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Abstract, In this paper we complete the proof of global existence of Yang- 
Mills-Higgs fields in 4-dimensional Minkowski space by showing that an 
appropriate norm of the solutions cannot blow up in a finite time. A key step in 
the proof is the demonstration that the L ~ norm of the curvature is bounded a 
priori. Our results apply to any compact guage group and to any invariant Higgs 
self-coupling which is positive and of no higher than quartic degree. 

I. Introduction 

In this paper we shall complete the proof of global existence of Yang-Mills-Higgs 
(YMH) fields which we began in Ref. 1 (referred to hereinafter as paper 1). In 
paper t we established local existence, uniqueness and smoothness properties of 
YMH fields in the temporal gauge, improving earlier results [2, 3] for this system 
by essentially one order of differentiability. To extend the argument to a global 
existence proof we must show that the (H 2 × H1 x H 2 × H1) norm of (Ai, Ai, 4), ~)  
does not blow up in a finite time. To accomplish this we shall first derive an a 
priori bound on the norms 11(4)F(t) I[ L ~ and 1I Ddp(t)H L ~ where (4)F is the curvature 
of the Yang-Mills potential (4~A and D~b is the covariant gradient of the Higgs 
field 4~. Given this estimate we can easily complete the proof by showing that a 
suitably defined higher order "energy" does not blow up. 

To derive an estimate on the "curvatures" (4)F, DOS) we adopt a method inspired 
by J6rgens' treatment of the non-linear wave equation [4]. We write an integral 
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equation for the values ((¢)F(p), D ~ ( p ) )  of the curvatures at an arbitrary point p 
within the domain of local existence by using the retarded (or advanced) 
fundamental solution of the linear wave equation, treating the non-linear terms 
as "sources" for the solution. This expresses the curvatures at p in terms of integrals 
over the past (or future) light cone from p to the initial surface and in terms of 
data on the initial surface itself. We then show that the most troublesome terms 
in the light cone integrals can be bounded by expressions of the form 

E o ds([[ (4~F(s)kl L ~ + II D~(s)t l  t ~ )  , 

where E o is the energy of the solution. This result yields an integral inequality from 
which the bound on H (4)F(t)tl L ~ and ]lD~b(t)L I Lo~ readily follows. 

One can define the norms so that hi C4)FI] L ~ and I] Dq~ IlL ~ are gauge invariant. 
In deriving the integral inequality described above, we make use of this invariance 
to transform the potentials (~¢)A, 0) to a convenient gauge for making the estimates. 
A gauge which is especially suited to this purpose is Cronstr6m's gauge [5] which 
is defined so that (x u - x ~ ) A , ( x )  = 0. A remarkable feature of this gauge condition 
is that it allows one to express the potential ~4)A explicitly in terms of the curvature 
(4)F. By introducing Cronstr6m's gauge (relative to the light cone vertex p) we can 
eliminate the potentials from the light cone integrals and thereby derive the 
inequality described above. In the appendix we show that Cronstr6m's gauge 
condition can always be imposed throughout the domain of local existence. This 
method works because the fundamental solution to the ordinary wave equation 
is, in Cronstr6m's gauge, a parametrix for the covariant wave equations satisfied 
by the curvatures (4~F and Dq5 [6]. 

Other recent work on the global existence of Yang-Mills fields has been carried 
out by Christodoulou and Choquet-Bruhat [7]. They make special use of the 
conformal invariance of the Yang-Mills equations to prove global existence for 
solutions with sufficiently small initial data. Though their method seems limited 
to this class of solutions it has the advantage of being able to treat Dirac fields 
coupled to YMH fields. Our approach on the other hand leans heavily on the 
positivity of energy for YMH fields and does not seem readily extendible to the 
Dirac case. In addition Glassey and Strauss [8], using a particular ansatz for the 
form of the potentials considered, have proven the global existence of a special 
class of solutions of the Yang-Mills equations. 

We have not attempted here to characterize the general solution of the initial 
value constraint equations. In Ref. (9) however, one of us solved this problem 
within the context of certain weighted Sobolev spaces. A more extensive treatment 
would be needed to solve the corresponding problem in ordinary Sobolev spaces. 
Nevertheless it's clear that the constraints possess infinite dimensional families of 
non-trivial solutions in these spaces. As an example one can take (in the notation 
used herein) E i - -  7¢ = 0 and choose A i and @ arbitrarily. This corresponds to "time 
symmetric" initial data. The constraints are of course preserved by the evolution 
equations. 
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A.  Pre l im inar i e s  

We shall adopt  here the same nota t ion  used in paper  1, writing for example  
(41 (u) ~ (2.1) A = A n Oadx = A u d x ~  

(4)F -- F (a) O d~c u - -- - u v - a - - -  /x dx  v = F ~ d x  ~/x  dx  ~ 

for the Y a n g - M i l l s  potent ial  and its curvature.  Here  {0u} is a basis for a real 
matr ix  representat ion of the Lie algebra y of an arbi t rary  compac t  Lie group  G. 
Thus 

[0. ,  Oh] = f"bco~ (2.2) 

for some constants  ffbc. We choose the basis so that  the 0o are real d x d 
ant isymmetr ic  matr ices obeying t 

Tr{0u, 0b} = 6ub (2.3) 

and so that  t h e f t  bc are complete ly  ant isymmetr ic .  
The Higgs field ~b = {~b~}, tc = 1 , . . . ,d ,  takes values in the real d-dimensional  

vector  space associated to the given representat ion of y. The covar iant  derivative 
of ~h is defined by 

Duq$ = 8u~b + Au~b , (2.4) 

and we define a gauge invariant  contract ion " ."  by 

4 ~ ¢  = c~,O~, (D . (a ) ' (DS~)  = (D~(h)~(D~4b)~, (2.5) 

etc. 
The Lagrangian  for the Y a n g - M i l l s - H i g g s  (YMH) equations,  with spacet ime 

metric q,v of signature ( -  + + + ), is 

LP = Tr{ _±F4_u~ru~j -½(Du(p).(DU(p)- P((D), (2.6) 

where P(~b) is a gauge invariant,  positive polynomia l  in ~b of no higher than quart ic  
degree. For  any sufficiently smooth  G-valued function qg over spacetime the gauge 
t ransformat ions  are defined by 

A' u = q/A o'//-I + Off~.O~ -1,  

q$' = ~/~b, (2.7) 

V',~ = q/Vu~q/- 1, (Dumb)' = U#(Du~b), 

and the invariance condit ion on P means  P(q/~b)= P(~b)V4b and YggeG. 
F r o m  S one derives, in the usual way, a gauge invar iant  ene rgy -momen tum 

tensor T uv given by 

r u~ = Tr  {FU~F~ - ¼~l"~r~pF ~ }  + ( D U ~ ) . ( D ~ )  

_ ½qU~(D,(o).(D~4~) _ quvp((~), (2.8) 

1 For convenience we have defined the trace operation Tr to be the negative of the usual matrix trace 
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which satisfies 

6~ T "~ = 0, (2.9) 

as a consequence of the equations of motion 

V~F u~ = - ((DU(0).O,(0)O, (2.10) 

and 

0P 
(D~,DU(0)~ = ~(0, (2.11) 

where 

VvF~p = a~F~z + [A~, F,~]. (2.12) 

The curvature also obeys the Bianchi identity 

V~F~ + V~F~v + V~F~ = 0. (2.13) 

Taking the covariant divergence of (2.13) and making use of the field equation 
(2.10), one derives 

VVVvF~t ~ = ( (F~t~(0).O,(0)O a + [ (DB(0).O,(D~(0) - (D~(0).O,(D~(0) ]O, + 2[F~, Fv~], 
(2.14) 

where, written out explicitly, 

VYV~F~ = ~(~uO~F~ + 2(?~([A v, F~])  - [(~vA ~, F~]  + [A ~, [A~, F~] ] .  (2.15) 

In a similar way one derives 

DuDU(D~O ) = ((D~(0). 0,(0)0,4) - 2F~(D,(0) + D (OP ~ (2.16) 

~ = (0.  Equations (2.14) and (2.16) will play a key role in the 

analysis below. 

If we contract T "~ with the timelike killing field 2 = ~- we get a vector field 

J~ = X P T }  = T~, (2.17) 

which satisfies the continuity equation 

~J~  =0 .  (2.18) 

If we integrate this equation over the interior of the past light cone Kp from a 
point p to the (t = t o = constant) initial data surface and use Gauss' theorem, we 
may express the result as the vanishing of a surface integral over the boundary of 
this region. To write this explicitly, let us translate the coordinate system until p 
lies at the origin and introduce spherical spatial coordinates (r,O, (0) centered at p 
and a system of basis vector fields 

?= 

1 6  1 (0 
e° = r~-0' e + -  rsin 0~¢" 

(2.19) 
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Relative to the spacetime metric these vector fields have the inner products 

/ . 2 = r h . ~ h = O ,  ?.rh = 2, 
(2.20) 

~ ' e A  = f f l ' eA = O, e A ' e B  = (~AB, 

where {eA} = {e0, e,} and #rh =t'~m,, etc. The null field { is tangent to the light 
cone Kp. 

In this notation the conservation iaw described above yields the equation 2 

r2 drdf2 {½TrE¼(~'(a)F'th) 2 + (~'(4)F'eA)2 + ½(eA'(4}V'eB)2] 
Kp 

+ ½[(De@).(De@ ) + (D~05).(D~A05)] + P($)} [,= _, (2.21) 

= ~ redrdf2{½Tr[UE, + B'B,] + ½~.~ + ½(D,4))'(D'05) + P(qS)} I,=,o, 
Bp 

where dQ = sin OdOdo5 and we have defined 

~jk 
E i ---- F o i  , Bi = --2-Fjk, rC = 0005, ?'~4~F'th = {UFu~m~, etc. (2.22) 

and 
Di~b = {UDu~b, etc. (2.23) 

Here Bp represents the solid sphere in the initial surface t = t o which is bounded 
by the intersection of Kp with this surface. Thus Bp is a solid sphere of radius r o = Itol. 

The right hand side of Eq. (2.2t) represents the energy contained within the 
region Bp at t = t o. Since P(05) is positive by assumption, this energy is bounded 
by the total (conserved) energy Eo, 

Eo = ~ d3x{½Tr[UEi  + BIB,] + ½n'= + ½(Di~))'(Di~) .~- P(qS)}, (2.24) 
R3 

of the solution considered. 
The left hand side of Eq. (2.21) represents the flux of energy through the cone 

Kp. Note especially that the integrand in this flux integral consists (except for P(05)) 
of a sum of squares of projections of the curvature ~4)F and the gradient Duq~ of 
~b. Not all of the projections occur in this integral. In particular, rh.C*)F.~A and 
D,~b are absent. Roughly speaking, this means that the flux integral measures 
energy flowing "across the cone" Kp but not energy flowing "along the cone." 
That such flux integrals are always bounded by the total energy of the solution 
will play a crucial rote in the argument below. 

If Kp is, as above, a light cone from p to the initial data surface which lies 
within the domain of local existence of some solution ((*)A, qS) then we can define, 
on an open set Sp containing the set bounded by Kp w Bp, the CronstrOm transform 
((4)i], t~) of the given solution. The Cronstr6m [5] transform is simply the gauge 
transform of ((4)A, ~b) defined so that 

(x"  - x~,)Yl,,(x) = o, ~, , (x~)  = 0 (2.25) 

.1 
2 This and other conservation laws for the Yang-Mills equations have been studied extensively by 
R. Glassey and W. Strauss in Commun. Math. Phys. 67, 51-67 (1979) 
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on Sp. In the appendix we prove that a unique gauge transformation U (with U (xp) = 
id) always exists which transforms (Au, ~b) to Cronstr6m's gauge on suitably shaped 
regions of spacetime. We shall make use of CronstrOm's gauge in the next section 
to derive an a priori estimate on the (gauge invariant) L °~ norms of ~4)F and DuqS. 

A remarkable feature of Cronstr6m's gauge is that it allows one to express the 
potential ~], explicitly in terms of the curvature Pu,' Translating the origin of 
coordinates to p as before, we can express this relationship as [5] 

1 
t]~(x) = ~ d2 2x ~/?,~(2x). (2.26) 

0 

Differentiating this formula and using the field equations one can also derive 

1 
~uAU(X) = ~ d• (22xe[.ff '~g(~x),  AI'~(.~.x)] - 22x~((D~@(Rx))'O~(2x))O~}. (2 .27)  

0 

These formulas were given in Cronstr6m [5]. For completeness we sketch their 
derivation in the appendix. 

In paper 1 we showed that if the temporal gauge (A o = 0) initial data 
U o =.(Ai, Ei,~,rc)lt= 0 lies in the Sobolev space Jg =(H~+ 1 x H~ x H~+ 1 x Hs) = 
(H~+ ~ x H~) 2 for s > 1 then there is a unique solution u(t) of the integral equation 
associated to the YMH system on some interval (t,, tb) containing the initial surface 
t = 0 and having u(0)= u o. Furthermore, either II u(t)II ~ ~ ~ a s  t ~ t .  o r  t - - ,  tb ( o r  

both) or else (t,, tb) = ( -  Qo, Qo) and the "abstract" solution u(t) is global. Within 
this context we also showed that if the initial data is restricted to lie (H~+ ~ +k X 
H~+k) 2 for s > 1, k > 2 and to satisfy the initial value constraint equation (i.e., the 
# = 0 component of Eq. (2.10) above), then the abstract solution u(t) defines C k 
potentials (Ai, 4) and C k-  1 momenta (Ei, re) on (t~, tb) X R 3 which satisfy the temporal 
gauge YMH equations (including constraint) in the classical sense. If k > 3 then 
(F,~ and D~qS) will in turn satisfy Eqs. (2.14) and (2.16) above in the classical sense. 
Paper 1 actually treated a wider class of (distributional) solutions of the YMH 
equations but for simplicity we shall in this paper restrict our attention to the 
classical solutions. 

As we shall show in the appendix, the gauge transformation to Cronstr6m's 
gauge is a G-valued C k function U which takes ( A ~ , F u ~ , O , D ~ ) s ( C  k x C k - t  x 
C k x C k -  1) to (/]~, Pu~, t~, D S ) ) ~ ( C  k -  1, C k -  1, C k, C k -  ~) throughout the domain of 
U. Thus for k > 3 (e.g., for uos (H2+ k x Hx+k)2, k >  3) the transformed fields will 
also satisfy their respective second order field equations in the classical sense. The 
global existence of such solutions may be established by showing that their 
(H 2 x H 0  2 norms do not blow up in a finite time (and thus that they are globally 
defined abstract solutions). The smoothness results of paper 1 will then ensure 
that the solutions retain the full differentiability of their initial data (hence remain 
classical solutions) throughout their (global) existence on Minkowski space. 

B. An  L ~ Es t imate  Jbr the Curvature  

Suppose p is a point within the domain of local existence of some solution (A., q~). 
Then we can define (as shown in the appendix) the Cronstr6m transform (.4., ~) 
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of this solution on an open set containing the light cone Kp^from p to the initial 
surface. Since U(p)= id in this construction it follows that F~,,(p)= F,,,(p), ~(p) = 
q~(p) and D~q$(p)= D~4(p). 

We can write an integral equation for Pu~(p) by using the retarded fundamental 
solution for the linear wave operator and the covariant wave equation for P , ,  
given by (2.14), Translating the origin of coordinates to p we get, by a standard 
argument, 

P~(0)  = F=e(O) 

= P~(O) ...... L ~ rdrdf2{ - 2a~([~] ~, te~]) 
4n K~ 

+ [GAD P~] -- [2',  [A,, P j ]  

+ 2[P'~, P~ ]  + ((P~p~).O~dp)O,, 

+ ((D~6)" O~(D~6) - (D~6)" O,(Dp6))O~} I, = - , ,  
(2.28) 

where ~ein r/ 3uO~F~ (x) = O, F ~ ( x )  is that solution of the linear wave equation, ~'" t̂~,, 
which has the same Cauchy data as P,e on the initial surface, i.e., 

t~di n I 
aft It=to = f a f l i t = t o ,  

(2.29) 

- 4rcl s~ ~ d£2{r°mUOuP~e + senti} t=,o . . . .  o' 

where the integral is over the sphere of radius r = r 0 = Itol which is defined by the 
intersection of K v with the initial surface. 

(2.31) 

0tP~?l,=,o = atP~.t,=,o. 

In an analogous way we can write an integral equation for 

D q~(0) = D,~b(0) as 

D q~ (0) = D 4b(0) 

= .I r d r d a l -  2aA"ID  It + - 
Kp L 

+ Dfl"\ ~?4~ )3P'~- 2i~U(D.~)l ,= _ ,  (2:30) ((G6).o.&oo6 + 

where D~in(x)  satisfies the linear wave equation and has the same Cauchy data 
as  Da$ .  

The solutions p tiy and D~r} ~in of the linear wave equation can be expressed 
explicitly in terms of their Cauchy data on the surface t = t o by the method of 
spherical means [101. 
In particular, we get 

F  (ot= J dQ ,'o +-G-,,=,o .... o' 
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We express the Cauchy data for P~  in terms of that for F~  by means of the 
gauge transformation formula. Thus. 

P,[~ = UF,fl U - 1 (2.32) 

and 

~P~------¢~ = [P~a, ]t,] + U ~?F=p U-  1 _ U[F~e, Au] U -~ (2.33) 
Ox" ~?x" 

The terms in the integral expression for "e~ F~p (0) involving U may be estimated 
at t = t o even though U is not explicitly known. This follows from noting that 

C 

and similarly that 

and 

= Tr (F~  F~p), 

I(U( mu au F,~) U - 1)~c)12 < Tr (m" a, F~tj)2 

(2.34) 

(2.35) 

[(U[F~a, mUA,] U - 1)cc)[e < Tr([F~a, m"A,]) 2. (2.36) 

The first integral on the right hand side of Eq. (2.28), namely 

1 
I~  =- ~ ~o rdrdO {87([A~, Pap]) }l, = -r (2.37) 

may be evaluated explicitly in terms of the initial data. To see this one need only 
write out the divergence explicitly and make use of the gauge condition xUA, = 0 
to simplify a step in the integration by parts. The result is 3 

= ~--7 ~s~ af2{r°[mU e ] ,  if=p]} I,=,o.~=~o, (2.38) 

which precisely cancels a term in the expression for ^e~ F=~ (0). Thus we have shown 
that 

1 
F~e (0) + I~e dQ{ U F ~  U - 

+ ro(U(mUauF~p)U-* - U[F,e, m"A,] U- ')}[ ,  =,o (2.39) 

and that each term on the right hand side may be estimated in terms of the 
(temporal gauge) initial data. 

Next consider the integrals 

1 
rdrdf2 { [0~A r,P~e ] }1, = - ,  (2.40) I~2p - 4re ~ 

3 In evaluating this and similar integrals it is important to note that P,a stands for the projection 
a 0 

. c 4 ) p . _ _  and thus transforms as a scalar 
Ox ~ c3x ~ 
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and 
1 I=~ =. + ~  ~ rdrdQ{[A', [i]:/%e]]}[,= -,, (2.41) 

Km 

which occur on the right hand side of Eq. (2.28). 
Making use of Eqs. (2.26) and (2.27) to substitute for the potential and its 

divergence and reexpressing the integrals somewhat we find that 

1 I2~ + I~a = ~ :_ rdrdQ 

2 d2 ~'* dp [#x V~.e(#x), q:[2x@oa(2x), t%B(x)] ] 

-[P~,e(x), i d222x~((D~6(2x)).O~(2x))O~] }. (2.42) 

Let us write l~Va for the integral involving the cubic term in C4)F and I~  for the 
integral involving the Higgs field and its gradient. By reexpressing the integral 
over/ i  and 2 in I~, making use of the fact that x'@,,~()~x) ~ ̂  = r e  F~,(2x) for xeK v, 
etc., one can show that 

C ro 4) ^ r 
II:~1N ~- ! dr t1' F ( - r ) H :  sj dr2! dff  2 

rO 

<-_ CE o ~ dr II(4)P(- r)II : ,  (2.43) 
0 

where 

a ~(a) ~(a) ( t'l I 1/2 

(2.44) 
= il(4)F(t) t[;d °,  

and where we have used the conservation of energy equation (2.21) in the last step. 
Notice that since ~ c,) /,) • F~¢(x)Fuv(x ) is gauge invariant, the L ~° norm of (4)F, as defined 

a 
above, is also gauge invariant. This justifies the last equality in Eq. (2.44). 

Making use of H61der's inequality with exponents (6, 2, 3) applied to the integral 
of 

(16(2x)[ t:VD,,~(2x)t " 1), (2.45) 

we can estimate I~  via 

IlU~ei< C J s2S df2 t fZ ) 

. d~  [, r dr ~(: D / o ( -  r ,  r ,  O, q~))2 
S 2 0 

ro ( ,  6,1/6 
-'-< CEg/21drll'4)P(- \;~ d~ i r2 drl~o(- f'r'O' ) ' (2.46) 
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where we have again used the conservation of energy. The L 6 norm of q~ which 
occurs in the fnal  expression above is defined over the subcone Kp(r) of Kp having 

< r _< r o. We can bound this norm by using the gauge invariant Sobolev estimate 
of Jaffe and Taubes [11]. Regard the integral as defined over a solid sphere of 
radius r with Riemannian metric d~ '2 = d~ 2 + r2(d02 --I- sin z Od~ 2) and orthonormal 

basis fields I ~ ,  ~A1 and note that 

t3~ 
~-~0( - ?, ~, O, ~ ) = {~ t?~(t, ?, 0, 0)1, = -~. (2.47) 

The gauge lnvariant Sobolev estimate gives 

11 c~ []L~ < K0 II C3)Dc~ rlt~ + K~ [1 q~ I]m~ (2.48) 

where (C3~D~)=(CVD~,~,Daadp) and where the norms are defined through 
integration over the solid sphere. The last term on the right (which could be 
replaced by !!q~l!L~ for any q >0) is necessary because of the compactness of the 
region of integration [12]. 

We shall show in the appendix that the term II~IIL~ can always be bounded 
by an expression involving the energy. However, this result is immediate if the 
Higgs potential P(qS) has a suitable form. The requirements of positivity of P and 
finiteness of energy for 0sH~ imply that P(~b) cannot have a non-zero constant 
term or a term linear in ~b. Let us assume that P has the form 

P(qS) = ½m~qS~0 ~ + P(')(0), (2.49) 

where m~z is a positive definite (mass) matrix and where p~4) is a positive quartic 
term. Then from Eq. (2.21) it is clear that we can bound the L 2 norm of ~ on the 
light cone by the square root of the energy. Since I](3)Dq~]IL~ = ]I(De~, De~@ I]L~ is 
already so bounded we get from Eq. (2.48) that 

t1~ IILo 5 KE~/=, (2.50) 

and thus from Eqs. (2.43) and (2.46) that 

ro 

II~ + ILl < CEo ~ dr ]l'4)F(-r)llg~- (2.51) 
0 

where 

Returning to Eq. (2.28) we now define 

I~ 5 _  1 S rdrdQ(E=~)],=_~, (2.52) 
4n K~ 

~ p  = 2[ /~ ,  Prp] + ((Da~).O,(D~@ - (D~).Oa(Da~))O,. (2.53) 

A remarkable feature of ~ is that it can be expressed as a sum of products of 
projections of(4)] ~ and D ~  such that each term in the sum has (at least) one factor 
whose square integral over Kp is boundable by the total energy E o. 

To see this let us introduce the spatial orthonormal basis {di} where 

{~i} = {~I,~A}, ~1 = ~-r' (2.54) 
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This basis is related to the Cartesian orthonormal basis ~xSx j by an orthogonal 

transformation 

~3 0 
c3x.i = O j2@ ~t = OJe Oxj, (2.55) 

where O jr = Oje(x) satisfies the orthogonality relations 

O~2Ojt- = cS~j, Oj~Oj, a = 6&~. (2.56) 

0 
We also define eo = ~  and note that (recalling Eq. (2.19)) 

go = ½(rh - ?), ~1 = ½(rh + ?). (2.57) 

It is straightforward to show that 

fftj = - 20k~[f',k, (OjAeI3"C4)F'eA + Oji eB'C4)/~'gP)3 -- Okt [ rh'(4)l~'?, Fkj] 
1 + 70j t  [ (D~o $)" O~ (O~; $) - (Ofi~)" 0 a (O~o ~) ] 0 a 

+ ~ Ojt 0 ii [ (D i ~)" O. (D Z c~) - (D 2 ~)" O. (D i ~o) ] 0 
+ Oj~ i [ (Da.o ~)'O,,(D¢, ~) - (D~a ~)'Oa(Dao ~ ) ] 0 .  (2.58) 

The analogous expression for ~ and for the corresponding terms in the Higgs 
field equation are given in the appendix. It follows from inspection of these formulas 
that -~a has the special property mentioned aboveL Since ]Oji(x)[< 1 the factors 
involving O22 may be bounded by constants in making the estimates below. 

From these considerations it follows that 

II~al =< CE1/2 dr(l[(4)P( - r)H~ + [/DOS(- r) [Ires) , 

where 

]lD~(t)ltt ®= ~ (D~'Du~)( t )  L ~1/2 

Finally the integral 

is boundable via 

= llO¢(t)ItL ~ 

a rdrdO((Lfi)).Oo )Oo - - , ,  p 

(2.59) 

(2.60) 

(2.61) 

II~1 < C drl[(4)f'( - r) I1~0 r2drdf21~t 4 (2.62) 

and the gauge invariant Sobolev estimate (for norms defined over Kp) 

II~llt4 ~ Ko IID~IL~/? II~Hff? +/ (1  II03 ILL2. (2.63) 

4 i.e., the algebraic property mentioned following Eq. (2.53) 
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This estimate follows from the usual Sobolev estimate on smoothly bounded 
regions in R 3 and the Jaffe-Taubes invariance argument 1-12, 11]. 

It follows that 

II(~ IIL4 ~ K Eo ~/2 (2.64) 

and thus, from Eq. (2.62) that 

II~al < C'Eo dr 11(4)P(- r)II ~ (2.65) 

Recalling Eq. (2.39) and Eqs. (2.34)-(2.36) we also have that 

~gin 1 IF,a (0) + I~a I < C { it (4)F(to) It L ~ + ro lira" c ,  ~ (4)F(t o)IlL® 
+ ro tl [ ~4)F, mUAu](to)tIL ~ }, (2.66) 

where the norms on the right hand side involve only temporal gauge initial data. 
We may now combine Eqs. (2.51), (2.59), (2.65) and (2.66) to obtain 

ro 

IP~p(0) l = If~x~(0) l <-_ Cx Eo ff dr 11(4)f( - r)I[ L ~ 
0 

+ C3E o dr 1t(4)F( - r)II ~® + (Kl(to) + rog2(t0) ), (2.67) 

where we have used the gauge invariance of LI(4)F HL ~ and LID(b LII,® to reexpress 
the result and where Ki(to) and K2(to) are finite constants which depend on the 
temporal gauge initial data only. 

Reversing the steps which shifted the origin of coordinates to the point p we 
can reexpress the above result as 

I f  ~a(t,x)l < (CtEo ti/2 + CzE~/2 + C3E o) 

• ds(tl(4)f(s)tl 2 

+ K~(0) + tK2(0),  (2.68) 

where (x~)= (t, x) and t = 0 is the initial data surface. Since the right hand side 
of Eq. (2.68) is independent of the spatial coordinates of p it follows that 

_ (CiEot + CzEo + C3Eo) 
t 

• ~ ds(1I(4)F(s) I1~ q- IlOc~(s)II/~) 
0 

+ C'o(K~(O) + tK2(0)) 2, (2.69) 

where the C~ are positive constants. 
We can treat the integral equation (2.30) for D~(~(0) in a completely analogous 
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way. Following steps essentially identical to those above one finds that 

lD~q~(0) l = ID~4~(0) I 

<= --~[~dO{roU(m"Su(D~dp) + mUAu(D,O)) + U(D~q~)}( - ro, ro, 0, ~b) I 

+ 112 + 13 + I~ + I~1 + 1161 

Co{ ND,~b(to)[]L~+ ro [ImUSu(D~(o)(to)IlL ® + ro [[muau(D,49)(to)IlL °'} 

+ (C1Eo r1/2 + C2E~/2 + C3Eo) 

• (idr(l'(4)F(-r)[I 2~+ ]lD(a(-r)"2~)) 1/z + 116~ 1, (2.70) 

where 

1 
I~ + 13 + 14 + IS~ - 4~ jo rdrdYl{(OuAU)(D~) - ]IuAU(D~) 

- 2F,U(Du~ ) + ((O,~)' 0,q~)0,~} (2.71) 

and 

1 s rdrdO(D,(,~P--~ (2.72) 16-  4n r~ \ \8491J' 

The terms in the first bracket on the right hand side of Eq. (2.70) involve only 
the temporal gauge initial data. 

Only the integral 16 has no direct analogue in the curvature integral equation. 
However, we can easily estimate it by first noting that 

82p 
\ ~ j j ~  8¢~a¢~ (D~¢)~" 

This formula follows from the gauge invariance of P which implies that 

8P 
--(0,qS)~ - 0. (2.74) 

From Eq.(2.72) and the foregoing estimates on the norms hlq~llL~ and 
II~klL, (defined over Kp as before) one can easily show that 

1161 < (C O + C,r 3 + C2E2) 1/2. dr IiD~b(- r)11~2" (2.75) 
0 

Thus, reverting to the original notation, we get the estimate 

t 2 r II O~(t) [[ 2~o < (C'~ E2t + C'2E o + C3Eo + C4 + C'st 3) 

'S ds( II (4~F(s)IIL~ + fiDe(s)It~ ~) 
0 

+ Co(K'I(0) + tK~(0)) 2 (2.76) 
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in which K'I(0) and K2(0 ) depend only on the temporal gauge initial data and 
are always finite for the class of solutions considered. 

Defining 

N(t) = II (4~F(t)II ~ + I[ D~(t)II L 2~ , (2.77) 

we see, from Eqs. (2.69) and (2.76), that 

N(t)  <=f (t) + g(t) i dsN(s),  (2.78) 
0 

where f ( t )  and g(t) are positive polynomials in t with coefficients which depend 
only on the energy E 0 and the temporal gauge initial data for ~4)F and D~b. To 
apply Gronwall's lemma to get a bound on N(t) we need only show that N(t) is 
continuous. However, continuity of II ¢4)F(t)Ii L~ follows from the triangle inequality 
and the Sobolev estimate 

rlfllL ~ < Kllfl]n~, (2.79) 

since these give 

tll C4)F(t + e)[[ c ~ - I[ (4)F(t) II c~l <= II ~4)F( t + c~) - ~4)F(t)IlL ~ 

< II~4)F(t + e) - ~)F(t)I[ n2 "--' O, (2.80) 

where the last step follows from continuity of ~4)F(t) as a curve in H 2. The same 
argument obviously applies to IIDcb(t)IIc ~. 

We have thus proven that the norms 11 ~'*~F(t)ll L ~o and II D~(t)II  i~ ~ cannot blow 
up in a finite time. Another estimate which we shall need below follows from the 
(temporal gauge) calculation 

~'~R~ ~'~---'~2 R 3~'~)' ~R3g'~ ~(2Eo)l/2H~llL2. (2.81) 

A straightforward argument shows that, for t __> 0, 

l[4)(t)llL: < [iqS(0)IlL: + (2Eo) t/2t. (2.82) 

We now have the key ingredients to complete the global existence proof. 

C. Energy Est imates and the Global Existence Theorem 

To complete the global existence proof we need only show that the (H 2 x H1) 2 
norm of (Ai, El, q~, n) cannot blow up in a finite time. From conservation of energy 
(see expression (2.24)) we know that ]lF,~(t)IIL~ and 11Dumb(t)Ilc~ are bounded by a 
constant. From the results of the previous section we know that I](*)F(t)tlL ~ , 
jlD~b(t) ]ld ° and ltq~(t)lLL: cannot blow up in a finite time. 

Writing the equation of motion ~ t A i  = E i in integral form, 

t 

Ai(t, x) = As(0, x) + ~ dsEi(s , x) (2.83) 
0 

we see that 

[[Ai(t) [lc ~ <= IIAi(O)II L ~ + i ds [t E~(s)I[ L ~ (2.84) 
0 
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and, in a similar way, that 

II ~(t)IlL ~ < II ¢(0)[IL~+ i dsll~(s)k ~ , (2.85) 
0 

Thus the bounds on il C4)F(t) tl L ~ and tl D~(t ) I t  c ~ imply that II Ai(t)tl  c °~ and {I 4)(t)tl L °° 
cannot blow up in a finite time. 

Let us define the "energies" go and g ,  by 

go =½ S (,,} C~) (~) ,~ ca) 2 Ca) (a) {E  i E i + ( O j A  i )~ojA i ) + m  A i A i 
R2 

+ ~-n + (a,~b).(a,qs) + mZqS'¢b}, (2.86) 

and 

{(e,E~ )(a,E, )+(c~,0kA , ) (a iakA , ) 
R 3 

+ (a,•).(a,=) + (a,aaqs).(a,c~a~b) }, (2.87) 

where m > 0 is an arbitrary positive constant and where (c~i40.(OiCb) - (c~ido~)(al¢5~), 
etc. Clearly (go + g l )  1/2 is equivalent to the ( H  2 x H1) 2 norm of the solution 
considered so that it suffices to prove that go and g l  cannot blow up. 

Computing the time derivative of go and using the (conserved) constraint, 
c~iEi = [Ei,  A J  - (ft. Oa(O)O,, to reexpress a term in a,E~ we get, after a straightforward 
application of H61der's inequality, 

ago 
dt  <= [C° + C~ I1 {~)F(t)I] c °o + C2 ]IDqS(t) IlL" 3g0 

+ ~ ( r t . ~ ) ,  (2.88) 

0P 
where the C~ are positive constants. Making use of the form of ~ -  discussed in 

Sect. (II B) and using the Sobolev estimate 

tI~IIL~, (2.89) 

we find that 

r~. N C g G  + C4l[~l[L~gO + Cs ll~[Ig ~° lt¢l[ g~go, (2.90) 

and thus that 

dg o 
d r -  < [C~ + C'~ ][(4)F(O IjL,o + C2[[O~a(t) liL~ 

+ C~ {{ =(t)ii,2 o iI 4~(t)i} L2]go. (2.91) 

Using the a pr ior i  bounds derived above for the quantities in brackets and applying 
Gronwall's lemma we see that g0(t) cannot blow up in a finite time. 

d g l  
Finally, computing - ~  and proceeding as above with the use of the constraint 
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and the Sobotev estimate (valid for functions f~L2(R3)) 

IIf]IL6 (= K[Ic)f[IL~, 
we get 

(2.92) 

dg l  
~ -  =< [Co II A(t)1112 ~ + C 1 Ii ~(t) II L ~ + C2 H ~4)F(t) tlL ~ 

+ C3/k~(t) IlL ~ + CJo(t)]¢l 
+ [c5  + c6 II q~(t)IlL- + C~ll¢(t)II~- 

+ C s ]t (4)F(t) IlL ~o + C9]/n(t ) tJL ~ ]d~o . (2.93) 

Making use of the foregoing estimates for 1! ~(t)Fl t~ ~ , etc. and applying Gronwall's 
lemma we thus find that g~(t) cannot blow up in a finite time. 

We have thus proven the global existence 

Theorem: I f  u o = (A i, El, dp, ~) is initial data lying in (H2+ k x H 1 +k) 2 for k > 3 and 
satisfying the initial value constraint, 

a,E, = [E,, A,] - (~.0o~)0o, 

then there is a unique solution u(t)E(Hz+ k x H i + k )  2 of the temporal gauge YMH 
equations defined for all t s( - o% go) and having u(O) = u o. The corresponding fields 
(Au(x),F,~(x),(a(x),D~(a(x)) are globally defined on minkowski  space, lie in 
(C k x C k - 1 x C k x C k- 1) and satisfy Eq. (2.10), (2.11), (2.14) and (2.16) in the classical 
sense. 

Appendix 

A. Cronstr6"m's Gauge Condition 

Suppose that Au(x ) is a C' potential (for r > 1) on some open set S v containing 
the point p. Assume further that Sp is "star-shaped" relative to p in the sense that 
it may be completely covered by connected geodesics through p. We want to show 
that there exists a unique C r gauge transformation U(x) defined on S v (with 
U(xv) = id) which transforms A, to Cronstr6m's gauge. Recall that the Cronstr6m 
transforms Au, P ~  are required to satisfy 

(x" - xf~)Adx) = o, A A x  p) = o, 

fi u~(Xp) = Fu~(Xp) (A. 1) 

on Sp. For  convenience we may' translate the origin of coordinates to p. 
Consider the linear system of ordinary differential equations (depending upon 

a parameter x ") given by 

d W  
d2 ~- x~Au(2x)W= O, (A.2) 

where W is a real d x d matrix and take, as initial condition for W(2, x), 

W(0, x) = id. (A.3) 
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d 
From the antisymmetry of A t it follows that ~-~ (trace (wTw)) = 0 and thus that 

the Euclidean "length" of W is a constant of the motion. The standard existence 
theory for linear systems assures us that there exists a unique solution W(2, x), 
defined throughout the region N = [0, 1] x Sv, which is a C r function of both )~ 
and x ~. 

1 
Furthermore, a simple scaling argument (letting x ~ # x  , 2 ~ - 2  with p a 

# 
positive constant) applied to the differential equation shows that W(2, x) is a 
function of 2x ~ alone. Therefore, with a slight abuse of notation, we can write 

W(2, x) = W(2x), W(0) = id. (A.4) 

We shall now show that W(2,x) lies in the group G for all (2,x)sN. 
First note that since the matrix group G preserves the inner product qS.q5 = ~b~qS~, 

G must either be the orthogonal group O(d) or a subgroup thereof. It follows at 
once from the differential equation and its transpose (again using the antisymmetry 
of A,) that 

d ( w T w )  = 0, (A.5) 

where W r is the transpose of W. Thus W(2x) remains in O(d) for all (2, x)s [0, 1] x Sp. 
We need only show that W cannot leave the subgroup G. 

Fix xeSv and suppose that W(2ox)sG for some 2oe[0, 1]. By introducing local 
charts for G on a neighbourhood of W(;toX), and recalling that A t takes values in 
the Lie algebra ~ of G, we can reexpress the differential equation (A.2) as a non-linear 
system (of class C r) for curves in G. The standard existence theory for non-linear 
systems assures us that a solution exists on same neighborhood of 2o. However, 
the solution curve (viewed as a curve in the linear space of d x d matrices) also 
satisfies the original differential equation (A.2) and thus coincides (on the common 
interval of existence) with the solution W(2x). It follows that W(2x) cannot leave 
G for any xeSp and any 2e[0, 1]. 

Now, since W(2, x ) =  W(2x) we have 

~2~ c~W (A.6) ~.= 1 = x%-~-x~ (x) 

and thus, from Eq. (A.2), putting 2 = 1 and writing U- t(x) for W(x), we get 

0 = x~OuU- t(x) + xUA~,(x)U- l(x) (A.7) 

for x~Sp. Thus, recalling the gauge transformation formula, we find that 

A.-~ UA,uU -1 + U6~u U-1 (A.8) 

is a C r- 1 potential on Sp satisfying 

x"flu(x) = 0. (A.9) 

The corresponding transform of C4~F, P~p = UF~BU-1, is a C "- ~ curvature on Sp 
since F,a is (in general) C ~- 1 and U is C ". The initial condition U(0)= id shows 
that P,p(0) = F,a(0 ). 

If we recall the defining equation for P~a in terms of .,{, we can easily show, 
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using xUfi, u(x)= 0, that 

It follows that 

and thus that 

x"P .~(x) = x"(~.A~(x)) + Av(X). (A.IO) 

(A.11) 

i 

A~(x) = ~ d22x@,~(2x), (A.12) 
o 

which is Cronstr6m's formula for the potential in terms of the curvature. Note 
that it follows immediately from Eq. (A.12) that 

A~(0) = 0. (A. 13) 

Using Eq. (A.12) and the field Eq. (2.10) one can easily derive Eq. (2.27) for O#]~(x). 
The CronstrOm transforms of 05 and D~05 are of course defined by q5 = U05 and 

D ~  = UD,~ (see Eq. (2.7)) and are respectively C r and C ~- 1 maps on Sp if 05 and 
D~05 are C r and C ~- 1 From the gauge covariance of the field equations it follows 
that if ((4)A, ~b) are C r potentials on Sp with r > 3 which satisfy the field equations 
(2.10) and (2.11) then ((4)F, D05) are C '-~ curvatures which satisfy the field 
equations (2.14) and (2.16) and that (4)A, ~) are C - ~  potentials and ((4)p, D~) are 
C , -  1 curvatures which satisfy the corresponding equations in the Cronstr6m gauge. 

"'m' Thus we can always transform the fields to Cronstro s gauge on any 
star-shaped region within the domain of local existence of a given solution. 

B, A Bound Jbr II~tlrz on the Light Cone 

In Sect. II B we made a special assumption about the quadratic term in the 
potential P(05) in order to be able to bound the L 2 norm of q~ on the light cone 
Kp~. We here remove that assumption by deriving an a priori bound. Since 
05.05 = 05-05 it suffices to bound the L 2 norm in temporal gauge. 

Define a vector field 

V = = - X~05-05 = - a~'05-05, (A.14) 

where 2 = ~  and integrate the divergence a~V ~ over the region bounded by the 

light cone Kp and the solid sphere Bp in the initial surface (see Sect. II 1 for 
definitions). The result is 

S r2drdf2(05 "05) = f r2drdf2(05"05) + ~ d4x(205'~r), (1,15) 
Kp Bp lp 

where Ip is the interior of the region bounded by Kp w Bp. This last integral may 
be estimated via 

t 

d4x(205.z) <-_ 2(2Eo) 1/2 ~ ds L[05(s)IIL~. (A.16) 
lp 0 
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Using  the b o u n d  on i[~(t)II L~ der ived at  the end of Sect. II  B, we can easily show 
tha t  

It~bl]g~tK~ < II~b(oIHt~ +(2Eo)l/2t, (A.17) 

where the r ight  hand  side depends  only on the init ial  da t a  and the energy. Using 
this b o u n d  in place of the previous  one makes  only a slight difference in the form 
of  the subsequent  estimates.  

C. Algebraic Terms in the Curvature Equations 

F o r  completeness  we include here the remain ing  componen t s  of flop (defined in 
Sect. II  B) and the cor respond ing  terms for the D~4) equa t ion  given by 

A n -= F,"(D,q~). (A.18) 

The componen t s  are 

Zi~ = 2{O,i Oj~Oki(Dk~)" O,(Do,~) +Oji Oi~Oki(D~,¢)" O,(Dk@ 
+ O,~OjbOk~(Dk~)" O,(D~,6) } 0~, 

A, = + 

= Oj, (DaA$) + 

+ + ½0,gj O  Pj (D 4) 

+ ½0~.~A.(4)F.~) . (D~o~ + Oj~(Dj~)). ( i .19)  

Each te rm in these expressions conta ins  one pro jec t ion  of D,q~ or / ~  whose 

square  integral  over K v is boundab l e  by the energy. 
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