QUASIIDENTITIES OF ABSOLUTELY FREE ALGEBRAS

A. M. Nurakunov UDC 519.48

An algebra is said to be locally absolutely free if every finitely generated subalgebra

of it is absolutely free. A. I. Mal'tsev [1] proved that the class of all locally absolutely
free algebras with an adjoined unit algebra forms a quasivariety that does not have a finite
basis of quasiidentities. It is not difficult to see that this quasivariety is generated by

any absolutely free algebra, and so it is minimal.

In this paper we prove that the quaéivariety generated by an absolutely free algebra of
finite signature has a recursive independent basis of quasiidentities. This basis can be
written out explicitly modulo a certain equivalence relation on the set of terms. The exact
statement of the theorem in the case of groupoids is given in Sec. 1, and in the general

case in Sec. 4.
The terminology corresponds to that of [2, 3].

1. Quasiidentities of an Absolutely Free Groupoid: Definitions and Statement

of the Theorem

We fix a countable set of variables X = {T,,I, } and denote by ? %, possibly with

0"'.
indices, the elements of this set. 1In the usual way we define terms in the variables from
the set X (see [2]). The length {.([M of the term W is the number of the symbols of opera-

tions that occur in writing the term (|,.
By induction we define the set R of regular terms, as follows:
1) LeR,
2) if W€ , th . ’
) R bwy=x, then 2, b, W 2, ER.

Obviously, the subterm of given nonzero length of a regular term is defined uniquely and is

itself a regular term.

For any terms W , U we denote by u,S‘; and ws , respectively, the terms U*W, and U Y,
that is, on the set of all terms, S:, is the operator of left multiplication, and S is the
operator of right multiplication. We observe that the operators S generate a free subgroup
with respect to composition. If we fix an arbitrary occurrence of a proper subterm U in
the term W, then W can be represented uniquely in the form:

poo g% ght K> 0
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for some terms 03’0'....,0'“_4 and numbers LO’L1""’LK-46 {0,4}, In particular, any regular term

W of nonzero length can be represented uniquely in the form

i by x4
m,Sn‘,Sﬂb1 - SM_4 .

Henceforth, if we do not say otherwise, we assume that K> (0, n>0, L =2: V.t
possibly with indices, are elements of the set {0 4} and u,SL'-:u, Suppose that UJ"‘J},S: S::
lq ik—1 0 *
S"“e We put U= 155 .S - .
R. Wepu Wo= W, x«-zsz -4 Wy, (“'MX

On the set R of regular terms we define the relation ~, putting W~V if (Y= l.bm for a

suitable M. Obviously, ~ is an equivalence relation on R .

On every equivalence class with respect to ~ we define an order % . Suppose that W~V
and
o pb4 Lx-{ {0 44 de-1
w=a5,5"... r=295 o' .S
ﬂo L' ck..f, 1‘/0 31 L;-
We put WLV if (U b{,..., ‘- R\ éo,&'---,&)with respect to lexicographic order. From the

definitions it follows that the equivalence classes with respect to &~ are finite and the
relation & is a linear order on every class. Comsequently, in every equivalence class there

is a unique minimal element, which we shall call the minimal term.

n
We put [" =1, r =(2-%: .'Pn3 , where Pr is the W-th prime number, and distinguish
the subset R of R by putting WE R* if and only if W is the minimal term and fwy = "
for some N,. From the definitions it follows immediately that R‘ is a recursive set of

terms.
We can now state the main result in the case of groupoids.

THEOREM 1. The quasivariety generated by an absolutely free groupoid of countable rank

has the following recursive independent basis of quasiidentities (quantifiers are omitted):
= . - ) — - .
KO—,- T .’I‘,o % lé/o X %,
—
(=ge =gy emys

£—>\I='b;

x
it
B
B
I

K‘——»m-m,=m—>% =%
K= WRRy, By )= 2 =W R B, V=T,

where (L€ R* Q(u,,)=~m and W is the subterm of W of length P

2. Auxiliary Assertions

Let G— be an arbitrary groupoid.
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LEMMA 1. 1If V-V(&.mzo,...,.ﬁm_‘) is a term of nonzero length and the equation (Y=
is solvable in G‘. then there is a regular term (L of nonzero length such that the equation
W= is solvable in G-

Proof. We write the term (¥ in the form

bo ab k-4
5 ¢ S‘ D s y .

% 9 k1

Then for W we can take the term

10 aiy k-1
2=5"8"...9",
% 2y By

LEMMA 2. If U=V, I . )is a regular term and the equation ¥ =X is solvable
1in G, then there is a term W= w(ﬁ‘/

able in G‘ .

g )éR such that the equation W= is solv-

Proof. let pv = P’m and

0 b e
v=25'5"..5"",
B B By

Suppose that

= si.o .l:1 Lm—{
=0 %50,,---5%_4

for some elements O,,OJ Q "y € G- Then for any K& TV we have

DRI Y
Lo 4 b4 bx -1 o iy [T bm-4 ~bo br-1
s, S =05 S°...9
alu- Oy 0’x-4"'S°' S%" 'Sa«-f

Consequently, the equation U’ = & is solvable in G. The assertion of the lemma now follows
from the definition of the set R

For any term W, where
Iq bk-
W= a.»S .
Sz - . 3‘-4 ,
we put w°- L, uf = and

nA4 v v ‘w(-
W=t ot gt
Tk Tnatq Tirv+)K=4
Obviously, u,h'e R for all h .

LEMMA 3. If the equation =% is solvable in G, where V= e, L,,... ’T/"‘A is a term

of nonzero length, then there is a term (L€ Q. such that the equation W= is solvable

in G—.

Proof. Suppose that the equation Y = & 1s solvable in G— . Then, by Lemma 1, there
is a regular term W of length K such that the equation W =2 is solvable in G . Obviously,
the equation w"’= X 1is then solvable for any W. We choose a number S such that K\P’s and
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b
put = r’s/K . Then 8(1.0“’\ - P‘S and by Lemma 2 there is a term W such that W& R and
the equation W™ X d1s solvable in G . This proves the lemma.

A function V(&) is called a translation if there is a regular term W R,&, ,...,ﬁm_{)
(possibly of zero length) such that Ty = W(-’P/,O,/o,%, ...,O/MM) for some 010,0/ N 7 P G.

LEMMA 4 (A. I. Malt'tsev [3]). Let 9-(}0'1«( ,B) be a principal congruence on a groupoid

G' , F°= {(d«.d,\-d; GG'}, r"‘ (= {(T(O),T(d/n . {C.d:}= {w,%}, -T(:r,) is a translation} , I'“'”= ™ .
Then O = {M™:m=04,2,..].

From now on, F isan absolutely free groupoid of countable rank with free generators

a,=a_,1, olo,a,{,...; W) is the set of all proper subwords of the word C.
COROLLARY 1. Let (L€ u)(&), 0= con(0,b). Then
1) 1f M WE)y{e], then B ={c];
2) 1f (¢,d)€ 8, then loy= Ud)modU(h).

Proof. Part 1) follows immediately from Lemma 4. It is sufficient to prove part 2)
for (c,d,)er . In this case, by Lemma 4, there is a translation T(.’M such that {C,d,}=

{T(a‘),T(‘))} . Hence l(T(B“=€(T(a,)H- 6(5), as required.

LEMMA S5 (A. I. Mal'tsev [1]). A groupoid G is locally absolutely free if and only if

the following quasiidentities are true in it:

K, =22 = %%—* .’(b=%'.

K;:—*xon: =%Lj—-m-%;

K, = fae,..2 Y=o~ ?nz,

where-s-is a term of nonzerc length.

In particular, the class of locally absolutely free groupoids is a quasivariety.

LA 6. Let L€ W), 0=conla,b)e ConF. 1f (lm%.pﬂé ©, then (h,,P),(%,t\e 0,
that is, F/9k= KO& K;,

Proof. Suppose that (h%, Pt)é ®; then by Lemma 4, there is a number 9 such that G’L%a
Pt)el's. We proceed by induction on S.

If $=0, then h%/=[:>'b and, by Lemma 5, h'=P%=t

Suppose that S =41; then ( y P't)er . Hence there is a tramslation [(®) such that
h«%= T((:)‘ P‘t =T() , where {O,d, = {G/,B}. Obviously, T(.l‘/) is not the identity, so it can
be represented in the form -‘:(@)Tz or TT(T/) » where T{(&) is a translation, and T € F. Sup-
pose that T'(:m=T1(mT . Then =T4(0WZ.’ Pt=T;d~T1 and, by Lemma 5, PU=-E(0),%=TZ,_ P=T(((D
and t=T¢. , that is, z(h,,P) € 9, (%, \e@ . The case when T(l‘/) =T2T{a‘,) is considered similarly.

St
Suppose that §> () and (h?, Pt)&r . Hence, either there are elements UJ,U'GF such that
h,%rsu,[yrpt s or there is an element (€ {Q,,O,,o’m} such that h,%l_scht In the first
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case, by the inductive hypothesis, (h w) (% ), (W, P) (v, $)e 8. Hence, (h.,p)é@ and - %fb)ee
In the second case, by Corollary 1, (=(,, that is, ra,r % . But, by Lemma 4, a,ru, is
possible only if W = 5 Consequently, rs ‘6]_(1,{-% Pt » that is, h%rs-1pt » and by
the inductive hypothesis (h,,P),(%,'b)e ® . This proves the lemma.

Suppose that B € (o F. we say that an element C€ I 1s © -incontractible if for any
d., of the class 09 we have &c\‘ t(d,)

LEMMA 7. Let 0= oon((L. sbo SM 5"‘") If ¢ is B —-incontractible, CE€ U)(d«) and
(C, d)e 9 » then there are numbers $ and fLsuch that $< K and

- bo by [P
c (LS%SM ... Sm

1 $-4'
= A(Qb® clsH bt ¢ bp PVENTS
d=c s,  s*'3
O.:S Qg4 oy mD."Sws—i).

Proof. Suppose that (& u)(d,). Then d, can be represented in the form

S}D Sh . SJ€-4
Cg

U1’

0 V41
on the length of the word C.

for some C..C, .., .,C«e_‘& F, }0'}1""'}8-4' We carry out the proof of the lemma by induction

Suppose that 8(0\= 0. Then, by Corollary 1, we obtain C= (. Thus,

_ to cdt fe-1
CI OJSOJ sco 301 LY sce .
But
wast e ., o*
Wy O, Oy
Consequently,
i o4 bkt Jo ot jet
S S ‘ e st- GOJSCQSQ1 SC@-

By Lemma 6 and Corollary ! we obtain O/r= (A hP-b for PE'U?mK that is,

d=aSps ... o0 V:

Qg -1
where N, = (,/K,
Suppose that &¢)>0. Then C=¢/ GZ. d, d d and, by Lemma 6, (0 d«\ (c,d,‘)&@
Since (€ u.)(d,), we have €& u)(d,) U{d,} or C€ WG_Lf U {d, } Suppose that (‘,Eu)(d, U {d, } .

Then c éu)(d.\ and, by the inductive hypothesis, there are numbers § and N such that S<K
and
S bs—4

a' aqoac G/‘_"
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d =

oy =1 abo bg-d \P
= S Sa e S S S ).

Q-4 Ovg Q-4

Since C is a subword of the word d; (possibly (= d,‘) and 0-040 we have 0 = a, and

C'—(‘, SL‘ By Corollary 1, we obtaln d, Q, and d, d,sbs Consequently,
g g

bg _qbo l's 4 obs
¢ =¢S5, =05 g . Sy
b k-1 [ b,c,u b1 bo [P0
5° g's .9 S
d=c( ...SM_S . Saw) = U0 8, 5 %).
The case (€ U)(dxz)U{d,J is considered similarly.

LEMMA 8. The quasivariety of locally absolutely free groupoids is generated by any

locally absolutely free groupoid of it, and so it is minimal.

The proof is obvious, since by [4] an absolutely free groupoid of countable rank can

be embedded in an absolutely free groupoid of rank 1.

3. Proof of Theorem 1

Let
= (KKK K U {KueRY,

By Lemma 8 the quasivariety of locally absolutely free groupoids is generated by an abso-
lutely free groupoid of countable rank and, by Lemma 5, all the quasiidentities of the set
Z are true on it. The fact that Z. is recursive follows from the definition of the set
R* . We show that 2, is a basis of the quasiidentities of the given quasivariety, that is,
if all the quasiidentities of G are true on 2., then G-is a locally absolutely free group-
oid. Let (‘7{ be the subgroupoid of G- generated by the elements d:= dl_{,dlo'...,d/‘_‘- From the

set of generators we reject those elements that can be expressed termwise in terms of others.

Let d, d, d’!uf be the remaining reduced system of generators of G-’ . We need to prove
that the equallty $(dad.« . , %(dﬁdto,. .,d )Where £(fl‘, 0" L \ %(1'4,1‘/0,...,3m_4) are
terms, possibly with flCtlthUS varlables, is true if and only 1f£ and coincide graph-

ically. We shall carry out induction on the minimal length of the words -Fand %,

Suppose that &?/) = ( , that is, % d5-4 for some S<ih., Since d, cannot be ex-
Pressed termwise in terms of the other generators, d _ does not occur flctltiously in the
word L If {(I) ={, then £1s d, . We therefore suppose that um > (. Then, by Lemma
3, there is a term W€ R of length (” such that the equation W = is solvable in G-
But the quasiidentity G'I is true in Ku,, so the equation u.—x is solvable in it, where

¢
W is a subterm of W of length r’ i Also, by Lemma 2, there is a term (Y of length -

such that (€ R and the equation U L is solvable in Cy But the quasiidentity G— is
true on KU . Hence the equation 0’ =0 is solvable in G‘ ,» Where U’G R and &(U’} = N_z.

Thus, applying Lemma 2 successively and taking account of the truth of the quasiidentities

115



*
KW’ WER" , we find that ome of the equatioms 1!53 =L or a‘,&, T is solvable in G.
Now, taking the quasiidentities K and KI into account, we see that G- is trivial. Con-

sequently, {: and %c01nc1de grapthally.

Suppose that mn(?,(&;\,((%f\\ > 0. Then, since the quasiidentities Ko and K; are true,

the relation £_= % splits into relations with smaller lengths.

To complete the proof of Theorem 1 we need to show that Z is an 1independent basis of
quasiidentities. We recall that a system of quasiidentities 2 is said to be independent if
for any quasiidentity KGZ there is a groupoid G- such that all the quasiidentities of the
set Z\{K} are true in &, while K is false.

We carry out the proof as follows: with each quasiidentity K of 2. we associate a
congruence § on an absolutely free groupoid F of countable rank and show that all the quasi-

identities of 2\{K} are true on F/e, while K 1is false.

1. Let K= K 9 on(aov, a, ay. Obv:Lously,F/e is false on K We show that the
quasiidentities a) K and b) K K K are true on F/O for any u,eR

a) Suppose that (C Co,dad,o\ée . Then, by Lemma 4, there is a number fW such that Cﬁormd,dlo
We proceed by induction on m.

If M =(, then cc°=d,d,° and, by Lemma 5, c°=n d«o .
If p=4{ there is a translation |(®) such that {Cco,d«d/o}={T(040ﬂ,T(0;oQ,)} . If T(d‘,)

is the identity, then {(‘/(', od }= {O.(L o Q,} and, by Lemma 5, C°= d,o . Suppose that T(-T,) is

not the identity; then T(.‘D) can be represented in the form T(\'C)T or T T(.‘I.‘.) » where T(il‘,)

is a translation, and | € F. In the first case we obtain 0 d'o_Tg and in the second

case { d,k {T(Q,Q,) T(Q, Q,)} , that is, Qd,

Suppose that CC rmﬂd,d,w m > (0. This means that there are elements E) %DE F such
that CC r"‘{56 rd,d, Then, by the inductive hypothesis, (00,60\,(60,(1/0\ €0. Consequently,
(codl,) € 0.

b) Since C and CC{ (¢ A Uv(Q,Co, .

if we show that elements comparable with respect to 9 have the same lengths. Obviously,
it is sufficient to consider the case (C,d.)er . If this is so, then {C,d.}_':{T(Q,O./\,T(a,OQA}

for a suitable translation |(®) . From this it is clear that %(C)= (/(d{\ .

.)) have different lengths, the assertion will be proved

2) The case K= K' , 8 =coniao a,a,) is considered similarly.

3) Let K= K . 9 =con(a, Q,{L) Obviously, the quasiidentity K is false on F/@ and,
by Lemma 6, K and K are true. We show that the quasiidentities K4 R Kw are also true
for any WE R

Suppose that (C, 0 CY€ B. clearly, the element C can be assumed to be & -incontract-—
ible. Then, by Lemma 7, we obtain C=(Q,(L= Q,(S‘) for some M > 0. Hence, by Lemma 5,

0= O,O. This is impossible. Hence, (C ¢ C\ ?‘ 0.
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Suppose that Ceuz(c CO,..., } we R | where the element C is B —incontractible.
)—w(s )" Hence, W(C,C,....C, _)=

Then, by Lemma 7, we obtain ( = O, u.,(C .

9 o’ -4
/
QLSQ) 'H@O,, Thus, the identities K4 , K“Iare true on F/e for all We R
0
4) The case K= K’ 9 =00YL(O.,,Q/Q/) is considered similarly.
5) Let K= K 6 (’JOH-(Q/,U.KO/Q/.... ﬂ By Corollary 1, any word not equal to Q and

of length less than fvn' is incomparable w1th e with respect respect to . Consequently,
the quasiidentity Kw is false on F/@ The truth of the quasiidentities KO and K,O follows
from Lemma 6. We put

)= a90g  gitet

) ;QJP, (l/o al1 a’rh:4

uAQ’! Q’O k]

Suppose that C is a ® —-incontractible element of (‘,9000. Then, by Lemma 7, there are
numbers $ >0 and M 2 0 such that

Lo Lq .bmrf
c=ad°%", . 5" |
Op Oy Cm-s

T CA A U A

m Qp -1 Oy T *

By Lemma 5 and Corollary 1, we obtain (= (Lm for m+0, -(.‘,=0,,F - for mv= 0 and &CC)-

e(ﬁ)*“[—&%(fﬂ()d[") But the last equality is impossible. Hence, ((‘, C(‘.)é ©. similarly we
obtain (C,C G)% 9 Consequently, the quasiidentities K and K1 are true on F/e . To com-

-4
plete the proof of Theorem 1 it remains to show that the quas11dent1t1es KU with ly+ w
are true. Suppose that for some elements Co, I .Cr 1 ceF, and term W(Z, T’O""" - DER
we have (C,V(C,Co, el

4\\6 B. we may assume that 0 is 9 incontractible. Then, by Lemma
3
7, there are numbers 3> 0 and M >0 such that

¢ = O./Sbo S.bq . Si‘mﬂ

Am-4
bm Lr—4 bo S""""
HCLIPR IR CHRTR- Nl et Ml )__
¥
By Lemma 5 and Corollary 1 we obtain f,(ca/)— 0« %4(" —4. Since U’GR we have (;(U’((‘. Co, vy
p 43 —Q(C)-!-P'K At the csame time, by Corecllary 1, we have uU’LC,Q . 3\— ‘t((‘,)m()d.("

Consequently K.
»
Suppose that K = N. Then 8=4 and ¥ = u,m. But WUVER so = W . This con-

tradicts our choice of the term U.

Suppose that K > fL. Then 5=VK/P"L and the subword UI(Q,CO,....C ) of the word

A
o,...,cr,_4) has the form
K

ve,e

c(sf;jn.. . s”"" g gy

Qe -~ %" Q’m.-4 '

)
where 54 = P&—« /P’n . Obviously, 14 (C,cow sy c"x-«" ) Consequently, quasiidentities of
the type KU’ with U #¥ W are true on F/e .

We have thus proved Theorem 1.

117



4. The General Case

Let G = {QD,&P“...,QJ be a finite functional signature, and suppose that \-PL, 0l <
m are (H,L+4)-ary operations.

We define the set R of regular terms of the signature G by induction as follows:
1) ReR,

2) if the term WXL ,,,,‘.’2(_‘)6 R then
us%—cw-( YeR, 0O<siem, O<j<n.
V= Wl Y )ER, Osiem, O<pen,,
where ld/‘-=uh %5= e+8 for S<J , and %S “S{ for s)é . From the definition of R

it follows that any regular term ([, of nonzero length can be represented in the form

vy

oot vt . ek
“"Si,oslb- S. bebcm, Ospen,, S< K,

for some K>0 . For any WE R we put u, T,S“S. ...Su ! sh where W= 33“ S“ S“-4 s

Ly b bi-4
and u,°‘='= W, u.;m— (u'n. 4\4 for >0. Wwe assume that W~ U if there is a number S such
that U= Lbs. Obviously, o is an equivalence relation on R . On each equivalence class
with respect to & we define an order £ . Let

to 3’4 Fw=4 S&o l(—4
UJ=£5 S'..-S' L) 'I.-. ,UJNLY'-
Nz bk-4 Lu-4

We put W&V if (LO'}O’LP}/P""LK-4‘&/K-1)s(b;‘ko’ui'&i“”'L""}:'D with respect to lexicographic
order. From the definitions it follows that in each equivalence class there is a unique
minimal element, which we shall call the minimal term. We recall that the length Loy

of a term W is the number of symbols of operations that occur in writing the term W, . From

[ * :
the set R of all regular terms we pick out a subset R s putting u,GR if and only if W

is the minimal teym and L(u,) (" for some v . We now state the main result.

THEOREM. The quasivariety generated by an absolutely free algebra of countable rank

and signature G has minimally the following recursive independent basis of quasiidentities:
bf - ettt i s
KO = WL(QO‘I‘,P.__ "P’m"\) QL(%O’%“”’%WB ‘T‘j %11 0\&&“\’“:
‘—L - — . s ' ,
K q( o 1"‘"’1"&'3_“"4' ‘n_%s Oé&éh’b,
»a_. _ e 0< e
BTy 1 L)) qﬁ(%”%"""%“i) R=yi O<jsm;
K

® ’
where WeR" , U= f"n’ for some N, and W is a subterm of the term WU of length [

/ —
wv ul(xsm’oq..-\=\r/ —.u/(ﬂgx/o,...) —:D
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The proof is completely analogous to that of Theorem 1, except that we need to intro-

duce the following obvious additions.

1. With the quasiidentity Kl'fr there is associated the congruence 0 = cony, (0/ Q./
0«/ \ KQ(Ov et 9 »GCOI'\'F‘ , where F‘ is an absolutely free algebra of countable rank and

51gnature G with generators (4, (1, Q,

b
2. If @ is the congruence associated with the quasu_dentlty K J or Kl or Kw, then

we need to verify additionally that the quasiidentities K% are true on F/@
We note that this result for unars was obtained by Kartashov in [5].

In conclusion, the author would like to express his deep gratitude to V. A. Gorbunov

and A. D. Bol'bot for their continual interest in the work and for useful discussions.
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ONE SUPERINTUITIONISTIC CALCULUS OF PROPOSITIONS

D. P. Skvortsov UDC 517.12

The construction of an undecidable superintuitionistic calculus of propositions in
Popov's article in [1] is based on inference modeling in a system of Post productions. To
this end, one assigns to a production system ﬂ with an undecidable problem of inference
from an initial word VO (in an alphabet @ ) a superintuitionistic calculus Z“ =E(H‘V}
and to an arbitrary word Y in the alphabet @ and a set of numbers e’-_—(L{;...,%) of length
132 (where L“...,LLE {4,..,,"‘.} and M is the number of productions in the system [1) some

formula U*(n. VO’ V, 9)

The main theorem [1, p. 698, Theorem 6.1] says:
S2GAATIKGARA DR

the word V can be inferred in the production system {| fromthe word V (%)
&> | -with a concluding sequence (n) . e .(rn of
4

applying productions in the inference

(more exactly, this is asserted not for all V but only for words V in some decidable set

lm,e; (defined in [1]1, p. 683) containing the set of words satisfying (*) (see [1, p. 671,
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