant each gg. is the 
' b 

~ ~Q'i = ~ ~ Therefore linear part of some element ~I" of the ideal Q , so that : : f , , 

we may also assume that the operator ~ is present only in those summands of (5) in which 

all other adjoint multiplication operators, including the ~ are absent. 

If some 0~ is not special, then C~=~,~iE ~. Using the relation~ci=~i--~ i_cZ , 

-4-- 
where ~ ==~ ~iJ-"" ' we can insure that all of the C i be special K-words. 

The lemma is proved. 

LEMMA 6. If an element g& belongs to the ideal N and ~ ,  then the word ~o contains 

one of the elements ~o as a subword. 

The proo~ of this lemma is basically the same as the proof of a lemma of A. I. Shirshov 

[2, Lemma 3]. Therefore, we will only make a few comments. We represent g$ in the form (4). 

i) Suppose ? satisfies condition (i). Then :~i and ~ lie in Q. Since ~/~ , 

we have :(~) ~ 0 • Also, since any special ~ -word must begin with some ~L" the leading 

word of the element ":~ .... R~ ~, ..o ~ must be special. Inasmuch as such elements have 

distinct leading words,~Y~°con~ai~s some ~ ~ 
2) Suppose : satisfies condition (ii). 

a) If ~(°~= 0 , then :~$Z e ~ and ~£~ ---- 0 , hence we can again apply the argument 

of i)• 

b) If :(0~ =~ 0 then (~L. iI °= "~C~ (: ~ )o = 0.~) ' ~ ~L ~" Elements of the form (~ . o and 

• cannot have equal leading words• There remain two possibilities. 

First, the leading words of :~4 "'° ~f~ ~d~"" ~d~ and :~c~ can be the same. Then 

~t =~, and C~ is the leading word of ~ =~i ~dl ~j~-y Using the equalities 

: / d  ~ - ::~"'- 
(o)= ~C, 

#R =~-'/~: ~°~- ~:~-T °~- ~ ) ,  where ~+..., 

we obtain 

rR C _ : : / : _  I _ Fo, / : ,  (6) 

If ~ =j3: , then ~o)~o~ = 0• If ~ is obtained by the action on ~ of at least one adjoint 

multiplication operator, then /7,(°)'==0 Therefore, in the right-hand side of (6) there ap- 
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pear elements formed analogously to {~ci and ~ whose leading words are no larger than 

- -  ~i0 The second possibility is that ~ = ~m~i " But then, as is easily seen, (f -- ~ con- 

tains some ~ . 

The lemma is proved. 

LEMMA 7. Suppose pC~1,...,£m) = 0 is any Lie algebraic equation over a metabelian 

algebra A. Then A can be embedded in a metabelian algebra B over the same field in which 

this equation has a solution. 

Proof. As B we can take ~/N The given equation is solvable in B, and it follows 

directly from Lemma 6 that B contains a subalgebra isomorphic to A. 

THEOREM 2. Any metabelian Lie algebra over a field ~ can be embedded in an algebraical- 

ly closed metabelian Lie algebra over the same field. 

Proof. The set ~ of all Lie algebraic equations over the metabelian algebra A can be 

well ordered. Suppose ~---- {p~ ~0 }, ~<~, ~ an ordinal number. By Lepta 7, the 

algebra A can be embedded in a metabelian algebra B in which the equation~f=O has a solu- 

tion. Therefore, by a simple transfinite induction we can establish the existence of a 

metabelian algebra ~ in which any equation in ~ is solvable. In the same way we embed 

in , and so on. As a result, we obtain an ascending chain of metabelian Lie algebras 

Ac A ..... 

The union D of the algebras in this chain satisfies the requirement of the theorem, since 

any Lie algebraic equation over ~ is an equation over some algebra A . 
g 

The theorem is proved. 

It is known that any submodule of a Lie algebra containing the commutant of the algebra 

is an ideal of the algebra. It follows from the solvability of the Lie algebraic equations 

~I =~ that an algebraically closed metabelian Lie algebra contains no other ideals. There- 

fore, we have the following. 

COROLLARY. Any metabelian Lie algebra can be embedded in a metahelian Lie algebra in 

which each ideal contains the commutant. 

In conclusion, the author would like to thank Proffessor L. A. Bokut' for his guidance. 
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