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Abstract. In this paper and its sequel we shall prove the local and then the global 
existence of solutions of the classical Yang-Mills-Higgs equations in the 
temporal gauge. This paper proves local existence uniqueness and smoothness 
properties and improves, by essentially one order of differentiability, previous 
local existence results. Our results apply to any compact gauge group and to any 
invariant Higgs self-coupling which is positive and of no higher than quartic 
degree. 

I. Introduction 

This is the first paper in a series of two in which we shall prove the local and then 
the global existence of solutions to the Yang-Milts-Higgs equations in 4- 
dimensional Minkowski space. In this paper we establish local existence, uniqueness 
and smoothness properties of Yang-Mills-Higgs fields in the temporal gauge. In 
the sequel, we shall extend this result to global existence by showing that an 
appropriate norm of the solutions cannot blow up in a finite time. Our results 
apply to any compact gauge group and to any invariant, positive Higgs self-coupling 
of no higher than quartic degree. 

Our work on Yang-Mitls theory was motivated by an interest in the cosmic 
censorship conjecture in general relativity. This conjecture states (roughly) that 
singularities which develop from regular initial data are always hidden inside black 
holes. Some heuristic arguments given elsewhere by the authors [1,2] strongly 
suggest that the cosmic censorship conjecture is equivalent to a certain global 
existence conjecture about the Einstein equations. One hopes to prove the global 
existence conjecture and thereby to establish the validity of cosmic censorship. 
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Yang-Mills theories provide some simpler models on which to develop the needed 
analytical techniques. 

The local existence results of this paper are derived using Segal's general 
existence theory for semi-linear evolution equations [3]. Segat himself has already 
given a local existence argument for (pure SU(2)) Yang-Mills fields in the temporal 
gauge [-4,5]. However, our approach (which is technically somewhat more 
complicated) improves the local result by (roughly) one order of differentiability. 
This in turn simplifies the global existence argument to follow. 

Segal proved local existence for the evolution equations by taking [5] 
(A ,E ,B )eH  s x H~ x H~ for s > 2. Here A is the vector potential, E is the electric 
and B the magnetic field associated to A, and H~ represents the Sobolev space of 
square integrable functions with square integrable derivatives up to order s. 
However, the "constraint" equation which relates B to A, 

B = V  x A +½[A x , A ] ,  

shows that V x A e H  s and thus that the transverse part of A lies in Hs+ 1. In 
addition the initial value equation, 

V'E = [E., A], 

dA 
shows that the longitudinal part of E lies in H~+ a and thus, since ~ -  = E, that 

the longitudinal part of A remains in H~+ 1 provided its initial value lies in this 
space. Thus the actual solutions (A, E, B) resulting from Segal's approach lie in 
Hs+a X HsX H~for s>-_2. 

In our approach we take (A, E, B) to lie in H~+ a x H s x H~ ab initio and prove 
local existence for all s > 1. To achieve this improvement, however, we must modify 
the evolution equations in such a way that the modified equations (i) reduce to 
the original equations when the constraints are satisfied, (ii) preserve the constraint 
equations, and (iii) have the needed Lipshitz and smoothness properties for local 
existence in the stated spaces. 

The reason that the unmodified equations fail to give an immediate local 
existence result in H~+ 1 x Hs x H~ is discussed more fully in Sect. II below. To 
globally extend Segal's result by the energy methods of paper II one would have 
to show that the H 3 x H 2 x H 2 norm does not blow up in a finite time. To globally 
extend our result, however, we shall only need to show that the H 2 x H a x H a 
norm does not blow up. 

The choice of ordinary Sobolev spaces as function spaces for our analysis was 
made primarily for simplicity. However, the functions in these spaces decay faster 
at infinity than 1/r and thus cannot accommodate the description of a non-zero 
magnetic charge. The treatment of spontaneously broken symmetry (even with 
zero magnetic charge) is also excluded from consideration since in that case the 
Higgs field would have to decay to a non-zero constant at infinity. For technical 
reasons (involving the elliptic theory done in the appendix) it is not sufficient to 
simply subtract a background field with the "bad" asymptotic behaviour and work 
with equations for the subtracted fields. Nonetheless, we believe there to be no 
fundamental difficulty in extending our results to the treatment of spontaneously 



Global Existence of Yang-Mills Higgs Fields I 173 

broken theories and magnetic charges. The needed analytical tool would seem to 
be the weighted Sobolev spaces of Nirenberg and Walker [6], Cantor [7] and 
McOwen [8]. These have recently been applied to solve certain existence problems 
in general relativity by Christodoulou [9] and Choquet-Bruhat  [10]. 

Since writing this paper we received a preprint by Ginibre and Velo [ i  1] which 
significantly elaborates and extends Segal's Yang-Mills work. In particular they 
prove global existence for Yang-Mill-Higgs fields in 2 + 1 dimensions by extending 
a technique developed by one of us (VM) [12] to prove global existence for the 
Maxwell-Klein Gordon equations. 

II. Local Existence and Smoothness 

In this section we shatl establish local existence, uniqueness and smoothness 
properties of solutions of the Yang-Mills-Higgs (YMH) equations in the temporal 
gauge by applying Segal's [3] general theory for semi-linear evolution equations. 
We shall show that any initial data (A,A,~b,~) lying in the Sobolev space 
(Hs+ 1 × H s × H~+ 1 × Hs)=-(Hs+ 1 × H~) 2 for s=> 1 generates a unique solution to 
the integral equation associated to the YMH evolution equations on some region 
R 3 × (t~, tb) of (Minkowski) spacetime. We shall further show that if the initial data 
is restricted to lie in ( H 2 +  k × H 1 +k) 2 for k > 2 then it generates a solution for which 
the potentials (A, qS) are C k functions on spacetime which satisfy the YMH equations 
in the classical sense. 

To simplify the presentation slightly, we shall specify initial data at t = 0 and 
consider only evolution into the future so that the local existence intervals will 
always have the form [0, T) for some T > 0. Since the YMH equations are time 
translational and time reversal invariant, it's clear that this specialization entails 
no loss of generality. 

Our conclusions will apply to any compact gauge group and any quartic Higgs 
self-coupling with positive energy. 

A. No ta t ion  and Basic Equat ions 

Let G be an arbitrary, compact Lie group and let {0~} be a real matrix representation 
of the Lie algebra ~ of G so that 

[0,, Oh] =f'bcO c (2.1) 

for some constantsf  abe. We may regard the Yang-Mills potential (4)A as a ~-valued 
one-form field over Minkowski space and write 

(4)A = A~")O~dx" = AudxU (2.2) 

The curvature of (4)A is a y-valued two-form field (4)F defined by 

(4) F = ~,) u (2.3) (Fu~ O,)dx ix dx  ~ = Fu~dx" A dx  ~, 

where 

ru~ = OuA ~ - (?~A. + [ A  u, A~]. (2.4) 

The fields induced by (4)A and (4)F o n  a flat, t = const spacelike surface in Minkowski 
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space wilt be denoted by 

A = A~)O~dx i = A i d x  i, 
(2.5) 

F = F}~)O,flx i/'. d x  j = F i jdx  i/', d x  j, 

where i , j  range over 1, 2, 3 and x ° = t is the time coordinate. 
The Higgs field 05 is a vector valued function on Minkowski space with its 

values in the real vector space associated to the representation {0,}. The covariant 
derivative of 05 has the components 

DuO 5 = c3u05 + AuO 5.  (2.6) 

If ¢# is a smooth G-valued function over spacetime it generates gauge 
transformations of (4)A, 05) according to 

: - - 1  05' = q/05, Au = q/AuY/ + ~ 0 , ~ - 1  (2.7) 

from which follow the transformations 

F'~ = ~llFuvql- 1 
(2.8) 

(Duo5)' = glg(DuO) 

The (gauge invariant) Lagrangian for the YMH equations is 

2 '  = Tr { - ¼Fu~FUV } - ½(n uO).(Du05) - P(O), (2.9) 

where P(05) is an invariant polynomial in 4) (i.e., P(q/05)= P(05)V05 and vq/eG) of 
no higher than quartic degree and where Tr represents a trace over the represen- 
tation o f f  and "." represents an invariant contraction in the vector space associated 
to the chosen representation. One can always choose the basis {0,} for ¢, such that 
the 0a are real antisymmetric matrices, the f,bc are completely antisymmetric and 
the trace is 1 

Tr {0a Oh} = (~ ab (2.10) 

In this case the contraction "." is given by 

05"05 -- 05~0~, (D~05).(D~05) = (DuO)~(DUd))~ (2.11) 

etc., where K ranges over 1 . . . .  ,d = the dimension of the representation. 
The Hamiltonian associated to the Lagrangian (2.9) is given by 

H = S d3x{Tr[½EiE~ + ¼ F I j F J  + ½~'~  + ½(Di05)'(Di05) + P(05) + Tr[Ao ~d] }, 
Ra 

(2.12) 

E i = EI")O, = c~tA i - t?iA o + [Ao, Ai] = Foi  

rc = c~tO 5 + AoO = Do4) 

(2.13) 

= ~(°)oo = - c~F~j + [ E j ,  A j ]  - ( ~ - 0 o ¢ ) 0 ° .  (2.14) 

where 

and 

1 For convenience we have defined the trace operation Tr to be the negative of the usual matrix trace 
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The initial value constraint is ~g = 0 and E~ and rc are the momenta conjugate 
to A~ and 4) respectively. 

The Hamilton equations, specialized to the temporal (A o = 0) gauge become 

Ei = Ai 13jA 

c~t 

AO A 

+ 

0 

- c?~[A~, A j] - [ A  j, Fi j  ] - ( (Di¢) 'Oo$)O ~ 

0 

t c ) i ( A i O ) + A i c ~ O + A i A i c ~ - C ~ }  

(2.15) 
where we have split the linear from the non-linear terms on the right-hand side. 
For reasons that we shall explain below, it is desirable to replace these evolution 
equations by a different set which reduces to the above when the constraint is 
satisfied. The needed modification is obtained by first splitting E = E i d x  i into its 
unique transverse (divergence free) and longitudinal (curl free) parts (see the 
appendix for the definition of this splitting on H s vector fields and the proof of 
its smoothness), 

E i = E T + E~, ~ r o i j k , ~  l g L  _ ciE i = 0, 0, (2.16) ~" ~ j ~ k  - -  

and then by replacing E L with an expression which equals E L when the constraint 
is satisfied. Thus we let 

Ei El =_ 0 i 

1 
where -4 -~ r , (p  ) represents convolution of p with the fundamental solution of 

Poisson's equation, i.e., 

1 1 r ,  , f  p(x') 
41rr*(p ) . . . . . . . . .  j a x  I ~ l .  (2.18) 

4~Z R 3 \ ]X -- X 17 I 

In the appendix we prove for any ( A , E ,  4,,rc)E(Hs+ 1 x Hs) 2, and with s =  1, that 
E c is a well-defined curl-free vector field lying in H,+ 1 and satisfying 

c~,E c = [E j, Aj] - (rr' 0oqS)0 a. (2.19) 

We also show that if in addition the constraint is satisfied, i.e., if 

c3iE i = cqiE ~ = [Ej, Aj] - (rr- 0:5)0,, (2.20) 

then E c = E~. Note that E c (and thus E L when the constraint is satisfied) is in 
general smoother than E T (i.e., ECEH,+~  whereas E T e H s ) .  This will be quite 
important in the following analysis. 

With the above modification we may write the evolution equations as 

du 
• - -  = : ¢ u  + J(u),  (2.21) 
dt  
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where 

and 

u = , ~ u  = - ~  iO~A (2.22) 

L A0 J 

- Oj[Ai, A~] - [Aj, F J  - ((D~4~)'O,(~)O~} 
J(u) = (2.23) 

0 

By splitting A and E into transverse and longitudinal parts we may express the 
linearized equations 

du 
- -  = d u  (2.24) 
dt 

in the form 

d t \ E r ] = ( :  ( 0  O, (2.25) o)teV at./= o/t /aTtE )= 
which shows at once that the pairs (a r, E r) and (q~, ~) each satisfy the linear wave 
equation and that (A L, E L) is a constant of the (linearized) motion. It follows that 
the linearized equations are globally defined on any of the Sobolev spaces 

(A,E,~,~)E(H~+ i × H~) 2, s>O. (2.26) 

Had we attempted to work with the unmodified equations (2.15), the longi- 
tudinal projection of the linearized equations would have been 

d r \ E L )  = O ) \ EL }, (2.27) 

which has the general solution 

EL(t) = EL(0), At(t) = AL(O) + EL(O)t. (2.28) 

Thus AL(t) is no smoother than EL(t)= EL(0). This is the difficulty in attempting 
to treat the linearized (unmodified) equations as defining a group on the space 
Hs+ ~ × H~. In pure Maxwell theory this procedure causes no difficulty because 
the Maxwell constraint is simply E L = 0 which allows AL(t) to persist in H~+ ~. In 
Yang-Mills theory one might hope to solve the constraint for E L as a functional 
of (A, E ~) and show that this solution forces E L to lie in H,+ 1. Unfortunately, 
however, one cannot globally solve the constraint for E L since the functional 
derivative of the constraint with respect to E L is not an everywhere surjective map 
(this fact was first pointed out by Gribov [-13]). Nonetheless, it is true that the 
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constraint forces E L to lie in H~+ ~. Our device of replacing E L by E c takes advantage 
of this "smoothing" property of the constraint without in fact attempting to solve 
the constraint. 

B. Local Existence and Uniqueness 

As discussed above, the linear operator d generates a one-parameter group on 
any of the Sobotev spaces (H~+ 1 × H~) 2 for s >__ 0. For s ~ 1 we may establish local 
existence and uniqueness of solutions to the integral equation 

u(t) = exp ( d ( t  - to))U(to) + i d s e x p ( d ( t  - s))J(u(s)) (2.29) 
to 

associated to (2.21) by showing that J is a continuous map from W = (H~+ 1 × H~) 2 
to itself which satisfies the Lipshitz condition 

II J(u)  - J(v)  H < c(ll  u I], It v II)lJ u - v II ( 2 . 3 0 )  

for all u, v e ~ .  Here [] ]l is the (H~+ 1 x Hs) 2 norm and C(,) is some monotonically 
increasing, everywhere finite function of the norms indicated. It will follow from 
Segal's general theory [3] that any initial data U(to)= Uoe._Ct ~ will determine a 
unique solution u(t) to (2.29) on some interval (t,, to) containing t o and that either 
(to, tb) = ( -  oo, + o o )  or  tlu(t)[I ~ oo as t ~ t .  or  tb. 

The proof that J is a continuous, Lipshitz map from ~ to ~ is, except for 
the non-local term E c, straightforward and was in fact given by Segal for the case 
Yg = H 2 × H 1 (with G = SU(2) and Higgs fields not included). A proof in the general 
case (including s > 2) is facilitated by using the Sobolev estimate 

[IDflJL4 _-< K 11D2f L27/811 f ][ ~/2s 
(2.31) 

<K'LtfHu~ 
and the Schauder ring property of H~ maps O.e., the property that H~ fields over R" 
form a ring under pointwise multiplication of components if s > hi2 [14]). The 
proof that E c, defined by Eq. (2.17), is a continuous map from ~ to H +  i is given in 
the appendix where it is also shown that E c has the Lipshitz property needed for 
(2.30). Combining these results one finds that 

[td(u)-J(v)l[ <(61 +C2(][u[I + HvIL)+ C3(]luH + [Iv[[)2)l[u-vl], (2.32) 

where C~, C 2 and C 3 are positive constants and u and v are arbitrary elements of 

To show that solutions u(t) of the integral equation (2.29) actually satisfy the 
original differential equation (2.21), we need to establish some smoothness of the 
non-linear operator d and to restrict the initial data u 0 to lie in the domain of d .  

d is in fact a C ~ map from ~ to itself. One can prove this by directly computing 
the Frechet derivatives of d (all derivatives higher than the third vanish identically). 
For  the local terms in Y (i.e., those not involving E c) one needs only the Sobolev 
estimate (2.31) and the Schauder ring property of H s maps to prove the indicated 
smoothness. The proof that E c is a smooth map from ovf to Hs+ 1 is given in the 
appendix. 
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Since d is a C ~ map (C 1 would be sufficient here) it follows from Segal's general 
theory that any initial data in the domain of ~4 -= D~ determines a solution of 
(2.29) which remains in D d throughout its interval of existence and which thus 
satisfies the differential equation 

du 
~[(t) = du( t )  + J(u(t)), (2.33) 

du 
with ~-t (t) a continuous curve in J(,C 

The domain of d consists of all (A, E, ~b, re) satisfying 

ArcH,+ 2, AL~H~+ 1, ETCH,+ 1, ELEH~ 
(2.34) 

~b 6H~ + 2, rc6H~ + 1 

We shall now show that solutions u(t)eD N satisfy the constraint cg(t)=0 
throughout their interval of existence provided they satisfy this constraint initially. 

d~ 
Computing ~ -  for any solution u(t)eD N we get 

df~ = [ AEL, E~], (2.35) 
dt 

where 

= E~-c~i{  - 1 -(n'0aq))0a) }. 4-;;* ([G A3 
Thus, using H61der's inequality, 

d 
dt ~ gt,)cg{,, = + 2 ~ f"bc~(°(AEL)}"'g}b) 

R 3 R3 

__< 2 y, hlf"~=~(c)llL~ IkES~,ll~ II(AEL)5"'llL~. 
a,b,j 

From the Sobolev estimate (valid for H 1 functions over R 3) 

we get that 

IIfHL. ~ KHDf]LL~, 

I1 o K( s 

\ R 3 k,j / 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

/ \U2 

\ R  3 / 
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where, in the intermediate steps, we have integrated by parts and used the fact 
(see the appendix) that AE L is a gradient obeying 

0 iA E~ r = - (g. (2.40) 

It follows from (2.37) and (2.39) that 

dt(H cg(t)ll ~2 ) < K'  tl E(t)llm (]l~(t)ljL~) 2, (2.41) 

(since ItE(t)ila~ < CjIE(t)[[u~) and thus, using Gronwall's inequality, that 

[l~(t)ll~ < [[~f(0)[l~ exp dsK'llE(s)llm • (2.42) 

Thus ]l~(t)lle= and hence ~(t) vanishes throughout the interval of existence of u(t) 
provided qf vanishes initially. Furthermore since (g(t) = 0 implies that EL(t) = EC(t) 
(see the appendix) it follows that solutions to the modified equations (2.21-2.23) 
which satisfy ~f(t) = 0 are in fact solutions of the original unmodified equations 
(2.14 and 2.15). 

We have thus proven: 

Theorem 1. I f  U o = ( A , E , ~ , n  ) is any initial data lying in ~,~ =(Hs+~ X Hs) 2 for  
s >=_ 1 then there exists a unique solution u(t) to the integral equation (2.29), with 
u(0) = Uo, defined on some interval [0, T). u(t) is a continuous curve in ~ and either 
T =  + 0 o  or tlu(t)ll.~_~oo. 

Furthermore if uo~D ~ and satisfies the constraint ~(Uo)= 0 then the solution 
du 

curve u(t) remains in D d ,  has a first derivative ~ ( t )  which is continuous in 2/Y, and 

satisfies the differential equation (2.15), and the constraint ~(u(t)) = 0 throughout its 
interval of  existence [0, r). Again, either T = o~ or Ilu(t)llue~c~, 

C. Smoothness of Solutions 

du 
The solutions discussed above have u(t)~Doe and -d-[(t)e/,~f=(Hs+l x H,) 2 

throughout their intervals of existence. Because of the constraint however, they 
are actually somewhat smoother than this. As shown in the appendix (see Lemmas 
A5 and A6) the constraint equation 

{1 t E L = gi - ~ *  ([Ej, Aj] - (n.O~)O~) (2.43) 

forces E L to satisfy 

(i) 
and 

(ii) 

EL~H2V(A, E, ~b,/z)~(H 2 × H1)  2 (2.44) 

EL~Hs+ e V(A, E, ~, n)~(Hs+ , × H,+ 1) 2 (2.45) 

for s > 1. From (i) and (ii) it follows that any ueD~  has EL~Hs+ i if the constraint 
is satisfied. But this means that (A, E, ~b, n)a(H~ + 1 x Hs+ 1) 2 (with ~b and A T actually 
in Hs+2) and thus from (ii) that EL~Hs+2 . The constraint thus forces E L to have 
two more orders of differentiability than inclusion in Do, requires. 
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The longitudinal projection of the equations of motion gives 

dA L 
d~-(t) = EL( t ) ~ Hs + 2, (2.46) 

which shows that if we further restrict the initial data so that AL(0)~Hs+2 then 
AL(t) will persist in this space throughout the interval of existence. We thus find 
that if the initial data is restricted to lie in the natural "subdomain" /) d c D~ 
defined by 

H 2 Dd {(A,E,O,n)e(Hs+ 2 x s+1) }, (2.47) 

then u(t) will persist in this space throughout its interval of existence and in fact 
have E L lying in Hs+ 2 by virtue of the constraint. 

We have thus proven: 

Corollary 2. I f  u o = (A,E,O,~z) is any initial data lying in /)~ = (H~+ 2 x H s + l )  2 

for s > 1 which satisfies the constraint Cd(Uo)= 0 then there is a unique, once 
continuously differentiable solution u(t) of  the differential equation (2.33)and the 

du 
constraint Cd(u(t))= 0 having u(O)= u o. This solution has u(t)eD ~ and ~t (t)Eovf = 

(Hs+ I × Hs) 2 throughout its interval of  existence [0, T) and either T=  + ~ or 
limHu(t)ll~Hs+~×H~)~=~. Here continuously differentiable means that u(t) and 
t ~ T  

du 
~[(t) are continuous curves in Yr. 

We can combine this result with Segal's general smoothness theorem [3] to show 
that if the initial data is restricted to lie in (H,+ 1 +k X H~+k) 2 with k an integer > 1, 
then the solutions obtained will in fact be k times continuously differentiable with 

2 du H 2 u(t)e(Hs+l+ k x H~+k) ,~ ( t )e (Hs+ k x ~+k 1) , 

d k - l u  2 dku 
. . . .  dtk_ 1 (t)~(Hs+ 2 x H~+I) , ~ ( t ) e ( H ~ +  1 x H~) 2 (2.48) 

throughout their intervals of existence. 
H 2 First note that for any integer j > 1 we have, for any ve(H~+ ~ +j x ~+j) , that 

dv~(Hs+ j x H~+ j_ 1) 2. (2.49) 

Furthermore, since the non-linear term J(u) is a smooth map from (H~+ 1 x Hs) 2 
to itself for all s > 1, we find, computing successive derivatives of the equation of 
motion, 

du 
- -  = ~¢u + J(u), (2.50) 
dt 

dZu du du 
du 2 -- d ~  + D J ( u ) ' ~ ,  

dau d2u dZu f du, d u \  
dt 3 = ~¢~[$ + D J ( u ) ' ~  + D E d ( u ) ~  ~ ] ,  
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etc., 

H 2 du that if u(0) = u 0 lies in (H, + ~ + k X ~+ k) then the successive derivatives u; = ~-~(0), 

,, d 2 u 
u 0 = ~ - (0 ) ,  etc., computed formally from the above, satisfy 

, 2 ,, H 2 Uoe(H~+ k x H~+k_I) ,Uoe(H~+g 1 x ~+k-2) , 

. . . .  u~ -  l)e(H,+ 2 X I21s+ l)2, U(ok)~(Hs+ l X H~) z. (2.51) 

Thus, in particular the first ( k - l )  derivatives (U'o,...,u~ -1)) lie in ( H s +  2 x 

H~+ i) 2 =/)0ff C D d. 
It follows from Segal's general smoothness theorem that the solution u(t) 

du 
generated by u o will be k times continuously differentiable 2 with u(t),-d~(t),..., 

d k- 1 u dku 
dtk.~x (t) all lying in D~ and ~-~(t) lying in ~ f  throughout its interval of 

existence. In fact, the solution will be somewhat smoother than this as the following 
argument shows. 

Since for any k >  1 u o lies in (Hs+ z x H~+I )2cD~ it follows from Segal's 
theorem that u(t )eD~ throughout the interval of existence [0, T). But the argument 
preceding Corollary (2) shows that in fact u(t)SDo~ = (H~ + 2 x H~ + ~)2 on [0, T). If 
k ~ 2 then we have in addition that 

Uoe(H~+ 3 x Hs+2) 2 c D~¢, 
(2.52) 

u'oe(Hs+ 2 x Hs+ l) e o D d ,  

and the general theory gives 

du 
u(t)eD~v , ~ ( t ) e D ~  (2.53) 

on [0, T). But we already know that u(t)e(Hs+ 2 x Hs+ 1) 2 on [0, T) and thus (since 
J is a smooth map) that J(u(t))~(Hs+ 2 x H +  ~ )2 on [-0, T). It follows that the linear 
term, s~u(t), must separately lie in D d and thus that u(t) must lie in D~2 on [0, T). 
It follows that 

ATEHs+3,ETEHs+2,~eHs+3,TZ6Hs+z, ALeHs+2,ELEHs+I (2.54) 

on [0, T). However the constraint forces EL(t) to lie in H~ + 3 and since AL(O)eH~ + 3, 
dA L 

the equation of motion dt =EL shows that AL(t)eH,+3 on [0, T). Therefore 

du 
u(t)e(Hs+3 x H,+2) 2 and (from the equation of motion) ~[(t)e(H~+2 x Hs+I) 2 

on [0, T). 
We can continue this argument if k > 3. The general theory gives 

du D d2u 
u(t)eO;¢, ~ ( t ) e  d, ~ ( t ) e D x  (2.55) 

2 C k as a map from [0, T) to Yr. See however Corollary (4) below 
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on [0, T). But the above argument has already shown that u(t)s(H~+ 3 x H s + 2 )  2 

du du 
and -~(t)e(H~+ 2 x H~+I) 2 on [0, T). It  follows that DJ(u(t)). ~-(t)~(H~+ 2 x 

du d2u 
Hs+~) 2 c D~ and thus that the linear term d . ~ ( t )  in the -d-~(t) equation 

must lie in D~. However, since ~¢J(u(t))e(H~+ 2 x H~+I) 2 c D~ it follows that 
s¢2u(t) must separately lie in D d or that u(t) must be in D ~  on [0, T). These 
conclusions imply that 

AT~Hs+4, Er~Hs+3,~H~+4,  n~Hs+3, AL~H~+3, EL~Hs+ 2. (2.56) 

But the constraint forces EL(t) to lie in Hs+ 4 and since AL(O)sH~+4, the equation 
of motion gives AL(t)eH~+4 on [0, T). Therefore we get 

2 du 
u(t)s(Hs+ 4 x Hs+3) ,~-(t)e(H~+ 3 x H~+2) 2, 

d2u 2 d3u 
(t)~(H~+ 2 x H ,+ , )  , ~ - e ( H ~ +  1 x H~) 2 (2.57) 

throughout the interval of existence. 
Clearly one can continue this pattern of argument to successively larger values 

of k, thereby deriving the smoothness theorem: 

Theorem 3. I f  Uoe(Hs+ 1 +k x H~+k) 2 for integers s > 1 and k ~ 1 and ~(Uo) = O, 
then the solution u(t) generated by u o is k times continuously differentiable as a curve 
in ~ = (H~ +1 x H~) 2 and has 

2 du H 2 , U(t)s(H~+ l +k X Hs+k) ,-d~(t)e(H~+k x s+k-1) ,"" 

dk- lu  2 dku 
~t~-~-(t)e(Hs+ 2 x H~+ ,) ,-d~(t)e(H~+, x Hs) 2 

throughout the interval of existence [0, T). 
The continuity referred to in Theorem (3)is continuity in the topology of ~", 

However, we can easily show that u(t) and its derivatives are actually continuous 
as curves in the spaces indicated in Theorem (3). To see this, note that a solution 
having 

u(t)s(H~+ 1 +k X H~+k) 2 = H tk), 

~(t)s(Hs+ k x H s+k-1)2 --= ~,~(k- 1), 

(2.58) 

dau H ~'~ (t)~:( s+l X H~) 2 ~_ W~o) = ~ ,  

can be viewed as a C 1 solution in ~(k-1) ,  a C 2 solution in ~(k-2)  . . . . .  or as a C k 
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dJu 
solution in Yr. Applying Theorem (3) we see that -~f(t) is continuous in ~(k-j)  

for 1 --<_j _--< k. As for u(t) itself, it satisfies the integral equation in W {k) and so, by 
Segal's basic existence theorem, is a continuous curve in ~¢fek). We thus have: 

Corollary 4. I f  UoeJ f  (g) satisfies the constraint ~ (uo)=0 ,  then the solution u(t) 
dJu 

generated by u 0 is a continuous curve in :jf~k) with its derivative ~tY(t) continuous 

in 2/f ¢k -j) for  1 <=j <_ k. 

Finally we complete the local existence and smoothness argument by showing 
that if k > 2 then solutions u(t)e(Hs+ 1 +k x Hs+k) 2 provide C k potentials (A, ~b) and 
C k- ~ momenta (E, 7r) on spacetime which satisfy the Yang-Mills-Higgs equations 
in the classical sense. 

We first prove several lemmas. 

Lemma 5. Let  f ( t )  be a continuous curve in H2+i(R 3) for  some integer j > 0 and t 
in some open interval I. Then f together with its spatial derivatives up to order j 
are continuous functions on R 3 x I. 

Proof  That f is a C J function in the spatial variables for each fixed t follows from 
the Sobolev embedding lemma for R 3. We may therefore write f ( t ,  x), Oif(t, x), etc. 
for f and its derivatives up to order j. If g(t, x) is any one of these functions, we get 

[g(t + e, x + 6x) - g(t, x) l < [g(t + e, x + 6x) - g(t, x + 6x) l + lg(t, x + 6x) - g(t, x) l 

<= ]lg(t + e) - g(t)11 ~ + Ig(t, x + 6x) - g(t, x) l 

<CIIg(t + e) -g( t ) l tn~ + lg(t,x + b x ) - g ( t , x ) t .  (2.59) 

The first term can be made less than any 6/2 > 0 by choosing e sufficiently small 
since 9(t) is a continuous curve in H 2. The second term can be made less than 6/2 
by choosing bx sufficiently small since g(t, x) is continuous in x at fixed t. • 

Lemma 6. Suppose that f ( t )  is a continuous curve in H2+ j for  t e l  and that the 
(strong) derivatives 

d• 
J 

d2f v (2) ~'ftt~ = V (j) (2.60) 
(t) = V m, -d~(t) = _ , . . . ,  dtJ, , 

all exist as continuous curves in (respectively) Hj+ I ,Hj  . . . .  ,H2. Then f is a C j 

•J f Vo ) function on R 3 x I and, in particular, ~ = . 

Proof  We first show that the partial time derivatives exist. Note that 

~ ( t + e , ~ - f ( t , x )  V(1)(t,x ) < f ( t + e ) - f ( t )  
£ 

v"~(t) L~ 

=<C f(t +e)-f( t)  V(1)(t)] ~o-'~ 0. (2.61) 
H2 
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(~f V (~). In a similar way we get for i < j  Thus ~ - =  

I V(°(t + ~' x) - v(°(t, x) V ('+ ~(t, x) 

<= C V(i)(t + e)e - V(°(t) V" + ~)(t) ---+ 0, (2.62) 
e ~ 0  

H2 

¢~v(i) Oi+ a f 
and thus that 0t = ~ =  V(i+t)" 

If follows from Lemma (5) that each V (° = oif  is a C j- i  function in the spatial 
at' 

variables on R a x I. A standard calculus argument shows that continuity of 3tg, ~ig 
and 31O,g implies O~?,g = ?,~g. Proceeding inductively one sees that the order of 
differentiation is immaterial and thus that f is .a C j function on the spacetime 
region R a x I .  • 

Recalling Theorem (3) and Corollary (4) we see that any initial data Uoe 
(H~+ 1 +k x H~+0 2 for s > 1, k > 1 generates a solution u(t) having 

2 dA dq5 2 
(A(t), O(t))e(H~+ l +k) , (~-( t ) ,  ~7-(t) ) e ( H  s+k ) , 

['dkA ~kff(t) ~(Hs+l) 2, . . . ,  ~ - ( t ) ,  ) (2.63) 

du 

{ d k - l E  dk-*rt )  
E ( H s +  1 ) 2 , • .., ~dtkl:~,  dtk-I 

each as continuous curves in the indicated spaces. Since s > 1, Lemma (6) applies 
and show that (A, ~b) are C k functions and that (E, n) are C k- ~ functions on their 
domains of definition in spacetime. It follows that if k > 2 the solutions thus 
obtained satisfy the Yang-Mills-Higgs equations in the classical sense. We have 
thus proven 

Corollary 7. I f  uos(H~+ 1 +k X H~+k) 2 for S > 1, k > 2 is initial data satisfying the 
constraint (d(Uo) = O, then the solution u(t) generated by u o has C k potentials (A, 4)) 
and C k- 1 momenta (E, n) which satisfy the Yang-Mills-Higgs equations in the 
classical sense throughout their domain of  definition. 

Appendix: Properties of E c 

For any (A, E, ~b, rt)e(H~+ 1 x Hs) 2 with s > 1 we let 

1 
p = ~-{ [E3, Aj] - (rt'0a~)0a}, (A.I) 
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and attempt to define 

EC= - ~ ? , ( 1 , p ~ =  -~?i S dx' p(x') (A.2) 
\ r  / R3 Ix - x ' l  

1 
Lemma A1. The convolution -*  p is a well defined tempered distribution lying in 

r 

L ~ for all s > 3. 

Proof Using the fact that 1 lies in the weak L p space L3w(R 3) it follows from the 
r 

generalized Young inequality (see ref. (15), Sect. (IX.4)) that 1 ,  P ~LS(R3) provided 
r 

1 1 2 
peLP(R 3) and 1 < p, s < oo, where P = -s + 3' In that case 

! . p  L <=C[IPl]L, ~ 3.w<C'llpllL,. (A.3) 

However, since (A, E, ~b, n) all lie (at least) in H 1 they all lie in L p' for 2 < ' < 6 ~ P  ~ • 

1 
It follows that p~L v for 1 N p < 3. Hence - . p s U  for s > 3. 

r 
The continuity property required of distributions follows from the estimate 

s 1 ,  ( ' ! ' . > - ; ' x ( ' ( ! ' 4 ) < =  ' r . 

1 1 
where f is any C ~ function of rapid decrease and where -s + ~7 = 1 with s > 3. 

The last step follows from 

Ilfllz., = j" dx((1 + X2)-2((1 "4- x2)2l f l )  ) 
R~ 

<Ell(1 + xZ)2lflllL~. • (A.5) 

(1) 
We define E c to be the (distributional) gradient of - r ,  p . An alternative 

representation of E c is given by 

x i  ir , (  - x )  , 
(A.6) 

To prove this let V~ be any vector field in 5°(R 3) = the Schwartz space of C ~ 



186 

functions of rapid decrease. Then we have 

= (!,0,V~, p ) ,  (A.7) 

where we have appealed to Fubini's theorem to exchange the order of integration. 
Integrating by parts one can show that 

1 
= , ( A . 8 1  

R~ I IX - -  X ] d R 3 IX - -  X 

Using the facts that r~ ~L3/2(R a) and that p~Lp for all 1 <p_< 3, we find 
r 2 w ~ - -  

from the generalized Young inequality that 

~ *lpleL s ~ < s < 3 .  (A.9) for all 

This fact together with Fubini's theorem allows us again to exchange the order 
of integration in (A.7) to obtain 

!,,)5 
which establishes 

Lemma A2. E C = ( ~ - ~ , p ) = - ~ , ( ! , p ) .  

We may use this representation of E c to prove 

Lemma A3. ECeU for all 3 < s < oo. In particular EC~L 2. 

Proof From the generalized Young inequality 

5 *p L. ~clIpIILp 5 3/2,w <=c'HpI[Lp (A.11) 

1 1 1 
provided 1 < p , s <  ~ and - = - + 5 "  But we showed previously that p e L  p for 

p s 
all 1 < p < 3. Therefore the conclusion follows. 

Furthermore we have 

Lemma A4. E c has vanishing curl and satisfies OiE c = 4~p. 

Proof That E c has vanishing (distributional) curl follows immediately from the 
fact that E c is a gradient. To evaluate ~iE c, we let f be an arbitrary element of 

D. M. Eardley and V. Moncrief 
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~9°(R 3) and compute 

(0<(;,4) 
= -  [" dx 'Sp(x ' ) f  [ 13 \ l x - x , "  , (A.12) 

where we have used Fubini's theorem to justify the last step. Integrating by parts 
one shows that 

and thus that 

X i - -  X i ')  

~R3 dx  ~ ~ i f  (x) = - 4rc/(x'), (A.13) 

(f,c~i E c )  = ~ dx ' (p (x ' )4n f ( x ' ) )  
R a 

= (f,  4~zp ). (A.14) 

Thus, as a distribution E c obeys ~?iE c = 4rip. • 
If V is any vector field in L 2 we can define its Fourier transform ~'= Y(V)eL 2, 

and decompose 
~ =  p r  + pL, (A.15) 

where the transverse and longitudinal summands are given by 

( TI j = _ 

ik12] ,' 

^ t kjki ~ 
( V ) j =  ]~T z" (A.16) 

It is straightforward to show that 

II f/TIlL2 < II r/lit2, II i/tilL2 ~ II f/ilL2, (A.17) 

and that 

V w v L = O, ks~V T = O, eiJkks ( zL = 0. (A.18) 

It follows that the inverse transforms V T and V L satisfy 

II rrll,.~ _-< I[ FILL2, ILFLIIL~ <= II FilL2, 
(A.19) 

7' L = 0 , V  x V L V T Vs Vj =0,V.  =0.  
R~ 

In particular since E C e L  z we can decompose E c in this way. However since E c 
has vanishing curl it follows that k x/~c = 0 which implies that (ffC)T = 0. Thus 
E c is purely longitudinal and we may write 

g c  = kjki ^c ^c L 
I ~ - E ,  = (E )j. (A.20) 
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Fur thermore  since t3~E~ = 4rip we get, taking the Fourier  transform, 

ikiE c = 4n~, (A.21) 

and thus that 

= ik~( - i47z~). (A.22) 

We can decompose the electric field E as above to get 

E = E r + E L, (A.23) 

where 

0~E T = 0,V x E c = 0 (A.24) 
and 

kiE , = k,E L. (A.25) 

Now suppose that (A, E, ~b, u) satisfies the constraint  equat ion 

(~iEi = c~iE. L, = 4up. (A.26) 

Taking the Fourier  t ransform we get 

ik,ff~ = 4~r~, (A.27) 

and thus 

^ kjki fiE kj 
EL = i~  T i = ~ ( - -  i4n/)) 

_ ^c (A.28) 
- Ej .  

Thus any solution of the constraints has E L = E c. Conversely if E L = E c, then the 
constraint  is satisfied since (from Lemma (A4)) we have 

t~iE i = t3,E~ = ~iEF = 4rip. (A.29) 

This gives: 

Lemma AS. The  constraint equation OiEi = 4rcp is equivalent to E c = E L. 
We can now prove 

Lemma A6. E c lies in H 2 • (A, E, (0, re) ~ (H 2 x H 1) 2 and E c lies in H s + 2 ~/(A, E, d?, re) 
(Hs+  1 × Hs+ l)E~/s ~= 1. 

Proof. We already know that  E c ~ L  2. Using the expression (A.22) for/~c we get 

(. dx(c~,EC) 2 =  (. dklk,ECl 2 =  (4u) 2 ~ dkl~l 2 =  (4n) 2 ~ dx(p) 2. (A.30) 
R 3 R 3 R 3 R 3 

Similarly 

dx(OigjEC) 2= (an) 2 ~ dx(c3jp) 2. 
R 3 R 3 

_ _ 6  From Lemma (A3) we have, taking p - -g, that  

IIECl]L2 < C'IrPlIL6,5 

(A.31) 

(A.32) 
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and, using H61ders' inequality, that 

~R3'DI6/5dx~K{(~R 3 'E[2)315(R~3 [A,3)  2/5 

and thus that 

(A.33) 

IIPIIL~/~ ~ C(IIEIJL~ IIAIIL~ + II~IIL~ I1¢ ILL~) 

C'( IIEIIL2 Ilall~, + blrcllL2 II¢IIH). (A.34) 

In the last step we have used the Sobolev estimate 

IIflIL~ < g'llOfllaL2 IlfJlL; -° (A.35) 

for p = ~ + ( l l  a -a)q_1 (with 0 < a < 1) to show that tlAI[L3 = < gilA Ilu~- 

Using the similar estimate ItfIIL' < K Ilfltn, together with It filL® < K IIfltu2 one 
shows that 

dx(Ojp) 2 < C{ IIAtI~211EII~, + I1¢11~2 [trcl[~,}. (A.36) 
Ra 

Combining these results one gets 

IlEC[Ixx= _< K{ ]lEIInl IlZlln= + 117~lJn, II~lln~}, (A.37) 

which proves the first part of the lemma. 
Now suppose that (A, E, O, n)e(Hs+ 1 x Hs+ 1) 2 for s > 1. Then from the Schauder 

ring property of Hs maps we have p~Hs+ ~. The H~+ 2 norm ofE c may be computed 
via 

lI E c 2 Jl n,+2 = ~ dk(1 + k2) ~+ 2/~c./~c (A.38) 
R 3 

~ dk ( [(1 + k2) 2 + Ck2(1 + k2) ' +' ](/~c./~c)) 
R 3 

I[EC][~ + C' ~ dk(1 + k2)S+llp[ 2 
R 3 

_-< llECll~ + C'llpll~+,. 

But the Schauder ring property gives the estimate 

llplln=+, _-< K{ IiElln=+, IIA II,~=+, + [Ircll~=+, ll011u=+, }. (A.39) 

Thus for s > 1 we get 

liEC[lu,+~ <K'{IIEI[n,,~ × tlA!ln.+, + Iln[In.+, x H$1[n,+,}, (A.40) 

which proves the second part of the lemma. • 
The result of Lemma (A6) is particularly useful in verifying the Lipshitz 

condition and the smoothness of E c, To simplify the formulas slightly we shall 
consider only the terms in (A, E) in the expression for E c since these are completely 
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representative. We have 

1 f 
EC(A ', E') - EC(A, E) = ~ ,  { [ (E' - E)., A '] - [E., (A - A ')] }, (A.41) 

and thus, recalling the estimate in the proof of Lemma (A6), that 

IIEC(A',E ') -- EC(A,E)]]Hs+, < K {  l IE ' -E l jn ,  llA'lln,+~ + ]lEIIns IIA - N'llns+ ~ } 

< K( iI (A', E')II + IJ (A, E)Ii)II (A' - A, E' -- E)H, (AA2) 

where il II designates the H,+ 1 x H s norm for any s > 1. This is the needed Lipshitz 
condition lbr E c. The continuity of E c as a map from Hs+ 1 x Hs to H~+ 1 follows 
from the Lipshitz property. 

Using the estimate (A.40) again it is straightforward to show that  

1 F 
EC(A + A', E + E') - EC(A, E) - ~ ~ * ( [ E " ,  A] + [E' ,  A']) n~+, 

_-- 41~ , ( [E ' . ,A ' ] )m+<Kl lE ' l*ml lA 'Lr . : ,+1=  

=< K( It (A', E')II n . . . .  n~) 2 --< ~ Ii (A', E')Itz, +, × n, (A.43) 

e 
for all tI(A', E')JFn . . . .  m < ~-- Thus the first Fr6chet derivative of E c exists and is 

given by 

1 F 
DEC(A, E).(A ', E') = ~ * ( [E'., N] + [E., A '] ). (AA4) 

Similarly we get 

]IDEC(A, E).(N', E') - DEC(N °, E°).(N ', E') Ilns +, 

I 1 ~  , o 
= ~ - n ~ - * { E E * , ( A - A ) ] + [ ( E - E ° ) . , A ' ] }  n,+~ 

~K{[[E'Hn~IUA-A°[[ns+~ +tlE-E°}[~,[]A'f[n~+~}, (A.45) 

which shows that DE c is continuous. 
The second derivative is easily shows to be 

1 F , t . D2EC(A,E).((A',E'),(A",E")) =4--~r  2 ([E -,A ] + [E". ,A']) ,  (A.46) 

which is constant  in (A, E) and thus obviously continuous. All higher derivatives 
vanish identically. Thus we have proven 

Lemma A7. E c is a C ®, Lipshitz map from H~+ ~ x H~ to H~+ t .for all s > 1. 
To justify the steps in (2.39) we note that 

OiAE ~ = Oi EL - 6~i E c  = 63iE i - 4rip = -- % (A.47) 

which follows from Lemma (A4) and the properties of the decomposition (A.23). 
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These  a lso  give 

It  fo l lows  tha t  

- L  ^ L  ^ C  k;ki ^ L  
AF j = Ej - = ITF(E, - 

dXZ (ak(AEL)j) 2= ~ l~-(f-(E~ -- = ~ dklk~(Ef-EC)j 2 
R 3 k , j  R 3 R 3 

= I dx(c3iAEf)2= I c~'~dx, 
R 3 R 3 

which  c o m p l e t e s  t he  a r g u m e n t .  

(A.48) 

(A.49) 
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