BIT 5 (1965), 3750

QUASI DOUBLE-PRECISION IN FLOATING
POINT ADDITION

OLE MOLLER
Abstract.

The loss of accuracy incurred in adding a small, accurate quantity to a larger
one, using floating point addition, can be avoided by keeping account of & small
correction to the sum. This is particularly valuable in machines which perform
truncation, but no proper round-off, following arithmetic operations. In the first
part of the article the details of the method are discussed. In the second part the
effectiveness of the method is shown in an application to the step-by-step integra-
tion of ordinary differential equations.

1. The method.

We shall investigate the addition w +v of two floating point numbers.

To this end we introduce the notion of level intended as a shorthand
for characterizing the relation of the exponent of numbers, i.e. we say
lower, equal or higher level according as the exponent is less, equal or
greater. Thus in case of two numbers, ¢ and b, we write in an obvious
manner:

lev(a) < lev(b), or lev(a) = lev(b), or lev(z) > lev(b).
We further think of a floating point arithmetic using:

1) true complement representation of negative numbers
2) the interval of the mantissa: — 2 Smantissa< —1
1= - < 2
3) simple truncation of digits from the right in the lower level addend,
i.e. no correct round-off of this is performed before addition.

When writing down numbers we shall often illustrate the digits in using
a mantissa of 5 significant figures:

a: Q0,.0,0:050,, . being the sign-bit.

The precise aim of the present investigation is to give ALGOL state-
ments that pick up the total loss of bits from the addition statement
s := u+v in the form of a definite correction, c,

38 OLE MOLLER

Ex. u: 01.0110x2°
v: 01.0011x2-2
is given by the correction 01.1000x 275,

8: 01.1010x2% 4.e. the loss

We shall in the following suppress the strict floating point notation and
freely make use of fixed point notation. Thus the above example takes
the appearance:

#w: 01.0110
v: 00.010011
correction: 00.000011.

} 8: 01.1010

First we present the idea that underlies the whole of the following.
Consider the effect of the following ALGOL statements,

s:=u+v
vli=s8—u ;. (1)
ul :=s—wl

A little congideration of the results of this shows that though u+v=s
may be false it is to be expected that ul+v1=s will always be true.
We shall not give the proof of this fact but point at the leading
idea namely that v1 and #1 have been truncated precisely to have only
zeros to the right of what are the significant positions of s. On the other
hand note that v1+u=s is not always true owing to the possibility that
lev(s) is greater than lev(u). This is the reason why w1l is introduced.

This suggests that the correction to the sum s might be evaluated as
follows:

ev = p—vl
e = u—uly. (2)
C:= ev+eu

We shall now go through o thorough testing of this idea, which de-
spite its simplicity has pitfalls in it.

We have- to distinguish between [v] <lu| and |v|>|u| and shall fix
things in assuming |v| < |u|. Although the procedure will work even if
|v| > |u| it is |v] < |u| that gives the most clear and useful process, because
for |v] < |u| the principal term is ev and (as could be expected) e is zero
in most cases, while if |u] < |v| we evaluate ev and eu, i.e. v1 and ul, in
the wrong order, so to speak.

Formulae (1) and (2) in combination with the condition |v| < |u| define
a process which shall be named Process A.

QUAST DOUBLE-PRECISION IN FLOATING POINT ADDITION 39
The discussion is split up according the level of s.
Before we go into details we shall introduce the notations:

1) By subscript s we indicate sign-bits.

2) The digits of
U UgUg. Uy Up Uy

3) The digits of
VI U Vg, Uy Vg Uy Vgly Xy, . .

4) The number built up by the digits of v that belong to the level of u
v0: v, 9. v, V3037,

5) The cut-off part of »

Av: 00 .00 0 0 2,... always being non-negative

6) The sum s taking one of the following three appearances
848-8182838, for lev(s)=lev(u)
1838081.828384 for lev(s)>lev(u)
8485.8,8:508,000 (for instance) for
lev(s) <lev(u)

7) and by B, we indicate the value of a bit in the last position of w.

We shall also talk of the positions of a double-precision % and hereby
is meant the positions marked x

U gty Uy Ug Ug Uy

rTr.xrrxTTTTX,

i.e. a number placed in the level of u, but having twice the number of
digits following the point (though not twice the number of significant
figures).

lev(s) £ lev(u).

Here v1=v0 because, whether lev(s)=lev(u) or lev(s)<lev(u), both
s:=u+v and vl := s—u take place within the same level, lev(u);
consequently »1:= s—u must be the exact reversal of s:= u+v
which arithmetically is equivalent to u+v0. Further 1l =u and hence
eu=0.

However, we cannot be sure that the ALGOL statement ev := v—wvl
shall yield ev=(v0+4v)—v0=Av except if lev(vl)=lev(v). Thus we

40

OLE MOLLER

have to consider the possibility lev(v)+lev(v1) or, because of v1 =40,
lev{(v)s:lev (v0).

lev (v) <lev (v0) requires that v is negative and of the type

v;
ie. 00
vl:

giving ev:

Lodg Ly s
That is:

11.111 1 lapgo 5. - .
11.1111
11.1111

00.00001x,z5z,2; which is not the correct value because
at least is short of the last bit of .

if —4F,<v<0 then ¢:= ev+eu will be in error by those
figures in v which are to the right of the positions in a
double-precision « plus one position. This would be the state
of affairs if truncation before addition was strictly followed.
However, if the reasonable idea of simply putting v=0 when
abs(v)< ¥, is the built-in process of the machine we get
20=0, ev=v and hence ¢ : = ev+eu is correct (in fact lev (v) <
lev{#0) has not occurred). As this is the way the computer
GIER works and because we actually are aiming at a deserip-
tion valid for GIER, the above case shall be omitted when
we later summarize the shortcomings of Process A.

lev{(¥) > lev(v0) requires v positive and of the type

v: 00.0000x 25252, 257, . .

ie. v0 := 0 and hence ev=v

that is ¢

1= ev+eu is correct.

lev (8) > lev (u).

Here we

shall have to treat separately the four possible combinations

of bits in the last figure of v0 and w.

I w:
20

o g} gives 1 =20

ul=u, eu=0

If lev(v) =lev(v0) we are sure that
ev=v—vl=v—(v—Av) is reproduced by the ALGOL statement

evl=

v—vl;

However, owing to v: zz.2zxlxzw...

v0: ax.x220

The only possibility that lev(vl)=lev(v0)lev(v) is v0=0

II

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 41

orv: 00.0000xzx...

which never could give lev{u+v)>lev(u).
Hence ¢ := ev+eu is correct.

u:

RN
00: . 1(8ives vl=90-F,

ul=u, eu=10
If lev(v)=lev(v0—E,) we are sure that our ALGOL statement
will reproduce
ev = (V0+ A0y~ (w0~ E,)) = E, +Av

which is the correct value.

A little reflection shows, that here (owing to the specific last bits)
lev (v) =lev(v1) except when —X,Sv<0 or O0<v<2E,.

Taking into account that lev(s)>lev(u) the possibilities that
lev (v) +lev(v1) are confined to —F,<v<0 or in fact

v: 111111 a2y, ..
v0: 11.1111
vl: 11.1110

giving ev := 00.0001x,2,2,%, while the correct value %, +Adv
obviously must comprise at least the next bit z,.

Notice that » in these cases has to be 10.0000.

Thus: ¢ : = ev+eu will be correct except for the special cases where

%: 10.0000 and —E, <v < 0

in which. we loose the figures to the right of a double precision u.
(v= —E, could be excluded since x; here equals 0}.

Again, if v is put to zero when abs (v) < 3, the interval in question
is —H,<v< —3}E,, and what we loose is precisely the last figure
of ».

1 o« ...1

v

gives vl=v0

ul=yu—F,
In this case lev(ul)=lev(u) and eu=00.0001=E,. Further the
only possibility that lev{sl)=lev(¥0)+lev(p) is 20=0 which
not could occur owing to lev(s)>lev(u). Consequently ev=
v—(v—Av)=Av is reproduced by ev:=v—vl and c:= ev+eu
gives correctly E, + 4v.

p0: ...0

@g ; gives vl =00+ F,
o wl=u—F,
If lev(ul)=lev(u) and lev(vl)=lev(v) we get

42 OLE MOLLER

eu = E,
ev= —F, +4v

ie. ¢:= eu-tev takes the value Av which is correct.
Now we discuss the questionable cases one by one.

lev(ul)s:lev(u) shall not occur because ul=u—E, here means
the mere removal of an existing last bit and this never alters the
level.

lev(v1)#1lev(v). Here a positive » may give rise to the possibility
lev{vl)>lev(v), and a negative v to lev(vl) <lev(v).
v positive.
If lev(vl) >lev(v) v must be of the type
v: 00.01112,2,* hence
»0: 00.0111
vl: 00.1000
ev: 11.1111z, ie. ~E, +Av short of the last bit of ».
As to u it has to be of the type
#: 01l.lzz1* giving
ul: 01.1xxz0
eu: 00.0001~F,
Thus ¢ := ev+eu will not give the correct value Av, the error
being a truncation of the last bit of ».
v negative.
If lev (v1) <lev(v) v must be of the type
v: 11.1011xz,2, hence
v0: 11.1011
vl: 11.1100
ev: 11.1111z,25~ —FK,+ v where Av always will be cor-
rect since what we loose is the last bit of »1, i.e. zero.

In summarizing the whole of Process A:

8:= u+v; l

vl i= 8—u; evi= v—vl;

ul:i=s—vl; eu:=u—ul; (3, Process A)
¢:= eu-ev;

* Note the particular way in which the strings consisting of digit 1 should match
each other:

u: 01.11x2xl
v: 00.00111 1z .

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 43

and making allowance for the specific treatment of abs(v) < 1F, as e.g.
takes place in the GIER computer, we conclude that provided |v| < |u|
¢ gives the exact correction sought for except in the following special
cases:

al %: 10.0000~—2 and -—E, <v< —}F, (consequently lev(s)>
lev () causing the error to be the lagt figure of w.

a2 wu: 01.11..1zx..21
v: 00.00..011.. 112255 .. 2 (and consequently lev(s) >lev(u))
in which cases the last figure of v, x; (subf for finis), is lost.

Even more briefly we can state that in the rare cases in which Process
A is incorrect the error is a cut away of the last figure of v and will never
exceed 1%,. And when the error equals ¥, the result is equivalent to
using no Process A (¢=0), i.e. we never do things worse than the bare
addition s:= u+v.

It should be noticed that only when lev(s)>lev(u) and combination
III or IV occurs need we evaluate ew; in all other cases ¢ := ev is suf-
ficient.

The process could be put in a compact form by writing

8= u+v;
v—-(s—u))+(u—(s——(s—u)));

For the sake of completeness we shall present an extension of (3)
which masters cases al, a2,

What we do is to evaluate vlabi := v— (vl +ev) (viabi for last bit of v)
and add this quantity to c:

c:

¢:= ev+eu-t+vlabi;
Written in the compact fashion ¢ assumes the monstrous appearance

¢:= (v—{(s—u))+ (u—(s—(s-—u))) +<v—— ((s-u)+(v—(s—u)))} ;
In case a2 this is sufficient in the sense that the pair of numbers (s,¢)
here comprises all information about the addition »-+v. In case al it is
the triple (s,c,vlabi) that comprises all information concerning the result

from the addition. We confine ourselves to showing by means of examples
bow this works.

Ex. 1 w: 10.0000
v: 11.11110x,257,%
s:101.111
vl: 11.1110600000 ev: 00.00010z,257,
wl: 10.0000 eu: 0

ol+ev: 11.111102,2,2,0 vlabi: 00.00000 0 0 02,0000

44 OLE MOLLER

8§:101.111, ¢:00.00010z,252,, vlabe: 00.000000002;0000
Note: ¢ := c+vlabs will give nothing but .

Ex. 2 %: 01.1101
v: 00.0011011
$: 10.000
vl: 00.010000 ev: 11.111101000
#l: 01,1100 eu: 00.00010000
vl+ev: 00.0011010 vlabi: 00.00000010000

§: 010.000, c:= ev+eu+olabi: 00.0000011000

Finally we want to give the results when we apply our Process A to
cases where |v|>|u|. Of course this is not necessary, the problem has
been completely solved in the preceding. However, it shall prove useful
to try to drop the condition |v| < |u| which we otherwise have to admin-
ister for instance in the following way:

if abs(u) = abs(v) then ¢:= ...
else ¢:= ...

We prefer to stick to the condition |v| < |u| and instead reverse the order
in which »1 and %l are evaluated, i.e. we consider what we shall call

Process B:
8= U+v;
ul i=s—v; eu:= u—ul; (4, Process B)
vli=s—ul; ev:=v—vl;, c:= evteu;

We shall not go through all the laborious considerations which, though
different from those of Process A, present no new aspects. We just give
the results straight away and, as was the case when Process A was
summarized, they are valid for machines which in case [v] £ 3%, replaces
v by zero.

Provided |v] < |u] Process B will give the value of ¢ except when:

bl lev(s)<lev(u), and (extending the mantissa somewhat)
u negative: 10.111z,2,...2;
v positive: 00.0001 1... lzyx,... 2
which causes the last figure, #;, to be lost provided:
1) not all among the figures 2,2, . .. z; are zero
2) not all among those of x;,2,,...2; that are in the level of s
are zero.

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 45

b2 lev(s)<lev(u),
U 01.0000
v: —l<v<0, 11..... Ty Ty . Tp
which causes an error of + 4/, in ¢ provided those figures among
¥1,%,,..2; that are in the level of s are not all zero.

b3 w: 10.0000 and —E,<v< —1}E,
which causes the two last figures of v to be lost.

be w: 01.1111
v: E,2v=u and of the type Oz.zaxlz..
which causes ¢ to be in error by —E,.

In summary we have that in the cases b,, b, the error is a defect of the
last or the two last figures of v and will never exceed 1Z,. Here we shall
not do thing worse than the bare addition itself. In the cases b,, b, on
the contrary the correct value of ¢ is contaminated by +1Z, and —E,,
respectively, and it would actually be better not to make use of ¢. How-
ever, b, and b, are indeed rare cases.

If we compare the shortcomings of Process B to those of Process A
we see the price for having reversed the proper order into which »1 and
u1 should be evaluated: it is the possibility—inherent in Process B—of

loosing the last figure of wl or » that is responsible for the cases
b, and b,.

2. Application to step-by-step methods for differential equations.

The above systematic treatment has been worked out mainly for the
purpose of clearing up all obscure points of a method which has been

used at Regnecentralen during the last year and has proved very useful,
as shall be demonstrated below.

It is well-known that when a quantity is built up from repeated addi-
tion the crude truncating arithmetic has a one-sided, i.e. systematic,
effect on the result. This ill effect can be decisively reduced by using
one of the Processes A or B above. The way of doing this in case of a
step-by-step infegration is shown in the following sketch:

1= initial u;

1= 0;

:= ({evaluation of v))+c¢;
= Y +v;

v 2 o ®

46 OLE MOLLER
¢:= (v—(s—u)+ (u—(s~(s—)));
ui=s;

go to L;

or put in a compact form:

% := initial u;
c:=0;
L: wv:= ({evaluation of v))+c;
c:= (v—((u-{-v)——u))+(u—((u+v)~((u+v)——u)));
1:&:= u+v;
éo to L;

We shall at once comment on the choice of correction process, i.e.
¢:= (v—(s—u))+ (u—(s—(s—u))) ~eu+ev taken irrespectively of the
absolute magnitudes of » and v.

In fact three ways of proceeding could be considered. If we do not
think of a very accurate process we could decide upon using only
¢:= v—(s—u)~ev, realizing that eu =0 will not happen very often. In
the general case we would here have to insert the condition |v| £ |u| for
instance like

¢:=if abs(v) < abs(u) then v—(s—u) else y—(s—v) ;

However, in the case of an integration we are sure that except for quite
incidental situations the contribution, v, from the step will be definitely
smaller in absolute magnitude than the variable u itself. Thus, in this
case we in fact get excellent results from an unconditional use of
¢:= v—(s—u). Next we could think of a more exact process and here the
question is if we should stick to Process A or mingle up with B as be-
comes the result when the condition |v| < |u| is dropped. We shall not
try a discussion as to what extend B is inferior to A, but state the intuitive
impression that they in practice are about equally good. Finally we
could think of a very exact process i.e. taking ¢ : = ev + eu + vlabi which
yields a double-precision result (in the sense previously given).

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 47

While the first process not is very much simpler than the second and
while the cases in which process A, B do not work correctly are of very
little practical concern the writer suggests that the process given in the
sketch be used for our present purpose as well as in the general case.

The results now to be presented have been taken from a treatment of
the following intial value problem:

Given
2 1

(1—a)?

y' =Y -

and
Y(e=0) = sin(~1);

Find values of y(x) in some interval 0 Sz <z,. The exact solution is

1
z—1

y = 8in

The step-by-step integration was performed by means of the following
fourth order Runge-Kutta formulae:

dyfdx = f(z,y)
Yirr = Yot $(ky +2ko+ 2k5+ ky) ,

h k
ky = b f(zsy,) ky=h-f (xi'*' 9 Y+ ‘2}> s

) k
ky = k'f<xi+§: ye+_23)’ by = h-flx;+hy;+ky),

% being the steplength.

The program was written in ALGOL and run on a GIER computer
having a floating point representation of 29 significant binary digits in
the mantissa, the range of which is [mantissa| £2 (i.e. 28 digits in the
fraction). This corresponds to 8-9 significant decimal figures.

The following three concurrent integrations have been performed:

I, straightforward use of the Runge-Kutta formulae

I, the same formulae now having ¢ inserted according the sketch.

I, instead of ¢ another mechanism has been inserted which allows of
a correct rounding arithmetic in the crucial addition statement:
s:= u+v (we return to this rounding mechanism below).

Finally the exact solution, sin(l/(x— 1)), has been evaluated.
The steplength was put to A=.00005 and the integration run over

48 OLE M@LLER

6400 steps giving 0<2<.320, an interval in which the higher order
terms are completely negligible.

The results for seven values of x are given in the table below. It must
be emphasized that the adding up of =, #:= x+h, has been treated
identically for all three integrations, I, I, I,;, and the process has been
to use ¢ according the sketch.

Step- Exact - dy— (Fg—~
number z solution exact sol.) | exact sol.) | exact sol.)
n sinl/(z —1) x 109 x 10° x 10°
100 005 | —.844 175 437 —-93 0 +4
200 010 | ~--.846 885 566 — 186 +2 +2
400 020 | —.852 321 573 ~376 +2 +2
800 040 | —.863 247 488 — 756 +2 0
1600 .080 | —.885 216 752 - 1505 0 -~ 32
3200 160 | —.928 545 844 - 3166 0 —-32
6400 .320 | —.994 983 369 — 6737 -2 - 69

The conclusion is:

The crude truncating arithmetic produces errors that are noticeable
after 100 steps and grow proportionally to the number of steps at a rate
of about 2-30=.93-10—® per step.

In using the correction ¢ the errors are brought down to almost zero
all through the extended integration comprising 6400 steps.

Regarding I, the values actually apply to cases where =21 (integer).
‘When using the rounding mechanism for z : = x + A our specific »=.00005
produces errors three times those above. However, the writer believe that
on a whole a correctly rounding arithmetic needs no correction.*

The mechanism for establishing correct rounding is as follows:
s rounded : = s+2x¢;
where ¢ has been evaluated according to Process A:
¢:=if abs(v) < abs(u) then (v—(s—u))+ (u—(s—(s—u)))
else (u—(s—v))+(v—(s—(s—2))) ;

If we think of a computer having the usual rounding process:
s rounded : = u+ (v+3E,)*¥* for |[v|<|u| built in, it emerges that, pro-

* Tt should be noticed that the Process A and B when applied to a rounding arithmetic
will give the rounding error as well. This was Gill’s [1] original aim {to be mentioned below}
and is quite obvious from the basic idea, namely that ev + ew gives the discrepancy between
u+v and ul +vl=s whatever be the source of this diserepancy.

** This to be understood in the proper way, i.e. in case v is negative the positive
quantity £8, is to be added the complementarily notated mantissa of .

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 49

vided our actual computer when |v| £ $E, replaces v by zero, our process
above reproduces the behaviour of the rounding computer except when:

1) —3B,sv< —}K, causing s+2xc to be in error by —F,, and if
=23 has the mantissa: 10.0000 the error even mounts to — 2%,

2) lev(s)<lev(u) and at the same time —lH,>» or 0<v and when
moreover we in v have the digit 1 situated two positions to the
right of the last figure of u, i.e. in our notation when

VI VeV Uy Va¥aVyy 15, ..
Under these circumstances s+ 2 x¢ is 3£, too large,

and finally when

3) the mantissa of u is 10.0000 and —E,<v=< —1F, giving s+ 2 x¢
the value u: 10.0000 while the rounding computer yields the
problematic result of 101.111.

It should be added that the ill effect from 1) might be removed in using

if v < OAs = u then ¢:= 0;

s rounded := s+2xe¢;

Finally there remain a few remarks on how the method was developed.

Gill [1] has developed a variant of his own among the many existing
fourth order Runge-Kutta methods. The merit of his formulae was
that they brought down the storage requirement and in addition the
reduction of accumulation from rounding errors was cleverly built in.

Through a detailed study of his paper [1] the idea to use v1:= s—u
was found. However, in working with fixed point arithmetic Gill was
not, troubled by the automatic shifts when levels are altered, and this
in turn means that he need not introduce %1 and he did not have to
consider all the subtleties we have encountered. Concerning Gill’s fourth
order Runge-Kutta formulae the writer’s opinion is that they are too
complex to be recommended nowadays because the reduction of storage
requirement they bring about is of little practical concern and because
once his trick regarding the rounding errors is understood and has been
put into ALGOL statements as shown above it is universally applicable.
His method is often referred to in textbooks from the period 1956-62,
but unfortunately without proper explanations of the way his trick
works*,

* E.g. Romanelli [2] gives rather detailed working instructions which pretend to yield
the reductions of rounding errors; however, in fact his procedure gives no such reduction.

BIT 5 - ¢

50 OLE MOLLER

The writer is only aware of one other paper on the present subject:
Reducing truncation error by programming by J. M. Wolfe [3]. How-
ever, his way of treating the problem follows a different line.

Acknowledgements.

I should like to thank several staff members of Regnecentralen for
valuable help in many respects. Especially Knud Hansen, Christian
Gram and Peter Villemoes have patiently gone through almost all of
the reasonings, and I am much indebted to Peter Naur for having
improved the rigour of the structure and wording of the present article.

REFERENCES
1. S. Gill, A process for the step-by-step integration of differential equations on an aufo-
matic digital computing machine, Proc. Cambr. Ph. Soc. vol. 47 1951, pp. 96-108.
9. M. J. Romanelli, Runge-Kutta methods for the solution of ordinary differential equa-
tions, Ralston and Wilf, Mathematical Methods for Digital Computers 1959, chap. 9,
p. 115,
3. J. M. Wolfe, Reducing truncation errors by programming, ACM vol.7/6 june 1964 p. 355.

REGNECENTRALEN
ARHUS, DENMARK

