
I. 

This completes the proof of the theorem. 
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QUASIVARIETIES OF ALGEBRAS WITH DEFINABLE PRINCIPLE CONGRUENCES 

A° M. Nurakunov UDC 512.57:510.67 

The main result of this article is the theorem on finite presentability of a quasivari- 

ety of algebras of finite signature with definable principle congruences in which the class 

of subdirectly (or finitely subdirectly) irreducible algebras is finitely axiomatizble; it 

is an improvement of McKenzie's well-known theorem [5]. The article also contains a char- 

acterization of (locally finite) quasivarieties with definable principle congruences along 

with various examples. 

The terminology conforms to [i], [2], and [6]. 

i. DEFINITIONS AND AUXILIARY RESULTS 

Let o be an arbitrary finite functional signature. Henceforth we assume that all alge- 

bras and classes of algebras have the given signature o. 

For an arbitrary algebra A in a quasivariety ~ and an arbitrary set H ! A x A, let 

Con~ A be the lattice of all ~-congruences on A, i.e., Con gA=[SE~On21 4/@¢~} , and 
8gA(H) the smallest ~-congruence containing H. In particular, G~C3, $,1 denotes the princi- 

ple ~-congruence on A generated by the set {( Q, b)}. In the case of varieties, the sub- 

script ~ in the expression ~IC~.~) and other similar situations is omitted. We say that 
I 

in a quasivariety ~ principle ~ -congruences are (formula) definable or • has definable 

principle ~ -congruences, if there exists a first-order formula ~ (x, y, u, v) such that 

for all A e ~ and ~, b, c, d, e A the equivalence 

holds. In this case we also say that ~ (x, y, u, v) defines principle ~-congruences. 

The main tool for study of such quasivarieties is generalized Mal'tsev's lemma [2] 

along with its various modifications (cf. [3] and [9]). Let ~= M0~IZ(~) u Z U E(o)), 

were I(~) is the set of all identities valid in • ; let Z be a fixed set of quasiidentities 

which are not identities and E(o) the set of equality axioms (without x = x) (cf. [i]). We 

define the set F of Z-congruence schemes by induction: 

Translated from Algebra i Logika, Vol 29, No. i, pp. 35-46, January-February, 1990. 
Original article submitted January 16, 1989. 

26 0002-5232/90/2901-0026 $12.50 © 1991 Plenum Publishing Corporation 



a) the formula (x = y v {x, y} = {u, v}) is a E-congruence scheme of height 0; 

b) if ~4 pi(x) = qi(x) ~ p(x) = q(x) is a quasiidentity in Z U E(o), ~I£,~,~, ~f) ..... ~ 

(x, y, u, v) are E-congruence schemes of height &n - i, then the formula 

t,~K 

i s  a E - c o n g r u e n c e  scheme o f  h e i g h t  n .  

LEMMA i. For all A • ~ and ~, b, c, d, e A the equivalence 

holds. Note that if ~ is a variety, then Z = 0 and the notion of a E-congruence scheme 

coincides with the notion of Mal'tsev's congruence scheme (cf. [13]). 

LEMMA 2. 

holds, where 

For all A • ~ and H ~ A = the equality 

e,~(/-/) = u /-/~(X), 
8~) 

o(Z): / . /uOa,~)iacA.)  ~ d ( a , 6 ) e / / ~ ( ~ )  , ~ , o  
if and only if either ( ~Z, b) e Hn_IA(z) has a quasiidentity ~U~(6) 

such that 

~.,(Z), i~/(, 

for some c e A. 

Henceforth, we will usually omit the symbol A in 0gA(H) and HnA(E). 

The article will often make use of the following known (cf. [9] and [14]). 

LEMMA 3. Let A e ~ ,O, b, c, d, • A and 0 • CongA. Then 

¢ (o, o S (<,le, lle)  • e~ (ele, dle J, 

where A~ is the sum in the lattice CongA. 

The compactness theorem and Lemma 1 immediately imply 

LEMMA 4. Each formula defining principle K-congruences in a quasivariety ~ is logical- 

ly equivalent in ~ to some finite disjunction of E-congruence schemes. 

2. FINITELY PRESENTED QUASIVARIETIES OF ALGEBRAS 
WITH DEFINABLE PRINCIPLE CONGRUENCES 

Let ~(~) be the smallest variety of algebras containing a class ~. 
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LEMMA 5. If ~ and F are quasivarieties such that ~(~) = ~(~) and for each algebra 

A e ~ n ~ and all elements ~, b e A the equality S~(~,~)=9~(~,f)holds, then f~= ~, 

Proof. It is known ([I], [2]) that each quasivariety ~ of algebras is determined by 

its finitely presented algebras and each finitely presented algebra in ~ is isomorphic to 

some factor algebra of an ~-free algebra of finite rank over a compact ~Z-congruence. 

Since V(~) = V(~), the free algebras in ~ and ~ coincide. Therefore, to prove the lemma 

it suffices to show that on an arbitrary ~ -free algebra F each compact ~-congruence is an 

-congruence, i.e., V G~(~-,~-) E ~ A  We will prove it by induction on n. By hypo- ~ 
thesis, Q~(~)= 8~{$F). Let V~8_~%~)=Va~ (a.,g)=8 and (C,~IEG~(~}~ G. Then by 

Lemma 3, (c/8, d/8) e 8n ~a /8, b/S). But F/8 e ~ , therefore, (c/8, d/8) e 8 ~(O/8, 

b/8). Applying eemma 3 again, we obtain (c, d) e G~(=,~ ~V~G , i.e., @~(Q.~8 = ~g(a,~)~ 

8. The reverse inclusion is proved similarly. 

We will say that a quasivariety ~ has a finite basis of quasiidentities in a variety 

if there exists a finite set of quasiidentities E such that A e ~ ------9~E ~ ~ Mod (E). 

LEMMA 6. If a quasivariety ~ has definable principle ~-congruences, then ~ is fin- 

itely based in the variety ~(~). 

Proof. Suppose that ~ (x, y, u, v) defines principle ~-congruences and E is a basis 

of quasiidentities of the quasivariety ~ in ~(~). By Lemma 4, we may assume that ~(x, 

y, u, v) is a finite disjunction of E-congruence schemes. We denote by E 0 the set of all 

quasiidentities over which the E-congruence schemes occurring in the expression of the form- 

, ,,c~. ~. U E 0 ula ~ are constructed. Obviously E 0 is a finite set and E 0 ~ E. Put ~ ~= ~ / ~ r "  ~ U 

E(o)). The lemma will be proved if we show that ~ ~ Xf. Since [(~) = [(~), we know that 

by Lemma 5 it suffices to show that for each algebra A e ~ ~ and all ~, b e A we have 

~:~(~.~'=~(a.~)Since Z 0 ~ E, ~ ~ , ~ )  . Conversely, let (c, d) e 8~(~ , b), then 

A ~ ~(~,$~) Therefore, by the choice of ~0, A ~ ~(c, d, C, b), where ~ is some E 0- 

congruence scheme. Thus, (c, d) e 8 ~(~, b), i.e., 8 R (~ {~S'~)" 

We say that an algebra A e ~ is (finitely) subdirectly ~-irreducible if the inter- 

section of each (finite) set of nonzero ~-congruences on A is not a zero congruence. 

McKenzie [5] has proved that if a finitely generated quasivariety ~ with definable princi- 

ple ~ -congruences is a variety, then ~ is finitely based. Lemma 6 along with ideas from 

Burris' work [7] allow us to strengthen this theorem. 

THEOREM i. A quasivariety of algebras ~ with definable principle ? -congruences has 

a finite basis of quasiidentities if and only if the class of subdirectly (or finitely sub- 

directly) ~-irreducible algebras is finitely axiomatizable. 

Sufficiency. Suppose ~=M0~(~) U E U E(o)) and ~ (x, y, u, v) defines principle ~- 

congruences. By Lemma 6, we may assume that E is a finite set. Let #0 be a proposition 

such that if ~0 is true on an algebra A, then for all elements S, b e A the set ~ =~C,~)6 

28 



A21A p :;:f _ £4, i is the smallest congruence containing the pair ( a, b) and A/0 b ~ Z. 

For instance, 

-~ <".>.m~;.-..,.z -')g~o(u,~,,<:<, , .'-:, u. m: ~', ~,  m ,< ( zz, o-~ 
- '  " "  ' " • , ( ~ u . 4 ( ~ )  ' " 

is such a proposition, where c~ (u, v) is 

. . . . . . . . .  ~ ,~ .  {~3, ~ !~), ~, ~ ¢ (p~), 
" ~  

for k e Z U E(o) having the form V~ (~ p(x) = qi(~) * p(~) = q(~)). 

Let ~fSE be the class of all finitely subdirectly ~-irreducible algebras and suppose 

that ~=~7 = Mod (~z) for some proposition ~. It is easily seen that A e ~P$1 if and only 

if A e ,~ and a proposition @~ of the form 

is true on A, Therefore, 

By the compactness theorem, there exists a finite set I c I(~) such that 

Let ~ = Mod (I U g U E(o)) and A ~ ~/.. Obviously, ~ ~ 2~. Since A ~ ~0, we have 

A ~ ¢=, therefore A ~ ~z, i.e., A ~ ~- Thus, ~r~f ~ ~psf and ~ ~ ~ . If we consider 

the class ~sz of subdirectly ~-irreducible algebras, then instead of ¢2 we have to take a 

formula ~2' of the form 

Necessity. Let ~= Mod(K) for some finite set K of quasiidentities. Then ~FSf = 

Mod (K U {~}) and ~$I = Mod (K U {¢~'}). 

COROLLARY. Each finitely generated quasivariety ~ of algebras with definable princi- 

ple ~-congruences has a finite basis of quasiidentities. 

This corollary has been also proved independently by Gorbunov. 

3. CHARACTERIZATION OF QUASIVARIETIES OF ALGEBRAS 
WITH DEFINABLE PRINCIPLE CONGRUENCES 

Let ~ =~#~(I(~)U g U E(o)) be an arbitrary quasivariety of algebras and A e ~ . 

We say that an ~-congruence 0 on A is En-permutable, n > 0, if for each congruence 8' e 

Conga the equality 8 VS 0' = Hn_z(E) holds, where H = 8 U 0' A quasivariety ~ is said 

to be Z n -permutable if on each algebra in 2 each A~,-congruence is gn-permutable. 

Remark. In the case of varieties we may assume that E = ~. It is easily seen that 

a ~n-permutable variety is m-permutable, where m ~ 2 n-l and, conversely, each m-permutable 

variety is ~n-permutable, where n = [log 2 (m - i)] + 2. 
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We say that in a class of algebras ~ c_ ~ principle ~-congruences are strictly defin- 

able if there exists a finite disjunction of E-congruence schemes ~, (x, y, u, v), such that 

for all A E ~ and O, b, c, d e A the equivalence 

holds. 

Note that if ~=~ , then the notions of definability and strict definability of prin- 

ciple ~-congruences coincide (see Lemma 4). 

THEOREM 2. A quasivariety of algebras • has definable principle ~-congruences if 

and only if ~ is finitely based in V_(~), and in an ~-free algebra F of countable rank 

principle ~-congruences are strictly definable and Zn-permutable for some n > 0 and some 

finite basis Z of the quasivariety "~ in V(~). 

Necessity. By Lemmas 4 and 6, it suffices to find a number n > 0 such that for all elements 0, 

b e F and each ~-congurence @ on F the equality ~VE~(~,~I =H~./ (~# holds, where Z is some finite 

basis of quasiidentities of ~ in V(~) and H = 8 U 8~ 0 , b). Let (c, d) e e e(~,~)V~9; 

then, by Lemma 3, (c/8, d/8) ~ 8~ (~/8, b/e). Since ~ has definable principle ~-congru- 

ences, we have (c/8, d/8) e Hn_iF/8(l) for some n > 0, where H = {( 0/8, b/e)}. We will 

show that (c, d) ~ H~n_i(Z). If (c/e, d/8) ~ HoF/8(Z), then (c, d) e H2(E). Suppose that 

for all k < n - i the implication 

~/~.~ 
CC, 

holds. Suppose (c/B, d/8) ~ Hn. iF/e(Z). Then in Z U E(o) there exists a quasiidentity 

pi(~) = qi(~) ~ p(~) = q(~), such that (pi(/~8,~-(Q#/8) • Hn_=F/8(Z), i ~ m, and (c/8, 

d/8) = @f~-)/~(~)/8) for some ~ • F. By the induction hypothesis, (Pi (~)~/(~)) ~ 

H~(n-i)-i(E). Therefore, (p(~#,~(~)) ~ H~(n_i)(Z); hence (c, d) e H~(n_i)+2(Z), i.e., 

(c, d) ~ H~n_i(Z). 

Sufficiency. Suppose that A e ~ , ~¢,~e7~ (~7,~6~ (c, d) and a formula ~(x, y, u, v) 

strictly defines principle ~-congruences in Fo Also, let m be the maximal height of Z- 

congruence schemes occurring in the expression of ~. We will show that A ~ ~(O, b, c, d) 

for some Z-congruence scheme ~ of height <m + n - i. Let h be a homomorphism of the algebra 

F onto A such that x' = h-i~, y' = h-ib, u' = h-ic, v' = h-ld. By Lemma 3, (x', y') 

~'~£/) ~/~ kerh. Since the congruence @~(u', v') is En-permutable, ~I&~)~ kerh = 

Hn_i(Z), where H = ~(u', v') U kerh. Let (s, t) ~ H0(Z), then A ~ ~(hs, ht, c, d), 

where ~is a E-congruence scheme of height ~m. Suppose that for all k < n - I and (s, t) • 

Hk(E) there exists a E-congruence scheme ~ of height ~k + m such that A ~ ~ (ha, ht, c, d). 

By Lemma 2, in Z U E(o) there exists a quasiidentity o~ pi(~) = qi(~) ~ p(~) = q(x), such 

that (Pi( ~),~i( ~# ) ~ Hn-2(y') and (x', y') = (p({~/~(~)) for ~ e F. Hence 

J 
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where ~i are Z-congruence schemes of height ~m + n - 2. Therefore, A > ~(O , b, c, d), 

where ~ is a Z-congruence scheme of height ~m + n - 2. Since IZI < w, the set of all Z- 

congruence schemes of height ~m + n - 2 is finite. It remains to note that the disjunction 

of these formulas defines principle ~-congruences. 

The following question is raised in [8] (also see [12]): is it true that if in (the 

replica class of) a quasivariety ~ the principle ~-congruences are (strictly) definable, 

then the variety ~(~) has definable principle congruences? This question has been solved 

in the affirmative there under condition that ~(~) has P0-projective principle congruences 

which, according to [i0], is equivalent to permutability of the variety V(~). Moreover 

(cf. [12]), the question is solved in the affirmative if the variety ~(~) is n-permutable 

or the principle congruences on each algebra in ~ are 3-permutable. Theorem 2 unifies 

and improves these statements. 

COROLLARY. In the variety of algebras ~(g) the principle congruences are ~efiT~able 

if an only if in (the replica class of) a quasivariety ~ the principal congruences are 

(strictly) definable amd n-permutable for some n > 0. 

4. LOCALLY FINITE QUASIVARIETIES OF ALGEBRAS 
WITH DEFINABLE PRINCIPLE CONGRUENCES 

We say that a quasivariety ~ possesses the property of n-extension of principle ~- 

congruences if for each algebra A e ~ and any elements ~ , b, c, d, e A there exists an 

n-generated subalgebra B ~ A containing these elements such that 

Proposition i. A locally finite quasivariety of algebras ~ has definable ~-congru- 

ences if and only if for some n > 0 the quasivariety ~ possesses the property of n-extension 

of principle ~-congruences. 

The proof is standard (cf. [II]). 

Let ~ be a finitely generated quasivariety of algebras and ~ = SP (A l ..... An). Then 

each finite algebra A e ~ can be written in the form A ~ A1kl x...x Ankn for some k i E ~. 

The de~ree of an algebra A e ~ is defined as the number 

= j " 4  ' . . ,  } i  , 

where the minimum is taken over all representations of the algebra A. We say that a princi- 

ple ~-congruence 8~ ( Q , b) on an algebra A ~ ~ is reducible if for each pair (c, d) E 

8~ (~, b) there exists a subalgebra B ~ A such that ~, b, c, d, ~ B, (c, d) ~ 8 ~[= , b) 

and d(B) < d(A). 

THEOREM 3. A finitely generated quasivariety of algebras ~ = SP(A~ ..... A n ) has 

definable principle ~ -congruences if and only if there exists a number N > 0 such that on 

each finite algebra in $ whose degree exceeds N each principle S-congruence is reducible. 
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Necessity. By Proposition i, the quasivariety ~ possesses the property of n-extension 

of principle ~-congruences. Since ~ is locally finite, the set of n-generated algebras 

in ~ is finite and all such algebras are finite. It is easily seen that the number equal 

to the maximum degree of n-generated algebras in ~ satisfies the conditions of the theorem. 

Sufficiency. Since ~ is locally finite, the set of all algebras whose degree is less 

than N + 1 is finite. Therefore, one can choose a finite set F 0 of E-congruence schemes, 

where E is a basis of quasiidentities of ~ in ~(~), in such a way that for each algebra A 

whose degree ~N and arbitrary elements d, b, c, d e A there exists ~e F 0 such that 

We will show that the formula 7(x, y, u, v) ; V{ ~,~;,~U,J~/~ e F0} defines principle ~- 

congruences. Let A • ~ . ~ , b, c, d e A and ( ~, ~e~(c, d). By Lemma 2, we may assume 

that the algebra A is finite. We perform induction on the degree d(A). If d(A) ~ N, then 

the definition of 7 implies that A ~ y( ~, b, c, d). If d(A) > N, then by the conditions 

of the theorem there exists a subalgebra B ~ A such that (S,~)68~(c, d) and d(B) < d(A). 

Next, by the induction hypothesis, B ~ y( d, b, c, d); hence A ~ y( ? , b, c, d). 

A quasivariety of algebras ~ is said to be directly representable (cf. [5]) if there 

exists a finite set .~c}i; of finite algebras such that each finite algebra in ~ is iso- 

morphic to a direct product of algebras in J~ 

It has been proved in [5] that each directly representable variety has definable prin- 

ciple congruences. Theorem 3 allows us to improve this statement. 

COROLLARY. Each suhquasivariety ~ of a directly representable quasivariety has defin- 

able principle ~-congruences. 

Indeed, let ~ be a subquasivariety of a directly representable quasivariety ~ and ~ = 

P(A l ..... An). Note that if B m × C k e ~ , k, m > 0, then B i x cJ E ~ for all i, j > 0. 

Let N = max {IAIJ ~ ..... IAnI~}. If A = A1kl x...x Ankn and, without loss of generality, 

d(A) = k I > N, then there exist numbers i ~ j such that e(i) = e(j) for all e ~ { c , b, c, 

d}. Therefore, ( ~6B~(c, d), B = A1kl "l x...x Ankn and d(B) < d(A). Thus, each prin- 

ciple ~-congruence of the algebra A whose degree >N is reducible. Hence, by Theorem 3, 

has definable principle ~-congruences. 

Note that, unlike varieties, not each subquasivariety of a directly representable 

quasivariety is directly representable. 

Example i. Let L n = <{0, i/n .... , [(n - l)/n], i}; V, A, ~, '} be the Lukasiewicz 

algebra (cf. [15]), where x V y = max {x, y}, x A y = min {x, y}, x' = 1 -- x, x ~ y = minx 

{i, x' + y}. The variety ~(Ln) is discriminatory; therefore, it is directly representable. 

Let n = 2k, where k > 1 and k is an odd number. Then L 2 < L2k and L k < L2k. Since the 

quasiidentity L k is true in L k and false in L2,~(L 2 x Lk) # V(L2, Lk) and Q(L 2 x LK) is 

not directly representable. 
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An algebra A e ~ is said to be ~-simple if the set of ,~-congruences on A has exactly 

two elements. If each nontrivial subalgebra of an algebra A e ~ is ~-simple, then A is 

said to be hereditarily ~ l simple. A quasivariety ~ is said to be distributive if for each 

algebra A ~ ~ the lattice Conga is distributive. 

Proposition 2. Let ~ be a locally finite distributive quasivariety of algebras in 

which each finite subdirectly ~ -irreducible algebra is hereditarily ~ -simple. Then ~ has 

definable principle ~-congruences. 

Proof. By Proposition i, it suffices to show that for all A e ~ and ~, b, c, d e A, 
2 if (c, d) e 8~A (~ , b), then (c, d) e e~(~ , b), where B is the subalgebra of A generated 

by the elements ~ , b, c, d. To this end, by virtue of Lemma 2 and the local finiteness of 

, it suffices to verify that for any finite algebras A, B e ~, A s B, and each S- 

congruence 8 on A there exists an ~-congruence 8 on B such that e = ~ N A 2. Without loss 

of generality, we may assume that A ~ /7 B i, where B i are finite, hereditarily ~-simple 

algebras. Then A ~s /7 Bi', where B i' ~ B i. Since ~is distributive, a routine verifica- 

tion of Lemma 11.6 [6, p. 177] for quasivarieties shows that B = 61 ' ×...× 8 n' n A 2, where 

e i' ~ Con~ B i' But the algebras B i' and B i are ~-simple; therefore, "8 i' is either zero 

or unity congruence. It is easily seen that for the role of ~ one may take ~i ×'''× 8n, 

where 8 i' = ~i fl Bi '~ 

Example 2. There exists a locally finite, not finitely generated quasivariety ~= 

~(A) with definable principle ~-congruences. 

Let be the set of integers, Z~ =[2\{0}; v, A, +, '} be the Sugihara algebra [16], 

where x V y = max {x, y}, x A y = min {x, y}, x' = --x, x ~ y = x' V y for x ~ y and x ~ y = 

x' A y in the remaining cases. According to [9] and [14], ~TSI ~EuIg) • since the proposi- 

tion 

i s  t r u e  in Ze, each a l g e b r a  in  S_~Pu( ~g ) i s  f i n i t e l y  s u b d i r e c t l y  i r r e d u c i b l e  and ~ - s i m p l e .  

S ince  ~ ( ~ )  i s  a l o c a l l y  f i n i t e  d i s t r i b u t i v e  v a r i e t y ,  we deduce by [9] t h a t  • i s  a d i s t r ± b u -  

t i r e  q u a s i v a r i e t y .  T h e r e f o r e ,  by P r o p o s i t i o n  2, R has d e f i n a b l e  p r i n c i p l e  ~ - c o n g r u e n c e s .  

Obv ious ly ,  ~ ( ~ ) ~ .  

Note a l s o  t h a t  by Lemma 6 ~ i s  a f i n i t e l y  based q u a s i v a r i e t y  and the  i n t e r v a l  [~ ,  V (~)] 

i s  i n f i n i t e  and c o n t a i n s  an i n f i n i t e  s e t  of  q u a s i v a r i e t i e s  ~ ' w i t h  d e f i n a b l e  p r i n c i p l e  ~ ' -  

congruences .  

Example 3. There  e x i s t s  a q u a s i v a r i e t y  ~ such t h a t  ~ ( ~ )  has d e f i n a b l e  p r i n c i p l e  con- 

g ruences  whi le  ~ does n o t .  
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Indeed, let A = <{0, i, 2}, f, g> be a unary algebra, where f(1) = 0, g(1) = 2, and 

f(x) = g(x) = x for x # i, and let ~= SP(A). It has been proved in [4] that • has no 

finite basis of quasiidentities in ~(~). Therefore, by Lemma 6, principle ~-congruences 

in ~ are not definable. But ~(~) possesses the property of 4-extension of principle con- 

gruences; therefore, by Proposition i, ~(~) has definable principle congruences. 

Final Remarks. The results of this article were reported by the author at the "Alge- 

bra and Logic" seminar in Novosibirsk in April of 1988. Gorbunov informed the author that 

a theorem similar to Theorem 1 had been announced by Dziobiak and Chelakowski at the Inter- 

national Symposium on Universal Algebra in Turawa (Poland) in May of 1988. The author 

expresses his gratitude to Gorbunov for his attention and support during the completion 

of this work. 
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