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GROUPS WITH ABELIAN SUBGROUPS OF FINITE RANKS 

E. I. Sedova UDC 519.45 

One of the basic finiteness conditions in groups is the condition of finiteness of spe- 

cial rank in the sense of Mal'tsev [i]. The fact that this condition is fundamental was 

brilliantly displayed in the investigations on locally solvable groups. The achievements 

in this direction are well reflected in the familiar survey of Robinson [2]. In what fol- 

lows, the special rank in the sense of A. I. Mal'tsev will be called simply the rank of the 

group. In the study of groups of finite rank the following question turned out to be an ex- 

ceptionally fruitful direction: for which groups does the finiteness of the rank of the group 

group follow from the finiteness of the ranks of Abelian subgroups? Precisely in solving 

this question the most profound results in the theory of locally solvable groups were ob- 

tained. Thus, in the class of solvable groups A. I. Mal'tsev characterized the polycyclic 

groups as groups in which all Abelian subgroups are finitely generated [3], M. I. Kargapolov 

characterized groups of finite rank as groups in which Abelian subgroups have finite ranks 

[4], and Yu. I. Merzlyakov characterized groups of finite rank in the class of locally sol- 

vable groups as groups for which the ranks of Abelian subgroups are bounded in aggregate [5]. 

Merzlyakov [6] also showed that in his theorem the boundedness of ranks of Abelian subgroups 

is essential. 

For periodic groups the theorem of Kargapolov formulated above was successfully gener- 

alized to locally solvable groups (Gorchakov [7]). In the present paper Kargapolov's theo- 

rem [4] is generalized to periodic binary solvable groups and thus a new characterization of 

periodic locally solvable groups of finite rank is obtained (Theorem 2). From Theorem 2, in 

particular, there follows the positive solution of a question from [8] for the case of peri- 

odic groups. Moreover, new characterizations are also given of locally solvable finitely 

layered groups and groups with the primary minimality condition (Theorems 3 and 4). Theorem 

5 gives necessary and sufficient conditions for the local finiteness of a periodic F*-group 

with Abelian subgroups of finite ranks and with finite Sylow p-subgroups, and its corollary 

allows us to single out finite groups from an arbitrary class of groups. 

l~Preliminary Information 

i. Definition. The group G has finite rank r, if r is the smallest number with the prop- 

erty that any finite set of elements of G generates a subgroup with no more than r generators. 
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2. Kargapolov's Theorem [3]. A periodic almost locally solvable group with Chernikov 

Sylow p-subgroups for all p has a complete part. 

3. Kargapolov's Theorem [4]. Let A ~ ~ and A be Abelian. If all Abelian subgroups 

of the group G have finite rank, then the Abelian subgroups of the group ~/A also have 

finite rank. 

4. Gorchakov's Theorem [7]. A periodic locally solvable group has finite rank if and 

only if the ranks of Abelian subgroups in it are finite. 

5. Hall's Theorem [9]. Let the automorphism tf of the finite p-group P induce the iden- 

tity automorphism on p/~(/9) . Then ~ is the identity automorphism. 

6. Jordan--Brauer--Feit Theorem [10]. Let G be a finite linear p'-group of degree n over 

a field of characteristic p. Then G has an Abelian normal subgroup A such that IC-:AI<~Crb~, 
where ~(f~) is a number depending only on n. 

7. Definition. The group G is said to be q-biprimitively finite, if for any finite sub- 

H of the group G in N~H)/H any two elements of order q generate a finite group subgroup 

(q is a prime number). If G is q-biprimitively finite for all ~&~F(G), then G is said to be 

biprimitively finite. The group G is said to be a ~-biprimitively finite group (~trc~, if 
it is q-biprimitively finite for any ~65F . 

8. Let G be a q-biprimitively finite group; N be a Chernikov normal subgroup. Then 

~/~ is a q-biprimitively finite group [ii]. 

9. Let G be a q-biprimitively finite group; N be a normal q'-subgroup. Then ~/~ is a 

q-biprimitively finite group. 

.Proof. We consider in ~/~ the subgroup generated by elements ~ and ~ of order q. 

Some preimages of ~ and ~ in ~ we denote respectively by ~ and ~ . Obviously ~@6 ~ and 

~@e~. Without loss of generality one can assume that ~ and ~ are elements of order q. 

By the definition of q-biNrimitive finiteness, gr (~, ~ is finite and hence gr (gL, ~I= 

gr (O~N,~/ is finite. The assertion is proved. 

i0. Let G be a q-biprimitively finite group and let some Sylow q-subgroup of it be finitz 

Then all Sylow q-subgroups in G are finite and conjugate [12]. 

ii. A biprimitively finite p-group is a Chernikov group if and only if it has at least 

one finite maximal elementary Abelian subgroup [13]. 

12. Frattini's Lemma. Let G be a group; N be a normal subgroup; S be a Sylow q-subgroup 

of N. If Sylow q-subgroups are conjugate in N, then ~ = N~CS~N. 
13. Let G be a q-biprimitively finite group with Chernikov Sylow q-subgroups; N be a 

normal subgroup. If Sylow q-subgroups are conjugate in N, then ~/~ is a q-biprimitively 

finite group with Chernikov Sylow q-subgroups. 

Proof. By hypothesis, Sylow q-subgroups in N are conjugate. Let Q be one of them. By 

Frattini's lemma, ~=N~(~)N , and by the isomorphism theorem [14, Theorem 4.2.2], ~/~ -~ 

N~(Q)/7-, where T=~(~)f] ~. By Proposition 8, ~(~)/~ is q-biprimitively finite. Since 

[/q does not contain q-elements, by Proposition 9 the group ~/~ TM ~(~]/~/~/~ is q- 

biprimit ively finite. 
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Now we shall show that Sylow q-subgroups of ~/N are Chernikov, For this, using Propo- 

sitions 8, 12, the already proved q-biprimitive finiteness of ~/N , and the isomorphism 

theorem, it suffices for us to consider the case when N is a q'-group. Let us assume that 

our assertion is false. In this case by Propositions 9, ii, ~/N has an infinite elementary 

Abelian q-subgroup. Without loss of generality we shall assume that ~/N itself is an in- 

finite elementary Abelian q-subgroup. From this, Propositions I0, 12, and the isomorphism 

theorem, it follows that in G one can construct a strictly increasing chain of finite q- 

subgroups : 

< 

Obviously ~ are elementary Abelian q-subgroups and the union of the chain (i) is not a Cher- 

nikov group, contrary to the hypothesis of the proposition. Consequently, the Sylow q- 

subgroups of ~/~ are Chernikov, and the proposition is proved. 

14. Let ~ be a q-biprimitively finite group with a finite Sylow q-subgroup S; N be a 

normal subgroup in G. Then ~/~ is Sylow in ~/N and Sylow q-subgroups are conjugate 

in ~/~. 

Proof. By Proposition 13, S=~N/~ ~ ~ , where B is a Chernikov Sylow q-subgroup of 

~/N. Let us assume that S~$. Since B satisfies the normalizer condition [14, Theorem 

16.2.1], one has p= Ns~S~ ~ ~ Let P be the complete preimage of P in G. Obviously 

$~= ~ ~ t . By hypothesis, S is a finite Sylow q-subgroup in P and P is a q-biprimitively 

finite group. But then in view of Propositions I0, 12, P=Np(S)~ , and by the isomorphism 

theorem, P/~ m Np(S~/~=M, ~F=~NNp(~], where $ ~ N p ( ~  . Obviously M contains non- 

trivial q-elements of S. But this is impossible, since M is a quotient group of Np($~, and 

S is a subgroup of ~p(~ . Consequently, ~=$ is a Sylow q-subgroup in ~/~, and on the 

basis of Proposition i0 we conclude that Sylow q-subgroups are conjugate in ~/~ . 

The proposition is proved. 

15. The group G is said to be binary solvable if any two elements of it generate a 

solvable subgroup. 

16. Thompson's Theorem [16]. A finite binary solvable group is solvable. 

17. Definition. One says that the group G satisfies the p-min condition, if any de- 

> ~ >.. ~ H~>... such that there are p-elements in H \ H~_~, creasing chain of subgroups H 

stops at a finite index. The group G satisfies the primary minimality condition, if it sat- 

isfies the p-min condition for any ~ E OF(~) . 

18. Polovitskii's Theorem [19]: A periodic locally solvable group G satisfies the 

primary minimality condition if and only if it is an extension of a complete Abelian sub- 

group A with Chernikov Sylow subgroups by a locally normal group with finite Sylow p-subgroups 

for all p, while each element of G is elementwise noncommutative with only a finite number 

of Sylow subgroups of A. 

19. Shunkov's Theorem [Ii]. 

Abelian subgroup. 

20. Myagkova's Theorem [18]. 

it is a Chernikov group. 

An infinite biprimitively finite group has an infinite 

A locally finite p-group has finite rank if and only if 
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21. Definition. Let G be a group, S be any finite p-subgroup for some ~ @~(~). We 

consider 

= / ' % ,  = I. 

We denote by 66p{~) the number equal to rrL~% %, if the numbers ~s are bounded in aggregate. 

If not we set gBp(~)=c,c . We call g&p(~) the exponent of p-inclusion of a Sylow p-sub- 

group in G. (This concept was introduced by V. P. Shunkov in connection with the present 

paper.) If H.~ C-- , then obviously UJp(/-{) ~ U..p(~). 
22. Let g be a finite group, ~ .  Then gZ.p(~'/N) ~-%g6p(~-). 
Proof. First we consider the case when N is either a p-group or a p'-group. 

Let N be a p-group. We denote by B, P, C, respectively, the complete preimages of 

~P), R ~(P}P in G. Obviously ~C&(~)~ ~ , and if I~: ~l----p~rrb, (~,rrb)= q , then 

from IS : Pgm(PJl=]8 : C llC P)I we get rrg ~ ggp(&) . This means that g&p (~-/~/J ~ ggp(~). 

Now let N be a p'-group. By Proposition 24, we get ggp{~/~ ~ g&p(&}. 

Now we consider the arbitrary case. Let S be some Sylow p-subgroup of N. By Frattini's 

Lemma, we have &~= N&(~)N. From the preceding, in view of Theorem 4.2.3 and 4.2.4 of [14], 

where T--NnNcJ,S'), we get L,/-,p/g//~)~ ~(0-'). 
The assertion is proved. 

23. Let G be a finite solvable group and a be some q-element, ~ > gbp(~), ~ ~ p. Then 

~e Op, ( 0-). 
We shall give a p r O O j  ° by induction on the order of the group. Let K be a minimal nor- 

mal subgroup in G. In view of [14, Theorem 19.1.7], it is an elementary Abelian r-subgroup. 

If ~@p , then by Proposition 22, ~/K = G satisfies all the hypotheses of the assertion and 

by the inductive hypothesis, &KE OD~ (~# Now taking the complete preimage of the sub- 

group indicated, it is easy to get 6E 0p~ (~), which is what was required. 

Let r = p. We shall show that gZECG (A/). In fact, if G~?(), then from the hy- 

potheses of the proposition and Definition 21 it would follow that q divides 1'7.. K , where 

~ = I~:~ G ~/<)I and ~ >/Z~ , but this is impossible. Thus, a E ~ (K)~ ~. Further, 

0p~IO~ (~)) is a characteristic subgroup in ~G (/() ' and hence ~p~(CG[/~))<J~ If ~ C$ (K), 

then by the inductive assumption aE0pl(C$(K)) and hence aE 001 (~) also. Now let ~= 

OG(/<), i.e., ~<~(~). In view of Proposition 22, dZKEO/~I(~) . We take B, the complete 

prejudge of ~/~ (~). Since K ~ ~(~) and K is a Sylow p-subgroup of B, B has the form ~= 

~T, where T isap'-subgroupand ~ . Obviously aET and hence ~E ~/~i(~). 

The proposition is proved. 

24. Let G be a q-biprimitively finite group; T be a normal q'-subgroup and P be a finite 

q-subgroup, G= ~/T, P=PT/T. Then 

v g  { ) = /v'c C m 
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OQ(P) = £G(P)T/T. 
Proof. The v a l i d i t y  of th is  assertion is easi ly gotten, using Propositions 10, 12. 

25. Let  G be a group, B be a ~ - s u b g r o u p ,  N be a normal ~msubgroup.  I f  & / ~ = 3 ~ / N ~  S 

and gr (~,N)=~×~, then ~ = ~ × D ,  

The proof is obvious. 

26. Definition. We shall say that two groups have isomorphic Sylow series (the same 

Sylow series), if the lengths of these series coincide and for corresponding indices the 

quotients are isomorphic. 

2. Biprimitively Finite Groups with Finite Sylow p-Subgroups 

LEMMA i. Let G be a periodic binary solvable group with Chernikov Sylow p-subgroups 

for all p. If ~(~)  is finite, then G is a Chernikov group. 

Proof. As is known from [14, Theorem 10.1.2], any periodic Abelian group splits into 

the direct product of its Sylow p-subgroups. From this and the hypotheses of the lemma and 

the finiteness of ~(~) it follows that G satisfies the minimality condition for Abelian 

subgroups. But then G is a Chernikov group [17]. 

The lemma is proved. 

LEMMA 2. Let G be a periodic binary solvable group with Chernikov Sylow p-subgroups 

for all p. Then G has a complete part. 

Proof. First we shall show that all quasicyclic subgroups of G generate an Abelian sub- 

group. Let P and Q be arbitrary quasicyclic subgroups of G. Using the same method as in 

[17], we show that T = gr(P, Q) is a periodic locally solvable group. In fact, we represent 

P and Q as unions of chains of subgroups: 

ta~)<(a2)< . . . < ( a ~ ) < . . .  <P, 
p p2 p~ 

where la~ I=p ~, 
of subgroups: 

I~ n I=~ n, ~=/,2, .... p and q are prime numbers. We consider the series 

In view of the definition of binary solvability, gr (~,b~) (~=~2,. .) are solvable, and 

consequently, their union T will be a periodic locally solvable group with Chernikov Sylow 

p-subgroups for all pe~(1). In view of Kargapolov's Theorem (Proposition 2), T is an Abe- 

lian group. Thus, it is proved that all quasicyclic subgroups of G generate an Abelian sub- 

group R. Obviously @~G and in view of Proposition 13, 14, the quotient group ~/~ is a 

binary solvable group with Chernikov Sylow p-subgroups. 

The lemma is proved. 

LEMMA 3. A periodic binary solvable group with finite Sylow p-subgroups for all p£ 

q(G) is finitely approximable. 
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Proof. Let the group G satisfy the hypotheses of the lemma. If ~I~) is finite, then 

in view of Lemma i and the hypotheses of the lemma being proved, the group G is finite. Let 

~) be infinite. In view of Proposition i0, the Sylow p-subgroups in G are conjugate. 

But since they are finite, ~p(~ is a finite number, independent of the choice of Sylow 

p-subgroup. We fix some prime number p. Let ~ be a subset of elements of G such that for 

all ~E ~ ( ~  one has ~p and ~ >~p (~ ) ,  
Remark. The set ~ generates a normal p'-subgroup T. 

Proof. We consider the set of words written is terms of elements of ~ . Let us as- 

sume that they do not all give p'-elements. Then among them one can find an element whose 

order is divisible by p. We choose among such elements a word of least length. Let this be 

=~($.~j~ ... '3~,l~l=pK . We write ~=3Z3~...  Sm so ~=~6 , the word b has length less than 

n and by the inductive hypothesis is a p'-element. We consider £= gr (~,S~). Since it is 

a periodic solvable group, by Theorem 22.3.1 of [14] it is finite. Since &i6~ , in view of 

the definition of ~ , for a prime divisor q of the order of the element S we have ~ >~p(~) 
but then by Proposition 15, $t60o,(~, and obviously in this case ~=0p,(~)(~l and L is a p'- 

group. But since ~61 , we have arrived at a contradiction with the assumption that ~ is 

not a p'-element. Consequently, the set ~ generates a p'-subgroup T, which is obviously 

normal in G. The remark is proved. 

We proceed directly to the proof of Lemma 3. The quotient group ~/[ is again a binary 

solvable group with finite Sylow p-subgroups (Proposition 14), while ~ ~/~ is finite. By 

Lemma I, ~/F is finite. In view of the arbitrariness of the choice of ~r(~) , one obvious- 

ly gets from this the finite approximability of G. 

The lemma is proved. 

LEMMA 4. In a 9F-biprimitively finite group ~ ~gF~$F(~ any two finite Hall ~- 

subgroups having the same Sylow series are conjugate. 

Proof. We consider two finite Hall ~-subgroups T and M, having the same Sylow series. 

~A ~ . .~  A = r  The proof will be by induction on the length of the Sylow series. Let ~ a . 

and ~ ~ ~ ~.. ~ =~ be Sylow series of the 

T = ~ and ~ = ~ are Sylow g-subgroups in 
sition i0). Suppose for series of length 

shall prove it for n = k. By definition, 

view of Proposition i0, there exists an ~16 

A and T=~,..~AI " It is clear that T,M 

We consider ~=%(AI~ / ml The group 

subgroups T and M. For n = 1 the subgroups 

G and in this case T and M are conjugate (Propo- 

z $ the assertion of the lemma is valid. We 

and ~ are Sylow ~ -subgroups in G, and in 
I 

such that $~=~! Then ~ £~ 

< N / A ~ .  

D i s ~ - b i p r i m i t i v e l y  f i n i t e  (of. d e f i n i t i o n ) ,  

and in it T/~ and ~'/A s are finite Hall ~-subgroups with Sylow series of lower length 

(Proposition 14). By the inductive hypothesis, they are conjugate. But then by the homo- 

morphism theorem T and M are conjugate. 

The lemma is proved. 

LEMM 5. Let G be a JF-biprimitively finite group with finite Sylow p-subgroups for 

any p~F~(~} , and suppose given in G a system of finite Hall ~-subgroups ~t, ~...,~,. , 

having Sylow series, and ~ z ~' ~- ..... < .... are respectively the first terms of their Sylow series, 
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where ~f and ~. /0. have isomorphic Sylow series (i = i, 2, ..., n). Then there exists 

st r ic t ly  i .creasing chain of subgroups 4 such that 

Proof. By Theorem 20.2.6 of [14], ~=CzA ~> , and by the hypothesis of the lemma, 

~./0£ and B I have isomorphic Sylow series. In view of the isomorphism theorem and the hy- 

potheses of the len~a being proved, ~ and ~2 have isomorphic Sylow series. But then, by 

nemma 4, ~i and ~z are conjugate in G, i.e., one can find an element ~, such that ~I = 

~z, ~ ~'J We write ~/ = ~ ' ~Z = B~'" Then ~I ~i ~ Further, ~----~3 ~ ~3" AS in the 

preceding case we show that ~'~i = ,.~-.~z -.. where ~ is some element of G. We write ~ "ez = 4 ~ ' £ j 
~' . Now we have a chain ~ < ~Z / ~J The construction of this chain does not stop at 

.  inite index i . . . .  

The lemma is proved. 

LEMMA 6. Let G be a periodic finitely approximable biprimitively finite group with 

finite Sylow p-subgroups for all p; ~ be some infinite set of nonisomorphic Sylow subgroups 

and ? be some distinguished subgroup in it. Then there exists an infinite subgroup T, which 

is the union of finite Hall subgroups ~f ~ ~ g / ' ' ' "  4 Qr ~.,,, having Sylow series, while Q~ -- 

P and 3(T')~ ~i'(~?'~). 
Proof. Since G is finitely approximable, in it there exists a normal subgroup N , not 

containing ~-elements, and f~= I~: N J ~o Then the set indicated can be represented as 

~g--~ ~ ~.~ where ~ contains all Sylow q-subgroups such that (f~, ~)=~ , and ~ all others. 

We shall show that ~ ~ ~ . 

In fact, let us assume that this is not so, i.e., there exists a q-subgroup S of ~ and 

$¢~N. Then, by Theorem 4.24 (cf. [14]) on isomorphisms S/~ S-~SN /N is a nontrivial , ~ 

q-subgroup in ~/~ , and hence ~ is divisible by q. Contradiction. Consequently, ~ ~ ~ 

We take ~ 6 ~ By what was proved above, p ~_. N , and in G the Sylow ~£-subgroups are 

conjugate (Proposition i0). By Frattini's Lemma ~1~ (P)N(~). We shall show that in 

N¢~4~ there is contained a subgroup conjugate with P~ In view of the choice of ~ , it 

is a Sylow p~-subgroup in G, and by the isomorphism theorem we have 

P N /  ~ P I P n N  = P 

N N P = J while P is a Sylow ~ -subgroup in (Proposition 14). 

phism theorem and (I) we get 

From the isomor- 

and 

t '  

where NG(~)N N = T is a ~ ~ - I ~ p~ -subgroup. We shall show that in ( ) a Sylow PI 

Subgroup is nontrivial. 

In fact, for us R is a nontrivial p~ -subgroup in the image M, and hence in the pre- 

image N~(~) there exists a nontrivial ~-subgroup. But then the Sylow p~-subgroup ~ 
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of Nc_(Pz) is nontrival, and by Proposition 14,$~ ~ / ~ is Sylow in ~ . Further, ~= 

SV~ ~ _ $~/T ~ ~_ =$4(ff] $'=~4)). But earlier we found in ~ another Sylow ~-subgroup 

R. The group ~ is ~-biprimitively finite (Proposition 14), and by Proposition i0, R and 

are conjugate in ~ . But then P- ~ ~ --3 . Consequently, ~ is isomorphic with 

the ~ -subgroup ~ of N&(P~ , and by Proposition i0, P~ and ~ are conjugate in G, and 

hence $~ is Sylow in G while $~ < N (P) 

We write ~ = $ ~--- P and ~Z  = /0 A $ Since G is finitely approximable, there exists 
"1 "1 "I 2.. f 

in it a normal subgroup N z such that [gz=l&" N~I and Nzf~ bz= (~ . Then ~=~i U ~ , where 

is the set of Sylow q-subgroups such that (~, fb z) = ~, and A contains all other sub- 

groups of ~ . Obviously ~ is a finite set. Just as for O~, we show that ~ Cf ~g . We 

take a Sylow ~3 -subgroup p~ c~ By the conjugacy of Sylow & -subgroups (Proposition 

i0) and Frattini's Lemma, we have ~ =-%(~)~, ~2 < ~ and 

--,  ISnN = s .  
2, ,g Z ,~ ' 

5 " 

where ~ ~ b Z" 
We shall show that a subgroup conjugate with ~ can be found in ~= N~Q) also. We 

write Ta =-Nz D NG(P~ , F42=Mz/T>-f~-B; Since Ba=P A St ' one has %-CA~ , where C -~ 

Pz' ~-~$~ (~' ~ are the complete preimages of ~, C in G). Using Proposition 14, it is 

easy to show that ~=T z AQ, Q and Pz are conjugate in G. Since C4 ~ and Sylow ~e -subgroups 

are conjugate in G, one has A--Nx(0) ~. By what was proved earlier one can find in Nx(Q~ 

a subgroup ~ = ~ = ~ . By Lemma 4, the subgroups ~ A ~ and ~z are conjugate in G. We 

write B= P(QA~) . Thus, we have constructed subgroups B, ~, ~. Arguing analogously, 

we construct a subgroup B , etc. The constructed sequence ~ ~z ~ does not stop at a 

finite index. Now referring to Lemma 5, we complete the proof of the lemma. 

LEMMA 7. Let G be a periodic biprimitively finite group with finite Sylow p-subgroups 

for all p of the form~= M A (gg), where }ggl=p, and M is a p'-group, and let the following 

conditions hold in G: 

2) for each ~ 6 9T(~-) a Sylow q-subgroup of CG(~L~ is a Sylow q-subgroup in G. 

Then gl&~(~) , 

Proof. First we note that if G is finite the lemma follows obviously from Sylow's Theo- 

rem ii.i.i of [14]. Let us assume that ~ %(G), and let ~ be the class of elements con- 

jugate with a. Then we have two cases: 

i) The element a commutes with any element of ~. Since A = gr (~)~ ~ and 0~A , in 

this case obviously ~6 %(A). Now let R be a Sylow p-subgroup of Z(A). Since gL~, ~ 

and R is a finite group, one has l~:~J~)[ ~ co. We write $=~D~&(~]. It is clear that 

~4~ and I~" Bl~co . We consider ~ =~/~ . From the hypotheses of the lena and Proposi- 

tion 24 it follows that ~$(d~$) =_~&~gb)~/~ , where B is a p'-group. From which, using Propo- 

sition 14 it is easy to see that ~ satisfies conditions I and 2 of the lemma, and since 
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w 

is finite, one has (cf. the beginning of the proof of the lemma) ~ 6 ~(~) . But then, using 

Proposition 25, we show that £L~ %(~). The consideration of case 1 is finished. 

2) In ~ there exists an element c such that ~ = gr (gb, 0~ is a finite noncommutative 

group, having a representation / ~-~A(O~, ~ C M. As already noted, the assertion of the 

lemma is valid for finite groups, and L is finite, so F has a Sylow q-subgroup % such that 

~ ~ <~ and ~ ~ OL('O.,). If ~ is not a Sylow q-subgroup of G, then in view of the con- 

jugacy of Sylow q-subgroups (cf. Proposition i0) and the fact that the normalizer condition 

holds in finite q-groups [14, Theorem 16.2.1], %1 can be imbedded in a large Sylow q-subgroup 

~ ~ . Since H~ is a biprimitively finite group %2 of H =~(%) . Obviously H ----~ ~(~ ~4 

and Sylow q-subgroups in it are conjugate, we can take ~ so that ~6 N&C~) . If ~ is not 

sylow in G, then arguing analogously to the preceding, we get a chain ~ ~ %e ~ "'" ~ ~---- %. 

The construction of this chain stops at a finite index n, in view of the finiteness of the 

Sylow q-subgroup, i.e., ~ is a Sylow q-subgroup and ~G(%~. Thus, in G there exists a 

Hall subgroup of the form ~/-----~A(Cb~ , where ~CC7C2,) On the other hand, ~G(O~ has a 

q-subgroup Y, which is Sylow in G, and hence in G one can find a Hall subgroup of the form 

~=~(~). However, by Lemma 4, V and W are conjugate, which is impossible. The contradic- 

tion obtained proves the lemma. 

LEMMA 8. Let G be a periodic biprimitively finite group with finite Sylow q-subgroups 

for any q, a be a p-element of G, satisfying the conditions: 

i) ~F(~)\ ~(~0~ is finite; 

2) for almost every ~c~C@(~)) a Sylow q-subgroup of 0&(0~) is Sylow in G. 

If G is finitely approximable, then the element a is contained in a finite normal sub- 

group. 

Proof. In view of the hypotheses of the lemma, in G there exists a p'-normal subgroup 

N, such that ~TC~Ic~CC (0.,)I and J~(~Idoes not contain q for which the Sylow q-subgroups of 

~G(~ are not Sylow q-subgroups in G. We shall show that in the subgroup ~ = ~ N (g~ con- 

ditions i and 2 of Lemma 7 hold. Let q be an arbitrary number from ~(N~ and S be a Sylow 

q-subgroup of ~G(~ . In view of the choice of N, the subgroup S is a Sylow q-subgroup in 

G. Since Sylow q-subgroups are conjugate in G, one has P--~N~ is a Sylow q-subgroup in 

N, and also ~N(~. In view of the arbitrariness in the choice of ~JT(N~, it follows 

from this that H satisfies the conditions of Lemma 7. By this lemma H < CGCO~) , and I~ : 

C&Ig~l < co, and by Ditsman's lemma [15, p. 48], the element a is contained in a finite nor- 

mal subgroup. The lepta is proved. 

LEMMA 9. Let G be a periodic biprimitively finite group with finite Sylow p-subgroups. 

If G is finitely approximable, then any quotient group of it is finitely approximable. 

Proof. Let K be a normal subgroup. If we show that ~=~//( is finitely approximable 

with respect to any p-element for all p, then obviously the assertion of the lemma will fol- 

low from this. Let C be a p-element of G, c be some preimage of it, which is a p-element, 

C~/<. Since G is finitely approximable and Sylow p-subgroups are conjugate, there exists in 

it a normal subgroup N, not containing p-elements, and I~. ~l~co . Prom this and the iso- 

morphism theorem [14] NK/~-~/~NN it follows that C~ N~- But then obviously in &=&/~< 

227 



the subgroup NK/K has finite index and does not contain the element ~ =CK. But as al- 

ready noted at the beginning of the proof, the validity of the lemma follows from this. 

LEMMA I0. Let G be a periodic biprimitively finite group with finite Sylow p-subgroups. 

If one of its quotient groups G/dis a periodic group of finite period S, then~/N is 

finite. 

Proof. By Proposition 13,~/Nis a biprimitively finite group with finite Sylow p- 

subgroups. Let us assume that ~ ~/Nis infinite. Then by Proposition 19, it has an in- 

finite Abellan subgroup with finite Sylow p-subgroups. However this contradicts the finite- 

ness of the period of ~/N 

The lemma is proved. 

LEMMA ii. Let G be a periodic biprimitlvely finite group with finite Sylow p-subgroups 

for all p. If it is finitely approximable and the ranks of its Abelian subgroups are finite, 

then the ranks of its Sylow p-subgroups are bounded in aggregate. 

Proof. Let us assume that this is not so. Then in G one can find an infinite sequence 

of Sylow p-subgroups ~ = I~,~a,...,~,...} such that the rank of the subgroup ~ increases with 

the index n. By Lemma 6, there exists a locally solvable subgroup T, containing an infinite 

set of nonisomorphic Sylow subgroups, each of which is conjugate with some subgroup from ~ . 

Obviously T has infinite rank. However, by the hypothesis of the lemma, the ranks of Abelian 

subgroups of T are finite, which contradicts Gorchakov's theorem [7]. The contradiction ob- 

tained proves the lemma. 

LEMMA 12. Any locally finite binary solvable group is locally solvable. 

Proof. The local solvability of G follows from the local finiteness and Thompson's 

theorem [16]. 

3. Basic Results 

THEOREM i. Let G be a periodic biprimitively finite group with finite Sylow p-subgroups 

for all p. If G is finitely approximable and in it the ranks of Abelian subgroups are finite, 

then G is a locally finite group. 

Proof. In view of Lemma Ii we conclude that there exists a natural number K [more 

generally for all p~'c~)], such that for any Sylow p-subgroup P of the group G, we have 

~P/~PCP)~- In view of the hypotheses of the lemma, the group G has a normal p'-subgroup N 

such that G/~ is finite. We write Hp= ~/~ and ~p = IHpI. In N we choose a Sylow q- 

subgroup Q such that (~,~p] =~ . Sylow q-subgroups in N are conjugate (Proposition I0), 

and by Frattini's Lemma, ~=NG(~)N = #~N, where M =N~Q). By Theorem 4.2.4 of [14] on 

isomorphisms, we have: 

= MNIN  MIMnN=MIT= , 

where M ~ N = T. In q we take the subgroup~P(~. It is characteristic and hence ~(~ ~ M. 

The subgroup Q=Q/~)(~) is an elementary Abelian q-subgroup in ~ = M/cQ(~) and since ~ ~ , 

one has C=~cQ)~ $ and by the homomorphism theorem, ~ , where C is the complete pre- 

image of ~(~) in M. Further, ~p~ M. Obviously, ~p=M/~ is a linear group over a field 

of characteristic q, not dividing l~^I . But then by the Jordan--Braver--Felt Theorem (eroposi- 
k" 
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tion 6),~p has an Abelian normal subgroup L such that I~p t  ~1 -.~ ~(K~, where f(k) is a 

function depending only on k. By the homomorphism theorem we have 

A~=CNIN ~-CTIT4 MIT=M, A~4 lip 

and 

Hp=HpIA ~- MIOT ~- IMSICTIT = V-pl #: 

where ~ = ~/T • In view of the structure of "~p 

normal subgroup of index bounded by the number f(k). 

The proof of the theorem splits into two cases: 

2) Dp = (11, 

, we get that has an Abelian 

Let K(G) be the locally finite radical in G. If ~(GI = G , then the theorem is proved. 

Let us assume that ~(~) ~ ~ . We consider ~ =~/~(~). In view of Propositions 13, 14, 

d is a biprimitively finite group with finite Sylow q-subgroups for all q. By Lemma 9, it 

is finitely approximable and consequently satisfies all the hypotheses of the theorem while 

its locally finite radical is trivial. Hence, without loss of generality we shall assume 

that K(G) = (~). We consider case i). In view of the definition of the subgroup C and Proposi- 

tion 5, any q'-element of C centralizes the subgroup Q. Whence, obviously if Dp~ (I) , then 

in G one can find a nonidentity element, whose centralizer satisfies all the conditions of 

Lem~a 8. By this lemma, G has a nontrivial normal finite subgroup, which contradicts the 

assumption ~(~)=(~) . Consequently, case 2) holds. But then, by Remak's Theorem 4.3.9 of 

[14], Hp can be imbedded in the complete direct product of groups of type Hp/A~ and any 

such group, as shown above, has an Abelian normal subgroup of index no higher than f(k). 

Thus we have proved that Hp has an Abelian normal subgroup yp such that the period of the 

group Hp/ ~p is bounded by the number f(k), which is independent of the choice of p~(~l. 

By Remak's Theorem 4.3.9 of [14], G can be imbedded in a complete direct product ~ < ~ = 

~H Let ~ be a number divisible by the period of the group Hp/ Yp for all p. As shown 

above, such a number exists. 

We consider the subgroup gr (~ •H~. Since Yp is an Abelian group for any p, 

obviously H ~ is an Abelian group and H/H ~ is a periodic group of period m. But then G 

has an Abelian normal subgroup R such that ~/~ is a periodic group of period rr&. By Lemma 

i0, ~/~ is a finite group and by Schmidt's Theorem 22.3.1 of [14], G is locally finite, 

which contradicts the assumption. 

The theorem is proved. 

THEOREM 2. A periodic group is locally solvable and of finite rank if and only if it is 

binary solvable and its Abelian subgroups have finite ranks. 

Proof. The necessity of the conditions of the theorem is obvious. Let G be a periodic 

binary solvable group in which all Abelian subgroups have finite ranks. In view of Proposi- 
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tion 20 and [17], all Sylow p-subgroups in G are Chernikov groups. By Lemma 2, G has a com- 

plete part R and ~/~ is a binary solvable group with finite Sylow p-subgroups for all p. 

Further, by Kargapolov's Theorem (Proposition 3), in ~/~ all Abelian subgroups have finite 

ranks. Consequently, without loss of generality one can assume that R = (I). By Lemma 3, 

in this case G is finitely approxlmable. But then by Theorem i, G is a locally finite group, 

and in view of Lemma 12, it is locally solvable, while its rank is finite (Proposition 4). 

The theorem is proved. 

From Theorem 2 follows the analog of a familiar result of Gorchakov [7]: 

COROLLARY. A periodic binary solvable group of infinite rank has an Abelian subgroup 

of infinite rank. 

For finitely layered groups several characterizations are known [15]. A new character- 

ization of locally solvable finitely layered groups is given by 

THEOREM 3. A periodic group is a locally solvable finitely layered group if and only 

if it is binary solvable and any locally solvable subgroup is finitely layered. 

Proof. It is easy to show that G is a binary solvable group with Chernikov Sylow p- 

subgroups for all p. In view of Lemma 2, it suffices to prove the theorem under the condi- 

tion that the Sylow p-subgroups [for any p6~(~) ] are finite. We give a proof by contradic- 

tion. Let G not be finitely layered. Then one of the conditions of Lemma 8 must fail for 

us. Let the first condition fail to hold, i.e., $~(G) \S(CG(~)~ is infinite. Consequently, 

there eixsts an infinite set ~ = {P. ~ .... ,P .... } of finite Sylow ~-subgroups, ~.6 ~(~) 

SF(%(~, 4 = ~, Z,..., ~ ..... To this set we adjoin the Sylow p-subgroup P containing the 

element ~ : ~-~ =~4, p}" By Lemma 6, there exists a strictly increasing chain of Hall sub- 

groups starting with ~" ~ ~B<~24~ 7-, a periodic locally solvable group. It is finitely 

layered by the hypotheses of the theorem, and consequently ~ 6tql, ~ being some finite nor- 
I 

mal subgroup of T. But then in the centralizer of a there is an infinite set of subgroups 

of ~, and this is contrary to our assumption. Consequently, the first condition does not 

fail. Let us now assume that the second condition is false, i.e., in CG(~ ) there is an 
£ / 

infinite set of Sylow subgroups ~, ~ ..... which are not Sylow subgroups in G. We include 

each p.1 in a ~-Sylow subgroup ~ of G and we consider the set ~={~ ~, ..o,~ .... } Again & & 

by Lemma 6 there exists a locally finite group ~> ... > ~z> ~ ~ P , which, by the hypotheses 

of the theorem, is finitely layered, and ~& K , some finite normal subgroup of T. Then an 

infinite set of subgroups from ~ lands in ~('~) , which contradicts our assumption. 

The theorem is proved. 

THEOREM 4. A periodic group is locally solvable with the primary minimality condition 

if and only if it is binary solvable and any locally solvable subgroup satisfies the primary 

mlnimality condition. 

Proof. The necessity of the hypotheses of the theorem is obvious. Let G be a binary 

solvable group in which any locally solvable subgroup satisfies the primary minimality con- 

dition. Obviously G is a binary solvable group with Chernikov Sylow p-subgroups for all p. 

By Lemma 2 it has a complete part R, and ~/~ satisfies all the hypotheses of the theorem. 

By Proposition 18, any locally solvable subgroup ~ ~ ~ is finitely layered, and by Theorem 3 
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we conclude that B is also locally solvable and finitely layered. But then G is locally 

solvable and satisfies the primary minimality condition. 

The theorem is proved. 

4. Periodic F*-Groups with Abelian Subgroups of Finite Ranks 

The material of this section was included in the paper after it was ready for press. 

As it turned out, considering the specific properties of F*-groups the proof of Theorem i 

can be generalized to these groups. We recall the definition of an F*-group [21]. The group 

G is said to be an F*-group if for any chain of subgroups ~ ~ d<~ , where K is a finite 

subgroup, and any pair of elements a, b of the same prime order of ~ = NH(~I / ~ , one can 

find in M an element c such that the subgroup gr (~,C-~gl is finite. This class of groups 

was introduced by V. P. Shunkov. As follows from [22], there exist infinite finitely generated 

periodic F*-groups with Abelian subgroups of finite ranks. In connection with this the fol- 

lowing result, giving necessary and sufficient conditions for the local finiteness of F*- 

groups with Abelian subgroups of finite ranks, is of interest. 

THEOREM 5. A periodic F*-group with Abelian subgroups of finite ranks is locally finite 

with Sylow p-subgroups for all p, if an only if it is finitely approximable. 

(The validity of this theorem and its corollary was pointed out to the author by V. P. 

Shunkov.) 

Proof. Necessity. Let G be a locally finite group with finite Sylow p-subgroups and 

with Abelian subgroups of finite ranks. By Shunkov's theorem [23], G is an almost locally 

solvable group and by Lemma 3 it is finitely approximable. 

Sufficiency. Let G be a periodic F*-group with Abelian subgroups of finite ranks and 

G be finitely approximable. We shall show that the Sylow p-subgroups of G are finite. Let 

P be a Sylow p-subgroup of G. Let us assume that P is infinite. Obviously P satisfies all 

the hypotheses of the theorem and it is finitely approximable. From this, in view of Proposi- 

tion ii, the maximal locally finite subgroups of P are finite. Let Q be one of them. Since 

P is finitely approximable, it has a normal subgroup N I of finite index and ~NN~=(~. on 

the basis of [21] it is easy to prove that maximal locally finite subgroups are conjugate 

both in P and in #41 Consequently, the orders of all maximal locally finite subgroups both 

of P and of any of its subgroups are bounded by the number IQI • 

Let ~ be a maximal locally finite subgroup of ~ . As already noted it is finite and 

. By Frattini's lemma, p = Np(~I~NI = pl NI, where all such subgroups are conjugate in NI 

f P ~ =~f~ and T=PN ~i ~ By Theorem 4.2.4 of [14] on isomorphisms, i I fP/T=P/N and since 

~ ~I /NI , one can find in P~/f~ a subgroup isomorphic with Q. From this it follows that 

if Pl =NpC~) were a finite group, then its order would be strictly greater than_ l~I , and 

this, as noted above, is impossible. Thus, P is an infinite group. But then ~=~/$ is 

also infinite and satisfies all the hypotheses of the theorem, while it is finitely approxi- 

mable with respect to P we argue analogously to the preceding, and so on. As a result, we 

~I ~ which does not stop get a strictly increasing chain of finite subgroups ~ ~ ~ ~5 "" o ~ 

at a finite index, which is impossible. Consequently, the Sylow p-subgroups of G are finite, 

and in view of [21], they are conjugate for each p. 
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LEMMA 13. If G is a periodic finitely approximable F*-group with finite Sylow p- 

subgroups, then any quotient group of it has the same properties. 

Proof. Let N be an arbitrary normal subgroup. First we shall show that ~/~ is an F*- 

group. Using the conjugacy of Sylow p-subgroups [21], the outline of the proof of Proposi- 

tion 13, and the finite approxlmabillty, it is easy to prove that ~/N is an F*-group. The 

proof of Lemma 9 carries over word for word to F*-groups and consequently, ~/N is finitely 

approxlmable (the Sylow p-subgroups in G are finite and they are conjugate both in G and in 

N). Obviously the analog of Proposition 14 is valid for quotient-groups of F*-groups with 

finite Sylow p-subgroups. Then using this fact, the finite approximability of G/Nand the 

arguments given at the beginning of the proof of Theorem 5, we prove the finiteness of the 

Sylow p-subgroups. This completes the proof of the lemma. 

Using Lemma 13 and finite approximability, it is easy to prove analogs of Lemmas 7, 8, 

i0, ii. The remaining lemmas are also valid under the condition of finite approximability. 

In view of the remarks made above and Lemma 13, the proof of Theorem i carries over 

word for word to finitely approximable periodic F*-groups with finite Sylow p-subgroups for 

all p. 

The theorem is proved. 

The following corollary allows us to single out finite groups from an arbitrary class 

of groups. 

COROLLARY. The group G is finite if and only if it satisfies the following conditions: 

i) G is a finitely generated group; 

2) G is a periodic group; 

3) G is an F*-group; 

4) G is a finitely approxlmable group; 

5) in G the ranks of Abelian subgroups are finite. 

We shall show by examples that none of the conditions listed follows from the other 

four. The direct product of an infinite number of cyclic p-groups for different p obviously 

satisfies conditions 2-4, but it is not finitely generated. It is also obvious that an in- 

finite cyclic group satisfies conditions i, 3-5, but is not a periodic group. Sushanskli 

[24] announced that in groups of Aleshin type [26] Abelian subgroups are finite. Hence they 

satisfy conditions I, 2, 4, 5, but are not F*-groups. Further, the group of Ol'shanskil [22] 

is not finitely approximable, but all the other conditions hold in it. Finally, in Golod's 

group [25], which is binary finite, conditions 1-4 hold, but the ranks of Abelian subgroups 

in it are infinite. 

The author expresses profound thanks to his scientific adviser V. P. Shunkov for sug- 

gesting the topic and for help with the work. 
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