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An algebra is said to be locally absolutely free if every finitely generated subalgebra 

of it is absolutely free. A. I. Mal'tsev [I] proved that the class of all locally absolutely 

free algebras with an adjoined unit algebra forms a quasivariety that does not have a finite 

basis of quasiidentities. It is not difficult to see that this quasivariety is generated by 

any absolutely free algebra, and so it is minimal. 

In this paper we prove that the quasivariety generated by an absolutely free algebra of 

finite signature has a recursive independent basis of quasiidentities. This basis can be 

written out explicitly modulo a certain equivalence relation on the set of terms. The exact 

statement of the theorem in the case of groupoids is given in Sec. i, and in the general 

case in Sec. 4. 

The terminology corresponds to that of [2, 3]. 

1. Quasiidentities of an Absolutely Free Groupoid: Definitions and Statement 

of the Theorem 

We fix a countable set of variables ~ : {$s~ 0 .... ] and denote by ~, ~, possibly with 
M 

indices, the elements of this set. In the usual way we define terms in the variables from 

the set X (see [2]). The length ~ of the term ~ is the number of the symbols of opera- 

tions that occur in writing the term ~. 

By induction we define the set ~ of regular terms, as follows: 

i) m. R, 

2) if bb~R ,~C~)n- K , then ~&~'4" ~' ~'~-4 ~ R. 

Obviously, the subterm of given nonzero length of a regular term is defined uniquely and is 

itself a regular term. 

For any terms Lb , ~ we denote by ~S~ and ~S 4 respectively the terms ff.~ and U~.L~ 
' m , 

0 operator multiplication, and that is, on the set of all terms, $0~ is the of left is the 

operator of right multiplication. We observe that the operators SL generate a free subgroup 

with respect to composition. If we fix an arbitrary occurrence of a proper subterm ~ in 

the term ~, then ~ can be represented uniquely in the form: 

~$'0 4"'" $'~-4' K>0, 
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' ' i%_~e f o r  some terms (~Oif~1.....U'~,_l and numbers liO,{i1,.,. , {~4}. I n  p a r t i c u l a r ,  any r e g u l a r  te rm 

of nonzero length can be represented uniquely in the form 

{,~ . S i''-~ 

Henceforth, if we do not say otherwise, we assume that K> O, ~>0, ~'~I ~ , ~ , 

possibly with indices, are elements of the set {014 ], and ~$~I.~. Suppose that ~--~05~ ~ 

. . . . . . .  - ,  _ _  S:~_~ $~_~, ~ ,~, ( ~ _ ~  

On the set R of regular terms we define the relations, putting ~if ~L5 for a 

suitable D1,. Obviously, ~ is an equivalence relation on R . 

and 

On every equivalence class with respect to ~ we define an order ~ . Suppose that ~ ~ 

~0 a~1 ' " 

• "" ~ - I ~  ' ' '  ~ I - I "  

put ~d~ ~ if [b0,b4 .... 'bK-~_ ~ (i0'i~_ .... ,~)with respect to lexicographic order. From the We 

definitions it follows that the equivalence classes with respect to e~are finite and the 

relation ~ is a linear order on every class. Consequently, in every equivalence class there 

is a unique minimal element, which we shall call the minimal term. 

= ...p~. where p~is the ~-thprime number, and distinguish We put ~0 ~, ~ =(2"~'. 

the subset ~ of ~ by putting ~ ~* if and only if ~ is the minimal term and ~) = V~ 

for some Pb. From the definitions it follows immediately that ~" is a recursive set of 

terms. 

We can now state the main result in the case of groupoids. 

THEOREM I. The quasivariety generated by an absolutely free groupoid of countable rank 

has the following recursive independent basis of quasiidentities (quantifiers are omitted): 

l 

I 

t~6 ~ ~[tb)=%, and 5J is the subterm of ~of length ~n~4 

Auxiliary Assertions 

Let ~ be an arbitrary groupoid. 

where 

2. 

iii 



LEMMA I. If ~==~,~0,...,~.~.#) is a term of nonzero length and the equation ~-~ 

is solvable in ~, then there is a regular term Lbof nonzero length such that the equation 

~=~ is solvable in ~. 

Proof. We write the term ~ in the form 

%" '  ~-I" 

Then for Lb we can take the term 

~o ~h S~-~ 
~=-~o~ '' ' ~.~' 

LEMMA 2. If ~- ~'~'0' .... ~_t ) ~s a regular term and the equation ~ =~is solvable 

in G , then there is a term ~-~'~0' .... ~.~eR ~ such that the equation ~=~is solv- 

able in ~. 

Proof. Let ~ = ~ and 

Suppose that 

- 

for some elements ~Cb 0 . . . .  ,(~I~ITb_,E C-. Then for any K~we have 

~,o,~.i S;'~-~ = ,,~o ^~ ~-~ . S~.~-~ ~o . $~-~ 
" . .  

Consequently, the equation ~= ~is solvable in ~. The assertion of the lemma now follows 

from the definition of the set R ~ 

For any term ~, where 

we put t~ 0-~, Lb 4~-~ and 

• '  ' -~'K.-~ ~ 

Obviously, ~E ~ for all ~b • 

LEMMA 3. If the equation ~"~ is solvable in ~, where ~= t~(~,~ 0 .... ~mr) is a term 

of nonzero length, then there is a term UJ~ ~ such that the equation Lb-~ is solvable 

in ~. 

Proof. Suppose that the equation ~ == ~ is solvable in ~ . Then, by Lemma i, there 

is a regular term 5~ of length K such that the equation tO=~ is solvable in ~ . Obviously, 

the equation tO ~= 05 is then solvable for any YD. We choose a number S such that KI~$ and 
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put ~--'--F$/K. Then ~(~--~$ and by Lemma 2 there is a term ~b suchthat ~e R~and 
the equation ~ m ~ is solvable in ~. This proves the lemma. 

A function T(~ is called a translation if there is a regular term U~,~ 0 .... ,~h~  
(possibly of zero length) such that T(~)'~,~0,~, ...,0~.~ for some OUO, OJ4,...,{~m_4~ &. 

LEMMA 4 (A. I. Malt'tsev [3]). Let @~'C~)~(~,~) be a principal congruence on a groupoid 

F'- F= : is a translation}, F~+(=~0F. 
Then ~ = U [Fro" : I'I~= 0,~, ~,...~. 

From now on, ~ is an absolutely free groupoid of countable rank with free generators 

~=0~.~ %,~,...~ UJ(~) is the set of all proper subwords of the word g. 

COROLLARY i. Let ~(~, ~=00~(~,~. Then 

i) if ~ ~(6~ U {~, then ~----- {~} ; 

2) if (~,~ ~, then ~)~ £ ( ~ ) ~ ( ~ ) .  

Proof. Part i) follows immediately from Lemma 4. It is sufficient to prove part 2) 

for (6,~ ~ . In this case, by Lemma 4, there is a translation T(~) such that {~,~}~ 

Hence ~(~=~[T(~)~ ~(~), as required. 

LEMMA 5 (A. I. Mal'tsev [i]). A groupoid ~is locally absolutely free if and only if 

the following quasiidentities are true in it: 

I 

where ~ is a term of nonzero length. 

In particular, the class of locally absolutely free groupoids is a quasivariety. 

LEMM 6. Let CD~(~,~=00t~(0~IE~DF. If (~,p~G ~, then C~p~,C~e ~ , 
I 

that is, ~/~ ~ ~0~ ~0' 

Proof. Suppose that (~, ~& ~; then by Lemma 4, there is a number 5 such that <~q 

p~[s. We proceed by induction on $. 

If $ ~ 0, then ~ p ~  and, by Lemma 5, k= p. ~-~. 

Suppose that 5=~w;h $~en [~ p~6~ . Hence there is a translation T(~ such that 

~= T(£)~---T(~ , e ~0,~f = {~,~}. Obviously, ~[~ is not the identity, so it can 

be represented in the form ~(~)T or TT[~ , where T(~) is a translation, and ~e ~. Sup- 

pose that ](~)=7(:]~ • Then ~=](~7. pt= &T, and, by Lepta 5, p=T,(4  
1 ~ ~,  I ~. I 0 ~ "  

and ~=Tz, that is, ~,p) 6 O, (0~$~'~60. The case when i s  considered similarly. 

Suppose that S>0and (~p~)~[s+i. Hence, either there are elements ~,~ such that 

~[g~p~ , or there is an element 6~[~'~0""] such that k~$6[p~. In the first 
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case, by the inductive hypothesis, (~,L&),(~,~),(~,p),(~,~)~ e. Hence, C~,p)(~ and "(@,t)~e. 
In the second case, by Corollary i, G---0~, that is, K~F~Fpt But, by Lemma 4, (~FL~ is 
possible only if L$ = ~. Consequently, ~s4~r~F~ ~- ~, that is, ~s-~, and by 

the inductive hypothesis ~,p),(~)e e. ~his proves the lemma. 

Suppose that ~ ~ .  We say that an element ¢~ F is ~-incontractible if for any 

of the class C6 wehave ~¢~(~). 
~=~Ot~(0~,0~$~7~ ~ ,.. ~'4 ~. If g is ~-incontractible, ¢~ m(~) and LENMA 7. Let 

4 CI,~,- 4 
(C,~]e ~ , then there are numbers $ and ~such that S < K and 

• " " 0 . , £ _ 4  ' 

Proof. Suppose that ~ 6 L L ) ( ( ~ ) -  Then ~ can be represented in the form 

c$}°$!~ . S}~-, ¢>0, 
~0 C i ' ' 0~-~' 

l • ° 

for some CO, O~,..., ¢g_4 e F; ~0'~'4 .... '#~-" We carry out the proof of the lemma by induction 

on  t h e  l e n g t h  o f  t h e  w o r d  C,. 

Suppose that ~(~----'0. Then, by Corollary I, we obtain C=~. Thus, 

: ~ B o u S e ,  o t ' "  ~ - ~ '  

But 

0 " "  " O J I L - 4 '  

Consequently, 

• ° 

° , . .  

By Lemma 6 and Corollary 1 we obtain [l,,r== ~ , b p ~ %  for p , ~  that i s ,  

• ' $~-4 

• . . ~K_~ 

~here ~ = ~,/R. 

> ~ e e 1 i Suppose that ~ )  O. ~en ~ ~ ,  ~--~ ~ and, by ~.e=a 6, ( % ~ , C % ~ 3  ~ 0 • 

Since CE~(~, we have '~LO(~,~ U{~q] or ~'~o~f U {~,~" Suppose that ~,LOC~4~ U {~,~. 
Then 05~ ~(~4~ and, by the inductive hypothesis, there are numbers $ and ~ such that $ ( K 

and 

' s;L's': s ~4- ~ ~4"" %~ ' 

114 



C'4 k~°'&D°'$)4 "' °~-4 ~ o '  - ~'$-~"" 

Since e is a subword of the word (possibly ~----- ) and ~--%~ we have ~ -- % and 

~=~:. By Corollary i, we obtain ~=0~& and ~_¢~:S&. Consequently, 

< ' " ' ~$-4 ) 

¢ -  "s #'-' '" '" '  -~' o.s'"-o.,-CO, o"" o.,,-4' o,G = 6~a.~,4"'" o.K-C~" "-%" 

The case 0~ £0(~1U{~,t is considered similarly. 

LEMMA 8. The quasivariety of locally absolutely free groupoids is generated by any 

locally absolutely free groupoid of it, and so it is minimal. 

The proof is obvious, since by [4] an absolutely free groupoid of countable rank can 

be embedded in an absolutely free groupoid of rank i. 

3. Proof of Theorem I 

Let 

! 

By Lemma 8 the quasivariety of locally absolutely free groupoids is generated by. an abso- 

lutely free groupoid of countable rank and, by Lemma 5, all the quasiidentities of the set 

are true on it. The fact that ~ is recursive follows from the definition of the set 

~ . We show that ~ is a basis of the quasiidentities of the given quasivariety, that is, 

if all the quasiidentities of ~ are true onE, then ~is a locally absolutely free group- 

oid. Let d be the subgroupoid of ~ generated by the elements ~= ¢i,~0,...,~_~. From the 

set of generators we reject those elements that can be expressed termwise in terms of others. 

Let ~'~0'"" ,~_~ be the remaining reduced system of generators of G I . We need to prove 

that the equality ~(~'~0 .... '~,%-~-----t~0 ..... ~ where $(~,~0,...,~,~_¢~ ~,~0,...,~,~_4~ are 

terms, possibly with fictitious variables, is true if and only if ~ and t coincide graph- 

ically. We shall carry out induction on the minimal length of the words ~ and ~ . 

Suppose that ~t ) = 0 • that is, ~ = ~6-4 for some $~ ~L. Since ~$-4 cannot be ex- 

pressed termwise in terms of the other generators, ~&-4 does not occur fictitiously in the 

word $. If ~(~ = 0 , then ~ is ~$_~ We therefore suppose that ~(~I > 0. Then, by Latona 

3, there is a term ~6 ~ ~ of length [~ such that the equation ~-~ is solvable in ~' . 

But the quasiidentity ~i is true in ~U,' so the equation ~'~---~ is solvable in it, where 

~' is a subterm of [b of length F Also, by Lemma 2, there is a term ~ of length 
li.-4 )~-4 

such that ~ ~ and the equation J-----~ is solvable in ~' But the quasiidentity ~' is 

true on ~ Hence the equation ~ -----e is solvable in , where ~'& ~ and ~(~ = ~-Z 

Thus, applying Lemma 2 successively and taking account of the truth of the quasiidentities 
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• we find that one of the equations ~0 = ~ or ~0 ~ = ~ is solvable in . 

Now, taking the quasiidentities ~I and ~s into account, we see that ~t is trivial. Con- 

sequently, ~ and ~ coincide graphically. 

• and are true, Suppose that ~I~)~( ~ 0 Then, since the quasiidentities ~0 0 

the relation $= ~ splits into relations with smaller lengths. 

To complete the proof of Theorem 1 we need to show that ~ is an independent basis of 

quasiidentities. We recall that a system of quasiidentities ~ is said to be independent if 

for any quasiidentity ~-~. there is a groupoid ~ such that all the quasiidentities of the 

set ~- {KI are true in ~, while K is false. 

We carry out the proof as follows: with each quasiidentity ~ of ~ we associate a 

congruence ~ on an absolutely free groupoid ~ of countable rank and show that all the quasi- 

identities of ~,'-{~ are true on ~/~, while ~ is false. 

I. Let K~-~0, ~=~0~(~i~ 0 0J~. Obviously,~/~ is false on K 0 We show that the 
I # 

quasiidentities a) ~0 andb) K~, ~4~ ~ are true on ~/~ for any ~R'. 

a) Suppose that (~0' ~ . Then, by Lemma 4, there is a number ~ such that ~0 ' 

We proceed by induction on rr~. 

If r11~== 0, then ~0~-~0 and, by Lermna 5, ~0 == ~0 " 

If ~=~ there is a translation ~(~ such that {C~0,~-{~0~,~(0~00J~ ~ If ~(~ 

is the identity, then {~D,~01----{0~,0j00jl and, by Lemma 5, ~0 ~ ~0" Suppose that ~(~ is 

not the identity; then ~ can be represented in the form ~(~2or ~ ~i(~, whereT(~ 

is a translation, and ~ ~. In the first case we obtain ~0 =~0-~ and in the second 

case {~0,~0~-IT(0~0j~)~(~00~ ] , that is, ~0~ 0. 

Suppose that ~0~+4~0 ~ ~> 0. This means that there are elements ~, ~0E ~ such 

that ~~0[~0 . Then, by the inductive hypothesis, (~0,~0~ , (~0,~0 ~ ~ ~. Consequently, 

b) Since ~ and ~0(~0~,~i~,~0 .... ~ have different lengths, the assertion will be proved 

if we show that elements comparable with respect to ~ have the same lengths. Obviously, 

it is sufficient to consider the case (~,~6~ If this is so, then {~,~I= {~(0~0~,~(0~00~] 

for a suitable translation ~(~ . From this it is clear that ~ = ~(&~, 

~ = ~0~0~,0~0~0~ is considered similarly. 2) The case ~---KO, 

3) Let ~=~ , ~ ~-~0~(~,0~0~ . Obviously, the quasiidentity K~ is false on ~/~ and, 

K' ~ K are also true by Lemma 6, ~0 and 0 are true. We show that the quasiidentities K4 ' 

for any Lb~ ~*. 

Suppose that ( C , ~ o C ~  E ~ .  Clearly• the element C can be assumed to be ~-incontract- 

ible. Then, by Lemma 7, we obtain ~=~,C.~-~($~)~for some ~> 0. Hence• by Lemma 5, 
. _ u ~O- 

~=0J 0. This is impossible. Hence, (C,~0C~ ~ @, 
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Suppose that GOUx(~,CO,...,C~_~, L6e ~, where the element C is O-incontractible. 

we ' Then, by eemma 7, obtain ~----~, ~(~ , .... ~ .)~-~i~ 4 1 ~ . Hence, ~(~, 0' .... ~.4-~ =" 
C~L~rv. I/! v ~# rr~-~ ~'0 r- / t~ 

4~0~, Thus, the identities N~ , ~ are true on rf~ for all UaC= R. ~ 

4) The case .~-KI~ ~ ~-~0~(0~,~00~ ~ is considered similarly. 

5) Let ~=~ ,~-~-~O~-~O~,O~000..,~n_4~_ By Corollary I, any word not equal to ~ and 

of length less than ~ is incomparable with ~ with respect respect to ~. Consequently, 

KI~ F / ~  ~ follows the quasiidentity is false on . The truth of the quasiidentities K 0 and ~0 

from Lemma 6. We put 
, , • 

o = o,S °S • . 

''"' ~ 0"0 0"4 ' " ~P'~-4 

Suppose that ~ is a 0 - i n c o n t r a c t i b l e  element of ~C,C, o . Then, by Lemma 7, there are 

numbers ~ >0 and Fr~ ~ 0 such that 

4 '  " ' 0~-4 ' 

• ' 0,,. r ~ -  4 ~ 0 "  o" " " O ' m - -  4 

for ~fO ~=~F~-4 for FOJ-----0 and ~C~0~- By Lemma 5 and Corollary 1, we obtain ~ = (~x 4 

~(~*~~0~. But the last equality is impossible. Hence, (~)¢~0~ ~. Similarly we 
l 

obtain (~,CO~ ]~ ~. Consequently, the quasiidentities ~4 and ~4 are true on F/~. To com- 

plete the proof of Theorem 1 it remains to show that thequasiidentities ~ wi~h ~+ 

are true. Suppose that for some elements ~0~, .... e _~, CE F, and term ~(~)~0 .... '~-4 ~e R~ 

we have i~,~¢,~0,...,~.r ~E~. We may assume that ~ is @-incontractible. Then, by Lemma 

7, there are numbers $>0 and ~u>10 such that 

-(1,0~0~4 '" ' ~tru-4 ) 

6~&'~0" ' "£v~  ~ ~.~ . . . .  ~r~-4 ~ 0 " '  ~ - ~  " 

By ~emma S and Corollary ~ we obtain & C C ~ = 0 , 0 ~ % ~ - 4 .  Since ~ wehave ~t~t~,%,. . . ,  

C~_~3~ = ( ( e ~ +  r ~ .  At the ~a~e t~me, ~y Corollary l ,  ~e ha~e ~ V C ~  0, . . . .  ~ _ ~ 3 3 - - L c ~ o d ~  . 
C o n s e q u e n t l y ,  ~, ~ ~ ,  

Suppose t h a t  ~---- ~b. T h e n  S =  ~ and ~ ~- ~rt~ But ~z,O*E ~ • so O ~= ~ . This con- 

tradicts our choice of the term 0 ~. 

Suppose that F~ > ~. Then S-----~/~ and the subword ~#(~'¢0 ..... ~_4_4] of the word 

LY~'~O~ . . . .  ~ - 4  ~ has the form 

- .  S~,~.~tS % ., o. . ,_4 ) , 

where S 4 ~ - I ' _  4 /P'  . Obviously, P.,~I~"(C,,~., 0 . . . . .  ~'r,m_4- 4 ) .  Consequently, quasiidentities of 

the type ~ with • ~ ~ are true on ~/~. 

We have thus proved Theorem i. 
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4. The General Case 

Let ~ = {~0~ ~ .... ~ be a finite functional signature, and suppose that ~) 0~ ~ 

~Y~ are (~g+~)-aryoperations. 

We define the set ~ of regular terms of the signature ~ by induction as follows: 

~) me R, 
2) if the term ~b(.~,~, 0 . . . .  , ,~(_,1")~ R then 

~ =  ~I.~, ~$-" ~'~.+ll for S ~. ~ , and [~'$-~" "~.'I',-'I for $ > i From the definition of where 

it follows that any regular term L$ of nonzero length can be represented in the form 

• .  ~ _ 4  ) 

for some ~>0 • For any ~ ~ we put 

and ~0== ~' ~--- ~-A~4 for ~>0 • 

that ~Y ~ ~. Obviously, ~ is an equivalence relation on ~ . 

with respect to ¢~we define an order ~__. Let 

~=~ LobL<.. 
' ' o 

We Put 

order. 

~ ~ " "  L~-4 ~o ~o ~ "'" ~t-4 
We assume that L$ ~" ~" if there is a number ~ such 

On each equivalence class 

~DoJ0 ~. 

7 " V ' "  L' " ~ ~ if C~o,~o,~4,~ .... ,~_4,i._~ ~ ~ ~ O'~o' {'~)'"' .-4'~,-~ with respect to lexicographic 

From the definitions it follows that in each equivalence class there is a unique 

minimal element, which we shall call the minimal term. We recall that the length ~(~ 

of a term ~ is the number of symbols of operations that occur in writing the term ~. From 

the set ~ of all regular terms we pick out a subset , putting ~G if and only if 

is the minimal term and ~ ~  for some ~ . We now state the main result. 

THEOREM_. The quasivariety generated by an absolutely free a!~ebra of countable rank 

and signature ~ has minimally the following recursive independent basis of quasiidentities: 

• ' , 

I 

where ~ ~ , ~(~)= ~ for some rl~, and ~,' is a subterm of the term [~ of length g~--I " 
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The proof is completely analogous to that of Theorem ], except that we need to intro- 

duce the following obvious additions. 

I. With the quasiidentity ~!~ there is associated the congruence ~--~0~0, % ..... 

0J~), ~(0~0,0J ~ .... ~ 0~ ~) ~ ~0~ , where ~ ~ is an absolutely free algebra of countable rank and 
V O d 

signature ~ with generators 0~0J0, 0~4, . . . 
" 

2. If ~ is the congruence associated with the quasiidentity or ~ or ~ , then 
4 

additionally that the quasiidentities ~d are true on ~/~ need we to verify 

We note that this result for unars was obtained by Kartashov in [5]. 

In conclusion, the author would like to express his deep gratitude to V. A. Gorbunov 

and A. D. Bol'bot for their continual interest in the work and for useful discussions. 
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ONE SUPERINTUITIONISTIC CALCULUS OF PROPOSITIONS 

D. P. Skvortsov UDC 517.12 

The construction of an undecidable superintuitionistic calculus of propositions in 

Popov's article in [i] is based on inference modeling in a system of Post productions. To 

this end, one assigns to a production system ~ with an undecidable problem of inference 

an initial word V 0 (in an alphabet ~) a superintuitionistic calculus ~. =~[~0V] ,__ from 

and to an arbitrary word V in the alphabet G and a set of numbers ~-(5~...,~ of length 

~ (where b4"'''~ ~ {~,'",~} and I'D, is the number of productions in the system ~) some 

formula U~,Vo,V ,~). 

The main theorem [I, p. 698, Theorem 6.1] says: 

 (n,Vol v, 
(the word v c&n be i.nfe~:,ed in the produc~-o,Fiystem n from 'he wool V0 1 ] [.,) 

\ pp y" g p i ns in he inference 

(more exactly, this is asserted not for all V but only for words V in some decidable set 

(defined in [I!, p. 683) containing the set of words satisfying (*) (see [i, p. 671, Ne 
T r a n s l a t e d  from A l g e b r a  i L o g i k a ,  Vo l .  24,  No. 2, pp.  195-204 ,  M a r c h - A p r i l ,  1985.  Or i ' "  
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