
GROUPS WITH FINITELY IMBEDDED INVOLUTION 

V. P. Shunkov UDC 519.45 

The author has been aware, already in the seventies, that in his theorem in [4] the 

periodicity condition is unessential if all the subgroups of the form gr ( Y./7 ), ~£oz 

are finite, where $ is a group and f is an involution in it with a finite ~(:'?. Further, 

reading again [4], the author has reached the conclusion that the basic idea of the proof 

in [4] (the construction of a periodic 2-complete Abelian subgroup I: and the proof of 

the finiteness of I*~:J~l, ~9~ )does not depend on the condition of the finiteness of ,~-(~'~ 

(the notations used here are taken from [4]). Subsequent reflection by the author in this 

direction has led to the necessity of introducing the concept of a finitely imbedded invo- 

lution, the essence of which consists in the following: let ~- be a group, let / be some 

involution in it, and let ~f= [~'~ i~ ~ }. The involution f is said to be finitely imbedded 

in ~" if for any element ~ from ~ the intersection [.$-/'~.,! e.F~ "~'> is finite, where 

We give the simplest examples of groups with a finitely imbedded involution. 

i. If in the group there exists an involution /7 with a finite r (z'> then ~" is 

a finitely imbedded involution in $ . 

2. If in some group &2 the involution ~' is contained in a finite normal subgroup 

from C- , then f is a finitely imbedded involution in 

3. Let ~¢ be a Frobenius group with a periodic kernel and an infinite noninvariant factor 

, containing the involution / . 

4. Let 

Then i is a finitely imbedded involution in ~ . 

be an infinite sequence of finite groups, in which only a finite number of groups is of 

even order and let ~ ~(~) be a subgroup of the holomorph ~0~(~)(see [5]), where f~ is 

an involution inducing in ~ an automorphism of order two ( ~ = i, 2, ...). We consider 

the group ~-~ (i), where 2 is a direct product of the form 

is an involution of the form i = (~, 6 .... 'g .... ) " It is easy to show that i is a 

finitely imbedded involution in 

FUNDAMENTAL THEOREM. Let $ be a group, let f be its finitely imbedded involution, 

let ~i=[{~ 12£$}, /F =grf[~'~I~¢~j}, ~=gr(~.',~F) , let Z be the subgroup generated 
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by all 2-elements from R , and assume that the pair (G,f> satisfies condition *: the 

subgroups of the form gr ~'~) (~e~) are finite. 

Then J , ~ , Z are normal subgroups in ~ and one of the following statements holds: 

i) ~ is a finite subgroup; 

2) the subgroup ~ is locally finite, ~F=R ~ Cf~ and Z is a finite extension of 

the full Abelian 2-subgroup A z with the minimality condition and, moreover, fC~ = £'~#CCA z ). 

COROLLARY i. If the group ~ has an involution f with finite CG(~) and the pair 

(~,i) satisfies condition *, then ~ is locally finite. 

Proof. The involution ~ is finitely imbedded in ~ (Example i) and since $ is a 

finite extension of a locally finite subgroup ~ = gr ([~3 I~E~ j) (the fundamental theorem), 

then ~ is also locally finite [5, Theorem 23.1]. 

COROLLARY 2 [4]. If a periodic group ~ has an involution ~ with a finite CG(f) , 

then ~ is locally finite. 

Since in a periodic group any two involutions generate a finite subgroup, Corollary 

2 follows from Corollary i and conversely. 

COROLLARY 3. If in the group ~ there exists a finitely imbedded involution ~ and 

the pair ~,f) satisfies condition *, then gr ~i ~ I ~C~) is a periodic subgroup. 

If the involution ~ is not finitely imbedded in the group $ , then, in general, the 

assertion of Corollary 3 is false. We give an example confirming this satement. 

Let ~ = gr (~0) , where ~P=CP=~, be a torsion-free group and let ~/(d) be the 

Novikov-Adyan group of prime order ~ (see [7]). We consider the group ~#~)=~A×~#~C~, 

where ~ is an involution. Let us take the element $=Cd,~'i)E~. Obviously, SeZ#~x~) 

and Sx, 3-/. We introduce the following notations: ~=T/C$ ) . ~'=~($) , ~ is the set 

of strictly real elements of finite orders from $ relative to ~ It is easy to show 

that ~=~/~r~')£~ and for any p e~ the subgroup gr (f,~'~) is finite. However, the group 

does not possess a periodic part. 

This same example and the fundamental theorem show that if the group ~ and some of 

its involution ~ satisfy condition *, while ~C/~ possesses a finite periodic part, then 

the involution f need not be finitely imbedded in $ . 

COROLLARY 4. Let ~ be a simple group with involutions, let ~ be some involution 

in ~ , satisfying condition *, and let ~.=~I~E~} • The group ~ is finite if and 

only if for all Q~ the intersection ~$L~4 ({} , where ~;= ~i#.~[,~, is finite. 

COROLLARY 5. Let $ be a periodic simple group with involutions, let ~ be some 

involution in $ , and let The group ~ is finite if and only if for all 

fE~ the intersection ~..~,)~ ~G(~) is finite. 
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Since in any periodic group with involutions any two involutions generate a finite 

subgroup, from the fundamental theorem there follow the following statements: 

THEOREM i. Let G be a periodic group, let ; be its finitely imbedded involution, 

let d~.-=[i ~ I 9£~}, 2 = gr ~{i~I~C~j ~ R = gr (~.~f) , and let Z be the subgroup 

generated by all 2-elements from ~ . 

Then ~ , ~ , ~ are normal subgroups in ~ and one of the following statments 

holds: 

i) ~ is a finite subgroup; 

2) the subgroup ~ is locally finite, ~=~A ~z') , and Z is a finite extension of 

the complete Abelian 2-subgroup ~z with the minimality condition and, moreover, ~£~'= C -I , 

C Cir. 

THEOREM 2. Let ~ be a periodic group, let ~ be a subgroup in it, containing the 

involution ~ , and let (~,~) be a Frobenius pair. The group $ is a Frobenius group 

with complement // if and only if i is a finitely imbedded involution in ~ . 

The restriction in Theorem 2, namely that ~ is a finitely imbedded involution in ~ , 

is essential. Indeed, assume, for example, that Z=~(Z,~) is a free periodic group of 

odd period ~ ~ 665 and with number of generators Z ~ 2 (see [7]). The group L possess- 

es an automorphism ~ of order two, transforming the free generators into the inverses, 

and, therefore, in the holomorph ~0~(~) there exists a subgroup $~ A Ci), where z" is 

an involution inducing the automorphism ~ in ~ . Making use of the abstract properties 

of the group Z=~ (~. ~ ) (see [7]), it is easy to show that I~,$$ C~'~) is a Frobenius 

pair and $ = gr (~G) . If the involution ~ would be finitely imbedded in $ , then, 

according to the fundamental theorem, $ would be a finite group, in spite of the fact 

that ~=~(~,~) is infinite (see [7]). Consequently, the restriction in Theorem 2, that 

the involution i is finitely imbedded in G , cannot be omitted. 

The fundamental results of this paper have been communicated on May 7, 1987 at the 

municipal algebra seminar of the Krasnoyarsk State University. 

The notations used in this paper are basically standard [5, 6]. 

i. FIRST FUNDAMENTAL LEMMA 

LEMMA I. Let $ be a group with involutions. The following assertions hold: 

I) if an involution in $ is finitely imbedded in $ , then it is finitely imbedded 

in any subgroup from ~ containing this involution; 

2) an involution in $ , conjugate to a finitely imbedded involution in ~ , is also 

finitely imbedded in ~ ; 

3) if K is an involution in $ and I~:~G(K) I is finite, then X is a finitely 

imbedded involution in $ . 
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LEMMA 2. 

i) if 

is finite; 

Proof. All the assertions of the lemma follow directly from the definition of a finite- 

ly imbedded involution in a group. 

Let $ be a group with involutions, let ~ be its finitely imbedded involution, 

~.~{i~ !f~}, satisfying condition *: I~: C~ Cf)l is infinite and all subgroups of the 

form gr C~',K), ~ w~J i , are finite. 

For any involution x C~r i the following assertions hold: 

is a subgroup in ~ , containing K , and I~I&H(~)! is finite, then ~fa 

2) if f is an involution from <~f~. , then all the involutions from gr (K.~ \~i  (~,#)) 

are finitely imbedded in $ and conjugate with i in $ ; 

3) the set of subgroups of the form Z gr 6~,Y;)Cj~A~f ) is finite. 

The proof of all the assertions of the lemma can be obtained easily by using the def- 

inition of a finitely imbedded involution and the known properties of dihedral groups [9]. 

LEMMA 3. Let H be a periodic 2-complete Abelian subgroup in ~ (in particular, 

a periodic Abelian subgroup without involution), all elements of which are strictly real 

relative to i . Then the following asssertions hold: 

i) a Sylow 2-subgroups from H is a complete subgroup with the minimality condition; 

2) if K is an involution in /~ ( ~ i  ' then N has a subgroup ~ of finite index 

in d and all the elements in V~. are strictly real relative to 

Proof. Let Z be the lower layer of the subgroup $ . Obviously, Z <~$ ~i) and 

~'Z C<~. If the subgroup Z were infinite, then also the intersection ~ ~ ~ $D~ would 

be infinite in spite of Lemma 2. Consequently, ~ is a finite subgroup. But then $ 

satisfies the minimality condition [i0]. Assertion 1 is proved. Since all the elements 

c~ are strictly real relative to D , it follows, obviously, that . ~  N 
~$(K} • On the basis of Lemmas I, 2, we conclude that 2 is a finite subgroup. By state- 

ment 2 from [4] we have ~=V~/}, where ~ is a subgroup in A ~ and all the elements in 

V~ are strictly real relative to ~ . Assertion 2 is proved and, at the same time, the 

lemma is proved. 

Let F be a subgroup of ~ , containing ~' , let V be a normal subgroup of 7 , being 

the finite extension of a complete Abelian 2-subgroup ,6 , not necessarily different from 

the identity subgroup and, moreover, all elements from ,6" are strictly real relative to 

s ,  :r/y , i = i w  

LEMMA 4. For any f67 , ~  the intersection ~f~0%~(KV) i s  finite and, in particu- 

lar, .[V is a finitely imbedded involution in 7 . 

Proof. First we consider the case when V =~ In this case, in view of statement 2 

from [4] and the completeness of the subgroup 7 , all the elements from V are strictly 
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real relative to any involution from ~ Further, all involutions of the form ~ ( ~ £  V}' 
are conjugate with K with the aid of elements from ~ . From here it follows that 

Consequently, any element of the form /#V from E z N y C f ( K V ) ,  where / .i; EC~ , has a 

representation /~V = ~ , where ~6 ~= (KV)and f is the preimage of the element ~ in 

~T (K) Passing in this equality to preimages, we obtain j~'=~$d , where ~ is some 

preimage of the element y in T , ~V Futher 7'f~ -/= ~ . Since ~CO~, it follows, 

according to what has been proved above that ~-rE~ But then /~-lff ~z A ~T (K) " By 

Lemma i, K is a finitely imbedded involution in ~ and, therefore, the intersection 

~zN~(K) is finite. From here, in view of the equality (i) and the arbitrariness of the 

selection of the element /~V from ~ O ~  (KV), the set ~zNf~(~V) is finite. 

Thus, the assertion of the lemma is valid if V=~ Regarding the case when V ~H and 

IV:~I is finite, this can be easily reduced, with the aid of Lemmas i, 2, to the case that 

has been already considered. The lemma is proved. 

Remark i. Everywhere in the subsequent lemmas it will be assumed that ~ is a group, 

f is a finitely imbedded involution in it, satisfying condition * and I~'l = ~=. 

FIRST FUNDAMENTAL LEMMA. The group ~ has an infinite periodic 2-complete Abelian 

subgroup, all elements of which are strictly real relative to 

Proof. If ~ has an infinite complete Abelian 2-subgroup, all elements of which are 

strictly real relative to ~' , then the assertion of the lemma holds. In connection with 

this, for the convenience of the subsequent arguments (within Sec. i), we make the following 

Remark 2. The group $ does not have an infinite complete Abelian 2-subgroup, all 

elements of which are strictly real relative to 

LEMMA 5. If ~ is a 2-subgroup in ~ , containing f , then SO~" is finite. 

Proof. We assume that the lemma does not hold, i.e., the set ~ I= Sn~. is infinite. 

On the basis of Lemmas 2, 4 we conclude that for some infinite subset ~i from ~ the 

intersection ~¢It C~) has an involution ~t We consider $t=/~8 (C~f)). By the known 

properties of dihedral groups, we have {~, ~t } C ~I • Applying again Lemmas 2, 4 to the sub- 

group S I and to its quotient group ~/C~t) , we prove that for some infinite subset ~ 

from ~I the intersection ~ Ci~) has an element #a of order 4. We reason in a similar 

manner regarding the subgroup ~z=~t (C~z))and its quotient group $~/(~) , etc. With the 

aid of these arguments we construct a strictly increasing chain of subgroups 

< , . .  < c 4 ,  . . . .  

which does not break at a finite index and, moreover 

.ti 
n, = ,'t ' ~ = / ' 2 ' ' ' °  
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Consequently, the union of this chain is a quasicyclic subgroup, all elements of which 

are strictly real relative to i , despite Remark 2. The obtained contradiction means that 

S~ ~ is finite and the lemma is proved. 

LEM~ 6. In G there exists a subgroup ~ , with a finite 2-subgroup P , normal in 

it, possessing the following properties: 

i) i~f and ~'=f~"~s" is an infinite set; 

2) if /~ , then IK :C~ (/) I is infinite; 

3) if ~ is a finite (~ -invariant 2-subgroup in K with an infinite intersection 

N~nLYl and P-g , then gr (~f) NC7~ = gr (~,f)~£~, 

Proof. Let ~ be a finite ~-invariant 2-subgroup, not necessarily distinct from 

the identity subgroup, having an infinite intersection ~G(~) n ~, =~I • If some involution 

from ~t would determine a finite class of conjugate involutions in ~t =~/$(~t), i.e., 

IKI:~K (~) I would be finite, then, obviously, for some infinite sequence of distinct involu- 

tions from ~/: /1,/z,0,,,/~ .... we would obtain an infinite sequence of distinct elements 

where ~£ CKI (~) , ~ =4~ .... in spite of Lemma 4. Consequently, statements I, 2 are valid 

for ~ If, in addition, for ~ and its subgroup ~I statement 3 holds, then, setting 

~'KI '~'~I , we obtain the subgroup mentioned in the lemma. 

Assume that ~ is a finite (~) -invariant 2-subgroup in ~ , containing ~! , and 

that the intersection ,~[ O/~Kt (~z) is infinite; moreover, 

Regarding the subgroups Z,=/VK, (~), ~ we reason as at the consideration of the pair 

(K~ ~t) • With the aid of these arguments we construct a strictly increasing chain of finite 

invariant 2-subgroups: 

' " ,  (2) 

to which there corresponds a strictly increasing chain of subsets 

According to Lemma 5, the chain (2) breaks at a finite index ~ , i.e., the subgroups ~ =~, 

P=~ possess the properties mentioned in the lemma. The lemma is proved. 

Let ~ , ~ be the subgroups from Lemma 6. We introduce the notations: 

LEMMA 7. 

is finite. 

The number of elements of the form 

==p/p, f--c  

7# , where Y~ , having even order, 

Proof. We assume that ~ has an infinite subset ~ such that all elements of the 

form ~ , ~ ,  have even order. By Lena 4, we shall assume, without loss of generality, 

80 



that f] ~ has an involution j . By the properties of dehidral groups we have { ,, ~] C 

~V(/) and, by Lemma 2, ]~[~V~')f] ~. If X and ~ are the complete preimages of the 

subgroups C~/ (1)and [~) in K , respectively, then, obviously, 

÷ P, 

where P<~ , and X ~.~( is an infinite set. However, this is not possible in view of the 

definition of the subgroups ~ and ~ and in view of Lemma 6. Consequently, V may have 

only a finite number of elements of the form ~ of even order, where ~E ~ . The lemma 

is proved. 

We proceed directly to the proof of the fundamental lemma. 

In view of Lemmas 6, 7, in the subgroup V the set £~ , of strictly real elements of 

odd order relative to { , is infinite. We fix some element a#/ from ~ . We consider 

the elements of the form ~=z~ , ~6F;Z . By the definition of the elements of T/Z, we have 

~=~ , ~z=Sf and ~ * ~ = ~ ,  where ~S~ ~. From here, in view of eemma 7, the 

number of elements of the form ~*~ , ~ ,  having even order, is finite. Therefore, 

has an infinite subset ~ such that all elements of the form ~z~(~£~) have odd order, 

i .e . ,  I~aq l= ;~ f /  C~e~). 

We consider elements of the form 

We prove that ZZ=~ Indeed, {=(~(Z f) --(~L2z~) 9b" =({~'z~'~"I=~-~-;~'? gl(~&~'~)= 

(f~-zf'/)gb~Szf ~Zb=(&' "'/2"/= (~'la"{")Zb{EZ = Z , since EZ , ~ are strictly real 

relative to z . 

We represent equality (3) in the form 

As shown above, f~" , (dazoY~, ggf 6. ~. From here, by Lemma 4, the set 2~==Lz e )~£ If,} is 

f i n i t e .  But then ~ p o s s e s s e s  an i n f i n i t e  sequence  of  d i s t i n c t  e lements  

(~) 

(5) 

such that 

We denote: $~= ( ' ~ 0 ~ ) ~  - -t ~=~ , /7-=/~2, ° ,. In accordance with the sequence 

(5) and taking into account the introduced notations, we rewrite the equalities (4) in the 

form 

' ~  = 8 ~  , ~ = / , £  . . . .  , ( 6 )  

where 9,,z, ~n.£ ~, 
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Since [~. = Z-' and the element ~' has odd order, it follows that for some element 

,~¢~'~-'.! we have ~'.~= 7. We transform equalities (6) with the aid of the element 3: : 

a --- (..~.~) = 6,. ~ , .~- .-. l.Z .... 

Obviously, ~n, E/,', ~, ,),~=/.~:,,,,a and, therefore, /, [(~j)f] is an infinite set. If the 

# _  ,.~ ~ ~a: ~" and  e l e m e n t  ~'[ we re  o f  e v e n  o r d e r ,  t h e n ,  t a k i n g  i n t o  a c c o u n t  ~ . - ~ .  ~, , w h e r e  ~r , b'~ ~,~, 

Lemma 2,  we wou ld  e a s i l y  a r r i v e  a t  a c o n t r a d i c t i o n  w i t h  t h e  d e f i n i t i o n  o f  t h e  s u b g r o u p  ~/ 

# i s  an  e l e m e n t  o f  odd o r d e r  a n d ,  o b v i o u s l y  J . ~ f  and  w i t h  Lemma 6.  C o n s e q u e n t l y ,  ~i 

. ~ . . . . .  z 1( =A i )  A c c o r d i n g  t o  what  has  Let X.=,,/\/ .;'&2,) i ,,~r,.=~, fl ~; ,~. =>~),o')i(-~r ) and i,/(U/' 

been shown above ~" is an , ~ ~ i, ~ {~i ) , ~, indefinite set. Further applying to the triple (V 7"/ ) 

the same arguments as in the consideration of the triple L /, , r'i, we prove the existence 

in 1 / of an element &'2#/ of odd order, strictly real relative to ~) , with infinite 

intersection /~,~ ((~z)) f~ ~,,. We introduce the following notations: a/2 is the preimage 

of ~, in ~'¢ , ~I =(~,), g = gr (,'41,~z) , ~= I~,'._~,, ~ = /(z£)~7 , ~ = /~2/.~z 
I 

Relative to the triple ~ = ~$~ /~ we reason in the same way as at the consideration of 

the triple (\4' ~2' ~/~,),_ etc. With the aid of such arguments we construct a strictly in- 

creasing chain of finite subgroups of odd order (V¢~ ~, ~r~ ) 

< ... < ... 

Its union ~ is infinite and, by statement 4 of [4], _77 is a periodic Abelian subgroup 

without involution, all elements of which are strictly real relative to z . But then, 

obviously, also ~ has an infinite periodic Abelian subgroup without involutions, all ele- 

ments of which are strictly real relative to Y The first fundamental lemma is proved. 

2. SECOND FUNDAMENTAL LEMMA 

By Zorn's lemma, ~ = gr (if Fif~]) possesses a complete Abelian 2-subgroup Az 

with rank of maximal cardinality, all of whose elements are strictly real relative to i 

By Lemma 3, the rank of the subgroup A z is finite. Making use again of Zorn's lemma, we 

enclose Ai in a maximal periodic 2-complete Abelian subgroup A , all of whose elements 

are strictly real relative to z by the first fundamental lemma, A is an infinite group. 

We denote by ~ the subgroup from A , generated by all the elements from ~ that are 

strictly real relative to ~ - - - Q ~ ' ¢ ,  ~ o  

SECOND FUNDAMENTAL LEMMA. The index I~: ~i is finite. 

Before proceeding directly to the proof of the fundamental lemma, we establish some 

facts, auxiliary for this purpose. 

LEMMA 8. Let ~ be a set of one of the following types: 

i) the set of the elements from A , generating some quasicyclic 2-subgroup in ~ ; 

2) some infinite set of elements of odd order from A . 
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If for some infinite subset from ~ and some element qE(~, the intersection 

' C 

where ~ is a 2-element such that all quotient groups of the form (~ ~a.)/ ( (I~ 

have odd order, then ~ is a set of type 2 and for some infinite subset ,~ from ~ we 

have the inclusions 

¢ 

Proof. By the properties of dihedral groups, we have ~,f ~O~{/E/~&,aL)), Obviously, 

~-/~'~Z~f/~ ((~)). ~,(2E ~ , and all such elements generate an infinite Abelian subgroup 

from ~/~ ((~)) ; moreover, all elements from ~ are strictly real relative to 

F'~"~', ' ~ "  
Let ~ be some element from ~ and let /C=f-zZ'~z~ . Since /C-': i" i-:~d ~ ~'~' = ~-' 

and F=-;~'y ~ a, ~ ~ ,  we have ~"~'~'~ = y - ' ; - ' ~ , - ' ~ =  ~ ~ ; ,  =~ @. According to 
the def in i t ion of the set ~ the subgroup ~ is either a quasicyclic 2-subgroup or a sub- 

group without involutions. But then, as i t  is known, a l l  involutions of the form ~-I~'/2~, 

~ZE ~ , are conjugate with K in /~/ , i . e . ,  

where C(ze ~ . 

~e in t roduce  the f o l l o w i n g  n o t a t i o n s :  F = ~ ' ~  , ~--O~iO;/",r=~CCW~6; ,~=~Ch/~C 

I(~)I=I(~'t~'az~)~ , ~6 ~ ,  and, thus, the orders of.the elements ~ ,  l~ (GE ~ )  are odd and, 

therefore,~=~J--Cc~:, ~a~i~#, ~=~-~-_;~, ~E (y) . From here it follows that 

Making equal the left-hand sides of these equalities, we obtain that ~T'/$~ = ~ ~ ~ (F) 

or 

3a = ~ O ~  / ( ~ c  ~ ). (7) 

Since KS=K -= S= , KC=K = C= , we have 

o r  

(8) 

We rewrite the equalities (7) in the form 

In these equalities the element ~ is fixed, the elements C~ , ~c are strictly real 

relative to the involution i and have odd orders, while the elements of the form ~;£ Cy(7) , 
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£ ~ From here and from Lemma 4 we can easily see that the number of the distinct 

elements of the form ~ , ~£ ~ , is finite, i.e., for some infinite subset ~ from 

we have 

With the aid of these equalities we rewrite the equalities (8) in the form 

(9) 

If { is an element from ~ , then from (9) we obtain that 
/ 

- - , . 4 - -  

We denote by ~ the subgroup <:  = gr C{C~,C~ i = , , . ; ~ ; .  ~ , .  ~rom the inclusions (~0) there 

follows that = Z E 4  CE,). . But C('~)'=,~/f, ~., _C~z~ and X~XTi (~  ~ ) and, therefore, E~C,~] £ 

&r ( ) . Further, /(~K = , ~-tfZ =~ , ~-;= 7K and, taking this into account, we write 

have also [~/~ C E ~ )  and, moreover, i f  ~ is an a r b i t r a r y  element from E ,  , then 

~ f =  ~-'. 
From what has been proved above there follows that ~ cannot be a set of type I. We 

- 7 NT assume that this is not so. Obviously, ~z = ~ and (~ By the definition of the 

elements of the form C a (~6 ~), we have ~'~'LZ~ = Co-t~. C~ and ('t~'t~'~Zz~)C~# = z~= 77 KC~, 

and, moreover, I~/xCLzl[~£~) is odd. However 7C=KC==~Ca'zJ? and ~E~ =~, while, accord- 

ing to what has been proved above, we have ~K/V r (~z) Consequently, 

where ~ is a f ixed element of odd order. Since ~ is a quas icyc l ic  2-subgroup, i t  fo l lows,  

obviously, that for ~ ~ all the elements of the form ~ . a, ~ , have even order, which 

contradicts the assumption regarding the fact that their orders are odd, made at the beginning 

of the proof of the lemma. Consequently, ~ can be only a set of type 2. 

If ~ is the preimage of ~ without involution in ~ , then, obviously, i6~ G {~ ). 

From the equalities ~-/6~z~= ~;,KCa, , ~'tz'~z~=,C~Cl we obtain f'I~'2~2z~ = C;C~z , G, ~ ~2 

Since Co, , ~ e ~ and ~ is an Abelian subgroup, not containing involutions, we have 

(~-I~2 a ~ ) = -Z Z (C~ I C= - . But then 

.¢-,.p-z ~, .7-I ~ a ;~ = C~'~az) "~ 

a, ~E ~ • The lemma is proved. 

LEMMA 9. The subgroup 4 

Proof. Since the rank of the subgroup 4 

lemma by induction on the rank of the subgroup 

quasicyclic subgroup in A z . 

is normal in ~ . 

is finite (Lemma 3), we shall prove the 

. Let // be an arbitrary but fixed 
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Applying Lemmas 4, 8, we construct in H for the element ~E~ a strictly decreasing 

chain of infinite subsets of its elements 

such that 

and 

~, m dl~ ~ . , ,  ~ E ~  ~ . . ,  (11) 

We denote by V the union of the chain (12) and by K the involution ~=~-i~'~ , where 

is some element from ~i • Since the chain (12) does not break at a finite index, it follows 

that V is a quasicyclic 2-subgroup. Further, the sets from (ii) are infinite and belong 

to the quasicyclic subgroup #/ and, therefore, 

/7 = /,~, ,0. But then, obviously 

v gr(V,H 4 
. /  - /  

I f  Y--H ~ , then ~"GFI=~-IC-' ~ (CE/'/) and I'~CZ "'~= d" for any C from H . 

Let V #  d ~ ' ,  and we consider Z = ~ / V  with the i n v o l u t i o n  ~ = X V  . A l l  subgroups of 

the form gr (~,~S), $¢L--, are finite and, by Lemma 4, ~ is a finitely imbedded invo- 

lution in Z , i.e., the pair (~) satisfies all the conditions of the theorem. Let 

be a complete Abelian 2-subgroup, all elements of which are strictly real relative to 

and, moreover, its rank ~(X) is the largest of all the ranks of such subgroups. By state- 

ment 4 from [4], its complete preimage % in ~ is a complete Abelian 2-subgroup, all ele- 

ments of which are strictly real relative to ~ . Since K= ~d-I(~f, it follows that all 

the elements from (d~#X(~) "I are strictly real relative to ~ and, by the definition of 

the subgroup ~ , we have 

Consequently, ~(X') ~ ~,(/~) - / .  By t h e .  induction hypothesis, X ~f But then, obviously, 

~V/V~X and ~ < X ~  , and since ~E~ and by eemma 3 all the elements from X are 

strictly real relative to ~ , it follows that ~-/C~ = ~-JC-I~, CE#/ , and ~'C i~ "i= 

= C °! for any C from H From here, in view of the arbitrariness of the section of the quasi- 

cyclic subgroup /7/ from the complete Abelian 2-subgroup 4 ' there follows that ~{~-IE~ (A z ) 

and each element from ~; is strictly real relative to ~'~-I In particular, ~z ~ gr 

({z'~l ~f~}) =~=~ and ~Fz = ~ and, moreover, all the elements from A~ are strictly real 

relative to i From here, in view of the definition of the subgroup ~z and statement 
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4 from [4], we obtain that ~z = .~, ~ ~ . Further, by Lemma 4, the involution G/'72 is 

finitely imbedded in z~ z and, again by the definition of the subgroup ~Z and statement 

4 of [4], ~/~ does not have an infinite complete Abelian 2-subgroup, all elements of 

which are strictly real relative to ~'A z . The lemma is proved. 

We proceed directly to the proof of the second fundamental lemma. 

By eemma 9 we have I~2~ $ and, by eemma 4, the pair ($/~ i 4 ) satisfies all the condi- 

tions of the lemma and, moreover, $/~z does not possess an infinite complete Abelian 2- 

subgroup, all elements of which are strictly real relative to ~,.. This circumstance allows 

us to make the following 

Remark 3. Without loss of generality, we shall assume that N~= / and $ does not 

possess an infinite complete Abelian 2-subgroup, all elements of which are strictly real 

relative to Z 

We assume that I~: i is infinite. Based on this assumption and on the properties 

of Abelian groups [5], we prove easily that ~ possesses at least one of two sets of elements 

from ~ , one of which consists of representatives, taken oen each from each coset of 

with respect to ~ , some quasicyclic subgroup from ~/~ , while the other one consists 

of representatives of distinct cosets, taken one each from each such class, being the gener- 

ators of the cyclic factors of the direct decomposition of some infinite subgroup from ~/~. 

We denote by ~ one of these sets. If in the set of elements of the form f~-1~z~, 

62~ , there exist infinitely many elements of even order, then, by Lemma 4, ~ has an 

infinite subset ~i such that /-~ ~-i~.~z~) 9 $, , where ~ is an involution. If in the 

quotient group ~/$(f~)~/(~) in the set of cosets ~'/f~=~{~,) , =£~t, infinitely many 

elements are of even order, then, by Lemma 4, ~! possesses an infinite subset ~ such 

that ~ (~y-J~Qz~} 9~z ' where ~ is an element of order 4. We reason in a similar 
=E~z 

manner regarding ~ and /#$ ((~)) , etc. As a final result, we construct a strictly in- 

creasing chain of cyclic 2-subgroups 

(4) < , . .  (13) 

If the chain (13) would not break at a finite index, then its union would be a quasicyclic 

subgroup, all elements of which would be strictly real relative to i . But then we would 

obtain a contradiction with Remark 3. Consequently, the chain (13) breaks at a finite index 

and ~ has an infinite subset ~ such that ~ (~Q-l~] 3~ , where ~ is a 2-element and 

the elements ~-i~2~(~, ~E ~ , from ~((~))/(~} have odd order. By Lamed 8, for some 

infinite subset ~ of ~ we have 

• (14) 

But, as one can easily see, from the definition of the set ~ there follows that the set 

of distinct cosets of the form ~;~-2~@ , ~, ~6~, is infinite in spite of the inclusions (14). 

Consequently, I~:~ I is finite and the second fundamental lemma is proved. 
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3. THE LOCAL FINITENESS OF THE SUBGROUP ~= gr (,~i~ I~E G}) 
AND THE PROPERTIES OF THE SUBGROUP ~=gr (~:) 

Taking into account Lemmas 4, 9 and Schmidt's theorem [5], we shall prove the local 

finiteness under the assumtion that Remark 3 holds for the pair (G, f) • 

We denote by ~ the set of all elements from ~ of the form f=~t ~,,. &~, where 

fs { 3=42 , .... 2~ J is an involution from ~'. Obviously, R is a subgroup and R~G 

Since in A all the elements are strictly real relative to ~' , we have A~ 

LEMMA i0. If ~ is an element from ~ , then IA'~R(~)I is finite, i/~ and ~=RA(i). 

Proof. First we consider the case when g if/  ifT'. By the second fundamental lemma, 

I A:~ I , I~ :~I are finite and, in view of the definition of the subgroups ~I ' ~L ' 

we have, obviously, ~£~(~,(q~z ); by Poincar4's theorem [5, Exercise 2.4.8], I~; 

~ filer dis finite. 

Assume now that {-(46>... , where ~ is the number of parts in the repre- 

sentation of I. We shall prove the lemma by induction on the number /Z of pairs. For 

= / the lemma has been proved above. Let /Z > / and {- (6 6)C' where C =(64 
(~';a-/ ~;~ ~ " By the induction hypothesis, I~:%I ~, where ~ = ~ N ~R (C), while, according 

to what has been proved above, IA :ZI'~' , where Z=A A~ (~I ~2 ). But then %q~ < ~R(~) 

and I~:~NZl ~ • From here and from the definition of the subgroup ~ there follows 

that ~'~ A ~ and, obviously, ~ " ~ x (g') . The lemma is proved. 

Let / be an involution from ~ and /~:=~./'~i' ~'~/~I~ ~j " Obviously, ~ c 

LEMMA ii. The involution ~ is contained in a finite normal subgroup in $ . 

Proof. If ~ is a finite set, then, by Dietzmann's lemma [i0], i is contained in 

a finite normal subgroup from ~ . We assume that ~ is an infinite set. Let ~ be a 

finite (i)-invariant 2-subgroup from ~ and assume that the intersection ~=A/2 (P)r]~ is 

infinite. We introduce the notations V=~(;) , V= V/P , ~=~/~ , ~=CTI2/P , ~/~NV, 

~=~/~ • By Latona i0, V = ~A (~') and V ' ~  ~ (~). 

We consider the elements of the form ~-~K , where ~ . Since ~ < ~ and 

~=~ X ([) , it follows that all elements of the form ~ , t:~ , have even order, i.e., 

(~Z~) possesses an involution ~ We prove that 

i) the set of involutions of the -form < , K£~, is finite and I~:~(~} is infinite. 

If the element I~ has even order, then, as one can easily show, we have "= '~ , 
-~ -;- 

where ~ is the involution conjugate with & in gr IrK) and i~ is its preimage from 

~&. If, however, I~' is odd, then <-Zr$-K, where ~ is the involution conjugate with 

~< in gr (~K) and ;~ is its preimage from ~. Obviously, {~ , ¢~, ~ ~ ~ {[). If 

is the complete preimage of ~(¢) in V , then ~' , ~ , $~6X and IX:~X[~)I is finite. 

But then, by Lemma 2, the set of elements of the form ~,,$& : K ~  is finite and this me~ns, 

obviously, that also the set of elements of the form ~ K~ , is finite. Further, 
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I~ : ~) is infinite since otherwise we would obtain a contradiction with Lemma 2 and the 

fact that the set ~ is infinite. Statement I) is proved. Now we prove that 

z ~-J. there only a finite number of 2) in the set of elements of the form a~ ~ ~ are 

elements of odd order. 

We assume that ~ has an infinite subset ~ such that all elements of the form ~ , 

Ke ~ , have odd orders. In this case < = f~ , where $x~£ and ~ is the preimage 

of ~ in ~ . Taking into account statement i, we can assume, without loss of generality, 

that ~= ~ = $-~,, ~=g= 4', for any involutions K , K'e ~ We consider the subgroup 

~=~ (f) . By the properties of dihedral groups we have [ [ , ~) C ~, and since ~ is 

an infinite set, it follows, by statement i, that IT:~(~I is infinite and, by Lemma 4, 

that ~ is a finitely imbedded involution in ~ . But then, by the first fundamental lemma 

and Remark 3, ~ has an infinite periodic Abelian subgroup K without involutions, all 

elements of which are strictly real relative to ~. We select the subgroup ~ in such 

a manner that its preimage A z without involutions in V should belong to ~ (P) . Obvious- 

ly, ~ , f • SE~V (K), where # , $ are preimages of the involutions [ , $ in V 

and ~ , respectively. Obviously, all the elements from ~ are strictly real relative to 

and gr ~f) <£V I~). Since $ ~ < ~ ,  it follows by Lemma i0 that IK:~V~S)N ~I is 

finite. From here and from the representation ~=~$~ , where ~ , there follows that 

~S) n ~ <~V(~ ) and !~:~V(~)n ~ ) is finite in spite of the fact that ~ is infinite and 

that all elements from ~ are strictly real relative to { The obtained contradiction 

concludes the proof of statement 2, 

We proceed directly to the proof of the lemma. 

Since ~ is an infinite set, making use of statements i, 2, we prove the existence 

in ~ of an infinite subset ~ such that ~ (~)~ ~I , where <, is an involution and 
~, 

6A 7 We consider ~=~Z ~ ' • (~i)7. By the known properties of the dihedral group we have 

[Z',~IJC~ = ~7 ~ ({) ' where ~< R . We introduce the following notations: ~=~/({,) , 

i 7 = {~) , ~ =~t(~li/(~1), ~ = ~I/(~,) . In view of the statements i, 2, < has an 

infinite subset ~ such that K~z ({IK) B , where is an involution and ~2 ~ ~ " If 

is the preimage of {z in ~I and ~ is the preimage of ~ in ~/ , then 

#~! )~[~Z) and [~ ,~a} C T 2 = ~T. (~2))" We reason in a similar manner with respect to the 

triplet (T2,~z, Z' ~ , etc. As a result we construct a strictly increasing chain of cyclic 

2- subgroups 

which does not break at a finite index. However, in this case we obtain a contradiction 

with Remark 3, since the union of the chain (15) would be a quasicyclic 2-subgroup, all 

elements of which are strictly relative to i The obtained contradiction means that 

is a finite set and the lemma is proved. 
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LEMMA 12. The subgroup R has a finite subgroup Z such that Z ~$ and in the quo- 

tient group 2=~/Z all the elements of the form ZK, where ~=~Z , K~f = ~iZ/Z, 

have odd order. 

Proof. If for some involution KI~-~ f the subgroup (fK I} has an involution J1 • then, 

obviously, ~J~/=~ and, by Lemma ii, the subgroup ~ = gr (i/f l~j) is finite 

and ~I ~ R • By Lemma 4, in ~/~I the involution ~i = ~I is finitely imbedded. If for 

some involution K~E2~fZl/Z I the subgroup ( ~ )has an involution J2 ' then, obviously, 

~ E (4"ZI/~ s ) and, by Lemma ii, the subgroup ~ = gr (~77!~/Zf])is finite and 

Zz <R/ZI If 4 is the complete preimage of the subgroup ~Z in ~ , then ~I<Z~ 

We reason in a similar manner with respect to the quotient group ~/~ , etc. As a result 

of this we construct a strictly increasing chain of finite subgroups 

(t)=~<Z,<Z2<... <Z~<,.. , (16) 

where ~ ~, ~=4~ ..... 

We show that the chain (16) breaks at a finite index. Let K~ be the preimage of K~ 

in ~ , and let j~ be the preimage of ~ in (~K~), ~=~, .... Obviously, ~y~ is an 

involution in ~ . 

Let ~ be an (~)-invariant Sylow 2-subgroup from ~r • By Theorem ii.i.i from [5], 

such a group exists in ~I and 4A(~)'~ has an involution, conjugate with ql By simi- 

lar considerations, ~z has an (~} -invariant Sylow 2-subgroup ~ and, moreover, $I < Sa 

and some involution from 6A(~)-~ is conjugate with iJ~ Reasoning in this manner, 

we construct in ~ a strictly increasing chain of finite (g) -invariant 2-subgroups: 

~, < ~2<. . ,  < 8~< . . .  (17) 

Such that $~A(~}\ ~ has an involution, conjugate to f/~ . If the chain (17) would not 

break and $ is its union, then, obviously, the intersection $~i would be infinite, 

in spite of Remark 3 and Lemma 5. Consequently, the chain (17) breaks at a finite index 

and, at the same time, also the chain (16) breaks. The lemma is proved. 

Remark 4. Based on Lemmas 4, 12, in the subsequent arguments we shall assume, without 

loss of generality, that all the elements of the form ~'~ , ~¢ ~ , have finite odd orders. 

LEMMA 13. The subgroup 2 is locally finite and R does not contain involutions. 

Proof. Let ~, ~ ..... ~ be an arbitrary collection of invol~tions from ~ • We 

show that the subgroup ~ = gr (4,~, .... ~, i) is finite. By the second fundamental lemma, 

has a system of subgroups ~, ' ~2 ..... ~ , such that all elements from ~$ , $-A2 .... , 

, are strictly real relative to ~S and {A:~s) , $-g~ ..... ~ , is finite. By Poincares 

theorem [5, Exercise 2.4.8], the subgroup 

D=4nZ:n... n~ 

has a finite index in A • We consider the subgroup V =W'~( ,~) .  Obviously, ~ < V and, 

by Lemma i0, ~-~ A (z') , where ~<~ If K is an arbitrary involution from V ~ , 
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then, by Remark 4, liKi is finite and odd. By the properties of dihedral groups, ~' and 

K are conjugate in V and, therefore, all the elements from D are strictly real relative 

to K . But then, by Remark 3, 

and C~(7)= Cy (~)2/2 , where V = , f- i~ From here, as one can easily see, there 

follows that ~ is a finitely imbedded involution in V and, in addition, condition * holds 

for the pair (V,F# • If IV:C~(iDI would be finite, then, in view of equality (18), Dietz- 

mann's lemma [I0], and [5, Theorem 23.1.1], the subgroup K would be finite since K = 

gr (~,~ ,.,., $a,#< V and ~e[i~l~E~}, S~47 ..... ~. 

We assume that IV: ~F (~)I is infinite. Since the pair (V, 7) satisfies the condi- 

tions of the first fundamental lemma, it follows, by this lemma and by Remark 4, that ~=~/~ 

possesses an infinite periodic Abelian subgroup ~ without involutions, all elements of 

which are strictly real relative to 7 . Further, the subgroup f=~/~ is finite, ~-~$ , 

and, by Lemma I0, the index I~:~If) ~ T I is finite. From here it follows that 7 is 

contained in an infinite periodic Abelian subgroup X without involutions from ~ and, 

moreover, all the elements from X are strictly real relative to ~ By statement 4 

of [4], the complete preimage X of the subgroup ~ in ~ would be also a periodic Abeli- 

an subgroup without involutions, all elements of which are strictly real relative to i , 

and, moreover, A <X and ~ #Y . However, in this case we would obtain a contradiction with 

the definition of the subgroup ~ . Consequently, the index I Vs~(~)l is finite and, as 

shown above, the subgroup ~ is finite. 

Thus, the local finiteness of the subgroup ~ is proved. Now we prove that ~ does 

not contain involutions. By Remark 4, for any K E,~ i the element iK has odd order. From 

here and from the local finiteness of ~ , by Glauberman's well-known ~-theorem [ii], we 

obtain that ff-~(B)x ~(~). Further, if ~ is an involution from ~(f) N~ i , then, by 

Remark 4, ~'=l and i=/ But then, obviously, ~=~, ~) . The lemma is proved. 

PROOF OF THE FUNDAMENTAL THEOREM. If the index I~:~GC~')I is finite, then, by Dietzmann's 

lemma [I0], the subgroup 7 = gr (~'~ 1~e~) is finite. If, however, the index IG:~ G (~)I 

is infinite, then the validity of the theorem follows from Remark i and Lemmas 4, 9, 12, 13. 

The theorem is proved. 

COROLLARY. Let ~ be a group and let ~ be its involution. Then at least one of 

the following statements holds: 

I) for some element ~e $ the subgroup gr (~,~@) is an infinite dihedral group; 

2) for some element ~e~ the intersection ~$~a)O{=G) 2 is infinite; 

3) gr (~) is a periodic almost locally solvable subgroup. 
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