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INTRODUCTION 

If two models are elementarily imbedded in each other, then we call them mutually ele- 

mentarily imbeddable. It is clear that models can be mutually elementarily imbeddable, but 

nonisomorphic. The concept of the theory of bounded dimension, introduced by Shelah [i], 

plays an important role in solving the problem of the number of nonisomorphic models of the 

theories. The basic result of this paper is the following 

THEOREM I. Let T be an arbitrary ~-stable theory. Then the following two conditions 

are equivalent: 

i) the theory T is a theory of bounded dimension; 

2) if two models of T are mutually elementarily imbeddable, then they are isomorphic. 

On the basis of a result from [2] and the proof of Theorem 1 in Sec. 2 is proved 

THEOREM 2. Let T be an arbitrary ~-stable theory. Then the following two conditions 

are equivalent: 

any model ~ of T, ~6~ ifjpE~(~) is a multidimensional strongly regular I) for 

type, then ~ ~ )  w9} 

2) if two countable models of T are mutually elementarily imbeddable, then they are iso- 

morphic. 

Let us remark that condition 1 of Theorem 2 is precisely property (*) from [2]. 

In Sec. 1 we will give the necessary preliminary information, and in Sec. 2 the part 

1-----92 of Theorem 1 is proved; in Sec. 3 we prove the following 

Proposition 3. If a ~-stable theory has a multidimensional strongly regular type, 

then in each cardinality ~ >~Z) there exist at least two nonisomorphic mutually elementarily 

imbeddable models. 

It is clear that from Proposition 3 immediately follows the validity of the part ~I 

2 of Theorem i. 

From Theorem 1 and Proposition 3 we obtain 

COROLLARY 4. If in some cardinality ~>~ , their isomorphism follows from the mu- 

tually elementary imbeddability of any two models of a ~ -stable theory T, then this property 

holds for the theory in each infinite cardinality. 
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It is easy to see that from the satisfaction of this property in the cardinality ~ , the 

satisfiability in uncountable cardinalities does not follow. A counterexample is, for ex- 

ample, any countable categorical multidimensional theory. 

i. PRELIMINARY INFORMATION 

Throughout the entire paper, T will denote a ~)-stable theory. We will assume the 

reader is acquainted with the basic concepts, notation and assertions of stability theory. 

One can find them, for example, in [i-4]. Let us present here only the ones frequently used 

in this paper. 

We will denote the models of T by the letters J~ , J~ , 6~ ,$~ ..... sometimes with upper 

and lower indices. Their basic sets are, respectively IJ~l , I~l , l~I , l~I ..... We 

will denote sets by X, Y, A, B etc. The symbol ~(~IX) denotes the type of the tuple ~over 

X. ~I~ I~) is a strong type of tuple ~ over X. If ~ = ~ , then we will write for short 

~(~) and 3~(~) . If the type of the tuple ~ over X forks (does not fork) over yc~ , 

then we sill briefly write this as ~ ~  or as ~<~[X~ #~(~I~)~). If ~= ~ 

then we will omit it in this notation. One denotes the orthogonality of two types P, q 

usually by p ~ ~, and their nonorthogonality by p ~ ~ or f ~ 

Definition i.i. a) Let P be a stationary nonalgebraic type from ~ (X) , ~=~,~) . 

Then the pair ~,~) is called strongly regular if for any Y= X and ~6 ~ (~) for ~E 9 

either q is a nonforking extension of p or ~ I/O . b) A type/O6~(X) is called strongly 

regular if the pair ~/7~) is strongly regular for some formula ~=~(~,~)E/Q . 

If p~(~)and ~(~)= ~{~ , then the type~={~(~ :~,Q)6p~ £~ (d~ is calleda copy 

of type p. A stationary type p6~(X) has a unique extension ~ 67/ (~)~ ~3~ such that 

$~ , which one denotes usually as 9=/O(~), 

Definition 1.2 C A strongly regular type ~621~) is called multidimensional if there 

exists a tuple ~ satisfying the properties: 

2) a-$~, 
3) pi p[. 

If there exist a model J~ of T, a tuple ~e~ and a multidimensional strongly regu- 

lar type ~ 6 31(~ , then T is called a multidimensional theory. If the theory T is not 

multidimensional, then we will call it a nonmultidimensional theory (or a theory of bounded 

dimension). 

Let us now present some familiar facts, which one can find, for example, in [2, 5, 6]. 

LEMMA i.I. Let T be a theory of bounded dimension, pE4(a) be a strongly regular 

type. If ~(~)= ~[~ and p ~/~f , then for any model J~, containing ~ and f , we have the 

equality ~Z (/~J~) = ~ffg (p~, Y~). 
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LEMMA 1.2. Let the type ~6~(~) be strongly regular. Then for any tuple : and for 

any model J~, containing ~-and :, if ~)~ , then 

di= (p,*) = ~  <=> ~=(p[,*)=~. 
LEMMA 1.3. Let J~ be a simple model of a theory T. The type of p from $,(I~) is 

definable over ~--£ I~l and ~,~(p~./~) = ~ Then ~0~ ~f?) , where J~) is a 

model simple over ~0UtC} ~(cIJ~)=p. 

LEMMA 1.4. Let pe~(~) be a strongly regular type, a6J~ Then ~[[~(p,J~) 

LEMMA 1.5. Let ~6~(~) be a multidimensional strongly regular type, ~ $~4~ , then 

for all 9C$( i )  pi~. 

The results of the article were partially announced in [7]. 

2. THEORIES OF BOUNDED DIMENSION 

In this section we prove the part i ~-> 2 of Theorem i. 

Let T be a ~L) -stable theory of bounded dimension, ~0 be a fixed simple model of T. It 

is not hard to show that there exist p~Zz) , /fiE~)-[OJ for each 6"</7 , types/~#6~(J~/o) 

and tuples ~6J~ O for all 6" </Z and 7 <iZc" possessing the following properties: 

i) the type /~" is strongly regular; 

2) the typep9 is definable over ~#. ; 

3) ~ l~if )= ~ ' 0  ) for all ~'~/£ and for any f~/Zi; 

4) for any :fi~0 and ~</I if ~(:=~(~ ), then there exists k<z? i such that 

p.-'pf , where p=/O 2f~-f ; 

5) the family {pg":i<#,/~i } is a maximal set of pairwise orthogonal strongly 

regular types from ~! (~0)" 

In order to "mutlistage" indices for any ~E~) and ~ , we will denote the type 

/o~ by [~] . We will call { ~-] : 6"~', / </~3 the set of types the canonical basis of 

T. Let us denote by ~ the set of pairs [(~7/): 6"<#, / </gi ] and by -~2o--[~,/)£~:~'Al(~'], 

~O)=OJ,~=[~,7)~:~6f~([~],~)--~)). One Can choose the tuples ~&-~ so that ~=~o£7~! 

Let I.- -be an independent set of realizations of type ~/, where I~i'. 1 = 0 , if (i,/)6 ~O 
/" IZ$. ' ~ 

and I = ~ if (Z~/)6 ~1 . Let us consider a fixed model ~0 simple over ~o(] 

[7~,. ~. li,/'~/-~.}. By L~=~ 1.3 we have ~0 ss ~. Therefore, one can ~onsider that fo~ 

any model /// we have ~/o-< .//~ < I. 

~ ! . 

Now let J~and J~ be arbitrary models of the theory T, ~'~J~# J~,J~o~J~o4/{ and there exist 

elementary imbeddings ::~J~ and ~:~--~j~. 

< - LEMMA 2.1. Let . )= ,~(~9-) = C 9- for all (~,7) 6~ Then ~'r/g( 3,J~) = 
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Proof. Due to the maximality of the set ~#':(i~/°)e~) , there exist permutations ~ and 

on the set ~ such that [{&.j~ ~ ~@C~'d)~ and [~/.~ ~ [~(./)] for each pair (i,/)6~ -/ 

where due to condition 4 of the definition of a canonical basis ~(&',i), Z~(i,/)6 L(b,0),..., 

(b~/Zi-/) j for each pair (b,/)£m. By Lemma i.i, we have that ~[Fb([~j],J~)=~G~([~-~(~j~, ~{) 

and ) f o r  a l l  • : t  i s  d v : d e n t  

dit~(~2.],d~J<d~frg{[~2.], m .)for all fi, d)~2 , since f and g are elementary imbeddings of 

the model ~ in d~ and J{ in d~ , respectively. 

• -- #~ 4 

In this manner, we have the following relations:~f721[~d],JJL)~rrL( [ ],d~)= ~fF~I[~6C~), 

~)~<~nl(~6(i,.)],~)= ~[[%~$)~I. Let us denote by e the product of the permutations ~O, 

then we obtain ~Gfll([Qi;J~/)-.<~lTZI~$~f~,d~) for any pair (~,i.)6~ . It is clear that for 
# , ~ '  . -- 

any pair  ('~,;/)6~ there is a k such ~ ( d , / ) = ( b ' , d ' ) a n d  d ~ F / ~ ( [ ~ ] , ~ ) ~ / T ~ ( ~ ) ~ , d ~ ) ~ f l T ( [ ~ V 7  , 

d~)~..,.< ~/..6°#7Z(%.],, dj{ ) In other words, ~['~([~dj'~,J~)=d~r#Z(~iil,j)-J;./Jt.) , consequently, ~ff~ 

([~//],X)~ d/J'l"DC~.],,/Ifl~ d-,DTl"D ([l~.~(.D]i)] i d[t. )--~ d[l?t,([~.~d.]i d~. ) , therefore ~b'P/~([~.] ,~)= ~ ( ~ , ~ , ~ ) .  

Similarly ~ ( ~ j . ~ , ~ ) =  ~[~ ([~.~,  ~ ). The lemma As proved. 

Let us re turn to our models ~ and ~ .  Let I @ . C ~  be a basis  of type pZd'=loid(.l#[,~) , 

'7:q <'"' 'd for all (D',/')eA ~7 Due to the bounded dimension and ~-stability of the 

theory, and also the properties of strongly-regular types, we have 
' 

LEMMA 2.2. a) The modeld~is simple and minimal over J~O U U • " (b,d')¢~]; 

~2" " b) the set is a basis of type /~V ; 

c) the model d~, is simple and minimal over ./~OUU~).:(d,/')~jI~J. 
- 

Let us denote by d~ 0 , J~0#. , ~f/ , ~/', respectively, the images of d~ 0 ' J~O ' 
•. ~. , 

p~d , F under the elementary ~mbedd~ng f. We have the following 

LEMMA 2.3. For all (~d)~ we have the equation 

Proof. According to Lemma 2.1, we have the equations ~'/[b([~q],J~) ~- ~tb([~.], X) . 

On the other hand, due to imbeddability, the inequality dd~o<./~)~d~Tb(~;/i./~] is satisfied. 

Furthermore, for any (i,/)6~ we have ~<~)>i &~ . By Lemma 1.4, we have ~'//~(?9#~J~)= 

d~7~(/O~/'~o)+~(~<,/ff). Due to this very fact ~/7~([~f.],~{)= d~r~([~],~o)+~(~J~ _) and 

 onsequently, and 

then similarly to what preceded ~ ~ft%(p;di.,,4{) = dbr~(~)]~P). Now let (.~,/)e=.~! and 

l~Fa([~]~J~) = ~) Then ~b/rb(~ ~/ff)~ ~rb( . But can • ,~ ~J ,J~) i~/'.r/,([g~'/~ r) not be uncount- 

able, since ~l~([~).3,,~)=dbllZ([~d/.],~) = l~ by Lemma 2.1. Lemma 2.3 is proved. 
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.° 

Now let us choose in model ~ f bases ~). of the types ~q . Due to Lemma 2.3, the cardi- 

nality <2. equals the cardinality ~" for all (~/')e~ . Arbitrarily (but bijectively!) 

mapping the basis -~2- on ~2- for all pairs (~/)6~ , we obtain an elementary mapping f' 

of the set~{oUU[I~.:(~)65~Jon~f~u~t~.:(~/}£~ j continuing f~'/~O By Lemma 2.2, 

the models ~ and ~are simple and minimal over ~0UU[~j.:(~/)£~J and ~0 uU {~-$ (~/)~ 

respectively. Consequently, there exists an elementary imbedding ~t J~--~J~ continuing 

f', which indeed will be an imbedding "on" due to the minimality of J~overTfouU[~.:(</)e~2 j 
therefore it is an isomorphism. 

3. MULTIDIMENSIONAL THEORIES 

The fundamental goal of this section is to prove Proposition 3, from which follows the 

part 2 ~i of Theorem i. 

LEMMA 3.1. Let ~Zo ~7~,... be an infinite indiscernible sequence, J~obe a model simple 
! 

over ~.: /.<~' < u)], and J]fo be a simple model over J~ U ~ Then the model ~0 is simple 

over [Gf: ~< ~ • 

Proof. Since the model J~o is countable, then it is sufficient to show that it is atomic 

over ~f : i<u)~ . In its turn, for this, it is sufficient by Theorem IV.3.2 from [I] to 
/ t ! 

prove that ~o U ~ is atomic over ~; : ~'< ~} Let /n~J~a , since J]~o is atomic over 

[~7: I~6"~)] , there exists a formula ~(~,Qz,...,~) isolating ~(~ l~f: /-~i<ag~) 

Let us show that the formula ¢(~)-- ¢(~,,...~Q~)A~=~ o isolates the type ~(~-~/[~. : 

~<~)3) Let us assume that this is not so. Then there is a formula ~,~)= ~(~,~'4,'" 

~'~0) '  f~ ~ ' '  s u c h  that 

and 

In other words, 

and 

Since we took an indiscernible sequence, then 

-#.~ ~ C~.,~,, ,. .,~L ) A 8 (.~,~e+/,~,,..., ~e,ae÷ , )] 
and  

But t h i s  c o n t r a d i c t s  the f a c t  t h a t  the  fo rmula  isolate  the  type  

/gi < U) 3) The lemma is proved. 

Now let /o£~(~) be a stationary strongly regular multidimensional type. Let us fix it 
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until the end of this section. By the definition of multidimensionality, one can choose a 

sequence{~ :/Z < Lz)}satisfying the following properties: 

2) {~ : /~<~ is an independent set; 

3) p~.-i~/D~, for all ~</< &9 
! 

It is clear that [~zz: /Z<~J is an indiscernible set. Let J~0 be a model simple over 

t~" : /~ i< ~ and such that %&~O . Now let ~0 be a model simple over ~ofU {~o~ By 

Lemma 3.1, ~0 is a model simple over [~, : &' <~) . Let % be a fixed uncountable cardinal. 

Let us construct the models j~o , ~Fo in the following manner. Let us choose a ~ -inde- 

pendent set of realizations of type ~ (J~o)of cardinality ~ for all f<~ The set ~ 

coincides with the set ~ for all ~>~ /, and with the set-To- some countable set of 

Now ~o is a model simple over J~O~u)/r{ and ~ is a model simple over J~oU[<u) ~{ , where 

io~ j~o It is clear that ~°II=llJ~° ~ = ~ . In the same way it is easy to show that 

~f~/~i,4~°)=~ for all ~'<~, ~f~(p~., j~o)__ >b for all ~>~ / but ~L't~,~O)'~) . This fol- 

lows from the pairwise orthogonality of the types /~ and ~. for j<d<~o 

The sequence {~f :i <~} , the models ~o , ~o , ~o and ~o we will also fix to the 

end of this section. Now let~be an arbitrary model of cardinality .\, containing ~.._'i~}. 

Let us define the model ~(%~ in the following manner. Let~ be the set of all f6~ 

such that ~ =  ~(~) and /DEI/~ for all 6"<~) . Let ~ =~ ,~oC<~. For each o6 < ~5 

let us take an independent set ~=of realizations of type Pf=6 (~)of power 11., ill order 

that ~I~- I ~UU ~ ) $ - ' ' ~  " ' ~ ~. After this, let us take as ~(~) a model simple over 

~<% ~=6 " It is clear that the set U is a set independent over ~. 

LEMMA 3.2. I) For all o6<2u ~/TZ(p~ ~(%))= ~ ; 2) for all 6<S d~'I72(~df,~(Pu))= 

i:~ (PEi,.flO. 
Proof. The proof of point 1 immediately follows from the construction of the model 

~(~L) . Let us prove point 2. Let ~'<&#, since ~].l/O~ for all o6<9,, , then it 

is not hard to show that ~Tz(p~ (~), ~(~L))= ~7 and then the assertion follows from the 

equation 

The lemma is proved. 

Now let us move on to constructing the models~and~ f which will be mutually element- 

arily imbeddable, but isomorphic. The models ~ ° and J~°have already been constructed. Let 

~ ~a is this ,/~[~),v4f~~). The models ~=U J~ ~), and be defined. Then J~+! 

W = d 
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LEMMA 3.3. i) For all " ~6D// we have the equation d~'f/~TE,./~)=,~ ~ 

2) for all  eT:: we have the equation = 

It is easy to conduct the proof of induction on /Z, using Lemma 3.2. 

LEMMA 3.4. The models J~ and ~/ are nonisomorphic. 

Proof. Let us assume that there exists an isomorphism ::J~--'~ . Let ~= f(~0 ) 

It is clear, on the one hand, ~f/g (~, ~f}=~OO~01~)=~. But, on the other hand, there 

can occur two possibilities: either ~ i ~  or [<~2 for some p/~/~.for 7<~) If 

case occurs, then, by Lemma 3.3 (2), ~'~ (~[,~f~=>5. Let p~. ~2~[ Then, by Lemma 1.2, 

~ffL(~Y{)----~fTZ(~,2~)=7~. A contradiction, consequently c~J~. 

Now let us move on to constructing the elementary imbeddings ::~--~J~ and ~:~f--~ . 

At first let us construct the mapping f as a union of the mappings :~ :J~ ~ , fZ < 62 

The mapping ~:~°--- ~ is the identity mapping. :o :/ :~ Let the mappings C ,C,,0 C ,_f be 

constructed by us, where ~. : j~ i____ j ~ "  for all S</Z Let ~jf~.z = L~:oc ~2~}. It is 

clear that~_t~):o~< 9~ }C f~Nn-: , since ~ =  ~ C~_f , consequently, if ~i~f for 

all i<~ , then /~/~.~[~ J-/D~. for all b~ 

.~-/ ~'~-/ 

so that the model ~n-/ is mapped on ~./(J~'") with the help of :~_, and ~ 

on a b r i t r a r i l y ,  but one-to-one. I t  is easy to understand that  is _/[~) ~_/(~) an 

.~V,X ~'! -- 
independent set of realizations of type ~n-,[:~) and o~<~U JL'~n.l(~) is an independent set 

over :n_4~ Therefore, the mapping defined above is elementary. Now it is not hard 

to construct :~ ' ~ ,  where ~ is a model simple over 

In this manner, the construction :;J~-'J~ is concluded, :: U ~n" 

In order to construct the elementary mapping :;J~-~J~, let us prove preliminarily the 

following lemma. 

LEMMA 3.5. LetJ~and 2{ be two models of cardinality ~, conaining [~;; ~)~ , 

:~--~{ be an elementary imbedding satisfying the next two conditions: 
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i) ~') = ~7"+! for all Z~ , 

Then there exists ~t:X{~)--* ~{~) , continuing h and also satisfying the condition 

Proof. Let ~2[ [~=c :°6< %~ Let us denote ~) by I~ Let us show that 

{i~'of<~]C~( Let o6<2~ Then ~ i~, ~<~ , consequently, jg~ I/0~7÷4 for 

all ~'~ However [i~:eg< ~b] ~(J~) , and on the other hand, by condition 2 %$ ~(J~) . 

Then by eemma 1.5 we have the relation ~J_/9~ for all of < ~b . In this manner, 

[< :o~ <~] C~ Now let us one-to-one map ~$~ on It is easy to check that 

is an independent set over ~(~) Since ~(~b) is simple over J~UU , 

there exists an elementary mapping %P' ~f{%} " J~(~) continuing the mapping h. It remains 

to show that ~ ~ ~IC~(~L}) it is clear that the model ~t(J~(2~)) is simple over 

, therefore it is sufficient to convince oneself that , where 
~c<>% 

S = U ~, . Indeed, it is easy to show that ~(~I~) } i(W), ~(W) 4 ~ • On the other 

- ao ' hand, ~Z 0 U/~ (~)  C ~ , t he re fo re  N ~ ~'0 . Now Ill, {~(X)), by condi t ion 2, @ ~ 
,k.~'J 

i ( N )  > consequently ~ ,~ /~ 'Cm'fX~)  Le~a 3.5 i~ proved. 

Now let us define the elementary mappings ~" J~--* ~ . At first let us construct 

~o: Xo___. j~0 Let ~: ~. --~ ~+{ for all ~ < ~ The model ~ is simple over 

~: ~<U)] and by Lemma 3.1, ~0is simple over [~.: /.<i<z~)~ Due to the uniqueness of 

the simple model, there exists an isomorphism ~0~ : J~--J~o continuing lJ By construc- 

tion of the models ~ and , one can one-to-one map the set on 4+i It is clear 

that there is an elementary imbedding ~0 of the model ~0 in the model j~o . In the same way 

as in Lemma 3.5, one can show that 

, 

consequently. ~ I. $ ~ Since ~ (~fe) is a model simple over ~j U O -/-~- , then 

~Q $ ~o (~4/'°) But by the primary construction ~Te $ ~o , consequently, $ $ ~o (~) 
~ 

O # 

Now it remains to use Lemma 3.5 in order to continue the elementary mapping ~:~ --~J~ 

= ~ f/~ and to ~! ;J~f--~ J~! etc. Then it is understood that the mappings / ~<u) ~=a ~uu) ~ 

will be elementary mappings of the model J~ ~ j~n ~ = to the model ~= U and the model 
~u) ~u) 

J~ to J~, respectively. Proposition 3, and consequently, Theorem i are proved. 

Now let us briefly describe the proof of Theorem 2. 

The proof from i to 2 is obtained from the results [2]. where it follows from condition 

i, denoted there by (*), that all the countable moles of a theory T are almost homogeneous. 

On the other hand, in this same paper, a result of Pillay is mentioned that two almost 
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homogeneous models realizing identical types, are isomorphic. It is clear that mutually 

elementarily imbeddable models realize identical sets of types. 

Now let us point the way to the proof from 2 to i. Let condition 1 not be satisfied, 

that is there exists a multidimensional strongly regular type pE~C~) , ~ from some model 

and ~ (p,J~)< ~) . 

Let us select a sequence [~ : & < ~J of the modelJ~ and ~ in same way as above in 

the proof of the point 7] ~==> 7 2 at the start of Sec. 3. Everywhere further in the 

construction of the models J~ ~andJ~ glet us replace the cardinal I by ~ , and in the model 

j~0 let us take the independent set 4 of realizations of type /~o (J~o) of cardinality 0, 

that is ~0 = ~ The remaining arguments are similar. As a result, we obtain two count- 

able models ~= G J~a and /= Q J~g , which are mutually elementarily imbeddable but 

nonisomorphic. 
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