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It has been proved in [2, 4] that the universal theory of the integers Z in the signa- 

ture <+,I ~ { > , where I is the relation of divisibility, is decidable. It has been proved 

in [3] that the universal theory of the integers in the signature <+ ) I,~> where the 

predicate ~(~,~,Z) is true if ~=±H~(~,~), is decidable. From a letter of Yu. V. Matiya- 

sevich, we have come to know that it is possible to reduce the problem of decidability of 

the universal theory of <~;+,1,~> to that of decidability of the universal theory of 

<Z; +, ~, 1~ , since 

~ , y , ~ )  ~-,~ ~ 1 ~  ~ ~ t~ & Vu (~ Ix ~ u IF--- ut~ ), 

Here we prove the decidability of the universal theory of the integers ~in the signa- 

ture <+, I,~, {~ , where ~ is the one-place predicate that selects prime numbers. The de- 

cidability of this theory is proved under the assumption of satisfiability of the extended 

Bliznetsov hypothesis, formulated in the following manner. 

Let ~I(~=QI~ + 4,.,.,~=a~+~ be polynomials with relatively prime integral co- 

efficients such that all the numbers ~/~],.,.,~(~) are relatively prime to ~! for a certain 

Then there exists an infinite sequence of integers ~<...<#m<... such that all the num- 

bers ~f(~m), ...,~{~m) are prime for each nz. The Bliznetsov hypothesis is the particular 

case of the extended Bliznetsov hypothesis for the polynomials 2 and ~+2 . Let us also 

observe that the extended Bliznetsov hypothesis is satisfiable for ~=/ by virtue of the 

Dirichlet theorem [i]. Therefore, besides a relative strengthening of the theorem, which is 

obtained under the assumption of satisfiability of the extended Bliznetsov hypothesis, we 

have the following "absolute" strengthening: The fragment of the universal theory of the 

integers ~ inthe signature <+,~,I,P~, in which each formula contains at most one occur- 

rence of the predicate ~, is decidable. 

In the present article, we use essentially the methods, definitions, and results of [3]. 

I. Definitions and Preliminary Information 

The conditions 

where fi,~i,...,~fnz are polynomials with rational coefficients, are said to be satisfiable 

i f  t h e r e  e x i s t s  a s u i t e  U)e such t h a t  - - , ~  - D( , e .  r.)>/ , +'t--a"iO))lq'CLO)' ~--m~U))-~O' ~ r < . ~ ) ÷  0 , and 
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the polynomials from ~ have integral values on the suite ~ . Let us denote it, in short, by 

~(~). The conditions Tare said to be obtained from the conditions ~ by deleting the equa- 

tion £= ~ , if this equation belongs to ~, from this equation a certain ~n= ~(~t,''' ' ~n-l) 

is found, the value of this ~niS substituted in all the polynomials that occur in the ex- 

pression of the conditions/7, and the condition that ~IXI,,o.,X~_ ~) takes integral values is 

added. The conditions ~and Fare said to be equivalent if either these are both satis- 

fiable or both nonsatisfiable. 

In the sequel, the expression "the polynomials ~f~.,.~ are linearly independent" 

will mean that their linear combination ~!~+.,.+~E~--~=...=~=0. 

Let ~I,,..,W~ be linearly independent polynomials. Then there exist polynomials ~f, 

• ..~ ~ such that 

(2) 

Let .~ denote the set of linear polynomials in the variables ~t,",,~ with rational co- 

efficients. We will denote the submodule generated by the polynomials fl .... ,f~ in ~ , as a 

module over the ring ~ (over the ring of integers ~, ), by ~(f,,,,0,fK)C~(~7,,.,,fK ))' 

The conditions F are said to be obtained from the conditions F by the change of vari- 

ables (2) if WI~...,W~E~(i~},{LLj}, {~7.}~ ILFg}, {~5s), {~},Xf,...~t~ ) and each polynomial 

f that occurs in Fis replaced by the polynomial f(~1(Xl,..,,~),,..,~I~1~.°0~n) ) , and, in 

addition, in ~ , the conditions that the polynomials ~I, .... ~ take integral value are added. 

LEMMA io If the conditions ~ are obtained from the conditions ~by deleting equations 

or by the change of variables (2), then the conditions /'and ~are equivalent. 

Remark. In certain cases, the conditions (I) will be extended by expressions of the 

forms {7~(~)} and I~ ~ ~a } " It is clear that all the preceding definitions and proper- 

ties can be generalized for this type of condition in a natural manner. 

The product of the denominators of all the coefficients of a polynomial ~ that are writ- 

ten as irreducible fractions is called the denominator q~{) of ~ . The product of all ~(f) 

for ~E~ is called the denominator ~(~) of the conditions/'. The smallest natural number 

that is greater than the greatest modulus of the coefficients of a polynomial ~ is called 

the height ~ (~)of f . The greatest height of the polynomials that occur in the expression 

of the conditions ~ is called the height 0-(~) of ~. 

Let us denote the greatest power of a prime number p that divides a by pa . Let us 

also denote the set of the prime divisors of a (of numbers from the suite ~ that divide a) 

and the set of the first K prime numbers by tfE~G),(F~(W)) and~K, respectively. By defini- 

tion, ~ = ~K for K=f,2,... 
" "  P~K 

Let us define the predicates + and I, on the residue ring ~ (~) in the usual manner and 

let us call the invertible elements prime. We say that a suite UJE~ satisfies the condi- 

tions ~ of type (I) modulo a number ~ if <~(~);+~ I ~ P>~ ~(L~) , and, in addition, 
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~ ~ O(fltO~p~) for each polynomial f that occurs in the expression of ~ and each pe ~(~). 

In this case, the conditions ~ are said to satisfiable modulo ~ . 

LEMMA 2. For each set of conditions ~ and each number #, it can be effectively deter- 

mined whether there exists a number ~>~ such that the conditions ~are satisfiable modulo 

Proof. We know that the elementary theory of the class ~ of the residue rings of inte- 

gers in the signature <+~° > is decidable. The question whether the number r~exists is 

written down by a formula of signature <+~ ° > of the class ~. 

2. Properties of the Conditions that Consist of Ratios of Polynomials 

Following [3], we introduce a series of definitions and notions. Let the conditions T 

consist of only ratios of polynomials, i.e., let ~=~f~l~, and suppose that these poly- 

nomials belong to the ring ~f,...,~] . By definition, ~(~) are the minimal conditions 

with the following properties: 

a) ~C~(~ and ~If~C~) for cache; 

b) Iffla.~,Ul~E~ , then f]a,~E~(F~, where G~ ; 

c) If ~[~I,~I~ 2 E ~(~} , then f[~4 ± ~2£~I~). 

Let the conditions consist of ratios of polynomials: 

Let us set 

= If', f ,  

Q ( ' =  Q ( , ~ c,,= F ~ ( ° ' ) ,  . . . ,  ~c, ;+~ = F f~2~ ' ;9 . . . .  , 

for 7= 4,.',K, and b>O. 

We will say that the conditions ~ follow from the conditions /" (in symbols, F ~ ~ ), 

if each suite ~ that satisfies the conditions /~ satisfies the conditions ~ also. The con- 

ditions f and ~ are said to be isomorphic if ~ -----> ~ and ~ ~F , or, in short, F~==>~ 

The number of letters of the set {~I,...,2n} that occur with nonzero coefficients in 

the expression of F is called the rank of the conditions F. 

The conditions Fare said to split into the conditions ~,0,°,F m (F=gV.. V~ ) , if 

for each suite g6 that satisfies ~, there exists ~= 4...,~ such that ~ satisfies f~ and J= 

4..., ~ holds for each ~70 ===> 

By definition, the canonical conditions 

(3) 
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have the following properties: 

a) If ~: is nonempty, then 

(4) 

. . . . .  . . . .  

where each ~ .  is nonzero. 

b) If ~j~(,~ .... ,~g)~ , then fJ~( '~' l  .... ,~)~_l , where , j ~ O = , , ~ I U . . , U ~  . 

The following lemma is a reformulation of Lemmas 7 and 8 of [3] and is stated without 

proof. 

LEMMA 3. Let ~ be conditions of rank ~ of the type (3). Then either linearly inde- 

pendent polynomials ~1,...,~p can be effectively indicated such that ~I .... ,Up~Z[~ .... '~'~I' 

"',~K) and the conditions ~ obtained from the conditions J~ by the change of variables (2) 

are canonical and, in addition, the representation (4) of ~ can be found effectively, or 

polynomials ~,..., ~r m such that ~2 =- ~'2, ~ = 0] V.,. V E~, 0"~ = 0] can be indicated. 

3. Main Results 

The conditions 

= (5) 

t 
are said to be p-canonical if ~ are canonical conditions of type (4) and ~ ~ , where 

~= [P (~/) ..... p(~iK)] , the polynomials ~i = $~ (51 .... '~ ) + ~b/~+I'°":A~K = ~K (Xf .... ,~) + 

As in [2], by definition, we set for a certain ~E~]~and ~(~)= 

and let ~,~ be the set of the polynomials from ~ whose denominators divide the 

number Z and heights do not exceed ~. 

A suite ~=ES! .... ,~3 is said to be concordant with respect to denominator ~ and height 

a with a suite ~= [u) I .... , ~)~] that satisfies the conditions (5) modulo a number t if the 

following conditions are satisfied: 

a) g~=uJiC~ ) for ~=/,,,,,~. 

b) The conditions ~ are satisfiable on the suite ~. 

c) For arbitrary prime ~ fEC~) and arbitrary polynomials ~l,~z E~= in the varia- 

bles ~I,,.., ~ , if pI~1(~ ) and ~)~2(8) , then either there exists a polynomial f in the 

variables ~,...,~m such that fl~f,~I~ e~ and pf(g)~1(g)=p~zC$), and, in addition, 

f (~ ) , }71(~)  , ~2(g)c~ or ~71=~'~, ~ for a certain~ . 
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LEMMA 4. Let ~# be~ -canonical conditions of the type (5), all of whose polynomials 

belong to ~%a ~ and set d=(~fl(~)) . Then (it is assumed that the extended Bliznetsov 

hypothesis is satisfiable) for each suite ~)=C~;,,.o,G ] that satisfies the conditions 

~i modulo the number 8~, there exists a suite ~#,...,~] that is concordant with it with 

respect to denominator Z and height ~ . 

Proof. It is sufficient to show that for each Z=g .... ~ there exists a suite IS#, .... ~ , 

that is concordant with respect to denominator ~ and height ~(a- ~) with the suite o), since 

~(0)'~ • We will prove this statement by induction over b. The statement is obvious for 

~-2 • By induction hypothesis, there exists a suite [~, .... ~]= ~ that is concordant 

with respect to denominator Z and height ~ =~[~-d) with the suite 0) . 

Let us consider the system 

E G U 
(6) 

By definition, we set ~'={/O:.p£~ 8 or /C)£~('f(O'l~)]} 
in the variables ~,...,~i such that 

For each ~£[x~$ we let ~F 

(Z" (p (F') and fC= ~ (~'i, , . , . ,  2?d ) o 

The system of divisibilities 

for a certain polynomial p 6 ~,C 

be such that p#~=/op(~), where P£~,c; Pf~)£~' P~ 

solution since, for each prime number ~E~[~ , if ~l~&~(F),~tifZ#[~), then ~gI~(~) , 

where ~-d~z#-~ Indeed, by virtue of the induction hypothesis and the condition 

c) of the definition of concordance of suites,,~ there exists a polynomial p such that PIG, 

plp~E~ and ~I~(~) . Then II~£~ , and, since ~ is a polynomial in ~,...~ , it 

follows from the condition b) of the definition of canonical conditions that tl~£ ~(~-I)' 

and therefore P~I~(~). 

We select a solution ~Z+{ of this system of divisibilities as follows: The system of 

d ivis ib il it ies 

{~,c~) I,%,c~+ dz,~+ , .... ,/'~ (dl I~,z~ C~+d~ ~+,} 

has a solution [3, Lemma 9]. 

We select this solution such that the following conditions are satisfied: 

A2> /P+'¢ 9 (I) where~=pC~-~-n and i=[~, .... ,e~], for each p¢~(f~.(])) 'P¢~S' 
each polynomial ~E~, a in the variables ~I, .... ~[+! with occurrence of ~+I with nonzero 

coefficient and ~(~)~ Z 

A3) For each p~Z''~, if p~(IZi(~),...,~m~)), then~(~(~)) , where ~£X~, U is a 

polynomial in the variables ~t,'",~d÷l, such that ~÷# occurs in it with nonzero coefficient. 
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The existence of 8Z,~ that satisfies the conditions A2) and A3) follows from the fact 

that the prime numbers /~9[~ are quite large, and, in addition, the following stronger 

result is proved for testing the solvability of a system of divisibilities: If pe¢~, 

p~l;~6{~),/~ ~f~c[~)4~[~ for a certain z~ o then ~Z#(ff) l~#(~)+~#'~o for arbitrary 

We show that the suite / is concordant with respect to denominator ~ and height ~=~(~- 

~-~) with the suite &~ . To this end, it is necessary to verify the condition c) of the 

definition of concordance. Indeed, let the polynomials ~,~£~,~ in the variables ~, 

. , . ,  ,~+f  be such that p ~ 9 ~ .  and ~ I~1(/),/Ol~z[~) ' The following three cases are possible 

e .. . .  
¢ 

The induction hypothesis comes into force in the case i). 

Let us consider the case 2). Let ~¢ ~ [~,,...,~] and ~=gZ (~' *'"~ )+d~'~+! . If 

/~/~2~/) , then, as a consequence of the condition A3) of the choice of the solution there 

exists an ~gj" such that ~l~f/(~). Then by virtue of the condition c) of the definition of 

concordance, there exists a polynomial ~ such that plf(~) and ~I~,,{I~..,~l~°4~.~+/, 

f[~6~ , where ~=~ ~i"-~g'~e • Since ~g.~ ~= ~(~"+~'~'~ ~+I )-~ , it follows that 701~z o 

The equalities p~'(2)=p~/)=p~z(/)follow from the induction hypothesis and the condition A2) 
of the choice the solution &~+l. Consequently, the condition c) of the definition of con- 

cordance is fulfilled. 

Case 3). Let ~ , = ~ / ( ~ I  . . . .  ,jr~)+d,t,21+ ! and ~ =~i ( I r l , , . . , .~ i )+~. [ ,+ t  Then p l ~ ( ~ )  , 
where ~=~2~;-~1~; (we suppose that ~2 # ~'~, for any 9E~ , since, otherwise, the condi- 

tion c) of the definition of concordance would be fulfilled at once). Since ~Z,o ' it 

follows from the condition A3) of the choice of the solution Z~+I that the prime number 

~¢~(~(~)) for a certain ~=/,...,nz . Consequently, by virtue of the induction hypothe- 

sis, for a certain polynomial { we have flfZ~, {I~£~o /~ =/,f(~)=p/;~¢(6 ~) p~I 6~) , and 
therefore, /I~'~+~i06 ~+! £ X, andp(~ (~) + ~6~+i) =pF 

From the last relations and the induction hypotheses, we get flWf, flWp6~, and 

/oC=pWI(6~)=F~/2(6~) where ~I = ~I ~-~i~ ~I~ and We_- ~ - ~ 9~a The equations 

~f~,~l=4(g~o~+df~+l)-W! and C~.~z=([z~/+~/,~c~Z~÷I)-W 2 complete the proof of 

the case 3). 

It remains to choose a suite ~ such that 

(7) 

Let us set M=~./7 pVp , where V~=~p , if p£~(~/(~), ...,~oT(d)), and ~p=/ inthe 
pe~-~ 8 r 

contrary case. Then ~or each integer t the number 8~4(~)=6~+ ! +M'~ satisfies the conditions 

AI)-A3), imposed on the solution of the system of divisibilities, and, consequently, the 

suite ~[~)=[61~...,~/.,S;~f(~}]_. is concordant with the suite [~,...,U)~+I]__ Let us substi- D 

tute the term ~i+! C ~) for ~+I in the polynomials in the conditions (7). The resulting 

polynomials will satisfy the condition of the extended Bliznetsov hypothesis, since the 
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conditions (7) are satisfiable modulo the number ~ . Consequently, for a certain ~0 (under 

the extended Bliznetsov hypothesis) the suite $ (~0) satisfies the conditions (7). 

The induction step is proved and, since~(r&-/~#=~[O)=~ , the lemma is also proved. 

THEOREM I. The universal theory of the integers ~ in the signature <+, /~ ],~> is 

decidable under the assumption of satisfiability of the extended Bliznetsov hypothesis, where 

is the predicate that selects prime numbers. 

Proof. The problem of decidability of the ~-theory (and, therefore, of the ~-theory 

also) of the model <~+,l, I~ ~ is narrower than the problem of satisfiability of con- 

ditions of type 

(8) 

By virtue of Lemmas 1 and 3, it is sufficient to consider the case where the first posi- 

tive part of the conditions (8) does not have equalities and is P -canonical. Let us sup- 

pose that ~, with the ratios ~I~ removed, coincides with the ~-canonical conditions (5). 

Then, by virtue of Lemma 2, we can effectively find whether there exists a suite ~=[~9,,,~ 

U)a] , satisfying the conditions ~ modulo a number ~ such that ~I~ (see Lemma 4 for the 

definition of ~ ). If no such suite ~ exists, then the conditions ~are nonsatisfiable. 

But if such a suite ~ exists, then, using Lemma 4 (in fact, a modification of it, since here 

the case ~ >~ is possible), we see that the conditions ~are satisfiable. Thus, an algorithm 

for testing the satisfiability of the conditions (8) exists, and, consequently, the theorem 

is proved. 

COROLLARY. The theory of the fragment of the universal theory of <~; ÷ , ~, I ,~> 

that consists of the formulas containing at most one occurrence of the predicate ~ is de- 

c idab I e. 

Proof. If a formula contains the single predicate ~, then the ~-canonical condi- 

tions, comparable with it, contain only one condition of the form P(f) and, consequently, 

the extended Bliznetsov hypothesis for ~=/, which is valid by the Dirichlet theorem [i], 

suffices here. Consequently, an algorithm for testing the truth of these formulas exists. 

Let us consider the algorithmic problem of testing for an arbitrary set of polynom- 

ials a1+4~D,.,,~a,z+ ~nX , the existence of at least one value ~osuch that ~l+~i~,O ~,,. ~ 
~ ÷ ~ ~O are prime numbers. 

Let us observe that if the universal theory of <~;÷,/, I,P> is decidable, then a test- 

ing algorithm exists, since <~;+,/,I,P> ~ V~(P(Ol+~I~)~&.,*~TlT(£7~+~)=-~.~) ~----> 
there exists no ~o such that all the numbers Cf1+~1~O,e,,,~tZ+$n.~O are prime. 

The problem whether the existence of a testing algorithm implies the decidability of 

the universal theory of the model < ~;+,/, I , ~> remains unsolved. 

I. 
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RELATIONS BETWEEN TABLE-TYPE DEGREES 

A. N. Degtev UDC 517.11:518.5 

Reducibilities intermediary in strength between r~- and ~ -reducibilities are called 

table-type reducibilities° As it was remarked in [I], we can define in a definitive sense 

on recursively-enumerable (r.e.) sets only six table-type reducibilities: ~#-~ ~-, p-,~-, C- • 

and ~ -reducibilities. Beside these, which we call basic, certain other bounded table-type 

reducibilities are known: ~-, ~-, 8p-, ~d- and ~C-reducibilities. In this article we 

shall pay most attention to the class of reducibilities ~={~, ~, p, ~,C~r~, 8~ } . It was 

proved in [6] that if ~ -reducibility is strictly weaker than P-reducibility, ~ ~ ~ then 

the complete ~ -degree contains a countable number of r.e. P-degrees. In connection with this, 

a subtle problem arises: for which r, ~ E~, where ~ is weaker than T, does there exist a 

nonrecursive ~-degree, consisting of one P-degree? Jockusch [9] made the first contribution 

to its solution, proving that there exists a nonrecursive r.e. p-degree, consisting of one 

/~-degree, but that each nonrecursive ~ -degree contains at least two ~ -degrees and a count- 

able number of m-degrees. It follows from [4, 7] that each nonrecursive ~-degree contains 

at least two [~-degrees, and there exist nonrecursive ~-degrees (~-degrees), consisting of 

one ~ -degree (respectively, one ~-degree). Thus, only the following problem remained un- 

solved -- does there exist a nonrecursive ~-degree, consisting of one r~-degree? Theorem 1 

gives a positive answer to this question. 

Another problem connected with the class of reducibilities ~ is the following: for 

which P, ~E ~, dowe have the inequality T ~ ) #  T~ (~R) ? Here ~, ~E~, denotes 

the upper semilattice of r.e. ~-degrees in the signature <@~4> , and ~ I~) is its ele- 

mentary theory. It was proved in [8] that I~(~)~ ~(~) • By virtue of [5, 7], at 

present only the following problems for ~ in this direction remain unsolved: (a) T~(~)~ 

I~p) ? (b) T~(~ e) ~ ~hI~)?and (c) ~(L F) ~ I~(~)? Theorems 2 and 3 give positive 

answers to questions (a) and (b), but as yet the answer to (c) is not known. 

In this article we use the following conventions. We denote by N the set I~/4... } ; 

if ~ ~ ~ , then X=~\~. If ~ is a finite set, then I~l is the number of its elements. 

We denote the Cantor number of the n-tuple of numbers (a1~..., aa ) in ~ by <G t .... ~ G n > , 

and ~ and p are the Cantor enumerated general recursive functions (g.r.f.). By definition, 

if ~ Y ~ ~/, then 
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