UNIVERSAL THEORIES OF INTEGERS AND THE EXTENDED BLIZNETSOV HYPOTHESIS

É. B. Belyakov and V. I. Mart'yanov

It has been proved in [2, 4] that the universal theory of the integers \mathbb{Z} in the signature $\langle +, |, i \rangle$, where | is the relation of divisibility, is decidable. It has been proved in [3] that the universal theory of the integers in the signature $\langle +, i, \mathcal{D} \rangle$ where the predicate $\mathcal{D}(x, y, z)$ is true if $z = \pm HOD(x, y)$, is decidable. From a letter of Yu. V. Matiyasevich, we have come to know that it is possible to reduce the problem of decidability of the universal theory of $\langle \mathbb{Z}; +, i, \mathcal{D} \rangle$ to that of decidability of the universal theory of $\langle \mathbb{Z}; +, i, i \rangle$, since

$$\mathcal{D}(x,y,z) \iff z \mid x \And z \mid y \And \forall u (u \mid x \And u \mid y \rightarrow u \mid z),$$
$$\neg \mathcal{D}(x,y,z) \iff \forall u \forall \sigma (z \nmid x \lor z \restriction y \lor x \restriction u \lor y \restriction \sigma \lor z \neq u + \sigma).$$

Here we prove the decidability of the universal theory of the integers \mathbb{Z} in the signature <+, $|, \mathcal{P}, \mathcal{I} >$, where \mathcal{P} is the one-place predicate that selects prime numbers. The decidability of this theory is proved under the assumption of satisfiability of the extended Bliznetsov hypothesis, formulated in the following manner.

Let $g_1(x) = a_1x + b_1, \ldots, g_n = a_nx + b_n$ be polynomials with relatively prime integral coefficients such that all the numbers $g_1(t), \ldots, g_n(t)$ are relatively prime to n! for a certain t. Then there exists an infinite sequence of integers $t_1 < \ldots < t_m < \ldots$ such that all the numbers $g_1(t_m), \ldots, g_n(t_m)$ are prime for each m. The Bliznetsov hypothesis is the particular case of the extended Bliznetsov hypothesis for the polynomials x and x+2. Let us also observe that the extended Bliznetsov hypothesis is satisfiable for n=1 by virtue of the Dirichlet theorem [1]. Therefore, besides a relative strengthening of the theorem, which is obtained under the assumption of satisfiability of the extended Bliznetsov hypothesis, we have the following "absolute" strengthening: The fragment of the universal theory of the integers Z in the signature <+, ..., p>, in which each formula contains at most one occurrence of the predicate P, is decidable.

In the present article, we use essentially the methods, definitions, and results of [3].

1. Definitions and Preliminary Information

The conditions

$$\mathcal{P} = \left[\left\{ \mathcal{P}\left(f_{i}^{\prime}\right) \right\}, \left\{ u_{j}^{\prime} \mid g_{j}^{\prime} \right\}, \left\{ v_{g}^{\prime} = 0 \right\}, \left\{ v_{s}^{\prime} \right\}, \left\{ w_{m}^{\prime} \neq 0 \right\} \right]$$

$$\tag{1}$$

where f_i, u_j, \ldots, w_m are polynomials with rational coefficients, are said to be satisfiable if there exists a suite $\omega \in \mathbb{Z}^n$ such that $\mathcal{P}(f_i(\omega))$, $u_j(\omega)|q_j(\omega), v_{\bar{e}}(\omega)=0, w_m(\omega)\neq 0$, and

Translated from Algebra i Logika, Vol. 22, No. 1, pp. 26-34, January-February, 1983. Original article submitted December 8, 1981.

the polynomials from $\bar{\Gamma}$ have integral values on the suite ω . Let us denote it, in short, by $\models \bar{\Gamma}(\omega)$. The conditions $\bar{\Gamma}$ are said to be obtained from the conditions $\bar{\Gamma}$ by deleting the equation $\bar{U} = 0$, if this equation belongs to $\bar{\Gamma}$, from this equation a certain $x_n = \bar{U}(x_1, \ldots, x_{n-i})$ is found, the value of this x_n is substituted in all the polynomials that occur in the expression of the conditions $\bar{\Gamma}$ and the condition that $\bar{U}(x_1, \ldots, x_{n-i})$ takes integral values is added. The conditions $\bar{\Gamma}$ and $\bar{\bar{\Gamma}}$ are said to be equivalent if either these are both satisfiable.

In the sequel, the expression "the polynomials W_1, \ldots, W_n are linearly independent" will mean that their linear combination $\alpha_1, W_1 + \ldots + \alpha_n, W_n \in \mathbb{Z} \iff \alpha_1 = \ldots = \alpha_n = 0$.

Let W_1, \ldots, W_n be linearly independent polynomials. Then there exist polynomials ξ_1 , \ldots , ξ_n such that

$$x_{i} = \xi_{i} \left(\mathsf{W}_{i}, \ldots, \mathsf{W}_{n} \right), \ldots, x_{n} = \xi_{n} \left(\mathsf{W}_{i}, \ldots, \mathsf{W}_{n} \right).$$
⁽²⁾

Let \mathscr{L} denote the set of linear polynomials in the variables x_i, \ldots, x_n with rational coefficients. We will denote the submodule generated by the polynomials f_1, \ldots, f_{κ} in \mathscr{L} , as a module over the ring \mathbb{Q} (over the ring of integers \mathbb{Z}), by $\mathscr{Q}(f_1, \ldots, f_{\kappa})(\mathbb{Z}(f_1, \ldots, f_{\kappa}))$.

The conditions $\overline{\Gamma}$ are said to be obtained from the conditions $\overline{\Gamma}$ by the change of variables (2) if $W_1, \ldots, W_n \in \mathbb{Z}(\{f_i\}, \{u_j\}, \{g_j\}, \{\mathcal{U}_e\}, \{\mathcal{V}_s\}, \{\mathcal{U}_s\}, \{\mathcal{U}_n\}, x_1, \ldots, x_n)$ and each polynomial f that occurs in $\overline{\Gamma}$ is replaced by the polynomial $f(\xi_1(x_1, \ldots, x_n), \ldots, \xi_n(x_1, \ldots, x_n))$, and, in addition, in $\overline{\Gamma}$, the conditions that the polynomials ξ_1, \ldots, ξ_n take integral value are added.

LEMMA 1. If the conditions \overline{l} are obtained from the conditions l' by deleting equations or by the change of variables (2), then the conditions $\overline{l'}$ and l' are equivalent.

<u>Remark.</u> In certain cases, the conditions (1) will be extended by expressions of the forms $\{\neg P(t_k)\}$ and $\{\varphi_a \nmid d_a\}$. It is clear that all the preceding definitions and properties can be generalized for this type of condition in a natural manner.

The product of the denominators of all the coefficients of a polynomial f that are written as irreducible fractions is called the denominator $\mathcal{V}(f)$ of f. The product of all $\mathcal{V}(f)$ for $f \in \Gamma$ is called the denominator $\mathcal{V}(\Gamma)$ of the conditions Γ . The smallest natural number that is greater than the greatest modulus of the coefficients of a polynomial f is called the height $\mathcal{U}(f)$ of f. The greatest height of the polynomials that occur in the expression of the conditions Γ is called the height $\mathcal{U}(\Gamma)$ of Γ .

Let us denote the greatest power of a prime number ρ that divides α by ρ^{α} . Let us also denote the set of the prime divisors of α (of numbers from the suite ω that divide α) and the set of the first κ prime numbers by $\pi(\alpha), (\pi(\omega))$ and π_{κ} , respectively. By definition, $\Theta_{\kappa} = \prod_{\rho \in \pi_{\kappa}} \rho^{\kappa}$ for $\kappa = 4, 2, ...$

Let us define the predicates + and l, on the residue ring $\mathbb{Z}(t)$ in the usual manner and let us call the invertible elements prime. We say that a suite $\omega \in \mathbb{Z}$ satisfies the conditions Γ of type (1) modulo a number t if $< \mathbb{Z}(t); +, l, P > \models \Gamma(\omega)$, and, in addition, $f(\omega) \neq \mathcal{O}(mod_{\rho}t)$ for each polynomial f that occurs in the expression of Γ and each $\rho \in \pi(t)$. In this case, the conditions Γ are said to satisfiable modulo t.

LEMMA 2. For each set of conditions Γ and each number t, it can be effectively determined whether there exists a number m > t such that the conditions Γ are satisfiable modulo θ_m .

<u>Proof.</u> We know that the elementary theory of the class \mathcal{K} of the residue rings of integers in the signature $\langle +, \cdot \rangle$ is decidable. The question whether the number m exists is written down by a formula of signature $\langle +, \cdot \rangle$ of the class \mathcal{K} .

2. Properties of the Conditions that Consist of Ratios of Polynomials

Following [3], we introduce a series of definitions and notions. Let the conditions T consist of only ratios of polynomials, i.e., let $\Gamma = [\{f_{\alpha} \mid g_{\alpha}\}]$, and suppose that these polynomials belong to the ring $Q[x_1, \ldots, x_n]$. By definition, $F(\Gamma)$ are the minimal conditions with the following properties:

a)
$$\Gamma \subset F(\Gamma)$$
 and $f_{\alpha} | f_{\alpha} \in F(\Gamma)$ for each ∞ ;
b) If $f | a \cdot u, u | g \in \Gamma$, then $f | a, g \in F(\Gamma)$, where $a \in \mathbb{Q}$;
c) If $f | g_1, f | g_2 \in F(\Gamma)$, then $f | g_1 \pm g_2 \in F(\Gamma)$.

Let the conditions consist of ratios of polynomials:

$$\mathcal{L} = [f_1 \mid g_1, \dots, f_\kappa \mid g_\kappa].$$
⁽³⁾

Let us set

$$\begin{split} \mathcal{Q}^{(o)} &= \mathcal{Q}, \ \mathcal{Q}^{(i)} = F\left(\mathcal{Q}^{(o)}\right), \ \dots, \ \mathcal{Q}^{(i+i)} = F\left(\mathcal{Q}^{(i)}\right), \ \dots, \\ \bar{\mathcal{Q}} &= \lim_{i \to \infty} \mathcal{Q}^{(i)}, \ a_j^{(o)} = \mathbb{Z}(f_j, g_j), \ a_j^{(i)} = \left\{q : f_j \mid q \in \mathcal{Q}^{(i)}\right\}, \\ a_j &= \left\{q : f_j \mid q \in \bar{\mathcal{Q}}\right\} \end{split}$$

for $j = l, \ldots, K$, and i > 0.

We will say that the conditions Γ_1 follow from the conditions Γ (in symbols, $\Gamma \Rightarrow \Gamma_1$), if each suite ω that satisfies the conditions Γ satisfies the conditions Γ_1 also. The conditions Γ and Γ_1 are said to be isomorphic if $\Gamma \Rightarrow \Gamma_1$ and $\Gamma_1 \Rightarrow \Gamma$, or, in short, $\Gamma \Leftrightarrow \Gamma_1$.

The number of letters of the set $\{x_{j},...,x_{n}\}$ that occur with nonzero coefficients in the expression of / is called the rank of the conditions /.

The conditions Γ are said to split into the conditions $\Gamma_1, \ldots, \Gamma_m$ $(\Gamma = \Gamma_1 \vee \ldots \vee \Gamma_m)$, if for each suite ω that satisfies Γ , there exists $i = 1, \ldots, m$ such that ω satisfies Γ_i and $j = 1, \ldots, m$ holds for each $\Gamma_j \Longrightarrow \Gamma$.

By definition, the canonical conditions

$$\mathscr{H} = \bigcup_{i=1}^{n-\ell} \mathscr{H}_i \tag{4}$$

have the following properties:

a) If \mathcal{H}_{i} is nonempty, then

$$\mathcal{K}_{i} = \left[f_{ii}(x_{i}, \dots, x_{i}) | g_{ii}(x_{i}, \dots, x_{i}) + d_{ii}x_{i+i}, \dots, f_{im}(x_{i}, \dots, x_{i}) | g_{im}(x_{i}, \dots, x_{i}) + d_{im}x_{i+i} \right],$$

where each d_{ij} is nonzero.

b) If $f \mid q(x_1, \dots, x_e) \in \mathcal{H}$, then $f \mid q(x_1, \dots, x_e) \in \overline{\mathcal{H}}_{e-1}$, where $\mathcal{H}_{(i)} = \mathcal{H}_1 \cup \dots \cup \mathcal{H}_i$.

The following lemma is a reformulation of Lemmas 7 and 8 of [3] and is stated without proof.

LEMMA 3. Let \mathscr{Q} be conditions of rank ρ of the type (3). Then either linearly independent polynomials $\mathcal{U}_{j}, \ldots, \mathcal{U}_{\rho}$ can be effectively indicated such that $\mathcal{U}_{j}, \ldots, \mathcal{U}_{\rho} \in \mathbb{Z}(f_{1}, \ldots, f_{K}, g_{j}, \ldots, g_{K})$ and the conditions \mathscr{K} obtained from the conditions \mathscr{S} by the change of variables (2) are canonical and, in addition, the representation (4) of \mathscr{K} can be found effectively, or polynomials $\mathcal{U}_{j}, \ldots, \mathcal{U}_{m}$ such that $\mathcal{Q} = [\mathcal{Q}, \mathcal{U}_{j} = 0] \vee \ldots \vee [\mathcal{Q}, \mathcal{U}_{m} = 0]$ can be indicated.

3. Main Results

The conditions

$$\mathcal{H}^* = \mathcal{H} \cup \mathcal{H}' \tag{5}$$

are said to be \mathcal{P} -canonical if \mathcal{H} are canonical conditions of type (4) and $\mathcal{H}' = \bigcup_{i=1}^{n-1} \mathcal{H}'_i$, where $\mathcal{H}'_i = \left[\mathcal{P}(\beta_{i_1}), \ldots, \mathcal{P}(\beta_{i_K})\right]$, the polynomials $\beta_{i_1} = S_{i_1}(x_1, \ldots, x_i) + \ell_{i_1} x_{i_{i+1}}, \ldots, \beta_{i_K} = S_{i_K}(x_1, \ldots, x_i) + \ell_{i_K} x_{i_{i+1}}$.

As in [2], by definition, we set $\widetilde{\mathcal{Q}} = [\{f | g : f | g : g \in \overline{\mathcal{Q}} \text{ for a certain } g \in \mathcal{Q}\}, \text{ and } \rho(i) = 2^{2^{i}} \cdot \alpha^{2^{i}}$, and let $\mathcal{L}_{i,\ell}$ be the set of the polynomials from \mathcal{L} whose denominators divide the number i and heights do not exceed ℓ .

A suite $\mathcal{E} = [\mathcal{E}_1, \dots, \mathcal{E}_m]$ is said to be concordant with respect to denominator \mathcal{X} and height \mathcal{Q} with a suite $\mathcal{W} = [\mathcal{W}_1, \dots, \mathcal{W}_n]$ that satisfies the conditions (5) modulo a number t if the following conditions are satisfied:

a) $\mathcal{E}_{i} = \omega_{i} \pmod{t}$ for $i = 1, \dots, m$.

b) The conditions \mathscr{X}^{\star} are satisfiable on the suite $\mathcal E$.

c) For arbitrary prime $\rho \notin \pi(t)$ and arbitrary polynomials $q_1, q_2 \in \mathcal{L}_{\chi,\alpha}$ in the variables x_1, \ldots, x_m , if $\rho|q_1(\varepsilon)$ and $\rho|q_2(\varepsilon)$, then either there exists a polynomial f in the variables x_1, \ldots, x_m such that $f|q_1, f|q_2 \in \widetilde{\mathcal{K}}$ and $\rho f(\varepsilon) = \rho q_1(\varepsilon) = \rho q_2(\varepsilon)$, and, in addition, $f(\varepsilon), q_1(\varepsilon), q_2(\varepsilon) \in \mathbb{Z}$ or $q_1 = q \cdot q_2$ for a certain $q \in \mathbb{Q}$.

LEMMA 4. Let \mathscr{X}^* be ρ -canonical conditions of the type (5), all of whose polynomials belong to $\mathscr{L}_{\tau,\alpha}$, and set $\mathscr{b}=(2\rho(n))^{n+2}$. Then (it is assumed that the extended Bliznetsov hypothesis is satisfiable) for each suite $\mathscr{U}=[\mathscr{U}_1,\ldots,\mathscr{U}_n]$ that satisfies the conditions \mathscr{X}^* modulo the number \mathscr{G}_{δ} , there exists a suite $[\mathscr{E}_1,\ldots,\mathscr{E}_n]$ that is concordant with it with respect to denominator \mathscr{V} and height α .

<u>Proof.</u> It is sufficient to show that for each i = 1, ..., n there exists a suite $[\ell_1, ..., \ell_i]$, that is concordant with respect to denominator ℓ and height $\rho(n-i)$ with the suite ω , since $\rho(0) = \alpha$. We will prove this statement by induction over i. The statement is obvious for i = 2. By induction hypothesis, there exists a suite $[\ell_1, ..., \ell_i] = \delta$ that is concordant with respect to denominator ℓ and height $c = \rho(n-i)$ with the suite ω .

Let us consider the system

$$\Sigma = \{f_{i_{i}}(\delta) | g_{i_{i}}(\delta) + d_{i_{i}}x_{i_{i+1}}, \dots, f_{i_{m}}(\delta) | g_{i_{m}}(\delta) + d_{i_{m}}x_{i_{i+1}}\} \cup U\{P(s_{i_{i}}(\delta) + \ell_{i_{i}}x_{i_{i+1}}), \dots, P(s_{i_{k}}(\delta) + \ell_{i_{k}}x_{i_{i+1}})\}.$$
(6)

By definition, we set $\mathcal{I} = \{ \rho : \rho \in \pi_{\beta} \text{ or } \rho \in \pi(f(\delta)) \}$ for a certain polynomial $f \in \mathcal{L}_{i,c}$ in the variables $x_{i,\ldots,x_{i}}$ such that $f(\delta) \in \mathbb{Z}$.

For each $\rho \in \mathcal{C} \setminus \mathcal{R}_{\delta}$ we let β_{ρ} be such that $\rho^{\beta_{\rho}} = \rho f(\delta)$, where $f \in \mathcal{L}_{r,c}$; $f(\delta) \in \mathbb{Z}$, $\rho \in \mathcal{R}(f(\delta))$ and $f \in \mathcal{Q}(x_{r}, \ldots, x_{i})$.

The system of divisibilities $\{f_{ii}(d)|g_{ii}(d)+d_{ii}x_{iii},\ldots,f_{im}(d)|g_{im}(d)+d_{im}x_{i+i}\}$ has a solution since, for each prime number $\rho \in \tau \setminus \pi_{\ell}$, if $\rho^{\ell}|f_{i\alpha}(d), \rho^{\ell}|f_{i\beta}(d)$, then $\rho^{\ell}|q(d)$, where $q = d_{i\alpha}g_{i\beta} - d_{i\beta}g_{i\alpha}$. Indeed, by virtue of the induction hypothesis and the condition c) of the definition of concordance of suites, there exists a polynomial f such that $f|f_{i\alpha}$, $f|f_{i\beta} \in \widetilde{\mathcal{X}}$ and $\rho^{\ell}|q(d)$. Then $f|q \in \widetilde{\mathcal{X}}$, and, since q is a polynomial in x_{i},\ldots,x_{i} , it follows from the condition b) of the definition of canonical conditions that $f|g \in \widetilde{\mathcal{H}}_{(i-1)}$, and therefore $\rho^{\ell}|q(d)$.

We select a solution \mathcal{E}_{i+i} of this system of divisibilities as follows: The system of divisibilities

$$\{f_{i}(d) \mid g_{i}(d) + d_{i}x_{i+1}, \dots, f_{im}(d) \mid g_{im}(d) + d_{im}x_{i+1}\}$$

has a solution [3, Lemma 9].

We select this solution such that the following conditions are satisfied:

A1) $\mathcal{E}_{i+j} \equiv \omega_{i+j} \pmod{\theta_{\beta}}$;

A2) $\rho^{\rho_{p^{+}}} \neq q(\gamma)$ where $u = \rho(n-i-1)$ and $\eta' = [\varepsilon_1, \dots, \varepsilon_{i+1}]$, for each $\rho \in \pi(f_{ij}(d))$, $\rho \notin \pi_{g}$, each polynomial $g \in \mathcal{L}_{q,u}$ in the variables x_1, \dots, x_{i+1} with occurrence of x_{i+1} with nonzero coefficient and $g(\gamma) \in \mathbb{Z}$.

A3) For each $\rho \in \tau \setminus \pi_{\delta}$, if $\rho \notin (f_{i_{\ell}}(\delta), \dots, f_{i_{\ell}}(\delta))$, then $\rho \notin \pi(g(y))$, where $g \in \mathcal{I}_{\tau, \mathcal{U}}$ is a polynomial in the variables $x_{i_{\ell}}, \dots, x_{i_{\ell+1}}$, such that $x_{i_{\ell+1}}$ occurs in it with nonzero coefficient.

The existence of \mathcal{E}_{i+i} that satisfies the conditions A2) and A3) follows from the fact that the prime numbers $\rho \notin \pi_{\ell}$ are quite large, and, in addition, the following stronger result is proved for testing the solvability of a system of divisibilities: If $\rho \in \pi_{\ell}$, $\rho^{\ell} | f_{i\alpha}(\delta), \rho^{\ell} | g_{i\alpha}(\delta) + d_{i\alpha} x_{\theta}$ for a certain x_{θ} , then $f_{i\beta}(\delta) | g_{i\beta}(\delta) + d_{i\beta} \cdot x_{\theta}$ for arbitrary β .

We show that the suite y is concordant with respect to denominator z and height $u = \rho(n - i - i)$ with the suite ω . To this end, it is necessary to verify the condition c) of the definition of concordance. Indeed, let the polynomials $g_1, g_2 \in \mathcal{L}_{z,u}$ in the variables \mathcal{L}_1 , ..., \mathcal{L}_{i+1} be such that $\rho \notin \pi_{\beta}$ and $\rho | g_1(y), \rho | g_2(y)$. The following three cases are possible

1) $g_1, g_2 \in \mathcal{Q} [x_1, \dots, x_i];$ 2) $g_1 \in \mathcal{Q} [x_1, \dots, x_i], g_2 \notin \mathcal{Q} [x_1, \dots, x_i];$ 3) $g_1, g_2 \notin \mathcal{Q} [x_1, \dots, x_i].$

The induction hypothesis comes into force in the case 1).

Let us consider the case 2). Let $g_2 \notin \emptyset [x_1, \ldots, x_i]$ and $g_2 = g'_2(x_1, \ldots, x_i) + dx_{i+i}$. If $\rho | g_2(y)$, then, as a consequence of the condition A3) of the choice of the solution there exists an f_{ij} such that $\rho | f_{ij}(d)$. Then by virtue of the condition c) of the definition of concordance, there exists a polynomial f such that $\rho | f(d)$ and $f | g_1, f | f_{ij}, f | g_{ij} + d_{ij} x_{i+i}$, $f | g \in \widetilde{\mathcal{X}}$, where $g = dg_{ij} - d_{ij} g'_2$. Since $d_{ij} g_2 = d(g_{ij} + d_{ij} x_{i+i}) - g$, it follows that $f | g_2 \in \widetilde{\mathcal{X}}$. The equalities $\rho f(y) = \rho g_2(y)$ follow from the induction hypothesis and the condition A2) of the choice the solution \mathcal{E}_{i+i} . Consequently, the condition c) of the definition of concordance is fulfilled.

Case 3). Let $q_1 = q_1'(x_1, \ldots, x_i) + d_1' x_{i+1}$ and $q_2 = q_2'(x_1, \ldots, x_i) + d_2' x_{i+1}$. Then $\rho | q(\vartheta)$, where $q = d_2' q_1' - d_1' q_2'$ (we suppose that $q_2 \neq q \cdot q_1$ for any $q \in Q$, since, otherwise, the condition c) of the definition of concordance would be fulfilled at once). Since $q \in \mathcal{L}_{r,c}$, it follows from the condition A3) of the choice of the solution \mathcal{E}_{i+1} that the prime number $\rho \in \pi(f_{i\infty}(d))$ for a certain $\alpha = 1, \ldots, m$. Consequently, by virtue of the induction hypothesis, for a certain polynomial f we have $f | f_{i\infty}, f | q \in \widetilde{\mathcal{K}}, \rho^{\ell} = f(\vartheta) = \rho f_{i\infty}(\vartheta) = \rho q(\vartheta)$, and therefore, $f | q_{i\infty} x_{i+1} \in \widetilde{\mathcal{K}}$, and $\rho(q_{i\infty}(\vartheta) + d_{i\infty} \mathcal{E}_{i+1}) = \rho^{\ell}$.

From the last relations and the induction hypotheses, we get $f|W_1$, $f|W_2 \in \tilde{\mathcal{X}}$, and $\rho^{\ell} = {}_{\rho}W_1(d) = {}_{\rho}W_2(d)$ where $W_1 = d_1 g_{i\infty} - d_{i\infty} g'_1$ and $W_2 = d_2 g_{i\infty} - d_{i\infty} g'_2$. The equations $d_{i\alpha} \cdot g_1 = d_1 (g_{i\alpha} + d_{i\alpha} x_{i+1}) - W_1$ and $d_{i\alpha} \cdot g_2 = d_2 (g_{i\alpha} + d_{i\alpha} x_{i+1}) - W_2$ complete the proof of the case 3).

It remains to choose a suite y such that

$$\widetilde{\mathcal{H}}_{i} = \left\{ \mathcal{P}(\mathbf{s}_{i}, (\mathcal{O}) + \mathcal{L}_{i}, \mathbf{x}_{i+1}), \dots, \mathcal{P}(\mathbf{s}_{i}, (\mathcal{O}) + \mathcal{L}_{i}, \mathbf{x}_{i+1}) \right\}.$$
(7)

Let us set $M = b \cdot \int_{\substack{p \in \mathcal{T} \setminus \mathcal{T}_{b}}} p^{V_{p}}$, where $V_{p} = \beta_{p}$, if $p \in \mathcal{T}(f_{i}(b), \dots, f_{im}(b))$, and $V_{p} = i$ in the contrary case. Then for each integer t the number $\mathcal{E}_{i+i}(t) = \mathcal{E}_{i+i} + M \cdot t$ satisfies the conditions A1)-A3), imposed on the solution of the system of divisibilities, and, consequently, the suite $\mathcal{E}(t) = [\mathcal{E}_{i}, \dots, \mathcal{E}_{i}, \mathcal{E}_{i+i}(t)]$ is concordant with the suite $[\omega_{i}, \dots, \omega_{j+i}]$. Let us substitute the term $\mathcal{E}_{i+i}(t)$ for \mathcal{T}_{i+i} in the polynomials in the conditions (7). The resulting polynomials will satisfy the condition of the extended Bliznetsov hypothesis, since the 24

conditions (7) are satisfiable modulo the number θ_{ℓ} . Consequently, for a certain t_o (under the extended Bliznetsov hypothesis) the suite $\mathcal{E}(t_o)$ satisfies the conditions (7).

The induction step is proved and, since $\rho(n-n) = \rho(0) = a$, the lemma is also proved.

<u>THEOREM 1.</u> The universal theory of the integers \mathbb{Z} in the signature <+, +, +, +, +, p > is decidable under the assumption of satisfiability of the extended Bliznetsov hypothesis, where \mathcal{P} is the predicate that selects prime numbers.

<u>Proof.</u> The problem of decidability of the \mathcal{J} -theory (and, therefore, of the \forall -theory also) of the model $\langle \mathbb{Z}; +, !, |, \mathcal{P} \rangle$ is narrower than the problem of satisfiability of conditions of type

$$\Gamma = \left[\left\{ \mathcal{P}(f_{i}) \right\}, \left\{ u_{j} \mid g_{j} \right\}, \left\{ v_{\ell} = 0 \right\}, \left\{ \tau_{i} \right\} \right] \cup \left[\neg \mathcal{P}(t_{\kappa}), W_{m} \dagger a_{m} \right].$$

$$(8)$$

By virtue of Lemmas 1 and 3, it is sufficient to consider the case where the first positive part of the conditions (8) does not have equalities and is \mathcal{P} -canonical. Let us suppose that Γ , with the ratios $\{\gamma_i\}$ removed, coincides with the \mathcal{P} -canonical conditions (5). Then, by virtue of Lemma 2, we can effectively find whether there exists a suite $\omega = [\omega_i, ..., \omega_n]$, satisfying the conditions Γ modulo a number t such that $\delta | t$ (see Lemma 4 for the definition of δ). If no such suite ω exists, then the conditions Γ are nonsatisfiable. But if such a suite ω exists, then, using Lemma 4 (in fact, a modification of it, since here the case $t > \delta$ is possible), we see that the conditions (8) exists, and, consequently, the theorem is proved.

<u>COROLLARY</u>. The theory of the fragment of the universal theory of $\langle \mathbb{Z}; +, +, +, |, \mathcal{P} \rangle$ that consists of the formulas containing at most one occurrence of the predicate \mathcal{P} is decidable.

<u>Proof.</u> If a formula contains the single predicate P, then the P-canonical conditions, comparable with it, contain only one condition of the form D(f) and, consequently, the extended Bliznetsov hypothesis for n = 1, which is valid by the Dirichlet theorem [1], suffices here. Consequently, an algorithm for testing the truth of these formulas exists.

Let us consider the algorithmic problem of testing for an arbitrary set of polynomials $a_1 + b_1 x, \ldots, a_n + b_n x$, the existence of at least one value x_0 such that $a_1 + b_1 x_0, \ldots, a_n + b_n x_0$ are prime numbers.

Let us observe that if the universal theory of $\langle \mathbb{Z}; +, /, |, P \rangle$ is decidable, then a testing algorithm exists, since $\langle \mathbb{Z}; +, /, |, P \rangle \models \forall x (P(a_1 + b_1 x) \& \dots \& P(a_n + b_n x) \rightarrow x \neq x) \iff$ there exists no \mathcal{X}_o such that all the numbers $a_1 + b_1 x_0, \dots, a_n + b_n x_0$ are prime.

The problem whether the existence of a testing algorithm implies the decidability of the universal theory of the model $\langle \mathbb{Z}; +, !, |, \mathcal{P} \rangle$ remains unsolved.

LITERATURE CITED

1. K. Prachar, Distribution of Prime Numbers [Russian translation], Mir, Moscow (1967).

- A. P. Bel'tyukov, "Decidability of the universal theory of natural numbers with addition and divisibility," Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst., <u>60</u>, No. 7, 15-28 (1976).
- V. I. Mart'yanov, "Universal extended theories of integers," Algebra Logika, <u>16</u>, No. 5, 588-602 (1977).
- 4. L. Lipschitz, The Diophantine Problem for+, 1, -, Preprint (1975).

RELATIONS BETWEEN TABLE-TYPE DEGREES

A. N. Degtev

UDC 517.11:518.5

Reducibilities intermediary in strength between m - and $t\bar{t}$ -reducibilities are called table-type reducibilities. As it was remarked in [1], we can define in a definitive sense on recursively-enumerable (r.e.) sets only six table-type reducibilities: tt-, ℓ -, ρ -, d-, c-, and m-reducibilities. Beside these, which we call basic, certain other bounded table-type reducibilities are known: btt-, bt-, bp-, bd- and bc-reducibilities. In this article we shall pay most attention to the class of reducibilities $\mathcal{K} = \{tt, \ell, \rho, d, c, m, \delta tt\}$. It was proved in [6] that if R-reducibility is strictly weaker than r-reducibility, $r, R \in \mathcal{K}$, then the complete R-degree contains a countable number of r.e. P-degrees. In connection with this, a subtle problem arises: for which $r, \ \mathcal{R} \in \mathscr{K}$, where \mathcal{R} is weaker than r, does there exist a nonrecursive R-degree, consisting of one r-degree? Jockusch [9] made the first contribution to its solution, proving that there exists a nonrecursive r.e. ρ -degree, consisting of one m-degree, but that each nonrecursive tt-degree contains at least two ho-degrees and a countable number of m-degrees. It follows from [4, 7] that each nonrecursive tt-degree contains at least two btt-degrees, and there exist nonrecursive tt-degrees (t-degrees), consisting of one ℓ -degree (respectively, one *m*-degree). Thus, only the following problem remained unsolved – does there exist a nonrecursive bt - degree, consisting of one m -degree? Theorem 1 gives a positive answer to this question.

Another problem connected with the class of reducibilities \mathcal{K} is the following: for which r, $\mathcal{R} \in \mathcal{K}$, do we have the inequality $\operatorname{Th}(\mathcal{L}_r) \neq \operatorname{Th}(\mathcal{L}_R)$? Here \mathcal{L}_x , $x \in \mathcal{K}$, denotes the upper semilattice of r.e. x-degrees in the signature $\langle \oplus, 0, \ell \rangle$, and $\operatorname{Th}(\mathcal{L}_x)$ is its elementary theory. It was proved in [8] that $\operatorname{Th}(\mathcal{L}_{tt}) \neq \operatorname{Th}(\mathcal{L}_{ftt})$. By virtue of [5, 7], at present only the following problems for \mathcal{K} in this direction remain unsolved: (a) $\operatorname{Th}(\mathcal{L}_{tt}) \neq \operatorname{Th}(\mathcal{L}_R)$? (b) $\operatorname{Th}(\mathcal{L}_\ell) \neq \operatorname{Th}(\mathcal{L}_{ftt})$? and (c) $\operatorname{Th}(\mathcal{L}_\rho) \neq \operatorname{Th}(\mathcal{L}_d)$? Theorems 2 and 3 give positive answers to questions (a) and (b), but as yet the answer to (c) is not known.

In this article we use the following conventions. We denote by N the set $\{0, i, \dots\}$; if $X \subseteq N$, then $\overline{X} = N \setminus X$. If X is a finite set, then |X| is the number of its elements. We denote the Cantor number of the n-tuple of numbers (a_1, \dots, a_n) in N by $\langle a_1, \dots, a_n \rangle$, and ℓ and r are the Cantor enumerated general recursive functions (g.r.f.). By definition, if $X, Y \subseteq N$, then

Translated from Algebra i Logika, Vol. 22, No. 1, pp. 35-52, January-February, 1983. Original article submitted September 15, 1981.