CHARACTERIZATION OF « -STABLE THEORIES OF BOUNDED DIMENSION

T. A. Nurmagambetov UDC 510.67

INTRODUCTION

If two models are elementarily imbedded in each other, then we call them mutually ele-
mentarily imbeddable. It is clear that models can be mutually elementarily imbeddable, but
nonisomorphic. The concept of the theory of bounded dimension, introduced by Shelah [1],
plays an important role in solving the problem of the number of nonisomorphic models of the

theories. The basic result of this paper is the following

THEOREM 1. Let T be an arbitrary & -stable theory. Then the following two conditions

are equivalent:
1) the theory T is a theory of bounded dimension;
2) if two models of T are mutually elementarily imbeddable, then they are isomorphic.
On the basis of a result from [2] and the proof of Theorem 1 in Sec. 2 is proved

THEOREM 2. Let T be an arbitrary « -stable theory. Then the following two conditions

are equivalent:

1) for any model M of T, Ze M if PE J’(J) is a multidimensional strongly regular

type, then afungo,ﬂ) >W;

2) if two countable models of T are mutually elementarily imbeddable, then they are iso-

morphic.
Let us remark that condition 1 of Theorem 2 is precisely property (%) from [2].

In Sec. 1 we will give the necessary preliminary information, and in Sec. 2 the part

1=>2 of Theorem 1 is proved; in Sec. 3 we prove the following

Propesition 3. If a « -stable theory has a multidimensional strongly regular type,

then in each cardinality A >&  there exist at least two nonisomorphic mutually elementarily

imbeddable models.

It is clear that from Proposition 3 immediately follows the validity of the part =1 =

32 of Theorem 1.
¥rom Theorem 1 and Proposition 3 we obtain
COROLLARY 4. If in some cardinality ).>LA , their isomorphism follows from the mu-

tually elementary imbeddability of any two models of a W -stable theory T, then this property

holds for the theory in each infinite cardinality.
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It is easy to see that from the satisfaction of this property in the cardinality & , the
satisfiability in uncountable cardinalities does not follow. A counterexample is, for ex-

ample, any countable categorical multidimensional theory.
1. PRELIMINARY INFORMATION

Throughout the entire paper, T will denote a ¢« -stable theory. We will assume the
reader is acquainted with the basic concepts, notation and assertions of stability theory.
One can find them, for example, in [1-4]. Let us present here only the ones frequently used
in this paper.

We will denote the models of T by the letters M SN, HF ,ﬂ ,--. , sometimes with upper
and lower indices. Their basic sets are, respectively |M| , W, IF] , 1Bl ,.... we
will denote sets by X, Y, A, B etc. The symbol j(é—lX) denotes the type of the tuple & over
X. §i‘ (5 ‘X) is a strong type of tuple & over X. If X = ¢ , then we will write for short
#(2) and Sffff) . If the type of the tuple Z over X forks (does not fork) over Y& X ,
then we sill briefly write this as C’T//()((&—LLX) or as Z‘(@[X)AY (f(i;)()i, Y) If Y= @
then we will omit it in this notation. One denotes the orthogonality of two types P, g
usually by /3 1 7/, and their nonorthogonality by Pi ? or /D "’9

Definition 1.1. a) Let P be a stationary nonalgebraic type from &(X) , 50"‘5”(1',&-) .

Then the pair (4 ¥) 1is called strongly regular if for any YD X and §E€ S,(Y) for P€Z
either q is a nonforking extension of p or 4 10 . b) A type/DELS;(X) is called strongly
regular if the pair (£, ¢) is strongly regular for some formula (p=<ﬁ(1’,5)€p .

If ,aeé;(&') and Z‘(ﬁ) = Zf(f) , then the typepf"cfy (Z, f) : 50(1’,5)6/7} € S/ (bp,‘ is called a copy
of type p. A stationary type /065;()() has a unique extension Q ESI ( Y), Y2 X such that

A VX , which one denotes usually as g=/0(Y)

Definition 1.2. A strongly regular type p&S, (ﬁ) is called multidimensional if there

exists a tuple 5 satisfying the properties:
1) st@) = st(é),
2) @b é,

3) /D_L Pi-

If there exist a model JL of T, a tuple aéﬂ and a multidimensional strongly regu-
lar type P € 51(@3 » then T is called a multidimensional theory. If the theory T is not
multidimensional, then we will call it a nonmultidimensional theory {(or a theory of bounded

dimension).
Let us now present some familiar facts, which one can find, for example, in {2, 5, 6].

LEMMA 1.1. Let T be a theory of bounded dimension, ,06.5; (@) be a strongly regular
type. If 7(@) =£(8) and P ~FF , then for any model M, containing @ and 3 , we have the
equality dan(/a,ﬂ) =“—d£m,(/7g,ﬁi).
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LEMMA 1.2. Let the type /OES,(ﬁ) be strongly regular. Then for any tuple ¢ and for
any model y 4 , containing & and f, if >« , then

dim (p,ﬂ) = o = dim (pi,ﬂl)=oc.

LEMMA 1.3. Let .A[v be a simple model of a theory T. The type of p from 3,(./1(0) is
definable over Z€ |K,| and (ﬁm(pf&:ﬂo}=a) . Then JM & “%(/0) , where ﬂo{/?) is a
model simple over K, u{c} z(clM,)=p.

LEMMA 1.4. Let peJ’,(ZZ’) be a strongly regular type, Z€M <N Then dim (o )
=dim (p, M) + dim (p (K], X).

LEMMA 1.5. Let /065;(5) be a multidimensional strongly regular type, & ¢4 , then
for all ge S(H) /D.L q.

The results of the article were partially announced in [7].

2. THEORIES OF BOUNDED DIMENSION
In this section we prove the part 1 2 of Theorem 1.

Let T be a « -stable theory of bounded dimension, J’/” be a fixed simple model of T. It
is not hard to show that there exist K €& , ;€ W~{0} for each (<p , types /0«‘/645;(.4/0)

and tuples 5‘,'76#{0 for all ¢ <4 and /</16' possessing the following properties:

1) the type /09' is strongly regular;

2) the type ©¥ is definable over &, ;
~ %

3) Z((C?b{ )= f(ﬁw ) for all {<p  and for any {s’/l&-;

4} for any géﬂ and é‘</d if Z‘({)=Z‘(4_‘b ), then there exists £<ﬂé such that
PYPE 5 where p=p z{ffl{

5) the family {p‘/ A SH o, /'</Z" } is a maximal set of pairwise orthogonal strongly

regular types from 5, (‘Mo )

In order to "mutlistage" indices for any Q€4 W} and ZeX , we will denote the type
/7/‘5 by [ﬁ] We will call {[ﬂ ] 6‘/& / <z } the set of types the canonical basis of

T. Let us denote by 47 the set of pairs {_(67/) L</U / <n; j and by [2 {(&,/)EQ d&m(@]

/ﬂ )= 0} Q {_u,/)G:Q dmz([a ] /M a)_},One can choose the tuples a‘;/- so that Q:Q‘,U.Q,

e g + .

Let [él - be an 1ndependent set of realizations of type /0‘/, where {.Z;/ }= g , if (6,/) E-Qg
0 . . 4

and 1.[ 1 = ) if (é,/)é !:Q, . Let us consider a fixed model ‘Mg simple over ﬂ&ou U

{f b,/)ég } By Lemma 1.3 we have ‘/;[0’ % M = Therefore, one can consider that for

any model M we have J[ <_/5 <M.

Now let J# and N be arbitrary models of the theory T, .J/b'(ﬂo,*./’{, .ﬂo{%"ﬂv and there exist
elementary imbeddings 7(':‘#—’./)/’ and ?./Y"—*./k'

LEMMA 2.1. Let /’(a y=4 g 9a;) = for all (j,/) €47 . Then dun([zz J, M) =

/
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dim Eij”.j],ﬂ‘) and dim((Z, N )=dc‘nz([z’:;/.],ﬁi ).
Proof. Due to the maximality of the set {ID"?: (J,/)E_ﬁ?} , there exist permutations G and
7 on the set CE such that [6&{] ~ [{1@(‘4}1‘)1 and [L;/] ~ [L_z,m‘.'/.}] for each pair (4,/) €4
vhere due to condition 4 of the definition of a canonical basis &((/), 2 (/) € L((:,O),..,,
(6-2;=1)} for each pair (/)€ 42 . By Lemma 1.1, we have that d&m([{-] N)=dim ({8, ; )] KN
and dim((8),M) =dim([@;; )}, # ) for all (i/)€42 . It is dvident a’un([zz] M )< dwn(fé’]ﬂ)
dm({,@],ﬂ)sa’bm([@/], M) for a1l (¢ ,J)é-‘? , since f and g are elementary imbeddings of
the model M in N and N in K , respectively.
6{:},‘j_)}’
d&m([ﬁ;( ] .M) dllﬂ[q.ﬂ]’“ . Let us denote by ¢ the product of the permutations 7€,
then we obtaln d[,m (a/j u'%) d{,mu: Sl w/)] -M) for any pair (1,’ /76_';/2 It is clear that for

any pair (&;(/ ‘)€ 47  there is a k such ((/,/) —(A,C/) and afz,m [zz ]J}{) mm([zzaay;} Jﬁ)mdém( ’/;l
M<.s th'm(@/] M) . 1In other words, dun([a N, H)= d&m@;( )__] /’l) , consequently, dim
([[Z:].ﬂ{)\ dml, [-f] /V)ﬁ dun @8(%)] ﬂ) dLITL([_ :] ﬂ) therefore afun([a/] ‘/ﬁ) do/ﬂ(f%],/v')

Similarly dz,m ['_a _']ff =dim ([@/],ﬂ) The lemma is proved.

In this manner, we have the following relations: dorrz([a ]./}z"sdmz,([@]’ JV'): d,l:m,([_@'

o .
Let us return to our models .M and N Let .Z.:/C./h/ be a basis of type /07 =/7‘/(-/%0) y
é/ [[/ U[ for all (Z,/)EQ . Due to the bounded dimension and ¢ -stability of the

theory, and also the properties of strongly-regular types, we have
’ . .
LEMMA 2.2. a) The model K is simple and minimal over /l&olu U{_C/ (o,d)€,Q};
b) the set _[:/ is a basis of type p‘d ;
c) the model # , is simple and minimal over %UU{Z}/ ;(4',/')€Q}'

p - .
Let us denote by ./V;, , ./V; , 9‘/ , g’/, respectively, the images of Jf{a ' ./M; )
P

/34/' , /"5 under the elementary/imbedding f. We have the following

LEMMA 2.3. TFor all (4,/)€Q we have the equation

d::m,( VM) = afun Y N).

Proof. According to Lemma 2.1, we have the equations d&m([(l 3P JM) d{,m,( f] N)

On the other hand, due to imbeddability, the inequality dmz,(’p‘/,./}ﬂ}s (97,.4/'} is satisfied.
Furthermore, for any (4,/)€4J we have dﬂl‘b(ﬁ"' M) > . By Lemma 1.4, we have dem(/ag/ﬂ)“

( /J’/ )+d4/rb(p‘/ M) . Due to this very fact af;m([a/] M) = dim/ [CZ A, +d1,ﬂl( ‘/‘/’() and
dim ( [{]/f) dmz(Lf 2, M +dim (gF N) 1£ (L)) € £, , then dun([a 1, M4,) = dim [f 1,/4)=0,
Consequently dbm(p’ﬂ) dan([al/] ﬂ{/) dbﬂb([f] ‘N' dmb ¢7 N).1f (6,/)6:/2 and a’m([a _j M)>d,
then similarly to what preceded dim (/0 Jl’)“" dm(g‘/ AN). Now let U,,/)G.Q and
d;,m([_a ] M) = . Then <dém60’ﬂ)€ dim( 9‘/ ’Jf) . But dun(g/, A') can not be uncount-
able, since dim( [5] N)= dbﬂL([(Z J, M )= by Lemma 2.1. Lemma 2.3 is proved.
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Now let us choose in model A bases .7:/ of the types g‘/ Due to Lemma 2.3, the cardi-

nality ‘7/ equals the cardinality [“ for all (z',/)éJ? Arbitrarily (but bijectivelyl)

mapping the basis [- on J’) for all pairs (J,df €Q , we obtain an elementary mapping f!

of the set J UU{[ (&,/)g_{:?}onﬂ'UUi (6/)€ :Q} continuing ff‘./}{ . By Lemma 2.2,
the models # and ./V' are simple and mmlmal over JéUU{ g(‘s,/)ej?} and A UU{.Z/ : (j,/')ﬁ@}

respectively. Consequently, there exists an elementary imbedding Fi M —N continuing
f', which indeed will be an imbedding "on" due to the minimality of N overJV;UUL%.i([;/)E_{‘?‘}

therefore it is an isomorphism.

3. MULTIDIMENSIONAL THEORIES

The fundamental goal of this section is to prove Proposition 3, from which follows the
part 2 =] of Theorem 1.

LEMMA 3.1. Let (70,5,,,..» be an infinite indiscernible sequence, J/{”’be a model simple
over {Z;:/</<d}, and H, be a simple model over ./][; U &, . Then the model £, is simple
over {5‘ P < a)}

Proof. Since the model J/o is countable, then it is sufficient to show that it is atomic
over {[7:‘- : o‘ca)} . In its turn, for this, it is sufficient by Theorem IV.3.2 from [1] to
prove that ./}150’ Uiy is atomic over {(7[: L < lﬂ} . Let /Tze./h’; , Since Jéa’ is atomic over
{EZ :{si<dw} , there exists a formula ¢(.T,5,,,..,C7{) isolating Z"(ﬁ“{,@i fsi<d}y)

Let us show that the formula ¢ (Z, %)= 50(5’,5,,.,.,§£)4§(_=679 isolates the type Zl(ﬁ“(faf{@- :
/<®}) . Let us assume that this is not so. Then there is a formula &(.17’,‘;7)= #(T, g,ﬁ,,..,
dg’a_o)' g; £, such that
=IzTg [z pabzg)]
and
= 7z 77 L¢ &,7)n 79(:’.;7)] )
In other words,
kE7z[¢@a,..,05)n 8(2,4,.4,,...,2,,3,))
and
EJZ {59(.1‘ z,..,a4)A8(7,2,Q,.. .,a,,ao)] .
Since we took an indiscernible sequence, then
b Fz(9z,g,....a50(F, Z,,,.3,..,2,2,,))
and
FIzlp@.a,..,apr16(54 AP 7
But this contradicts the fact that the formula fp(.z;a/’,,,)(?g) isolates the type Z((/T—L/{ZZ-‘
/€< @Y. The lemma is proved.

Now let /065(4_2) be a stationary strongly regular multidimensional type. Let us fix it
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until the end of this section. By the definition of multidimensionality, one can choose a

sequence {Z, : /7 < & } satisfying the following properties:

1) $t(@,) =st(@);

2) {E,L L < a?} is an independent set;

3) /7[1-&__?_ /05/ for all &'</< )

It is clear that {d,z: /Z<L£)} is an indiscernible set. Let ./ﬂ be a model simple over
{[z (€ [ < a)} and such that ‘Q_pdz.ﬂal . Now let JM be a model simple over ﬂ/ U {0/ } By
Lemma 3.1, '/}io is a model simple over {V(Z/ 20 <a)} . Let X be a fixed uncountable cardinal.

0 o ,
Let us construct the models J , A in the following manner. Let us choose a Jﬁ -inde-

pendent set of realizations of type /Da (./1/ ) of cardinality A for all £<a) . The set [f,
coincides with the set .7£ for all £ / , and with the set .[ — some countable set of .7

Now J[ is a model simple over «9’{00 Ua)[£ and N’ is a model simple over ./k’ouiU .7{ , where
< <

0
M< </V'o . It is clear that hc# H“‘-Hﬂoﬂ =74 . 1In the same way it is easy to show that
. . I ] 0 .
d(,’/rl,(/od.‘,\lv‘o)=7\, for all (<&, dim (/7&;, M) = 2 for all (21 but da/ﬂca@,ﬂ )=t . This fol-
2
lows from the pairwise orthogonality of the types /. and £g. for (;4/<A/}.
13 / .

The sequence {‘ZZ}"-[ <a)} , the models JJOI , ‘/”g , M° and N° we will also fix to the
end of this section. Now let fbe an arbitrary model of cardinality A, containing {:fé__é<a)}
Let us define the model Jf %) in the following manner. Let A, be the set of all f&f
such that Z‘({ 2/[(0/) and ,0{1./05 for all ¢<& . Let .5# =£g ‘o£<7\.} For each o¢ < A

let us take an 1ndependent set x of realizations of type /00, (‘9!’) of power X, in order
o

that Z‘(Zf f&fUU x/ ) ‘J’ ‘7 After this, let us take as J;(%) a model simple over
#u U _ﬁ’,’ It is clear that the set U .7(]- is a set independent over f
<A oL<A

LEMMA 3.2. 1) For all «<A? d[n‘z(pé—(,.f(z,)) =2 ; 2) for all /< allfm(/Da",ﬁt(l)):
dim (/05;,,.#).

Proof. The proof of point 1 immediately follows from the construction of the model
#(A) . Let us prove point 2. Let /<&, since /%—IJ./O& for all o« <A , then it

is not hard to show that dim (/OE- (j), j( A)) = ¢ and then the assertion follows from the
A

equation
dim (p&}, A(n)=dim (5.1 #) + dim (05 (4), F(2).

The lemma is proved.

Now let us move on to constructing the models K and # which will be mutually element-
arily imbeddable, but isomorphic. The models A’ and N’ have already been constructed. Let
n +f n
M and #" be defined. Then K™ is this KAL) N=NYR). The models M= M (A),

JV':U ‘/V'”(;{,). A<
a<w
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LEMMA 3.3. 1) For all 5765// we have the equation d[/ﬂ, Wf,-ﬂ)“ﬂ,‘

2) for all EEEN we have the equation d;,'m(pc—,r’f)‘: A

3) for all (< d{fm{p@,.ﬁ) = dbfﬂ/[/?&; y%o), G:mepal ,ff)?-dém(p@,‘/&”").
It is easy to conduct the proof of induction on /2, using Lemma 3.2.

LEMMA 3.4. The models 4 and /' are nonisomorphic.

Proof. Let us assume that there exists an isomorphism 7[]-‘/,/""'/1/ . Let g= 7{)(51—0)
It is clear, on the one hand, d{m (P7, «/V’)“’d,{,nz,(’pa,./ﬂ) =¢). But, on the other hand, there
can occur two possibilities: either /U;-L/Oa - or { <@ for some ﬁ{"’/’a for / <& . If
case occurs, then, by Lemma 3.3 (2), dzﬂl(ﬁ;,ﬂ# . Let ,05 ~ Pf§ - Then, by Lemma 1.2,

dém, ()ag,ﬂ)= dﬂm(ﬁg,/f)=7\n A contradiction, consequently (/;{¢M

Now let us move on to constructing the elementary imbeddings /:JZ — AN and N = -
At first let us construct the mapping f as a union of the mappings 71,; ‘/I{,L_’./V” , 1 <d
The mapping / H— ./Yo is the identity mapping. Let the mappings ]z]C 7£ c,, be
constructed by us, where 7P M — M for all Z<s2z . Let ’ng ‘={, 'ec</'\/_} It is

clear that {]ﬁ_/(é’):o{‘: A } - 5ﬂn-1, since ‘;dﬂo = ]{; = 7[7,2-, , consequently, if pg LP&[ for

all 4<4 , then /776)”(2;1-/0&:_ for all < W

n-/

/V
Let us map J//”UU r% on 7/] (J[ -/)UU . ({)

K< A 06 1278
/ a1 o
so that the model is mapped on 7{714(‘/1/ ) with the help of 7[;_}, and 51
4
f- abritrarily, but one-to-one. It is easy to understand that ,Z’ i— is an
r-1 (0 ) - (0)
/r’"
ndependent set of lizatio ft d is an independent set
indep of reali ions of type /Df (g y an eL<1, Ig,”(go‘) i epe

over 7[ (\/{[ ) Therefore, the mapping defined above is elementary. Now it is not hard
to construct 7[) AL ‘—"./V'{J(/’ where /¥ 'is a model simple over

~f

7[ M/“M) U% (Z)

d< A

In this manner, the construction 7[./[["’-/1/’ is concluded, 7[’ Uu).,[,n
n<

In order to construct the elementary mapping %-‘JV‘-*‘/U, let us prove preliminarily the

following lemma.

LEMMA 3.5. Let. ¥ and N be two models of cardinality A, conaining {Eﬁ i< w}

ﬁ:ﬂ“"ﬂ be an elementary imbedding satisfying the next two conditions:
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1) A(@;) =y for all [<d
2) &, 4 £ (N).

’
Then there exists /4 :JY’(?L)——» HM(A) continuing h and also satisfying the condition
2,b & (N (M),
. Proof. Let ﬂﬂ' tZ’:Ci o< 7\,3 . Let us denote /E(Z;C) by 6;' . Let us show that
{5;:&<7L}C!7 . Let «<A . Then /75 .L/Da , < , consequently, /0[/ Lo » for
i
all /<& . However {ﬂﬂ oL < R/} cC ﬁ(ﬂ) , and on the other hand, by condition 2 d \L/{L(‘/V') .

Then by Lemma 1.5 we have the relation L » for all o< A . In this manner,
&, /"6,

{g oc< 2,} Cﬁ . Now let wus one-to-one map ‘KE on 1{{ . It is easy to check that

o
U '%‘f' is an independent set over é[ﬂ) Since «M(?u) is simple over Nul x_
<A ec
there exists an elementary mapping é, »M(% _'Jg(l} continuing the mapping h. It remains

— 7
to show that aod;/i’(/}f( 4)) . 1t is clear that the model /4 (/‘/'{7\,)) is simple over

y

M
/f/(-/V')UU K7 , therefore it is sufficient to convince oneself that a:,;/i‘b )‘%, where
o

.%' U x s » Indeed, it is easy to show that L‘(%W)J)/i(#), é(./V)'(./’i . On the other

«<A
hand, a Uﬁ,(,/V') c M , therefore AR &' . Now EDJJ A/,(JVQ(;U), by condition 2, a2,V
é(,/V') , consequently a J//z/ (-/V(?L)) M{.emma 3.5 is proved.

Now let us define the elementary mappings g‘z: ./V/L——k J{’l . At first let us construct
gp : (/Y'o—u-» ,A[o . Let gg’: éz —»Z’m for all &< ) . The model Jlg is simple over
{,59 5<u)} and by Lemma 3.1, J}{,; is simple over {(51, /<4< &?} . Due to the uniqueness of
the simple model, there exists an isomorphism yo'/: K, —"‘/%0/ continuing ;0' . By construc-
tion of the models ./Moand /VO, one can one-to-one map the set J/ on [[4'/ . It is clear

that there is an elementary imbedding 90 of the model JTo in the model #°. 1In the same way

as in Lemma 3.5, one can show that

U ”/; ‘1{”{0 ’
1€8{<W ""a
_— o
consequently. figa)-z.é ';f’ ag . Since 98 (JV) is a model simple over ./flf Y Ua)[ , then
— % fee<
4 g — ’
@gvi)’ 99 (A" ) . But by the primary construction g, .;460 , consequently, ao J}% (‘M")_
¢

Now it remains to use Lemma 3.5 in order to continue the elementary mapping go 'JV'D—*J(:O
to y/ ./V' — Jl etc. Then it is understood that the mappings 7[’ U / and ? /z<a) 9/L

3
will be elementary mappings of the model M= U '/M to the model JV" N and the model

12<u)
N to M, respectively. Proposition 3, and consequently, Theorem 1 are proved.

Now let us briefly describe the proof of Theorem 2.

The proof from 1 to 2 is obtained from the results [2]. where it follows from condition
1, denoted there by (%), that all the countable moles of a theory T are almost homogeneous.

On the other hand, in this same paper, a result of Pillay is mentioned that two almost
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homogeneous models realizing identical types, are isomorphic. It is clear that mutually

elementarily imbeddable models realize identical sets of types.

Now let us point the way to the proof from 2 to 1. Let condition 1 not be satisfied,

that is there exists a multidimensional strongly regular type /7&5%5” , @ from some model
M and gﬁkn(pw#}<a)-

Let us select a sequence {5% ZJ<<£J} of the modelyﬂg and Jé in same way as above in
the proof of the peoint 71 B "2 at the start of Sec. 3. Everywhere further in the

construction of the modeISV%fLand.A/a'let us replace the cardinal A by ¢, and in the model
#° let us take the independent set ,[b of realizations of type /%% ﬂﬁ& ) of cardinality O,

that is 1;-= ¢ . The remaining arguments are similar. As a result, we obtain two count-
n
able models #=U H* and JV==L£)JV , which are mutually elementarily imbeddable but
< ne
nonisomorphic.
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