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The classical Wedderburn--Mal'tsev theorem on the splitting off of the radical in finite- 

dimensional algebras over a field has been generalized in several directions. In a number of 

papers [i-3] conditions under which the analog of the theorem indicated is valid for infinite- 

dimensional algebras over a field were found. Some of these conditions always had topological 

character. In particular, D. Zelinsky [i] proved an analog of the Wedderburn--Mal'tsev theorem 

for compact associative rings of characteristic p > 0. AWedderburn decomposition for heredit- 

arily linearly compact rings was studied in [4] and necessary and sufficient conditions for 

its existence were found. 

Another cycle of papers [5-8] is devoted to establishing analogs of the Wedderburn--Mal'- 

tsev theorem for algebras of finite type over a ring K. As it turned out, such an analog 

can be established only when the ring K is Hensel. In addition a somewhat modified notion 

of the concept of semisimplicity is also necessary, since if the ring K has nonzero radical, 

there will not be any semisimple K-subalgebras of algebras over K of finite type at all. As 

analog of semisimplicity here one uses the notion of being unramified in the sense of Azumaya: 

an algebra A over a ring K is said to be unramified if J(A) = J(K).A, i.e., if A has smallest 

possible radical. 

If R is a compact primary alternative or Jordan ring containing a unit 1 and having sim- 

ple quotient ring R = R/J(R) by the quasiregular radical, then p.l ~ J(R), where p is the 

characteristic of the ring R. There is the smallest possible radical for R if J(R) = p.R. 

In this case we call the compact primary ring R unramified. We call an arbitrary compact 

ring unramified if it is the complete direct sum with the Tikhonov topology of compact pri- 

mary unramified rings. 

The basic result of the paper asserts that in any compact alternative or Jordan ring 

R there is a compact unramified subring R I (Azumaya factor) such that Rl + J(R) = R. It is 

proved that in a compact associative ring R all Azumaya factors are conjugate with respect 

to automorphisms of the form 

(i) 

where ~ e J(R). For associative rings with identity Z. S. Lipkina [9] obtains analogous re- 

sults in somewhat different terms. 

Let ~ be a manifold of rings, I=~2~z[X ~ be a free ring of countable rank, and A be 

a ring from ~. We consider the ring A ~ ~ which is the free product in ~ of the rings 
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A and ~. We shall call the elements of the ring ~ ~ ~ nonassociative polynomials with coef- 

ficients in the ring A. If the sequence x = (x~, x~, ...) specializes to the sequence a = 

(a~, a= .... ), where ai ~ A then each element f(x) e A * ~ specializes to the element f(a) e 

A. We shall call the sequence a a solution of the equation f(x) = 0 if f(a) = 0. We shall 

call the system of equations 

= O, (2) 

compatible on the subset Z~ ~ 2 , if there exists a sequence b = (b~, b2, ...) such that 

b i e B and fe(b) = 0 for all ~ e I. The system of equations (2) is called locally compatible 

on B, if each of its finite subsystems is compatible on B. 

Proposition i. Let A be a compact ring and B be a closed subset of it. Then any system 

of equations which is locally compatible on B is compatible on this set. 

Proof. Let us assume that the system (2) is locally compatible on b. We consider the 

countable Cartesian power A ~ endowed with the Tikhonov topology• Each polynomial f~(x) gen- 

erates a continuous map /~ :LT, f~(L2) of A ~ into A. The set $~=~6 I p~(~Z)=O] 

is the preimage of zero and hence is closed in A. The sets = F] z~ are also closed. 

hypothesis for any Z we have ¢ Since A is compact, we have 

~f ~ ~ which is what had to be proved. 

Let ~= t~o¢ I~6-/- } be a family of elements of the commutative topological group G, 

(Z) be the set of all finite subsets of I, and 

o~3 

The family H is said to be summable if the map J--" iT has limit s with respect to the filter 

of sections of the set ~(Z ) ordered by the inclusion relation. In this case one writes 

-4 = ~ ~ and calls s the sum of the elements of the given family [i0, p. 80]. 

LEM}IA i. In a compact alternative or Jordan ring A any orthogonal family of idempotents 

E = ~ ] ~ E_'_T J is suahmable and its sum ~ = ,~ ~0¢ is also idempotent. 
~ef 

Proof. For ~ [ 7 )  let i)_ = E ~. Obviously ~ is an idempotent such that 

e r ~= ~ ej = £~. Since A is compact, the summability of the family E will be proved if we 

show that the map ~--~ ~j has a unique limit point [ii, p. 126]. 

We consider the sets of idempotents 

They are both closed. 

tions: 
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Moreover, it is obvious that ~ ~ E • We write the system of equa- 

{ X z= 5, 



Any finite subsystem of it contains in its notation only idempotents with indices from a 

finite subset J£~(~) and hence is compatible on Let ~ be a solution of it. 

We show that e is the unique limit point of the map ~---'L.. Let At(e) be a Pierce 
J 

l-component for the idempotent e. The set ~(E)=~ L~ is compact, as the continuous image 

of a compact set, and hence is closed. Since <6fl~ (E) all the limit points of the map con- 

sidered also belong to A~(e). 

We note that we do not yet assert that e is a limit point. We show however that if f 

is a limit point of the map indicated above, then f necessarily coincides with e. Indeed it 

is obvious that f2 = f and fC = p ~ = E~ for all ~ e I. If f ~ e then e -- f is an idem- 

potent orthogonal to all e s and consequently orthogonal to e. However, e -- f • At(e) and 

this is impossible, 

However by compactness there is a limit point. We have proved its uniqueness. Conse- 

quently, ~ =~ @~ The lemma is proved. 

For a completely disconnected compact associative ring the assertion of the lemma is 

contained in L. A. Skornyakov [12]. 

Let A be a compact alternative or Jordan ring, f= {8~ ]~ 6~ ] be an orthog- LEMMA 2. 

onal family of idempotents and e be its sum. Let d4=~Ue_" be a Pierce l-component of the 

idempotent e s. Then for any qs • A~ the family ~=19<I~6~J is summable. If ~ ~ ~ 

is a closed subring of A s where P is generated by the union of the sets Ai(e) and is topologic- 

ally isomorphic to the Tikhonov product /7~. 

Proof. As above, we consider the map 

and let q be a limit point of it. Then it is obvious that ~= ~ for all s e I and if q' 

is another limit point of this map, then (q -- q')e s = 0 for all ~ e I so (q -- q')e = 0 and 

consequently q = q', since ~--~'6~/(e) . Hence 

We consider the map 

defined as follows: if ~6/7 ~7 and the projection of u on A s is u s then ~(U) = E ~. 

This map is injective, since if ~£/7 P~ and ~ * ~  for at least one index s • I then 

~{U)e~ ~= ~{~)e~ and consequently, ~ (E)~ ~{U). 

Now we note that Ai(e) is a compact ring with unit e. By Theorem i of [13], it is com- 

pletely disconnected and hence by Theorem 2 of [14], has a basis of neighborhoods of zero of 

open compact ideals. Let V be an open-closed neighborhood of zero in Al(e). Then ~tIe)~V 

is also compact. It is easy to see that the set E has zero as its only point of adherence, 

any such point is idempotent of square equal to zero. Consequently, fN (~t(e)~V ) since 

is discrete and hence finite. Let it consist of idempotents e~i ,...,B~ Then the set 
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is open in ~ ,D and ~(W) C_ V. This proves the continuity of the map 
~ef 

is compact and At(e) is Hausdorff, the map ~-! is also continuous. 

~. Since /"7 ,Q 

It is easy to see that the map ~ acts isomorphically on the discrete direct sum 

& ~/7 P~. Since it is an everywhere dense subset of the complete direct sum, the map 

is an isomorphism and the lemma is proved. 

Let A be a ring, N be an ideal in A, and ~= ~ I~ e fJ be a set of pairwise orthog- 

onal idempotents in A/N. One says that F can be lifted to A if there exists a set of pairwise 

orthogonal idempotents f={QI~EZJ in A such that f~=~ + ~ for all e e I. 

THEOREM i. Let A be an alternative or Jordan compact ring, J(A) be its quasiregular 

radical. Then an arbitrary set f= if~ I~£7J of pairwise orthogonal idempotents in A/J(A) 

with sum f can be lifted to A to a set of pairwise orthogonal idempotents ~=~ l~6fJ 

with sum e such that f = e + J(A). 

Proof. The case when F consists of one idempotent is analyzed in Lemma 1 of [15]. Let 

~-=~ .... , l~nJ and n > 2. Arguing by induction, let us assume that there exist pairwise 

orthogonal idempotents 6, "'',~f such that ll.=6.+jr[t~ for j = 1 ..... i. We consider 

the idempotent ~=81 +.°. + Ef and with respect to it we consider the Pierce decomposition of 

the ring A: 

A = ,4, • • Ao <3) 

(in order to be definite we consider the Jordan case). Let g be a preimage of fi+1 and 

~=~+~ +f0 be the decomposition of the element g in correspondence with the Pierce de- 
P = composition (3). The element go = gU1-e lies in A 0 and F[+/ ?0+J(A)" Hence, since J~,~0! = 

,4 o~JIA I (cf. [16, p. 393]), by Lemma 1 of [15] we can lift fi+1 to an idempotent ~'~I ~'~0 

such that j~ i-I = #i#! +~(~ #" It will be the one sought since its location in A 0 guarantees 

its orthogonality to C! .... ,8/. 

f' Let F be arbitrary. We consider its maximal subset g=I6L ) which can be lifted 
to A to E0 = (£~ I ~6~fl ~ and such a subset exists by Zorn's lemma. We want to prove that 

F 0 = F. Let us assume the contrary: there exists an ~ ~ ~ TM ~0" Let g be a preimage of 

h in A. The set ~0 U ~] can be lifted to A if and only if the system of equations 

Z" (4) 

is solvable for x e J(A). We have proved that it is locally compatible on J(A). By the 

compactness of A and the fact that J(A) is closed, which is proved in [17], the system (4) is 

compatible on J(A), which contradicts the inequality Fa ~ F. 
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By Lem~na i, E is sun~nable and it is proper to speak of the sum £ =~e~ Since J(A) 

is closed, the canonical homomorphism from A to A/J(A) is continuous. Hence e goes under this 

homomorphism into f. The theorem is proved. 

The following proposition to a large extent clarifies the analogy between compact rings 

and algebras of finite type. 

Proposition 2. Let A be a compact alternative or Jordan ring. Then 

a) if aE~I~) then its quasiinverse a' belongs to the closure (a) of the subring 

generated by a; 

b) if B is a closed subring of A, then ~I ~Ji~) ~ 

Proof. It is proved in [17] that the radical J(A) is topologically nilpotent. Hence 

for the sequence of elements ~ =- (LZ+a2+ ..+L2~ we have LZ0~ =-L7 ~+! and gg~n-~O. 

If y is a limit point of the sequence ~a} then d~of=~7 and f ~(~I. The second point 

follows from the first. The proposition is proved. 

Let A be a compact alternative or Jordan ring with unit i. By K = K(A) we shall denote 

the closed subring of A generated by the unity. If A is primary, then its quotient-ring 
- / 

= A ~(~) by the radical is simple and by Theorem 3 of [14] it is finite. If p is the 

characteristic of the ring A then the ring A is called unramified if ~(~}=/P'~- 

THEOREM 2. Let A be a compact primary alternative or Jordan ring. Then 

a) The subring K is isomorphic either to the ring of integral p-adic numbers ZP or the 

ring of residues Zpm (where p is the characteristic of the ring A) and is Hensel; 

b) If A is unramified and ~t,''',~ is a basis of A over the field f=/~/£1K~ 

then ILTf,... ~ L]SIz ~ where L2~ is an arbitrary preimage of ~--i in A, is a free basis for A as 

a K-module ; 

c) If A is unramified, then the topology i A is J(A)-adic. 

Proof. a) If p is the .characteristic of the ring A then p./ ~: J(A ) and by Proposition 

2, p'/~JIKI so JIK)=p0~ and K/JI~) = Zp • Since in a compact ring the radical 

is topologically nilpotent, /~,~ --~ O so either p~'/ = 0 for some m and ~ = ~ 

or ~=~ Both these rings are Hensel as is any complete local ring [18, p. 323]. 

b) We consider the K-submodule ~i=~i ÷ ,,,+K~ . Since £~) = p'~ , one has A = 

A I + pA. Iterating this relation, we get A =Af +~k.~ for any k. However, ~pk'A ~(~)k 

and J(A) is topologically nilpotent. Consequently, for any neighborhood of zero U we have 

A = AI + U, i.e., A~ is everywhere dense in A. But A I is compact, since it is a sum of com- 

pact subsets and consequently closed. Hence A = A I and A = ~I +''" +~n" But now by 

Theorem 6 of [5] we can deduce from the linear independence of ~QI"" ",~n] over K the linear 

independence of ~I, "' ',~R } over K. 

c) Now we note that ~(~)~ =}P~'~ and hence the powers of the radical have finite 

index in A and are consequently open. Since the radical is furthermore topologically nil- 

potent, the topology in A coincides with the J(A)-adic one. 
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The theorem is proved. 

We note that the fact that the primary compact ring A is unramified in the sense of the 

definition above is equivalent with its being unramified in the sense of Azumaya as an 

algebra over K, which motivates our terminology. 

In the following theorem we formulate results of [5-8] in a form which is convenient 

for use later. 

THEOREM 3 (Azumaya-Zhelyabin). Let A be an alternative or Jordan algebra of finite type 

over the Hensel ring K such that A = A/J(A) is a simple finite-dimensional separable algebra 

, . . . ,  (k' j .  over the field K = K/J(K) with basis {£I {~ I and set of structural constants -~i/ 
• (k) 

Let i/~'/" J be a set of preimages of the structural constants in K. Then~ in A one can find 

preimages S/ .... , erL of the basis elements 4 .... ,£--~ such that 8f '~d" = ~ /i'/k')~k ' 

Now we can begin the proof of the basic results of the section. Following Azumaya, the 

subring A~ of the ring A will be called inertial if A z + J(A )= A. 

LEMMA 3. Let A be a compact primary alternative or Jordan ring. Then if t~,"',~rn} 

is a basis of the K-algebra A such that e I = i and 

:N l ,  l,i 
k--'/ 

then in A one can find an inertial unramified primary closed subring A I with the same unit 

which is an algebra of finite type over K with free basis ~eP'"~ e rn J~ and structural con- 

. f k )  7 
stants [i~' J where e i is a preimage of ~.. 

Proof. As noted in the proof of Lemma 2, a compact ring with unit is completely dis- 

connected and has a basis of neighborhoods of zero of open compact ideals. Let tf<} be such 

a basis in the ring A. We consider the chain of ideals {~i] defined as follows: J1 = J(A), 

3-f+/ = (~.)z @_ i~)zA (in the alternative case the second summand is superfluous). In the 

finite ring A/at< the image of the radical J(A) is nilpotent and consequently solvable in 

the sense of Penico (cf., e.g., [19]). Hence one can find an /b= /Zlo6) such that ~ C_ Zoc. 

Consequently, (] Jig = (0) and :7~ C_ u7-.,7+ / , 

Let A n = A/J n and K n = K(An). The ring An is primary and by Theorem 2 the ring Kn = K(An) 

is Hensel. Moreover, A n has solvable radical £(Aa~ = J(A)/jrc. since in addition the quot- 

ient-ring An/J(A n) is finite, by the Zhevlakov--Shestakov theorem (Theorem 6 of [20]) the 

ring A n is locally finite over K n. 

Let t Pi,'' ', L} be a set of preimages in A n of the elements {~i""'' ~nz j. Then 

the Kn-subalgebra A n ' generated by the elements fl, "'', fm, is finite over K n and by Proposi- 
! ! 

tion 2, Uv(~!n ) = Atz o ~(A/z ). Using the Azumaya-ehelyabin theorem we can choose from A n 

elements ~i £ If -~ JCArb) such that 

trg 
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Let el(n) be a preimage in A of the element gi of A n . Then 

frg 

{n } {n} ~ {k } 
e£ .e. .e cJ- (5) 

and e i ( n )  i s  a p r e i m a g e  in  A o f  t h e  e l e m e n t  ~ i "  L e t  e i be  a l i m i t  p o i n t  o f  t h e  s e q u e n c e  

[ ~ £ ' ' "'~ ~i ' .... Then e i is also a preimage in A of the element e i and passing to the 

limit in (5), we get 

Let A 0 = K~! + ... $ Kem 

t7 l  

}x/ "ek • (6) 

This compact subring of A by (6) satisfies the condition 

A0/pA 0 = A and hence is unramified. The units in A and A 0 coincide since otherwise their dif- 

ference is an idempotent which lies in the radical which is impossible. By Theorem 2, {el, ..., 

en} is a linearly independent basis in A0. That A0 is inertial is obvious. The theorem is 

proved. 

THEOREM 4. Let A be a compact primary alternative or Jordan ~ing. Then in A one can 

find an inertial closed unramified primary subring A I with the same unit whose center L is 

a primary associative-commutative ring which is a free module of finite type over K = K(A) = 

K(A I) which is isomorphic to ZP or Zpm and AI is isomorphic to one of the following rings: 

i) a ring of matrices ~ , H~ / ; 

2) a split Cayley--Dickson ring C(L) over L; 

3) the ring ~If)=~'/+ V of a bilinear form f on the free L-module V which is an in- 

ner product in the sense of [21]; 

4) a Jordan matrix ring H ;~a,J~ ) ; ~ 35 where the ring (M, j) with involution 

j is one of the following rings: 

a) ~ ~ i 0, where L ° is a rlng isomorphic to L, and j is the involution of interchanging 

components; 

b) M is a primary commutative extension of degree 2 of the ring L; j is an automorphism 

of period 2 and L = MJ is the fixed subring of this automorphism; 

c) Q(L) is a split quaternion ring over L with standard involution j; 

d) C(L) is a split Cayley--Dickson ring with standard involution j and n = 3. 

Proof. Lemma 3 is the basic part of it. It is necessary to use the fact that finite 

simple alternative and Jordan rings split and to use the corresponding structure theory 

which is found, for example, in [19]. We leave the routine work on the choice of suitable 

bases to the reader. 

THEOREM 5. In any compact alternative or Jordan ring A there is an unramified inertial 

closed subring. 
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Proof. The quotient ring f=A/~I~) by Corollary 1 of Theorem 4 of [17] is the top- 

ological direct sum of finite simple rings A8 with units e/3 , ~ ~/-. The set of orthogonal 

idempotents [~/~ I ~6/r] by Theorem 1 lifts to A to a set of orthogonal idempotents 

~8~ I #C/T} with sum e. Let AI~ be a Pierce l-component for the idempotent e~ (again to 

be definite we consider the Jordan case). By McCrimmon's theorem [16, p. 393], JI~175)= 

~ f] J(~) and hence J~/~[~/~ I = ~ , i.e., AI~ is a primary ring. By Theorem 4, in 

AI~ there is a compact primary unramified inertial subring QS. It remains to use Lemma 2. 

The theorem is proved. 

We cannot yet prove a theorem of uniqueness (conjugacy) for closed inertial unramified 

subrings of commutative alternative and Jordan rings due to the fact that this question has 

not been solved in the discrete case. For associative rings one can do this. 

THEOREM 6. Let Q and Q' be two closed inertial unramified subrings of an associative 

compact ring A. Then there exists an element ~ 6 JIA I with quasiinverse a' such that the 

inner automorphism (i) induces a topological isomorphism of Q and Q'. 

Let f= A/~(A} =/7 Ap and ~ be the unit of the ring AS. Let Q~ and QS' be Proof. 
~eI 

the preimages of AB in Q and Q' under the canonical homomorphism of A to A. By Lemma 2, 

~=/7 ~ and ~ ~ ~l , ~ef ~I ~. Obviously Q~ and Q~' are primary unremified subrings in Q and 

Q respectively. Let e~ be the unit in Q~ and f~ be the unit in QS' Obviously£~/A ~0~ £1A). 
X 

We consider the system of equations ep =~ ,fl6/r" By virtue of Theorem 3 of [5] this system 

is locally compatible of J(A). By Proposition 1 this system is compatible on J(A) and there 

exists an element C EJ(J) such that e;=~ for all ~£~ 

Now we consider the subrings QC and Q' They have common units f and common system of 

pairwise orthogonal idempotents L/~ I~£~I -- " We consider'the primary ring -- ~ ~ ~A=/oA~ • 

It remains primary unramified rings ~ and ~ which have common identity ~ with ~ and ~C r ')" 

are matrix rings over commutative rings L~ and L~' respectively. These rings are free modules 

over the closed subring K~ generated by fB and the ranks of these modules are identical. Let 

C/ J be the matrix units in Q~C. By Theorem 25 of [5] we can find in matrix units .J 

such that 8~.mg~. ~b0~J~,~), But then by Theorem 4 o~ the same paper there exists an element 

~r 1 such that #.~ = ~., . Here of course = since the ring of coefficients 

of the matrix subring is the centralizer of the system of matrix units. 

Since ~r(~)=~N ~[~I one has /f16 ~(A), Be Lemma 2 the family {~ I~6/J is 

summable and has sum b. Then (~c){ = and for a = c + b -- cb we have ~a=I~O= ~' 

Since in both Q and Q' the topology is defined by powers of the radical as a basis of neigh- 

borhoods of zero, the isomorphism indicated is topological. The theorem is proved. 
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