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ERSHOV HIERARCHY AND THE T-JUMP 

V. L. Selivanov UDC 510.5 

%=, -t -I 
Let IO,~<O) be a Kleene system of ordinal notation [i], ~.J= , ~= classes of the 

Ershov hierarchy [2, 3], and ' the operation of the T-jump. The basic purpose of this paper 

is the proof of the following theorem. 

THEOREM i. i) For any recursively enumerable (r.e.) set A and any nonleast a ~ 0 there 

--~! , ~' ~/. 2) For any exists an ,~ £~__ not T-equivalent to any set from such that ~_/ 

r.e. set A and any limit a e 0 there exists an ~ , not T-equivalent to any set from 
-I I l 

~<~a~{ , such that 2 ~TA, 
This theorem completely describes jumps of sets from the Ershov hierarchy, since we noted 

-/ 

[4] that if a • 0 is a successor for b • 0, then any A~1-set is T-equivalent to some Z/ -set. 

For the case of differences of r.e. sets forming the second level of Ershov hierarchy, the 

theorem was proved by S. T. Ishmukhametov [5]. In his proof he made much use of the specifics 

of differences, which is not suitable, in our view, for other levels. Our proof is based on 

completely different ideas and is about three times shorter. 

Theorem 1 implies the following assertion, which informally denotes the "independence" 

of the hierarchy of higher and lower degrees and the hierarchy of degrees induced by the Ershov 

hierarchy. Let L n be the set of all T-degrees d~o ! such that ~ =6/ )//=L~-~O/I~ = 

O~"+"j,S=Ld-<O'I ¥~(d¢iA$¢i~] Let ~ and ~ be aggregates of T-degrees containing 

sets from ~/ and zj~ / respectively, 

% 4 
sf 4 :: COROLLARY. i) For any n • N and nonleast a e 0 the classes ~ +4' ~ ~ and ~/~ 

are nonempty. 2) For any n • N and l i m i t  a ~ 0 the classes ~ n L ~ + , , _ =  ~ ,  and ~ n ~/ 
are nonempty. 

Let us pass to the proof of the theorem. We will introduce some notation. We identify 

sets with characteristics functions, i.e., n • X and X(n) = i, as well as n ~ N and X(n) = 0, 

are equivalent. Let X~t~>l <~x>eX~, X~{<8,~6X ~<~j. ~(~)~ (~(~)~.) denotes the 
partial function ~ is determinate (indeterminate) at the point n, and @[n] denotes the re- 

strictions of ~ to the set {xlx < n}. If X is a r.e. set ~ $  ) , then X s is a finite set 

calculated in s steps in some effective enumeration of X (or in some limit calculation for 
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x). ~iz , ~7 . ~/x , and ~2'&arestandard [i]. Inplace of ~ , ~7'5(~) and ~X~[C] we 
X s 5 

will write ~(),~f2~(X,C) ' and ~ [X,[C]) • We define a recursive functional u as follows: 
s 

~(~,/Z~,$) =~ if ~ (~,C)~ ; otherwise zz(X,/7,C~$) is equal to the least number greater 

than questions to the oracle in the calculation ~I~,C). We set ZZCX, fI,[~],$) = $~p all 

) l c <a).  

LF~ i. [5]. For any r.e. set A there is a r.e. set ~-TA such that eeA C ca' 
is finite and C¢~'-~'g)=~ Ca) . - -  

• "~o . o  o o 
Proof. Set ~ (~,e~ = ~ (A,E), 

, . .  (AS. e) .A 

(A .e) = F otherwise. 

)f ( )..~ /,~ l AS I 
Since then e e A' is equivalent to ~ (~,e)) for almost all S. Therefore 

we can take as C the set t<~,~>IZ<~Y/~[$ • )~  {~,g)~}} . The lemma is proved. 

Now let us consider the notation connected with the Ershov hierarchy. Let ~n(x) be the 

remainder of the division of ~(X) by 2 if ~(~)~ and ~(;E)~ if ~(~ • Then {~n} is 

the principle computable numeration of all partial recursive functions (p.r.f.) that take 

only the values 0 and i. The numeration {~n} generates for any a ~ 0 the numeration {Va,n} 
-/ 

of__ ~ c l a s s  ~& in the following manner: ~(X)~O if ~D~7(¢~>~) ' °therwise,..s, V~, "l(gg) 
==~&~,~), where b is the <0-1east element from {~<~(ZICn<~,~}. Let [~£~ be an ef- 

fective enumeration by steps of the r.e. set ~I~<0~ } . Exercise 11-55 from [i] shows this 

sequence can be considered uniform with respect to a. We define the canonically computable 

sequence o f  finite sets [Vss ~:V~,~(1)=O, --if (¢~<.2,~>t) ; otherwise V;zz(.E,=~} <jE, b ,  
element is the <o-least from {~£~; I~,Z>&J. It is clear that where V 

for all S~ , /g£~. The class of ~a sets coincides with the class of all X C_~ for 

which there is an n such that ~= ~,~ and ~E~<~= (¢~¢~/:,~>~). The description given is 

found in [4, 6] and is based on the ideas of [7]. It is simpler than the original definition 

not to parity. possibility defining Aal- of [2] in that it does refer The of ~n / and without 

referring to parity was already clear from [3]. 

We will construct the unknown set R by steps, determining its limit calculation {Re}. 

For this we construct the p.r.f. 8, taking only the values 0 and I. At step s we determine 

its part proof and set 8 s if ~(~)=O; otherwise g (gS<~>~). fs(~)= S~> ' where 

b is the <o-least element from [ZE~ l~Sf~,Z>~J . For the proof of assertion i) from the 

theorem we will construct ~ with a calculation such that R satisfies for all E , E=<X, nZ,/Z> 

the following requirements: 

: if V~E ~ then £ ~  (V~)V Vx~/~)~ 

< 

where {Vx} is a numeration of sets, ( =VQ,~7) , and C is the set from Lemma i. The 

requirements /~C ensure that C'~ R ~ and T e that E will not be T-equivalent to any ~ -set. 
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The condition ~C -< will be satisfied due to the fact that at each step s at which 
7" 

't (,~,£)I, we forbid changing R by numbers less than ( ,g,g,$) with a priority of g , 

thus preserving the calculation of ~ (~, g) . 

In the construction we use the apparatus of "Chinese boxes" [8]. Let o be the set of 

all finite sequences of zeroes and ones, including the empty sequence ¢. We denote the se- 

quences by o, • ..... The length of o we denote by ~) ; O is identified with the mapping 

from C~[~ <~)J into {0, I}. By o,~ we denote the sequence obtained from o by assigning 

to the right of it. Set ~ if ~=~e~ for some ~E ~ ; ~I~ if O=~N*~ and 

~=~/~CIj for some ~z,~e~ ~ @~6 ~ if Oc~ or Ol~ . We will note the obvious 

properties of the entities introduced: 

LEMMA 2. The relation < is a linear order on @ . For any O,~E ~ we have: ~IO*0 

We will describe subsidiary entities that arise in the construction. Let us imagine 

that with sequence o a "box" ~ is associated, consisting of three "divisions" ~;! ~O 

and ~; in which at step s certain numbers from N (O) ~o" can appear. Numbers from 

~E[~l} , can in the course of the construction be moved to the box ~O-i at which time 

they leave the box B o. Numbers falling into B~ I cannot be moved. Numbers enter the box ~eZ 

in increasing order ~<ff1<~<~ < , and are distributed among divisions as follows: Y0 in 

.~ ' ~1 in Z~O. [ , ~Z in 4,2 '~/J in ~-!O"Z etc. 

At step s, along with the p.r.f. 8 described above thep.r.f, c(o, s) and the t.r.f, p(o, s) 

and q(o, s) are constructed, where o • o. Further, set ~(~s)=sup{/c,(gs),~(gsll~<e] 
If at step s the values of certain entities are not described, then their values remain the 

o f 

same as at set s -- I. At step 0 we set,~ = 

3~=~ for ~ ¢  ;C(~=<O,O> ,C(O,O}~ for proof; ~ ;XCT~.=~(~,~= 0 for all 

We w i l l  d e s c r i b e  a s t e p  s > O. Every such s t e p  w i l l  be of  one of  types  (o ,  i ) ,  where 

F E ~  , ~ 5  , and fo r  each such p a i r  (o ,  i )  t h e r e  must be i n f i n i t e l y  many t y p es  of  t ype  

(o,  i ) .  Let  e = ~ ( ~ )  , ~ = < ~ , r ~ , g > .  

Type (~,0) Let s' be the largest of the steps <s of type (o, s), if such exists, other- 
0 

wise s' = 0. If the set (ca\ca')(e) is nonempty and in B o there is a number at step s -- i, 

then we move the least such number to Bo,0. Otherwise we do nothing. 

i there is a number at step s -- i, then we move the least such Type (o, i). If in B o 

number to Bo, I. Otherwise we do nothing. 

Type (o, 2). If C~,F-/)t and in B~ I there is at step s - 1 a number x such that 

~D(OTS-f) and V¢<$ (~C(~7~).), then we set c(o, s) equal to the least such x. Otherwise 

we do nothing. 

Type o r 3). For every x satisfying the condition 

¢e, > CsA ce+/.x>¢R"i 
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where 'Z is the supremum of all numbers that by step s have been in ~C ' we do the follow- 
s 

ind. We put <E+/~X> in R (i.e., we set ~<<£#/~>,/>= { , i is the least element in (0~<o)). 

If ~*0 ]Z" ,C(2",8-i)} , then we set C(~S)f. 

Type (o, 4). We do nothing if the condition 

5 $-I s-t ~-/ 

is false, where ~/~=SU.p~(@,$-I),~(~ ~°/, ~,~',-~)} ~ :'S'L /~5"1U(OI/~(<'F/) 
Assume the condition is true. We set 7(@,S)=~ ; if ~$7"~(~,~-I) .~<? and C(Z',S-I)I 
then we set set C($5)~ 

Type (o, 5). If C(~$-O~ 

consider one of six cases. 

Case I. 

is false 

we do nothing. Otherwise let c = c(o, s - i) and we will 

At all steps t E s of type (o, 5), c(o, t -- i) = c, the following condition 

R 

where (L~-tZ ,nz,C,~), ~ - ~ ( 6 , ~ - t ) , ~ I ~  ,[ZL~,~},~6 ~-! is the same as at a step of type 

(o, 4). In this case we do nothing. 

Case 2. Case i does not occur and at all steps t < s of type (o, 5), c(o, t -- I) = c 

case i occurs. 

Then (Is) is true. We take for each y < u s a by e K s such that ~ ; ~ t , ~ > ~  , Let f be 

the <'0-largest element from {~]~fZS} • We set ~C,~>=I ; p(~,5)"6 ; if • > o and 

C/Z',S-/)& , then we set C ~,$)~. 

We further assume that cases 1 and 2 do not occur; therefore there exists a step $o<$ 

of type (@,S) ,O(@,So'-/)=C at which case 2 occurs. 

Case 3. Case 1 and 2 do not occur and at all steps t of type ~,~'~, $0 ~$,C~I~,~_/)=C ' 

the condition 

iS false, where ~=$U~(@,~-/J,~{~L'/ , /D,r~5o],#) } , ~;-1 is as in (4)" 
In this case we do nothing. 

Case 4. Cases 1-3 do not occur and at all t of type (o, 5), s o < t < s, c(o, t -- i) = c, 

case 3 occurs. 

Then the conditions I~6o ) and (2 s) are true. We find y < Us0 for which V2(~)# V 5° I~) 
~r • 

Let ~ be the <o -least element from {Z~/C2I~;~,Z>#J . We set G~C,~)=O ,IO(~,S)"~ 
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If T > o and c(T, s -- i)~, we set C(~$)~. 

We further assume that cases 1-4 do not occur; therefore at each step sz of type (o, 5), 

~<~8 ,C(~,$,)=C , case 4 occurs, and in particular the number y is determinate. 

Case 5. Cases 1-4 do not occur and at all steps t of type (0, 5), ~<~ ,OI6,~-/)=C, 

the condition (2y) is false. 

Then we do nothing. 

Case 6. Cases 1-5 do not occur. 

Let $' be the largest step of type (~,6~ ,~-<S~<8, at which case 4 or 6 has occurred, 

and {' the <0-1east element from {zg~'l ~s~C,X>~J. Let ~ be the <o-least element from 

{ZC~/<~I~I<V,~>~ } . We set ~ > = /  if 61<C,~)>=O and ~ , ~ >  = 0  if 6Z9<~/>=/ . 
If Z~>O,C(~,E--I)$ , then we set C('r,S)f Let us pass to the next step. 

The description of the construction is complete. The set of all numbers that have in the 

course of the construction been in box Be, we also denote by B o. We define ~:~/--~ {0,{ 3 

as follows: ~(e) = 0 if 4[~j~0 is infinite, otherwise ~(e)=/ . 

LEMMA 3. For any e the set B~[e] is infinite, the set U ~ is finite and ~(e) = 0 

is equivalent to c(e) being infinite. 

Proof. The proof is carried out by induction with respect to e. For e = 0 we have 
Co) 

~[e] = #, so that 2~[8j--/~ ' @I/~[e]U ~6 =~ " If C(°)is infinite, then for infinitely many 

steps of type (~, 0) an elemen£from ~; will be moved to B 0 . Therefore B0 is infinite and 

~(0) = 0. If C (°) is finite, then only on a finite set of steps of type (@, 0) will ele- 

ments ~; move to B 0. Therefore B 0 is finite and ~(e) = i. Assume that for e the assertion 

is proved and let us prove it for e + I. First let C (e) be infinite. Then ~(e) = 0 and for 

infinitely many steps of type (p[e], 0)numbers from ~ move to ~[ej~0=~+{] . There- 

fore ~/~[e+13 is infinite. Further O~[#+~J ~ : ~l~[~J by Lemma 2, therefore U ~_= U ~6 
61/~ [e+f2 ~ 61# [e~ 

is finite. Now let c(e) be finite, ~(e) = i. Then only at a finite number of steps of type 

-$ ;  -Z~/z [J ~ ~ = -~ , F~ l ~ 0 (~[e], 0) does an element from [~j move to [£]-O ; therefore ~_=~[~]~/ nLj 

is finite. At steps of type ~[E], /) all elements of the infinite set ~//[gj move to ~[6]~/ 

=~[~+~, i.e.. ~+~ is infinite. By Lemma 2, @l~[~+{J ~ :#I/~[~jV//[L]~'Oc_~. Therefore 
@] U[~4~---(I~[£]~ 6)u (6_=~]e0~6)" T~e 7 ~j~6 is finite by induction, and @= U[e]~ 0 ~@ 

by what was proven above, that is 61/~[8+/3 6 is finite as well. It remains to show that 

~(8+/) = 0 "-~+/) is finite. This is proved as in the basis of induction. 

LEMMA 4. For any x there is a sequence o such that starting from some step, the number 

<0, x> is continually in ~/ ~; or 

Proof. Assume the contrary: the number <0, x> in the course of the construction moves 

infinitely many times, in particular,.it never falls into ~/, Z'E~) . Let ~/o~,,~)<~(~,,~)<.., 
be a direct enumeration of the set 4J (Z'E~, ~E{0,/~) . Let r and &£[O, lj be such that <$,2>= 

(~,/) . Applying to n Euclid's alogirthm, we find ge,~/,~z , P0, P! such that n =~0+~ , ~0= Jg~ + ~ , 

~ =$gl, where ~,~ E {/,2} (we assume that the algorithm terminates at the third step). Taking into 

account the rule of distribution of numbers from B~ among divisions , , we obtain 
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i.e., <O,,IF>E.~Y~ I e=l],~(~-I)~'(~-l) Contradiction 

LEMMA 5. For  any d~(~  and s ~ N we have:  ,o(~,S)~p(~,,5+/) ; F(~,S)G~(~,S+I ) ~ P(~,S) 
P(d,g+/); if C(O,..g)~, then C(,~,S)an(~,,S)o 

Proof. The first three assertions are obvious. Let C=O{~,$)} and assume the contrary: 

C<r(O,s) . Let t < s be a step at which C(6,~)=C , C(@,ff-/)~ • Then t is a step of type 

(a, 2), hence CZP~,ff-/). Since O<P(~,S) then there is a T < o and a least step ~I ,~<ffl-<8 

for which ~(~,~)>/2/~,4-/) or ~.(f,~)>~(~,4-/). Let us consider the first case (the second 

analogously). Then t~ is a step of type (~,a-) at which case 2 or 4 occurs. Since O>Z- 

then C(@,~)~ by construction at step tz. By construction at steps t= > t I of type (a, 2) 

we have C(@,~z)~C(~,~)'=~. Hence C(~,S)~-C Contradiction 

LEMMA 6. Let s be a step of type (a, 4), at which the condition of this step is true. 

Then for any t > s, C(~,~)=C(6~S), and any ~<~{g,s) ,~ C(~S) , we have /~#(Z)=~#-l(~). 

Proof. Assume the contrary: g<~(6, g) ,Z~C(6, S), ~(~)~($). First let ZE~/[°/ Then 

~=C(~,~-/) and t is a step of type (~, 5), at which one of the cases 2, 4, 6 occurs. Since 

~.~C(~,g) , then o ~ ~. If a < ~, then, by teresa 5, Z=C(~-/)~ p('f;,~-/)~{~,~-q)~#(@,.S) 
This is inconsistent with the condition ~<~[~,8). If r < o, then C(~,~)t by construc- 

tion at step t, which is inconsistent with the condition of the lemma. Now let ~=<£+/,~2> 

for some e, x. Then t is a step of type (~), ~=~(~) and the condition of step t is true, 

in particular ~ - t  , P ~ O , ~ - t ) . . < ~ "  The cases ~ 0  ,g '~O[@ , ~ 0 ~  O are pos- 

sible. In the first case ZaP(f~O,~-/)>-~[@,~-/)~6,S), which is inconsistent with %<~(~,S) . 
In the second case C(@,ff)~ , which is inconsistent with the condition of the lemma. Pinally, 

let ~L7 =_ ~. Since £=~(~'), then ~(~)=LT. We have Z~P{~"~O,~-/) =I"(6[~+I],~-/)~ 
, r (~"1-0 ~-f P(@[.E+d, S-f) ; therefore e ~A/p(6Cg+O,S_l)~__ £~ By the condition of step s we have 

~:'f[~f~]=~-[~J, ~f/~=~(@,$). Therefore ZE~ s'l and I~-f, which is inconsistent 

with the condition ~ 7 1  

The following lemma is proved in the same way as Lemma 6. 

LEMMA 7. Let s be a step of type (o, 5), at which one of the cases 2, 4, 6 occurs. For 

any t > s, C(~,~)=C(~,S), and any %~/~(6,S) ,~ C(~,S) , we have ~ff(Z)=~/(Z), 

LEMMA 8. Let CE/~ (°), So<$I<$2<S~<... be a sequence of steps of type(@,S) ,C(6,SL)=C 

at which cases 2, 4, 6, 6 .... occur respectively. Then $o~>~10 > .... where b i is the 

value of the variable b at step s i. 

Proof. We have (Is0) and (2si), therefore 

¢7 l -R , ` c vb 
V s, So s, ~, 

Hence ~ [~S~ + V, [~ ] ,  that is, at step s I we find ¢<~ , ~ [ y )  ~V;.(~) • By con- 
o O ~ ~ . c .  n v n  O m  'x" "4. u 

s t r u c t i o n  a t  s t e p s  s o and sz ,  ~ °<Z/, i f . ,>},  ~,,e/~ "'~ ~,,@. ~_ , ~. i s  t h e  l e a s t  < o - e l e m e n t  
s, a, z x a' y ~ f  a ~ u u ; sa-~, ~,-r 
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Hence and from (I s0 

Hence and from t h e  f a c t  t h a t  Therefore .~ ~ ,z~ 
s z s~ 

is the ~-least element from {~'EX~ I~.~. <{/,.Z>~), we obtain 4 "=0 4 

steps ms,.., the reasoning is analogous. 

-I .e-I 
~'l =/~S,(C)=O=/~5~-tC) , therefore in fact ~ sz ['~]=A ~7 ~ ] .  But ~ (c) 

) and (2s~) we obtain 

In the presence of 

LEMMA 9. The set R lies in ~,~I 

Proof. From Lemma 8 it follows that the p.r.f. 8 is defined correctly. Since R(c) = 

0 in the case VI~ (8<C,~>~) and ~(C)=ff<C,l~ otherwise, where b is the <0 -least element 

from {~0~2 I~<C,Z>&~, then RE Z; ! 

LEMMA i0. For any e there exists a step t e such that for all $~g ,64/ [~] , we have 

p(~,s) = p(e, ~e) , 9 [e, s)=f (6,fe ) , c(~,s)f c6e,~ e) and C(~[SJ,&)&, 

Proof. The proof is carried out by induction with respect to e. Let E=O ,/d~£3=¢~. 

Then C(#,S)=~4~ for all s. Therefore the function ~S,p(~,s) changes value no more than 

twice (in cases 2 and 4). Let s z be such that /7(~,S)=~[~,si) for 5~% By Learns 9 we find 

~z >151 for which ~(<O1 0>~z[~0~0>) for $~$z After step s2 the function ~bS. 9(¢,&) 

changes value no more than once. In fact, let ~j~S z ,g(~#53)>g(~53"-/) Then s 3 is a step 

of type (¢, 4), at which the condition of this step is true. By the choice of s 2 and by 
5.,'/ ~ " ; 

u (Rs~, e, e, S) f o r  t > s3 and t h e r e f o r e  ~( ( { ,¢ ) - - f (¢ ,S~)  

Assume the assertion to be proven for e and let us prove it for e + I. By Lemmas 3 and 

9 we find an $I ~B such that ~5(Z)=~Sr(Z) for all S ~ S{ and all z satisfying the condition 

The c a s e s  u ( e )  = 0 and u ( e )  = 1 a r e  p o s s i b l e .  L e t  p~e~=O./~[~¢3=/zN*o. S i n c e  ~ [ e + t ]  

i s  i n f i n i t e ,  t h e n  C ~ , ~ ) ~  f o r  some sz>~S , • We w i l l  a s s e r t  t h a t  c ~ [ e + 6 , s ) = c ~ [ e + ~ ] , s z )  

for s >_ s=. Assume the contrary. Then there is a least S>S z , C(/~[e+{J,S)¢ • Then s is a 
"~ S _S- I 

s t e p  o f  one o f  t h e  t y p e s  (6,~) , (~,4) , (6 ,5) .  In  t h e  f i r s t  c a s e  <£+/,X'> E R ' K  , O*O}/~ [e+/]  

and <i+/, :r>-<s~pZ~o~ 0 f o r  i = ~ )  and some x.  S i n c e  OwO I/ /  [8J by L m a  2, t h i s  i s  i n -  

c o n s i s t e n t  w i t h  c h o i c e  o f  S~. L e t  s be a s t e p  o f  t y p e  (~,O). Then 6 < / / [ e  + ¢] and 9(o,s)~.~(o, S - / > .  S i n c e  

6@ [8] by Lemma 2, this is inconsistent with the choice of ~e- If s is a step of type (6, 0-), then 6< 

/i[~+I] and at step s one of the cases 2, 4, 6 occurs. But then O.<~ [~] and ~s(C{~,~))~ ]~s-{(C(@, ~)) . 

This isinconsistentwithchoice of t e. Then ~$~%(£(/~[£+1~,s)=C~[[~-I],~z))is proven. The further 

proof is the same as in the basis of induction. 

Let /(~)=/ ,/[8+/J=F[S]~/ From Lemmas 2-4 it follows that there is an %~SI such 

that when $>~8z we have CIg,$)=C~,$z ) for Ol~ [~+IJ and R~2)=/z~) for all z satisfying 

the condition ~/'~[SJ~,@)V~<g[~p[ d ~)V26<y[8+/~(S=C(O, Sz) ) • From the descrip- 

tion o f  s t e p s  o f  t y p e  ( o ,  4) and (o ,  5) i t  f o l l o w s  t h a t  i f  0 ~ / ~ [ £ ] * 0  and C(O, Sz ) f  t h e n  

p(O~S)=p(@,Sz) and f/~,S)=9/O,g z) for all S~S z . Let O~<...<~ be a lexicographic ordering 
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of the set {o;#[e] olao, Carrying out for @~,,,.,~ in turn the reasoning from the 

basis of induction, we find at the end a step %~2 such that for $>~% we have ~6<~[E+/J 

(/o(~,$)=/~(O,%)A~{G~S) = g(@,%)) and ~5(~)=~2~(.Z) for all ~P~4/],S$) . The further reasoning 

is the same as in the case /(~)=O (replacing sl with s~). 
• ,  (~+i) 

LEMM ii. If p(e) = 0, then /Y/~(,/2f_e+/j,~e)_/~.c A'~;r/?' " 

Proof• By Lamina i0, PW[f+Ij,s)=P~-/[E4/J,~) for s > te . By Lemma 3 the set ~/~[81~0 = 
J#[e+0 is infinite. Hence and from the description of steps of type (p[e], 3) we obtain 

= 
p(/~C~+/j,~e)- .~ . .fiince <e+4m>~,~ --~ <~>~C, we have: C (e) is finite __,~(e+l) is 

. . . . .  , , , - "  . - . c e + n  
zlni~e and b ~=/V --+ A ~ = Hence and from Lemma I we obtain 

i . e .  . ,  , , , . It is clear that A'~ ~o.~ --2 " Therefore ~ EA z ,~R . 

LEMMA 12. For all X E / ~  we have ~T.X - 

Proof .  Assume the contrary. Then there is an x such that ;=---7" V/, and Y~2~ <0 ~Z (¢,,~ 

<y,~>~). Let m and n be such that ~=~m(Vx)and Vjc=~/z (R). Let e=<~r,m,ff>. By Lamina 

i0 Ck~],s)=C~[eJ,~) ~ for s ~8 • Hence and from Lamina Ii it follows that there exists an 

infinite sequence of steps $0~$I<$z<%<,.. of type (~[eJ~b-), so~ ~8 at which the cases 

>., ,  which is inconsistent with the 2, 4, 6, 6•.. respectively occur. By Lemma 8 0 >! 0 
foundedness of the relation <O " 

13. R'-% A : 

Proof. We must prove that with an oracle A' it is possible to know whether ~e ~ , e )  
I 

is determinate. By Lemmas i and 3 /---T ~ ; therefore we can find B[e]. From the proof of 

Lamina I0 it is clear that t e is found effectively with respect to A' Let C=C~I[£J,~ )~ . 
We find with the oracle ~' the least ~>~E such that ~C)=~IC) for s > t. It is sufficient 

to verify that ~Z~e~,~)~ is equivalent to there being a step $~ of type (D[e], 4) at which 

the condition of this step is true Let ~(~,E)$ $I>~ s ~/ • , be such that ~, (~ E)~ for S>~S I. 

By Lemmas 6 and ii and the choice of t we find a $2>--$I such that ~[LZT~E=~= ~;[ej W] 

for any $>~$Z where LZ~=¢//~[~],fe). Therefore at the least step 5>~5 Z of type ~[e3~# ) the 

condition of this step is satisfied. Conversely, let S~ t be a step of type ~[8]~#), 
~ / $-1 s-f s-/ 

at which ~ [R -'>[. D r . . r ~  -- ZP FW~.] Since U.i2~ZZ(R,B,£,S ) and by Lamina 6 Rs'[{~s]=;s-/[~ra] 
V ,~ v r ,  ~ " c 3  --/A I" Sl ~ 

s then " '~ ~ ~]" s S-/ -- for all s l _> , ~Pg(R,B)--~Z), (~;' ,g)~ '"  

With Lemma 13 the proof of the first assertion of the theorem is complete• Let us prove 

. =~ ; therefore it is sufficient the second. Let cz be a limit, ~=~'0 "(f Then ~% K~A/ (K) 
to construct ~E /~/ , ~ %T~' , ~ is not T-equivalent to any set from K[J Z-IVga/(K ) . We 

denote V~(K),~ more briefly by ~K,x - To construct R we change the following in the con- 

struction i) At step 0 we define ~0 .,(oi • as follows• If y E/Y , let ~E~ be such that y 

falls into ~! (o is uniquely determined and is found effectively, see the proof of Lemma 

4). Set 8 <y, 2 , where <f,,~,m, a > = ~ (6) , If A/t°) , set @<~,Z>=O (2 is 
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the second element in magnitude in (0~O)). 2) At steps of type (o, 5) we consider 

&(@)=<K,£F,//~fZ> ; in the condition (2 t) instead of V x we take Vk,x, and the condition (I t ) 

is replaced with 

The proof of the lemmas is hardly changed. Change 1) ensures that V{.~b#~a(~<W,~>$), 
- f  , E therefore ~E~a . Lemma 12 now appears as follows: ~TX for X U ~ (K)" Otherwise 

/~=--F VK,~E for some k, x. Let m, n be such that /?=~ (VK, a~),V% =~(~) a~ sete=<K,X,/Tz~fz>. 

Reasoning further as in Lemma 12, we obtain an inconsistency. For the rest the proof given 

above is suitable for the second assertion of the theorem. 

In conclusion we prove that the degrees of ~-sets are rarely arranged in the ordering 

of degrees < 0'. For the case of differences this was proven in [5]. 

THEOREM 2. For any not least a e 0 there is an R and R from ~a such that ~<7- ~ ' 
#'-=r , R' ~- and there does not exist X6z~ , X ~T ~ 2) For any limit a • 0 

there i s  an R, A such that 2 <T ~ ~ -=r ~'' ' " ' ' ~--=r ~ and there does not exist 

X ~Yoa ~f' R-<rX-<rR. 
Proof. We will prove only I) since 2) is proven by the same modification of the con- 

struction as in Theorem i). The set R is constructed by the construction of Theorem 1 with 

the changes indicated below. Set ~ = ~(oI , ~s=(/~s)(ol As A in the construction we take 

@' and replace steps of type (0, 4) with steps of type [e,#),£gA/, 

-~s-I 
Step s > 0 of Type (e, 4). We do nothing if the condition ~8 (~, e)&A-~(~/~6)--~A 

C(@,5-/)~)is false. Otherwise let o be the <-least square for which ~(@)= ~,C(@,S-/)$ Set 

{g(@,S-/),tf~,E,e,S)}. If ~(@,S)>~(~,5-/),~>@ C(~S-/)~. set C(~$)# . g (~, s>: sup --~i 

I -- ~ 11 
The proof of all lemmas except Lemma 13 remains almost unchanged. By Lemma II, ~ =r 

The condition #~r~ is obvious. From the proof of L ~  12 it follows that there does not 

exist ~ £~ ,~< X -< ~ In fact, otherwise there is an x such that ~7. Va~2-~ 

V~/~i~<O~(~I<~,~>~ ) .  Let m and n be such tha t  #={/2m(Vm),V~=c/Y~{~), and l e t  £=<~,i77,/7> 
Since /$(C)=/~(C) for C~A/(°~ , the proof of Lemma 12 leads to an inconsistency. It remains 

to verify that ~<7_ , i.e., wi~h ~he oracle ~'we can know whether ¢e(R, e) is determinate. 

Let us find a <-least sequence o of length e and a step s o such that C(@,So)~ and ~{>~% (C(6, 
~)--C(@,So)). Such o and s o exist by Lemma i0 and can be found effectively with respect 

to ~' (taking into account Lemma 3). Let us further find with the oracle ~' a step 5~5 o 

such that (C(~,5~))=~ (C(@$o)) for all s _> sl . Just as in Lemma 13 we verify that ~8(~,£)~ 
S "~'S-I is equivalent to there existing a step S~-% of type (e, ~) for which ~ (f ,e)~. The 

theorem is proved. 

Remark. The set R is T-equivalent to the direct sum of the set R and the high r.e. set 

R\~. 
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ALGORITHMIC DEGREE OF UNARS 

B. M. Khusainov UDC 510.67 

INTRODUCTION 

In this paper, questions are studied of the existence of unars with distinct algorithmic 

degrees of different type. All the necessary information can be found in [5, 6, 8]. 

Let ~ be a model. The relation ~D in ~ is called stable if it is invariant with re- 

spect to the action of the group of automorphisms of ~/&. By S#(~,) is denoted the set of 

all stable relations of ~&. Following [7], let us give the following definitions. 

Definition I. a) The constructivizations v and ~ of ~ are called essentially equivalent 

(~ ~ ~ if for any ~ E S~(C~) , ~;'YS is a recursive set if and only if the set ~-IS is re- 

curs ive. 

b) The constructivization ~ automatically reduces to ~ .~; z. ~ if there exists a 

recursive function ~ with the property: if ~Z is a p.r.f, with a Kleene number x is the 

characteristic function of the set D-IS for some $6 ~ )  , then ~(Z) is the characteristic 

function for the set v-IS. If N ~  and ~pN then we will write that ~; ~. 

c) The constructivization v uniformly reduces to ~ . ~ ~f~ , if for some computable 

operation ~ we have ¢S)--~-42 for all 2egg~ • Let us write that ~p ~ if 

V ~</o# and ~,,<#~9 . 

Let us denote the fact of the autoequivalence of v and B as ~] ~ ~ The sign .... 

is read as "this is by definition." 

Definition 2. Let ~6{0,~,~ . Then @ - ~ ~  is the maximal number of not e-equiv- 

alent constructivizations of ~. The number ~ - ~  is called the 8-degree, and the set 

~@-C~,O/~@e~O,~,P,A~ the algorithmic degree of 

i. Influence of Constants on the A-Degree 

Let ~,...,~eI~l~ f~E~/ . It is evident that ~-~a ~-~[~;~,...,~. 

Examples of models for which the sign "<_" in a given relation could be replaced by "<" were 

not known. 

Translated from A~ebrai Logika, Vol. 27, No. 4, pp. 479-494, July-August, 1988. Original 
article submitted December 15, 1986. 
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