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SEMILATTICES OF COMPUTABLE INDEXATIONS OF CLASSES OF CONSTRUCTIVE 

MODELS 

V. P. Dobritsa UDC 517.15 

The article establishes a connection between the structure of some subsemilattices of 

computable numerations of a suitable family of recursively enumerable sets. In particular, 

we prove that the semilattice of computable indexations of a class of finite models is iso- 

morphic to the semilattice of computable numerations of some effectively definable family of 

recursively enumerable sets. We provide one sufficient condition for the existence of counta- 

bly many incomparable elements in the semilattice of computable indexations of a class of 

constructive models. 

We adopt definitions and notation from [i]-[4]. Let us recall some of these notions. 

We denote a constructive model by (~/,~) a class of constructive models by ~ , , and the 

corresponding class of abstract models (without constructivizations) of signature 

. , l ;cZ, 7e JJ. 

by ~. Here, I and J either are finite or coincide with /~ /I~; , is a predicate of amity 

fg;, p; is the equality predicate, ~.m/ J is a function of amity ~, and f~ ./T L/ are general 

recursive functions of their indices. 

A class is said to be computable if there exist a map ~;X 2- U I~I and computable 

families of recursive predicates F = ~(/~,~,,,°,~/ZT_ ! )I b6/~} and general recursive functions 

I) for each fixed value fg£¢ the numeration I=(~)=/{/Z, 2) is a constructive numera- 

tion of some model ~Z~ with the families P and ~ as the corresponding predicates and 

functions on the numbers of elements of the model ~ ; 

2) for each constructive model(~/,~)£$" there exists a value /D for which the numera- 

tions ~/~ and Q are autoequivalent (Ig ~ 9); 

3) for each f~ there is a constructive model (~/,~)6 £" such that I/z ~ 9' 
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Let -- . The set 

is called the index set of the subclass ~; in the computable indexation ~ of the class I +. 

A model ~ is said to be locally embedded in a model ~ if each finite submodel ~ of 

the model ~ can be isomorphically embedded in the model ~(~ ~ #, ~) . If neither model 

can be locally embedded in the other model, these models are said to be finitely disginguish- 

able. 

The local cone defined by a model (~F' ~) is the subclass [(~,~)](~,~leI~ 
of the class . The local subclass defined by a model ( ~  P ) is the subclass 

m~._ {- 

Let .0 and / be computable indexations of a class $~ ' .  We say that the indexation f 
is reduced to the indexation ~ (~ ~/) if there exists a general recursive function i(m) 

such that for all ; the condition {~ ~ f/(~) holds. We say that the indexation ~ is re- 

duced to y in local classes (~ ..< ~ ) if there exists a general recursive function 
~.C. 

such that for each ~ the inclusion ~(~(L{ ))_c/ ) holds. If ~ ~< ~ and / ~ ~ , 
£.c. £ . c .  

then ~..~./, i.e., the computable indexations ~ and ~ are equivalent relative to reduci- 

bility in local classes. Equivalence of computable indexations relative to the usual re- 

ducibility is defined similarly. 

We denote by ~/[~)the set of all computable indexations of the class ~ . The rela- 

tions ----- and ~ are equivalence relations on the set ~(~m) . For~6~(~ m) we denote the 
~.C. 

corresponding classes of equivalent elements by ~ and o6, i.e. 

The quotient set 

~ t t ' l  / E H I I " ) ,  I ------- c6} , 

}. 

with respect to the equivalence induced by reducibility of indexations forms an upper semi- 

lattice which is denoted by ~(~) . The subsemilattice consisting of classes I~ ~ of the 

lattice X (~) is denoted by X(~,~) . If o6 ~i~ , then the subsemilattice consisting of 

classes 7 of the lattice ~(~')satisfying the conditions ~ 7 ~  is denoted by~/~ ~ og, 

6). If usual reducibility ~ of computable indexations is replaced in the above definitions 

by the reducibility "-< in local classes, th~ we obtain the definitions of the semilattices ~.c. 

"~£.c. II~ , ~ c  (,,.~'~ ,,¢ . and "~..£.c. CJA~"~'~t,,, 6)° 
THEORFaM i. For each computable class ~of finite models there exists a computable 

family ~ of recursively enumerable sets such that ~(~)N ~(~) . The family ~ is found 

effectively from the class ~. 
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Without loss of generality, we may assume that the signature ~ of the studied models 

consists only of predicate symbols. We denote by ~=~ a part of the signature containing 

no more than ~ predicate symbols of ~ . We assume that ~_C ~ z C~ ~ °..~6~~,..~ 

and ~ = ~ ~ There are finitely many models of a finite cardinality ~ and a finite signat- 

ure o n . Such models are isomorphic if and only if their diagrams coincide up to labeling 

their elements. Clearly, the verification whether such models are isomorphic or, equiv- 

alently, their diagrams coincide is completely effective. 

One can choose a one-valued Godel numeration of finite models of cardinality K of fi- 

nite signatures ~e such that one first enumerates all models of the signature 01 , then 

those of ~2 , etc., in the order of increase of the number ~ of the signature ~ . If, 

beginning with some ~, we have ~ = ~+d ' then O~ = ~ and there are finitely many 

models of this signature. 

Suppose that ~ ~[=~ is an effective partition of the set ~ of natural numbers into 

an infinite sequence of infinite recursive sets ~/ . We fix a Godel numeration of finite 

models of finite signatures @m such that the numeration method of models of cardinality 

described above uses only numbers in the set ~K • For the sake of brevity, we denote by ~Lz 

the finite model with the GSdel number Z in this fixed numeration. 

We assign to an arbitrary model ~ of the signature O the set ~ ~ {~ ~ ~} 

LEMMA i. If (~ 9) is a constructive model, then the set 2~ is recursively enumerable 

and the enumerating function is effectively determined by the constructivization ~ . 

We denote by ~ the submodel of a model ~ of a bounded signature @@ with the under- 

lying set ~I~),,,,~(~}}.~ The set~z~= ~]~ e ~ ~} is finite and found effectively by 

Since--~'~f~ = U ~ # , the algorithm of enumeration of this set is obvious. 

S~ Z is a recursively enumerable set corresponding to a finite model2~, LEMMA 2. If 

then the model ~ is constructivizable and a constructivization ~ of this model is effec- 

tively determined by an enumeration of the set ~, 

Suppose that a general recursive function ~(~} = ~ is given enumerating the set ~= 
F ~ 

{~O,~l,,..J We will construct the constructivization ~ . 

Step O. We enumerate the elements of the model ~ , and define on them all predicates 

in the signature ~Z 0 . Put ~) = ~0. Turn to the next step of the construction. 

Step ~+/ . a) If ~@(~)£--~ ~Z~ ' then put ~(~+/)= ~ Enumerate the elements of 

~ /  Restore the diagram of this model in the signature ~+/ taking into account the 

embedding ~'~({)%"~Z~+{ Turn to the next step. 
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b) If ~'~¢~)~/"~W ' then we find the least K such that ~%ic-+ mZ~ ' ~,t~) t ~ ~Zg.  

Put ~(~4/)= %. Enumerate the elements of the model ~ and restore its diagram in the 

finite signature ~ using the embedding ~[~ ¢--~( Turn to the next step of the con- 

struction. 

Clearly, ~ ) ~  ~ ' ~  ~ . , ,  and ~ = U ~ ' ~ { ~ 7 ,  The construction process provides 

a constructive numeration Q of the mode]~. The lemma is proved. 

LEMI~A 3. Finite models (~,~) and (~)are constructively isomorphic if and only if 

~= S~ is a recursively enumerable set. 

Indeed, the construttive isomorphism of (~, ~) and (~,~) implies that ~ ~ n but 

then we have ~ ~ ~ <------~ ~'~ ~ ~ , i.e., Z£ Sf; z < ~ Z £ S~. By Lemma i, we conclude 

that the set 2~is recursively enumerable. 
= S are given. According to Lemma 7 from Suppose that recursively enumerable sets S~Z ~ ., 

the enumerable set ~ we can effectively find a constructivization 4 of the model~ . Simi- 

larly, from the enumeration of the set ~ we find a constructivization ~ of the model ~ . 

The models ~ and ~ are finite; therefore, finitely many extensions were made in the number 

of elements while the remaining extensions were made in the signature. If/7z=II~II , then 

/7z=fr~[~I$~Z~E~J If ~=r~/z2{~I$~o~J, then the equality $~-$~ implies that 

/TZ=~. For a model of cardinality /7z and a given signature ~K the only element in the in- 

tersection S~ ~ ~ is the number of the model ~ ~ But S~ ~ ~ =S~ ~ ~ and for the 

model ~@K there also is a unique number in the set ~ ~ . Thus, the numbers of the 

~ ~ ~ ~@~ Considering these isomorphisms from models ~ and~ ~ coincide, i.e., ~@~ = 

the moment when all elements of the sets I~landl~I have been enumerated, we obtain a con- 

structive isomorphism between I~ ,~) and (~) . The lemma is proved. 

We introduce a family of recursively enumerable sets: 

According to Lemma 1 each computable indexation / determines a computable numeration ~r , of 

the family ~ . Lemmas 2 and 3 show that this correspondence is one-to-one. 

~ ~ ~(Z) be the Let ~ and ~ be computable indexations of a class with ~ and let 

corresponding general recursive function. Then for each f5 we have af ~ ~/~) . By virtue 

of Lemma 3, we obtain o6~---- ~) , i.e., ¢~ . The converse is also true. Soef~?<------->oft- ~ 

B' • " = / ~I and ¢K-=~-----> ~'---- / Thus, the map ~, X(X') 7X(8) defined by the rule ~[/) -- 

is a semilattice isomorphism. The theorem is proved. 

For a class ~ of constructive models we introduce the following notation for the family 

of recursively enumerable sets: 
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Z~ 
COROLLARY. If is a class of constructive finite models, then the class ~is com- 

putable if and only if S (~) is a computable family. 

THEOREM 2. If is a computable class of finitely distinguishable constructive models 

and o~ is its computable indexation, then 

for a suitable computable numeration ~ of the family ~(~*). 

Note that Lemma i in Theorem i has been proved for an arbitrary constructive model. 

Furthermore, if [~ ~) is constructively isomorphic to a model I ~ )  , thenS~----- ~?Z~" 

Thus, from each computable indexation 06 of the class ~/" one can effectively determine a com- 

putable numeration ~' of the family ~(~), 

We define a map ~:~(~7or)-'~(~(~)7~ ') as follows. If #~og, then ~(~) -----~. Let 

us verify that it is a semilattice isomorphism. 

Suppose that ~<o~ , ~ ~o6 are computable indexations of the class ~eand ~(~) = ~(~) . 

But then /~ ~/ and /'--~ ~'. The reducibility ~'& d' has a general recursive function /(~Z~) 

such that for each n we have g (¢) . So for all n we have Models 

), )) lie in class ~ of finitely distinguishable models and are not distinguished 

by finite models. Therefore, they are constructively isomorphic, i.e., ~ ~ i~c~]. Since 

this autoequivalence holds for all values of n, we deduce that ~ is reduced to / by means 

of the function /. 

Similarly, /i~! implies the reducibility / ~. Thus, we have shown that the map 

is one-to-one and preserves order on semilattices, i.e. 

It remains to verify that ~ is a map onto the  semilattice ~ ( S ( ~ ,  oK') . Let ~ '  be 

a computable numerat ion of the  f ami ly  S ( ~ * )  reduced to og' by means of  a gene ra l  r e c u r s i v e  

' =  ~ '  ---- S f / ~ (  n We d e f i n e  a computable i ndexa t i on  /~= ec/r~. function /(~l~) . Then ~£ ~fa) ) 

Since Z ~ is a class of finitely distinguishable models, the correspondence ~{ ~ $2/f is 

one to one. The numeration $I effectively enumerates all sets in the class ~(~), so 7 

would index all constructive models in the class . The reducibility /~<< is obvious 

from the definition. It is easily seen that jI ___ ~t So ~¢)=,~-. The theorem is proved. 

THEOREM 3. Let ~¢be a class of constructive models, let~d ~ be computable indexa- 
,.~ ,,(- .t .c. 

tions of the class . Then there exist a family ~C~lof recursively enumerable sets and 

its computable indexations o~land such that ~ I~,~) ~-- ~~I,~,~ ) 
Z.c. " ' 

Note that o~ ~ y .~< ~ implies i~/i~ 6t for oCr~ S l i and ~ = ~ ( ~ 1  which are 
.c. 9...c. 

defined like in Theorem 2. We define the map 
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like in Theorem 2: ?I 7) = F The verification that ? preserves the semilattice partial 

order and ~ is one-to-one is analogous to verification of these properties in Theorem 2. 

We will verify the surjectivity of the map ~ . Let fl be a computable numeration of the 

family $(~ ) such that il~ ~t by means of some general recursive function //~). Put P= 

of + (~), where ~/~ = ~fla, • Then we have obvious equalities Z~t+/__~/)l=~t+? / 

Since ~ ~ ~! f! f! ~I . The theorem ' we have ~7 r and ~ . Thus, F= F, i.e., ~I~)=l ! 

is proved. 

Let ~ 6 L~ ~ Z~ ~° I ~E~j 

A set ~ is said to be ~-simple in a set A if~. ~ and for each,~E~ the con- 

Wxc A ° -simple subset dition ~ implies the finiteness of the r.e. set ~Z . If ~ is a El 

of a set X , then it is said to be a simple subset of A . 

Clearly, for an arithmztic set ~ lying in a class ~ a ~-simpie subset always exists; 

for instance, the set ~ itself is an example. However, a ~-set A does not always have a 

-simple subset, where 8/ ~ ~ . For instance, in a productive set there is no simple Z;- 

subset. 

THEOREM 4. Suppose that~is, a computable class of constructive models, i is its com- 

putable indexation,( r  , IL l 2 , andf/(I ) has a E -simple subsetA Then 

the class has infinitely many computable indexations incomparable relative to reducibility. 

We denote by ~(~,~)the recursive predicate defining the set ~ . Namely, 

The domain of a function 4 is denoted by ~ ; the graph of a function ~ computed in~ steps, 

by ~% ; the function computing the Cantor numbers of an ordered triple ~/TZ~b,f> by C3(f77,~,j°), 

and the function computing the Cantor number of an ordered pair ($)p> by C I~p). 

,i£~) of the class which We will construct countably many computable indexations ~Z ~ 

will be pairwise imcomparable relative to reducibility. Here, labels of two kinds will be 

used, <fTZ~b,f) and Ef77,~f 3 , where ~ ~f . The two labels, </TZ,~f> and ~,b~] , are assumed 

to be mutually incomparable and lying in one equivalence class. We fix some effective order- 

ing of these classes in the type ~. In the constructicn~ smaller labels will be of greater 

priority. 

/; For each constructivization being constructed, its successor ~ will be appointed, 

according to which its construction will be performed. The successor of a numeration under 

construction may be changed but only finitely many times. The successors themselves may un- 

dergo a "transfer" from some constructivizations to others, but, again, only finitely many 

times. 

338 



Attaching of several copies of a label </fZ,~/> will mean that we intend to violate the 

reducibility of the indexation d ~ to the indexation ~) by means of the function~ . The 

labels [~,~/] play an auxiliary role and show that the above reducibility may not be violated 

immediately after the introduction of the labels <~,~,/). 

The part of the model (~K, ~ constructed at the step ~ is denoted by 2"~K . In the 

case of introduction of the labels E/FZ,~,/], we will define values of an auxiliary partial 

function ~(~,f,/,~) and finite models ~(~.&/, :, $) for all ~(~?,?,~). 

The construction will be performed for a progressively expanding collection of indexa- 

tions and an increasing number of constructive numerations for each of these indexations. 

At the same time, we will study a list of labels <~'b~i > requiring consideration, i.e., a 

list for considering labels for which the reducibility of the indexation ~; to the indexation 

~/ by means of the function~ has not yet been violated. 

Construction of the Models (~9~a~, / :  ) 

Step O. For all &,/ 6 

the list for consideration. 

We denote by <~n,~d> 

greater than <'/TZ,~/>. 

put ~" = ¢ Include all labels <'?7Z,~, i .2', where b</ , in 

Turn to the next step of the construction. 

the number of numerations at the step ~ which carry labels no 

We introduce the quantity 

Step ~#/. It consists of four stages. 

I. Consider the numerations 7~: (2~3 which carry labels of the form [~,$,/3' where the 

b'~j> excluded from the list for consideration. For all such nu- corresponding labels C/77, are 

merations we verify the embedding 9~,4j,~, Z~ ~ ~ under the corresponding values of 

a) If there are no [~fb, g,~] such that for all ~7~,~,¢',~,aI the embedding O(ffb,~g;t,Z)¢-~ 

~ t+# is established, then put 

~(~,~, t , t  4- ~,£) = D ( ~ , 4 / ,  t ,  e ) 

for all ~ ~(~,~V/','~) . Turn to the next stage. 

b) If among the labels considered there are ~'~,~,i" ] such that for all ~ e(~z,~,j,~)we 

~i,j, ~'4 then choose the least such label Ef~,~,/] . For la- have the embedding ~,E) ~ v ' 
"#  l " l  " I  0 " I ' ¢  I ' /  ' /  

¢ ' /  , I  

for a l l  ~ ~ ~ , ~ , 7 , ~  ). For a l l  successors ~ of the nu~erations ~e carrying the chosen 
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label ~ , ( ~ , / J  verify the truth of the predicate P($,~) if it is true, verify the embedding 

~y ~+~ 

¢ 
If there is a numeration ~ among them such that 22Z u_, ~ ~+~ . ('2.K~' , then the succes- 

sor of  t h e  n u m e r a t i o n  f~,~ i s  changed from ~"~ to  ~ . Then ~ i s  a p p o i n t e d  t h e  s u c c e s s o r  

of the numeration ~Z&~ Perform the embeddings : " ~ , ~.~ ~ Turn 

to stage 2. 

If, however, for all such numerations ~:f~ we have ~ ~f~;~ ~ ~9 , then we de- 

fine for them ~(~,6,j,~:d,g)=~(2~)~ for the appropriate values ~f~.,~.2'~> . Include 

the label <f/g~,~ > in the list for consideration and turn to stage 2. 

• (~Z,i,J ') ~ ~" and 2 In the list for consideration find the least label "/h such that ~9(rn,,~'~ 

for k • ,,~ we have 

If there is no such label, turn to stage 3. 

If there is such a label, then the construction is done according to one of the follow- 

ing cases. 

S t 
a') If there exist K, and K~ such that KI ~. ;£2 ~ One'S')' ~(~) =- ~(2J<~ and the numera- 

i i 
£7 carry no smaller labels, then the embeddings mY : ~ ~ ~ ~ tions $ 

i 
are performed. We appoint ~ successor of numeration _¢~2 and ~ successor of numeration 

~£ ~ Y[ labels and such that ~ • " To all numerations U~ free of smaller K ~ 
<~,~,J > 

we attach 

the labels ~D%,~,/>. All greater labels, if they have been used in the construction, are in- 

cluded in the list for consideration and removed from the numerations being constructed while 

these numerations themselves are marked with the labels ~n~,~,/> • The label L~z,f,j> is ex- 

cluded from the list for consideration. Turn to stage 3. 

b') If the condition of case a') does not hold and there exists k such that ~ .<< 

~ • , , <f~K) is even, and the numerations ~IK ~$ carry no smaller labels, then we 

appoint %) the successor of the numeration ~/[ and ~ the successor of the numeration 
4- 

~i , Perform the embeddings . (,?.l< ~__~ ~ y ,  ~ L "  < L ~ Remove all labels 

$~n.~6~'>-- from the numerations being constructed if they have been used in construction. In- 

clude these labels in the list for considerations. The numerations freed from the labels are 

marked with the labels ~,~,j> . We also mark the label-free numerations ~'~ . ~i such that 

~,~/qu~{~5. ~ • .. ~(~K~} ~ with the labels L/~,~'~') The label<~, £~j>isV~ --~excluded from 

the list for consideration and we turn to stage 3. 
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c') If the conditions of cases a') and b') do not hold and there is k such that K 

S~,~, ~ carry no smaller labels, F , ~n$(~g~ is an odd number, the numerations ~ , (~ 
j) 

then the successor ~ of the numeration ~q/£,~(2K)' if it was there, is moved to the numeration 

~+q . Also, this constructivization has not yet been involved in the construction, ~p+ 

> ~ ~,~,i) ' and. p has the least possible value. We appoint ~ to be the successor of 

/ 
the numeration ~ and perform the embedding ~ • > ~ We attach the label ~i~z ) 

to the numeration ~,~,/]. Remove all labels greater than (~m,&q> if they were involved 

in the construction. Include them in the list for consideration. The numerations freed from 

labels are marked with the labels £ffu,~,/>. Attach the labels ~f~,~,~'> to all numerations 

, which are free of labels and have indices Z , ~_~fr~ {Z ,~,i>, Ip+4 } • We de- 

fine 

=I o + 4 
, i f , h . . . 1 . e  

was defined; 

otherwise; 

m .  t 
o' q , ~ ( 2 ~ < >  " 

Exclude the label ~,~> from the list for consideration. Turn to stage 3. 
$' 

3. The numeration ~p which has not received a successor, with C~(~,2p) ~ ~ , adopts 

the constructivization Q as its successor. For ~ ~ we find a numeration ~a which has not 

been appointed the successor of a constructive numeration of the indexation ~ already in 

construction and. had the smallest possible value of K . We appoint ~ the successor of the 

numeration ~2p+4 with the smallest possible index ~+ 4 having no successor. Turn to stage 

4. 

4. For each numeration ~ already having a successor ~ but carrying no label of the 

form [~, S,~] or carrying the label [~ S,f] but with the false value of the predicate 

~(~) we enumerate the elements of the finite model 

t÷4 ~ t t 
-- Tn u n, . 

If, however, the numeration ~ with a successor ~ carries the label ~,$,~3 and the 

predicate ,0('6~4,,,~) is true or the numeration ~ has no successor, then put ~+q~-i K . ~ ~'~,~ .~" 
Turn to the next step of the construction. 

Define 

t=O ~ ' 
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Clearly, 

o ~ ;76t+~ '" ~ ~' ix  ~'~i,~ ~7"~ C- '''~ g't~i~ = i ~ " 

and ~; is a constructive numeration of the model ~ix" Since the construction just des- 

cribed is uniform relative to & and K , yL is a computable indexation of the class 

The construction is complete. 

LEMMA i. If the conditions of stage 2 are fulfilled at some step, then the conditions 

of one of the cases, a'), b'), or c'), are necessarily fulfilled at this step. 

> Suppose that the condition of stage 2 is fulfilled at step ~+ 4 for a label ~nZ~&q , 

but the condition of case a') is not fulfilled. After the step ~ , labels not exceeding 
. . 

@n%~,/'> will be attached to ~ ~4~,~> numerations. So in the set 

S ~ . S t 

t h e  number  o f  n u m b e r s  ~k s u c h  t h a t  t h e  n u m e r a t i o n  ~;K c a r r i e s  a l a b e l  n o t  e x c e e d i n g  

[i'~,,£, ) i s  no g r e a t e r  t h a n  d~m,£,j  >. The r e m a i n i n g  n u m b e r s  i n  t h i s  s e t  c o n s t i t u t e  a c o l -  

l e c t i o n  of at least ~m,~q) ¢ • . +4 numbers. Since the condition of a') does not hold, the val- 

ues of the function ~ on distinct numbers of this set are distinct. Thus, for at least one 

2K in the set 

the numeration ~(l~) does not carry a label not exceeding ~,6,~'> . If ~(~) is an even 

number, then, obviously, the condition of case b') holds. If ~(~K) is odd, then the condi- 

tion of case c') is fulfilled. The lemma is proved. 

"> is said be stabilized (at a given step) if its new copies no longer A label ~,&,~ to 

appear at subsequent steps of the construction while its existing copies are not removed from 

the numerations being constructed. 

LEMMA 2. Every label is stabilized. 

First, note that the removal of the labels <Z,~,S> and EZ , ~, S 3 occurs simultaneously 

during the implementation of stage 2. On the other hand, if the label IZ,{,5~ is attached 

to the numeration g4=f2K~' then the label i~,~,S > is attached to the numeration ~2~ " 

Thus, the stabilization of labels can be established by induction on their ordering. 

Suppose that all labels less than LfT%,$,/> have already stabilized towards step ~ of 

the construction. Thus, the removal of the labels <~3~,J'~ cannot occur at the subsequent 

steps. New copies of this label may appear in the construction only if it is included in the 

list for consideration. When new copies of the label ~fr~)~,/> are attached, it is excluded 
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from the list for consideration at the same time. Thus, the label ~y~.,~,j> is not stabilized 

only if it is included in the list for consideration and excluded from it infinitely many 

times. We will showthat this is impossible. 

that the label ~ff~,~j'> is included in the list for consideration and excluded Suppose 

from it infinitely many times. It may be included in the list only if the second part of b) 

holds. At the same time, a) and the first part of b) cannot be fulfilled because, otherwise, 

it would never be included in the list for consideration. The label ~frL~,j~ may be excluded 

from the list for consideration only at stage 2. Cases a') and b') cannot be fulfilled be- 

cause after their implementation the condition of stage i can no longer hold for this label 

) i. , it can no longer be included in the list for consideration. Thus, c') and <~,~4 ' e .  

the second part of b) are fulfilled, alternating, infinitely many times for the label 

~Z,~',J'~. But in this case we have an infinite sequence of numerations v^4 ~ ~ ~"~ ' ' " " carry- 
/ 

ing the labels L/n~&,/~. Each of these numerations ~, has a successor ~=$ which is not 

changed any longer because otherwise the first part of b) would be fulfilled. The successors 

of the numerations of the indexation ~/ are always declared with distinct ~-indices. So 
v 

we obtain a recursively enumerable sequence of distince ~ -indices~f, ~2' .... 

infinitely many times for ~e , we conclude that, on one hand, Since b) is fulfilled 

~¢~-~ ~ , on the other hand, the formula (~D)£~> ~)~(%~),holds , i.e., %~ ~ 

(~) \A But there cannot be such an infinite enumerable sequence of indices because 
W 

--~;- ~(~ by the hypotheses of the theorem. The obtained contra- the set ~ is -- simple in ~ 

diction proves the stabilization of the label ~/T~/> 

Jcj~ J0" LENNA 3. Fo r  e a c h  ~(.1) t h e  i n c l u s i o n  h o l d s .  

I n d e e d ,  e a c h  n u m e r a t i o n  ~ a c q u i r e s  a s u c c e s s o r .  I f  t h i s  n u m e r a t i o n  c a r r i e s  a l a b e l  

o f  t h e  fo rm ~ Z ,  ~ $ > , t h e n  t h e  s u c c e s s o r  o f  t h i s  n u m e r a t i o n  may be c h a n g e d  o n l y  i f  t h i s  

l a b e l  i s  r emoved  and  a s m a l l e r  l a b e l  i s  a t t a c h e d .  I f  t h i s  n u m e r a t i o n  c a r r i e s  a l a b e l  o f  t h e  

form [ ~ , g , S ~  , t h e n  i t s  s u c c e s s o r  may be c h a n g e d  o n l y  o n c e  p r o v i d e d  t h a t  t h e  same l a b e l  r e -  

mains on the numeration, and the new successor is ~ Since there are infinitely many general 

recursive functions, infinitely many labels are attached. In each indexation ~ the set of 

$; -indices of the numerations carrying labels is an initial segment of the natural numbers. 

All are stabilized. So each numeration ~ gets a label at some step ~ which is never 
# 

labels 

removed from it. But then after some step ~ ~ the successor ~ of the numeration ~ is 

never changed. Therefore, we have ~---~ and ~.~, ~ ~ ~ ~ ~" . The lemma is proved. 
V 

LEMMA 4. For each ~0 the inclusion X% ~; holds. 

Fix an arbitrary value ~e~. According to stage 3 of the construction, each numeration 

~ becomes, at some step, the successor of a constructivization ~ for a suitable value of 

K • Note that if the successor is moved at some step from a numeration ~ to a numera- 

tion ~ and the constructivization ~ carries, the label ~,~,$ > or [~,~, 93 at. this step 

of the construction, then the numeration ~ will carry a smaller label. If ~ is label- 

free, then~ at the step when the successor ~ of the numeration ~ is moved, ~ will ac- v~ u~ 
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quire some label. The removal of a label is accompanied, as has already been pointed out, 

by attaching a. smaller label. So the successor ~+ may undergo movements only finitely many 

times. Let ~; be a constructivization such that ~ is declared to be its successor at some 

step of the construction and is never moved again. Then, as a result of the construction, we 

-~ , i . e . ,  

The lemma is proved. 

LEMM~ 5. Each ~Z is a computable indexation of the class~ + 

As has already been pointed out, ~ is a computable indexation of the class ~/ . Bv 

virtue of Lemmas 3 and 4, we have the equality ~-~ ~ ~" The lemma is proved. 

LEMMA 6. If ~,jE gO are distinct, then ~ ~#. 

Suppose, to the contrary, that for some distinct ~ 6 g0 we have the reducibility (~ 

~} Suppose that the appropriate general recursive function is ~(~g) with the Kleene num- 

ber K~-. Consider the label Lf~,j> . At some step ~ this label stabilizes. Since the 

function ~ is general recursive, stage 2 was implemented at the step t, i.e., one of the 

cases a'), b'), or c') is fulfilled at this step. If case a') holds, then as a result of the 

construction we would have ~I ~ K2 such that (~ ~ ~6 ~,~C~ = ~tm(K~ ~ ~Z but . If case 

b') holds, then, as a result of the construction we would have K such that (; ~ ( j 
' ~(K) • 

If case c') holds,__then we obtain, as a result of the construction, KI,...) K~ such 

that the numerations ~(~ ~S~ ~ carry the labels [/TL,~,~'~ and ~=~(/~,~',~. If 
(Ks ) ,  

some S ~ $ and all $1 ~ ~ satisfy 

then case a) always holds for the label [/q~,,~,d ] hereafter and 

Afortiori, 

° 

Y~,o<s'> ' 

If at some step ~>~ ~ we have 

for all S~ ~ , then the condition of case b) holds. The second part of this case cannot be 

fulfilled since in that case the label ~i,/> would be again included in the list for 

consideration, which contradicts its stabilization. Thus, the first part of b) is fulfilled 
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at the step t2. But then, as a result of the construction, wehave ~" -- g ~ ~ , ~iC --~)~ 

for a suitable S~ $. Therefore, in this case there is again ~g such that ~g ~g . 

There are no other possibilities. In all considered cases we have arrived at a contra- 

diction to the definition of a reducing function. Thus, ~i~ ff~. The len~na is proved. 

An application of L~mas 5 and 6 concludes the proof of the theorem. 

COROLLARY i. Suppose that ~ ~ is a computable class of constructive models, $ its com- 

putable indexation, ~?, ~E ~ ~, I~$1>~ , and ~ ~Y ~ ~ contains no infinite recursively 

enumerable subsets. Then the class ~ has infinitely many computable indexations pairwise 

incomparable relative to reducibility. 

COROLLARY 2. Suppose that ~is a computable class of constructive models, [ its com- 

fy ~ , ~j~ has putable indexation, ~ ~)~i I/,~I>~ and f ) E /~ Then the class ~ 

countably many computable indexations pairwise incomparable relative to reducibility. 

COROLLARY 3. Suppose that ~ is a computable class of constructive models, ~ its com- 

putable indexation, ~,~)E ~ I/'~Iv ~ = , and the index set ~ ~) has a ~=-simple 

subset. Then the semilattice£(J~ ~) of computable indexations of the class ~e has infinite- 

ly many incomparable elements. 
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