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ERSHOV HIERARCHY AND THE T-JUMP

V. L. Selivanov UDC 510.5

-f W,
Let ((7§<b) be a Kleene system of ordinal notation [1], :Sa , 4, classes of the
Ershov hierarchy [2, 3], and ' the operation of the T-jump. The basic purpose of this paper

is the proof of the following theorem.

THEOREM 1. l) For any recursively enumerable (r.e.) set A and any nonleast a € 0 there
exists an 4‘?6_2 not T-equivalent to any set from A;/ , such that £’ E,'A/' 2) For any
r.e. set A and any limit a € 0 there exists an £7€'A , not T-equivalent to any set from
5%‘2 Eé’ , such that & =7’4’

This theorem completely describes jumps of sets from the Ershov hierarchy, since we noted
{4] that if a € 0 is a successor for b € 0, then any A;l-set is T-equivalent to some 2;;; ~-set.
For the case of differences of r.e. sets forming the second level of Ershov hierarchy, the
theorem was proved by S. T. Ishmukhametov [5]. In his proof he made much use of the specifics
of differences, which is not suitable, in our view, for other levels. Qur proof is based on

completely different ideas and is about three times shorter.

Theorem 1 implies the following assertion, which informally denotes the "independence"
of the hierarchy of higher and lower degrees and the hierarchy of degrees induced by the Ershov
}
hierarchy. Let Ln be the set of all T-degrees d/é&” such that afm i /f/ {d. Q’m

(/H-/)} Me {dsﬂ VIZ,(d¢A /\d¢/‘/ )} Let fa and '/78 be aggregates of T- degrees containing
sets from 2 and Aa respectively,

=8Ny D= G, Y Sy A= AN H L= LN U Ly

a Z T men T m<n

* #* *
COROLLARY. 1) For any n € N and nonleast a € 0 the classesng n ﬂ+/’5; Aé, and é;f7ﬂ7

o4l and Jinp

are nonempty. 2) For any n € N and limit a € 0 the classes /) f]é,+{’
n

are nonempty.

Let us pass to the proof of the theorem. We will introduce some notation. We identify
sets with characteristics functions, i.e., n € X and X(n) = 1, as well as n ¢ N and X(n) =0
are equivalent. Let X{EL£<&£>[ <9,$>€-X}, X‘:L{%f-')éx l(&d’)?d}. 9//(@)4 (gf/(ll}f) denotes the
partial function ¢ is determinate (indeterminate) at the point n, and ¢[n] denotes the re-
strictions of ¥ to the set {x|x < n}. If X is a r.e. set (XEA: ), then XS is a finite set

calculated in s steps in some effective enumeration of X (or in some limit calculation for
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). ¥, 59,,5 , %X , and ¢;’$are standard [1]. In place of 50 (C) and %X'S [c] we

will write 93(X) (Xc) and qb: {X,[c]) . We define a recursive funct10nal u as follows:
u(X,ne,$)=0 it ¢ (X,c)¥ ; otherwise « (X,a,c, $) s equal to the least number greater

than all questions to the oracle in the calculation qb (X 0) . We set Z[(X,fl,[:a],S)= sup

{u(X,2,c,8) c<a}.

7 (9]
LEMMA 1. [5]. For any r.e. set A there is a r.e. set (= A such that {’EA -

is finite and £’¢/4 fm /Vm

Proof, Set qﬁe (A,g)-"—' 5‘5! (/4,2),

& Me) o BN A e sTA LWz
e)=
r

AsH st

A ‘
otherwise.

A

s
Since A {glCP ABH} then e € A' is equ1va1ent to 45? (A:SgH for almost all S. Therefore
we can take as C the set {<g z>{x<amd{$l¢ A e)f}} The lemma is proved.

Now let us consider the notation connected with the Ershov hierarchy. Let y,(x) be the
remainder of the division of %(Z) by 2 if %(x)‘ and %(-@f if @, (0 . Then {yn} is
the principle computable numeration of all partial recursive functions (p.r.f.) that take
only the values 0 and 1. The numeration {¥n} generates for any a € 0 the numeration {Va n’
of class 2: in the following manner: Va,z{ )= () if V5< a(¢ <.Z‘,5>f) , otherwlse Va/l(.!;)
==5ﬁﬂ<a‘,f> » where b is the <¢-least element from {Z (Z“ﬂ <.Z‘Z>H Let {/( } be an ef-
fective enumeration by steps of the r.e. set {ZIZ<0(Z} . Exercise 11-55 from [1] shows this
sequence can be considered uniform with respect to a. We define the canonically computable
sequence of finite sets [%Sn}ivzﬂ(xhﬁ if er/( (¢,L<x 8>1) ; otherwise V;ﬂ{.t)'-;ﬂ <Tb>
where 5 is the <p-least ellement from {2’61’( $p5<.z' z>§} It is clear that 5-"00 \/a”5 \{y,/z
for all ael ,neMN. The class of A - sets coincides with the class of all X& N for
which there is an n such that X= Va,rz and V£:75<ga ((ﬁm(x,é’)&). The description given is
found in [4, 6] and is based on the ideas of [7]. It is simpler than the original definition
of [2] in that it does not refer to parity. The possibility of defining Z';f and A7 without

referring to parity was already clear from [3].

We will construct the unknown set R by steps, determining its limit calculation {RS}.

For this we construct the p.r. f 8, taking only the values 0 and 1. At step s we determine

its part proof and set 65 if /{)(«2) 0, otherwise V{e/{ (& <1:’5>f) ,(7 (T)= 6’(1‘,5} , where
b is the <p-least element from {ZGK '9561‘2)*_} For the proof of assertion 1) from the

theorem we will construct & with a calculation such that R satisfies for all & ,¢&=<x,m,7> ,

the following requirements:

7-5 ; if VIGAZ then I#CZ,’,Z(VI)V VI%CPII{/Q),

}73 : <£’,1‘>€€‘-’ <€+f;x>g/? for almost all z

-/
where {V4} is a numeration of Za sets, (Vr= Va.z') s and C is the set from Lemma 1 The

requirements ,De ensure that f’sr R’ and Te that R will not be T-equivalent to any ZI -set.
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e

7
The condition /ﬂ’srf will be satisfied due to the fact that at each step s at which
A 51
‘;g(,{?,g)i, we forbid changing R by numbers less than Zé(/‘? ,5;9,5) with a priority of £,

thus preserving the calculation of %, (K ¢),

In the construction we use the apparatus of "Chinese boxes" [8]. Let o be the set of
all finite sequences of zeroes and ones, including the empty sequence ¢. We denote the se-
quences by o, 1, .... The length of ¢ we denote by Z/Z(@‘) ; O is identified with the mapping
from {.Z'Ia‘} <[A(@)} into {0, 1}. By oxT we denote the sequence obtained from o by assigning
T to the right of it. Set 6&7 if Z'=6*0, for some G € ©; ol if 6=0,*0%¢, and
‘6'=6,x—/x-qs for some 6,,6,,6€@ ; 6<¢ if 6CC or 6|7 ., We will note the obvious

properties of the entities introduced:
LEMMA 2. The relation < is a linear order on @ . For any 0,0€ @ we have: Z|0x( +*

To T<Gv0 <0 ; T|6#/«T)6V 640 ST ,7<0%{<>T<OVE*0C T,

We will describe subsidiary entities that arise in the construction. Let us imagine
that with sequence ¢ a "box" Eg is associated, consisting of three "divisions" _5; . ﬁ;
and j; in which at step s certain numbers from /V(a) can appear. Numbers from 5; ;
56{0, /} » can in the course of the construction be moved to the box 5@‘_[ at which time
they leave the box B;. Numbers falling into B;l cannot be moved. Numbers enter the box ﬂgﬂl

quincreasing ordif éé<é@<igé<§?f,u and are digtributed among divisions as follows: y, in

, 5/7 in 452“., 5/2 in 4, 5{5 in 56*5 etc.

At step s, along with the p.r.f. 8 described above the p.r.f. ¢(o, s) and the t.r.f. p(o, s)

and q(¢, s) are constructed, where ¢ € o. Further, set /’(0,5)=3U70{p('5;5),9(2',5) (<6} .

If at step s the values of certain entities are not described, then their values remain the
-7 o) 14

same as at set s — 1. At step 0 we set .5@5 ={<0,0>}, 5¢={<0,21‘> },Z‘>[%5p/={(ﬂ,&#>f.f;0},

ﬁ6= ¢' for & 7é¢ 3C(¢, 0)=<0,0> ,C(6,0)} for proof; 6# 5 P6,0) :g(@)g)zg for all

@G@ ;@03 ¢ .

We will describe a step s > 0. Every such step will be of one of types (o, i), where

645

6€e® ,/;<%5 , and for each such pair (o, i) there must be infinitely many types of type
(o, 1). Let e=&i(6) ,e=<z,m,7> -

Type (6,0) . Let s' be the largest of the steps <s of type (o, s), if such exists, other-
wise s' = 0. If the set (cS\cs')(e) js nonempty and in B; there is a number at step s — 1,

then we move the least such number to Bosx,. Otherwise we do nothing.

Type (o, 1). If in B! there is a number at step s — 1, then we move the least such

number to Bg,;. Otherwise we do nothing.

Type (o, 2). If C(6,5~/)% and in B! there is at step s — 1 a number x such that
.r;f’(@,s—{) and VY{<$ («Z‘%C(’@,Z()) , then we set c(o, s) equal to the least such x. Otherwise

we do nothing.
Type o, 3). For every x satisfying the condition

S 5~/
<e,z>el A<ltha>d R~ Ar(e«0,5-1)s <+l x><7,
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where ¥ is the supremum of all numbers that by step s have been in j;*p , we do the follow-
ing. We put <&,r> in R (i.e., we set z9<<é’+/ &Z>,{>=7, 1 is the least element in (07<a)
If 6%x01T ,C(7,8-/)}, then we set ((2,5)}.

Type (0z 4). We do nothing if the condition
5 5/ -1
ele,s-NIA B (R¥ ) A R 1= R ]

8- s-1  ,5-1 (et!)
is false, where ugr-wp{g,(@,s—f),a(ks i e, 9,3)}, Ré =K U i%(éﬁfﬁ}s -n 6(6’}=0}).

Assume the condition is true. We set §(6S)=u} ; if U>9(6,5/) <z and C(F,8-1)}
then we set set C(Z;5)f .

Type (o, 5). If C(6 8-7)! we do nothing. Otherwise let ¢ = c(o, s — 1) and we will

consider one of six cases.

Case 1. At all steps t € s of type (o, 5), c(g, t — 1) = ¢, the following condition

is false
R0 =, (A V] =2 (R77 1)
Ay s g 7] Ul bot)n R 121-R5 1,7,

where dé-u( m,c, f -r.sMp{p 52,‘ /)u(/? n [zzt']z,‘)}/\’ is the same as at a step of type

(o, 4). In this case we do nothing.

Case 2. Case 1 does not occur and at all steps t < s of type (o, 5), c{o, t — 1} =

case 1 occurs.

Then (Ig) is true. We take for each y < ug a. b € K$ such that ¢x<y, >t . Let pﬂ be
the <0 ~largest element from {1{ Iy< } . We set @<C g> =7/ 5 ples)=1J; if © > 0 and
¢(z,8-/)} , then we set C(, S)f,

We further assume that cases 1 and 2 do not occur; therefore there exists a step 50<S

of type (6,5) .Cle,S;1)=C at which case 2 occurs.

Case 3. Case 1 and 2 do not occur and at all steps t of type (@’5), s, <7<§ cle fa"/)=C’

the condition

-/ £t t
R (e1= 2y (Ve W, g 1= 10 Ty DA R 1R 3
is false, where ﬁ;:sup{p(@,t-f),u(/?é", /L,flésa].ff)}, /?6 is as in ([f ).
In this case we do nothing.

Case 4. Cases 1-3 do not occur and at all t of type (g, 5), s, <t < s, clo, t — 1) =

case 3 occurs.

Then the conditions [5 ) and (2g) are true. We find y < ug,, for which V (y )# V () .
Let { be the <, -least element from {ZEK Hﬂr<y Z)#J We set 5((’ g) 0 /0(6 §) = [f
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If © > 0 and c(t, s — 1)y, we set C(5,$)F,

We further assume that cases 1-4 do not occur; therefore at each step s; of type (o, 5),

$0<$, <$ ,¢(6,5,)=Cc , case 4 occurs, and in particular the number y is determinate.

Case 5. Cases 1-4 do not occur and at all steps t of type (g, 5), $‘,<ﬁ$8 ,C(G,zf—/)=c,

the condition (2y) is false.
Then we do nothing.

Case 6. Cases 1-5 do not occur.

Let §' be the largest step of type (6,6) ,5,53,<S » at which case 4 or 6 has occurred,
and 15’ the <,-least element from {Zef(/s |&°ccz>4)  Let §  be the <,-least element from
{ze/(a | <ot} Ve set @by =y if G%CES=0 and 636> =0 if Fhs=1.
If ¥>0,0(¢,8—/)t, then we set C(7,8)! . Let us pass to the next step.

The description of the construction is complete. The set of all numbers that have in the
course of the construction been in box B;, we also denote by B;. We define /Z’/V—' {0, /}

as follows: wu(e) =0 if J;,(@*o is infinite, otherwise /l(€)=/ .

LEMMA 3. For any e the set B,[o] is infinite, the set is finite and u(e) =

6l . ﬂé
. AP te]
is equivalent to c(e) being infinite. s

Proof. The proof is carrled out by induction with respect to e. For e = 0 we have
ule] = ¢, so that 5 [e_] ' 6| [e] 6 525 If C(°)1s infinite, then for infinitely many
steps of type (¢, 0) an element from .5¢ will be moved to B,. Therefore B, is infinite and
u(0) = 0. If cC°) iy finite, then only on a finite set of steps of type (¢, 0) will ele-

0
ments .L?ﬁf move to B,. Therefore B, is finite and u(e) = 1. Assume that for e the assertion
is proved and let us prove it for e + 1. First let C(e) be infinite. Then u(e) = 0 and for
infin?:ely many steps of type (ul[e], 0) numbers from é"m move to -5/4[9]“0=5ﬂ[e+0 . There- 2
e . = U
fore “y@+] is infinite. Further olu e#] =—0|u[] by Lemma 2; therefore sl ¢ oiul” 6
is finite. Now let c{e) pe finite, p(e) = 1. Then only at a finite number of steps of type
0 =

(ulel, 0) does an element from 5//@_] move to -5/1[6]*0; therefore 6;&1)@*0?6 ‘5/( (e]* 0
is finite. At steps of type («/[¢],/) all elements of the infinite set Ju11¢) move to —/?ur_e]&/
"L, iee.. 5g[g+1j_ is infinite. By Lemma 2, @l/lr_é"'f_] ‘_’@l/l[é_lV//[L]*OGS' Therefore

U 4 =( U2j )u U & U . . : . U

[ [LH 6 - .
6 luEH] Gl ] (3 (62 [0 6) The set Gl fe] 6 is finite by induction, and 62 %0 (e
by what was proven above, that is 6 1is finite as well. It remains to show that

(€+/) Glu[er]
/l(€+/)=0 '—'5 is finite. This is proved as in the basis of induction.
LEMMA 4. TFor any x there is a sequence ¢ such that starting from some step, the number

. . -/ 4
<0, x> is continually in 56 or _/?6

Proof. Assume the contrary: the number <0, x> in the course of the construction moves
infinitely many times, in particular, it never falls into 5~/, TeO . Let 9/0(17,1:) <y, (Z;)<...
be a direct enumeration of the set 5 (red, ie{0,}). Let r and (€{0/} be such that <fI>=
/A (#,{). Applying to n Euclid's aloglrthm, ve find 9,,4,,9,,7,, 7, suchthatn =3 +1 .9 = 39+ n,

7 0 L)

g, \59 where 1,/ € {#,21 (we assume that the algorithm terminates at the third step). Taking into

account the rule of distribution of numbers from B; among divisions En , ﬁ- , ./7 we obtain
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0.2>= (0, =4 (1)=4g irl 1,04y (e el0) ),
i.e., <0, d‘>€5;., , 6 =o% (r,=1)*(r,=7) . Contradiction.

LEMMA 5. For any 6€® and s € N we have: 2(6,5)<p(6,5+/); g (6,5)<g(6,5+1) ; r@s) <
rs+/); if ¢(6,94 then C(63)= r(5S).

Proof. The first three assertions are obvious. Let £=C(6,S)} and assume the contrary:
c<r(e,s>. Let t < s be a step at which C6,5)=C . CG,7-/)! . Then t is a step of type
(0, 2), hence C2PG,7-f). Since C<I(6,5) then there is a T < ¢ and a least step zf, I<ESS
for which ,/0{2',27,)>/0[Z’,D’,-/) or g(zjf,pg(fi,z‘;/). Let us consider the first case (the second
analogously). Then t; is a step of type (7, %) at which case 2 or 4 occurs. Since 0>7
then C(G,f,)? by construction at step t,. By construction at steps t, 2 t, of type (o, 2)
we have C(@éz7750(5,f)"6. Hence C(6S)#C . Contradiction

LEMMA 6. Let s be a step of type (o, 4), at which the condition of this step is true.
Then for any t > s, ((6,2)=C(6,S) and any £<¢(6,8) ,%# C(0,8) » we have ET’L{Z)=/QZ"'/(Z)‘

Proof. Assume the contrary: 2<@(6,5) ,Z% C(6,8), /Qt(Z)fﬁﬁ(Z,‘. First let ZE/V{O.} Then
2=C(7, {~1) and t is a step of type (v, 5), at which one of the cases 2, 4, 6 occurs. Since
Z#C(68) , then o # 1. If o < 1, then, by Lemma 5, Z=C(Z;¢~/)=2 r{o’,&‘-/)ag(o,ﬁ-f)zg(@s) .

This 4is inconsistent with the condition {/<9(6'5)- If © < g, then C(G,ﬁ)f by construc-
tion at step t, which is inconsistent with the condition of the lemma. Now let Z=<¢+/, 1>

for some e, x. Then t is a step of type (%3, 8=gh/ (z) and the condition of step t is true,
in particular 2';{/(7#/ ,P(7#0,1-1)< 2 - The cases 6<£%0 .T#0|6 ,Cx0S © are pos-
sible. In the first case zzr(z-*[),zf—/);g{@,zf#)zg(a,s), which is inconsistent with Z2<¢(g,$) .
In the second case C(@,Zf)f » which is inconsistent with the condition of the lemma. Finally,
let 7«0 S 6, Since €=tR (7)., then o@)=0. We have Z2/(0%0, 1-1) =/’(6f_€+!],2f-/)2

(é+7)
rieleg+/] 8~/) .
( E/—’ 1, ; thereforee zeM’(G[B&-ﬂ &S

s-f -
/\7 [af] ;\7 [ll/'] u)’ Q’(@ s). Therefore Z€RXR and Jf¢ Rt {, which is inconsistent
with the condition Z¢Pﬁ x4

,{7 . By the condition of step s we have

The following lemma is proved in the same way as Lemma 6.

LEMMA 7. Let s be a step of type (o, 5), at which one of the cases 2, 4, 6 occurs. For
any t > s, C(G,Z,‘)=c(6,s), and any 2Z<p(6,S) .2 # C(6,8)» we have ,47“"(2)=/?é'/(z),
LEMMA 8. Let CeN'”, $5p<S,<8,<85<... be a sequence of steps of type (6,5) .C(6,5,)=C

at which cases 2, 4, 6, 6, ... occur respectively. Then éj’b>£0>"' » where b; is the

value of the variable b at step sj.

Proof. We have (Ig ) and (2g,), therefore

8% (Ve) = R ey =R (0=1% R (=g, (Vs ¢)

m
Hence V [Zé ] % [y} that 1s, at step s; we find §/< Yz y) %V g/) By con-
struction at steps s, and S1, L/ (’y f)‘ 5 6/(5" é’ { pﬂ is the least <p-element
from {2k | <y,2>4}.  Theret é’ B Le 7 7=l for anl
rom 2 z 4, . erefore 0 ) y emma (2)= Z) for a
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Z</0[6,50)=Usa , Z% C, But FSZ.ZC) =,?5’(c)=0 =,(75"'?C) , therefore in fact /?52 [U'] /FE/’]

Hence and from (Ig ) and (25,) we obtain
.8 -/ o 7 S5 45
Ve )= (R¥ )= 67 (R, )=V, [z,]

s
Therefore (y) y);é V (4, Hence and from the fact that JG/( Sﬁzl'(y,i)‘ ; 5;_
is the ( least element from {Z€K2|¢ <yz>}} we obtain 5 f . In the presence of

steps 53,... the reasoning is analogous.
* 3 -/
LEMMA 9. The set R lies in Za .

Proof. From Lemma 8 it follows that the p.r.f. 6 is defined correctly. Since R(c) =
0 in the case V5< a(9<c 5>f) and /?{c)=5<c,éo,> otherwise, where b is the <0 -least element
from {z<0zz l&<c,z>&}, then peE

LEMMA 10. For any e there exists a step te such that for all SZZfe ,6&/! [e] , we have
ples) = ple,3) , gles)=9.T,), C(68)=C(6T, and C(u[el,Z)1.

Proof. The proof is carried out by induction with respect to e. Let €=0 ,}/{QJ“-‘@/-
Then C(#,8)=<00> for all s. Therefore the function A8.0(f,s) changes value no more than
twice (in cases 2 and 4). Let s; be such that O(dS) =p(d,s,) for $25, . By Lemma 9 we find
S, 2§, for which (<0’ 0)%;?52(«7,0)) for S'f:!S‘2 . After step s, the function 2AS. g(¢,5)
changes value no more than once. In fact, let $23S, ,Q(¢,53)>9(¢,53-/) . Then s3 is a step
of type (¢, 4), at which the condition of this step is true. By the choice of s, and by
Lemma 6 /P@(@J}J ,{753 [9(@3 j] for t 2 s;. Since g(¢ )751(/{’3 ge,s; } then Zz(/?f})g,s)=
zst’ees) for t > s3 and therefore g(d L‘) g(¢ Sy)

Assume the assertion to be proven for e and let us prove it for e + 1. By Lemmas 3 and

9 we find an 3,?7/‘3 such that Rs(z)=,?5’(z) for all & 2 51 and all z satisfying the condition
z<r6¢1[ej*0, z‘e)\/zs Sup( U ﬂr) v I6<u €] {:z=c(6,z‘p))_,
7l el

The cases u(e) = 0 and u(e) = 1 are possible. Let K(O=0.{[@{]=i[d+*0 . Since ,5;(&,“]
is infinite, then COUE’-HJ,S:Z)‘ for some S,2§, . We will assert that C(u[et1], S)=C(11[8+f],sz)
for s 2 s,. Assume the contrary. Then there is a least $>S,, C(u [p+/], S)‘l‘s . /Then s is a
step of one of the types (6,3) ,(6,4) , (6,5). In the first case <(+/,I>€R~ R 6*0\/1 (e+1]
and <6'+/,.T>$SLL)056‘0 for [= Z/X&') and some x. Since 6*0|/u (6] by Lemma 2, this is in-
consistent withchoiceof § .Letsbeastepoftype (64). Then 5<//[e+!] and g(@$)>g(6 §=-1{>. Since
6</1 [¢] bylLemma2, this is inconsistent with the choice of ng If s is a step of type (6, 5) then ©<
p[e+1] and at step s one of the cases 2, 4, 6 occurs. But then 65/ el and RS(c(e, b RS (ced)) .

This is inconsistent withchoice of tg,. Then Vs;sz(c(/a [+, 8)=Clu e+, 2)) is proven. The further
proof is the same as in the basis of induction.

Let H(e)=/ ,u[e+{]=u[€)#/ . From Lemmas 2-4 it foll_owss that there isan §28 such
that when S$33, we have ((68)=C(6,5,) for 6]/{ [6+7] and R(z)—/?sz(z) for all z satisfying
the condition Z</"6{/[ejkﬂ,2é)’V3<SuP(T‘#‘.[{’+05Z,)v_775</u{g+/](z_c(63 ) - From the descrip-
tion of steps of type (g, 4) and (o, 5) it follows that if 63/[{6_14-0 and C(6,5,)1 then
Ple,s) *'70(@,52) and g(6,5)=9(5,52} for all §25, . Let 6<..<6, be a lexicographic ordering
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of the set {GQ/LI[QJ*O]C(G,SZ)U. Carrying out for ©y.,0x in turn the reasoning from the
basis of induction, we find at the end a step 332§, such that for §2§; we have VG<//[__€+7']
(P(5,5)=,0(6,$J)/\y(6,8)= g(G,Ss)) and ,?S(z)z/?%(z) for all Z<I’CUE€V],S3) . The further reasoning

is the same as in the case H(€)=0 (replacing s; with s;).
(e+1)

c ! ’
LEMMA 11. If p(e) = 0, then /%‘(,cf{_e’fd,ég)"p' A's R
Proof. By Lemma 10, f’{;{@ﬂj,SFﬁW@‘*ﬂ, Z‘g) for s 2 te. By Lemma 3 the set 5//[23"03
ﬁﬂ@“_-) is infinite. Hence and from the description of steps of type (ule], 3) we obtain
(@1}
P e+, ¢ )‘;_',Q . Since <&, T>cR— <@ x>el we have: C(€) is finite —',?‘eﬂ) is
el @ (@ B+ % (8D
finite and = - K = ")/ . Hence and from Lemma 1 we obtain

) e) &) (&)
ed A= 0= N s g = Xy Jvay((e«»/oe/?)
o,k ! 0R A
i.e., A’€/72 . It is clear that /4 S 22 . Therefore /1€A2 ,A 5}./? .
LEMMA 12. For all XEA;/ we have A’#_TX .

Proof. Assume the contrary. Then there is an X such that 25-7. VI’ and vng <0 a (gﬂx
£>L) Let m and n be such that X = ¢m r and V ¢ (/?) Let ¢=<az,m,7>. By Lemma
10 5&/[@_}5 U{U@Iﬁ Yt for S$= Z( Hence and from Lemma 11 it follows that there exists an
infinite sequence of steps 30<S’ <$8,<5;<... of type (#[31,5) » 852 LLQ at which the cases
2, 4, 6, 6.., respectively occur. By Lemma 8 50 0>, 0>«~ which is inconsistent with the

foundedness of the relation <0 .
LB 13. R's A’

Proof. We must prove that with an ;3racle A' it is possible to know whether ¢e (R.e)
is determinate. By Lemmas 1 and 3 /!57./4 3 therefore we can find u[e]. From the proof of
Lemma 10 it is clear that tg is found effectively with respect to A'. Let c=cCu [e], Zég)l
We find with the oracle ¢' the least Z‘?b‘e such that RS(C)=Rt(C) for s > ¢+. It is sufficient
to verify that 422647.6’)# is equivalent to there being a step $2¢ of type (ule], 4) at which
the condition of this step is true. Let (/?e .L .S, ,zf be such that ¢S(/ps‘g/)} for §25,.
By Lemmas 6 and 11 and the choice of t we find a §,25, such that R 'w]= ,?[wj ,{7 [a)’]
for any $28, where [[f—gc./j[e Zl) Therefore at the least step 525, of type (/1['_3]4) the
condition of this step 1s satlsfled Conversely, let 3>s/t be a step of type (/.1[9] 4,

at which ¢ (/? é)‘m? E'/f_’) ﬁ I‘a}'“ Since L{]’>a'(/? ege, S) and by Lemma 6 A ’[&'f] ;??[ﬂ];]
for all s, > s, then qbe(,q,g) ¢ (/?S/Z)L

With Lemma 13 the proof of the first assertion of the theorem is complete. Let us prove

the second. Let abe a 11m1t, a=5-5“’ . Then gU 2 _UN sac{ ) therefore 1t is sufficient
-7 / 7 ke
to construct ,QG:A , = ,4 /? is not T~ equivalent to any set from U .Z

Gy (<)
denote v@(g} I more brlefly by v,(;c - To construct R we change the follow1ng in the con-

struction. 1) At step 0 we define 8 as follows. If 5/6/\/ let 6€6 be such that y
falls into & (o is unlquely determined and is found effectlvely, see the proof of Lemma

4). Set 9<y,2%( , Wwhere </(,.T,/77,/Z>—'€/£(6) s ‘z/a//V , set 9(%Z>=0 (2 is

299



the second element in magnitude in (05<0 )). 2) At steps of type (g, 5) we consider

ﬁb(@)=<K,.T,,/TL,/Z> ; in the condition (2¢) instead of Vy we take Vi y, and the condition (It)

is replaced with

P#/(c):lﬁz‘( Vi 2:C )AV L= ¢(/? [z/ZJ) AR [0‘] /17 [zﬂ

The proof of the lemmas is hardly changed. Change 1) ensures that Vy5g< a(9<y fﬁ

therefore /?GA . Lemma 12 now appears as follows: I# X for X€ U ZW " Otherwise
/?57. VK:C for some k, x. Let m, n be such that R=¢M{V ,\/I‘¢ ¢ ) ar% set P=<K,L,m, /N>,

Reasoning further as in Lemma 12, we obtain an inconsistency For the rest the proof given

above is suitable for the second assertion of the theorem.

i
In conclusion we prove that the degrees of ZQ -sets are rarely arranged in the ordering

of degrees < 0', For the case of differences this was proven in [5].

THEOREM 2. For any not least a € 0 there is an R and R from 2 such that i<r}? R
¢! , gé and there does not ex1st XéA /\7< X< /\7 . 2) For any limit ae€0
there is an R, ?élla , such that/?< R ,Q = ¢ R == ¢” and there does not exist
Xé U 2;, P< X<, K
m We will prove only 1) since 2) is proven by the same modification of the con-

struction as in Theorem 1). The set R is constructed by the construction of Theorem 1 with
(0)

the changes indicated below. Set X = /7(0, , 7 ,1? ) As A in the construction we take

¢' and replace steps of type (o, 4) with steps of type [(€,4),eeN.

S, ~s-
Step s > 0 of Type (e, 4). We do nothing if the condition 672 {,Qf/e)}/\j’@'(f/z(e)= A
c(@,s-/ﬂ)is false. Otherwise let o be the <-least square for which €h(6)= e.,cl6,5=1} . Set
5/
g(es)=suplgle,s-NuR,ees)}. 1f §6.5)>g @5-1,0>6 c(gs-,  set c(55)?

The proof of all lemmas except Lemma 13 remains almost unchanged. By Lemma 11, R'= r ¢”

The condltlon R< K is obvious. From the proof of Lemma 12 it follows that there does not
exist X eA ,Q\ X< . In fact, otherwise there is an x such that iér szrlq R
Vng‘f fl (,1/1.<y 53“) Let m and n be such that ,&? ‘,37 (V \/ "¢ {/Q) and let é=<ZL,m,71>
Since /Q(C) R(c) for CG/V” , the proof of Lemma 12 leads to an inconsistency. It remains
to verify that /\7 7.¢ » i.e., with the oracle ¢ we can know whether ¢e(R, e) is determinate.
Let us find a <-least sequence o of length e and a step s, such that ¢(6,5,)¢ and Vf>5 (C (e,
zf)-c(a,sa)}. Such ¢ and s, exist by Lemma 10 and can be found effectively with respect

to ¢' (taking into account Lemma 3). Let us further find with the oracle ¢' a step $§, =25,
such that RS(C(@,S‘,)FPS’(C(G,S”}) for all s > s,, Just as in Lemma 13 we verify that ¢ (R.E)%

is equivalent to there existing a step $=§, of type (e, 4) for which @e ,Qs-fe); The

theorem is proved.
Remark. The set R is T-equivalent to the direct sum of the set R and the high r.e. set
R\R.
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ALGORITHMIC DEGREE OF UNARS
B. M. Khusainov UDC 510.67

INTRODUCTION

In this paper, questions are studied of the existence of unars with distinct algorithmic

degrees of different type. All the necessary information can be found in [5, 6, 8].

Let /4 be a model. The relation ~ in 0l is called stable if it is invariant with re-
spect to the action of the group of automorphisms of L. By St(}) is denoted the set of
all stable relations of . Following [7], let us give the following definitions.

Definition 1. a) The constructivizations v and u of Ok are called essentially equivalent
(V& Wy if for any $ € STV , v 18 is a recursive set if and only if the set u™!S is re-

cursive.

b) The constructivization v automatically reduces to fO -‘?één fb if there exists a
recursive function § with the property: if V& is a p.r.f. with a Kleene number x is the
characteristic function of the set u~!'S for some \fé,gfﬂné , then VWz) is the characteristic
function for the set v™'S. If Y SN/U and €,V then we will write that AR

c) The constructivization v uniformly reduces to MW Y& f“ , if for some computable
operation F we have VT(}J‘S’):V“S for all Je SHL) . Let us write that V;’ /LO if

Y g d W< .
p o mnd fspY
Let us denote the fact of the autcequivalence of v and u as \’Z’}b. The sign » == =

is read as "this is by definition."

Definition 2. Let QG{C,”,P,A} . Then Q‘L{W%ﬁ? is the maximal number of not 6-equiv-
alent constructivizations of (. The number 8-—ddmﬁb is called the 6-degree, and the set

{6“ i, (}Lf Ge{c,ﬂ, P-;A }75 the algorithmic degree of a.
1. Influence of Constants on the A-Degree

Let a’,,y'--,a/ne’m/|, nel . It is evident that A-dum (i QA‘M(%,'O%,...,G?Q .

Examples of models for which the sign "<" in a given relation could be replaced by "<" were

not known.

Translated from AJgebrai.Logika, Vol. 27, No. 4, pp. 479-494, July-August, 1988. Original
article submitted December 15, 1986.
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