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QUASI DOUBLE-PRECISION IN FLOATING 

POINT ADDITION 

OLE MOLLER 

Abstract .  

The loss of accuracy incurred in adding a small, accurate quantity to a larger 
one, using floating point addition, can be avoided by keeping account of a small 
correction to the sum. This is particularly valuable in machines which perform 
truncation, but no proper round-off, following arithmetic operations. In the first 
part of the article the details of the method are discussed. In the second part the 
effectiveness of the method is shown in an application to the step-by-step integra- 
tion of ordinary differential equations. 

1. T h e  m e t h o d .  

We shall invest igate  the  addi t ion u + v of two float ing point  numbers .  
To  this end we in t roduce  the  not ion  of level  in tended  as a sho r thand  

for character izing the  relat ion of the  exponen t  of numbers ,  i . e .  we say 
lower, equal  or higher  level according as the  exponen t  is less, equal  or 
greater .  Thus  in case of two numbers ,  a and  b, we wri te  in an  obvious 
m a n n e r :  

]ev(a) < lev(b), or lev(a)  = lev(b), or icy(a)  > lev(b) . 

We  fur ther  th ink  of a f loat ing point  a r i thmet ic  using: 

1) t rue  complement  representa t ion  of negat ive  numbers  
2) the  in te rva l  of the  mant issa :  - 2 < mant issa  < - 1 

1<  < 2 
3) simple t runca t ion  of digits f rom the  r ight  in the  lower level addend,  

i . e .  no correct  round-off  of this is pe r fo rmed  before addit ion.  

W hen  wri t ing down numbers  we shall of ten  i l lustrate  the  digits in using 
a mant issa  of 5 significant figures: 

a :  a ~ a o . a l % % a d ,  a s being the  sign-bit. 

The  precise a im of the  present  invest igat ion is to  give A L G O L  state-  
ments  t h a t  pick up  the  to ta l  loss of bits f rom the  addi t ion s t a t e me n t  
s : =  u + v in the  fo rm of a defini te  correction,  c, 
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Ex. u: 01"0110×2°  / 
v: 01 0011×2_9 'j s: 01 .1010×20  i .e.  the loss 

is given by the correction 01 .1000  × 2 -5. 

We shall in the following suppress the strict floating point notation and 
freely make use of fixed point notation. Thus the above example takes 
the appearance: 

u: 01 .0110 ! 
v: 00 .010011J  s: 01 .1010 

correction: 00 .000011 .  

First we present the idea that  underlies the whole of the following. 
Consider the effect, of the following ALGOL statements, 

8 : =  ~ + V  / 
i 

v l  := 8--%b ~. 
! ul  := s - v l  

(1) 

A little consideration of the results of this shows that  though u + v =s  
may  be false it is to be expected that  u l + v l = s  wi l l  always be true. 
We shall not give the proof of this fact but  point at the leading 
idea namely tha t  vl and u l  have been truncated precisely to have only 
zeros to the right of what are the significant positions of s. On the other 
hand note that  vl + u = s  is not always true owing to the possibility that  
lev(s) is greater than lev(u). This is the reason why ul  is introduced. 

This suggests that  the correction to the sum s might, be evaluated as 
follows: 

ev :=  v - - v l  ] 

e u : =  u - - ~ I / .  (2) 
c : = ev + euJ 

We shall now go through a thorough testing of this idea, which de- 
spite its simplicity has pitfalls in it. 

We h a v e  to distinguish between 1vt < [u] and ]vr > luJ and shall fix 
things in assuming Iv1 < Lul. Although the procedure will work even if 
Ivl > fu[ it is [vl < Zu[ that  gives the most clear and useful process, because 
for ]vl < ]u] the principal term is ev and (as could be expected) eu is zero 
in most cases, while if Iu] < Ivl we evaluate ev and eu, i.e. vl and ul ,  in 
the wrong order, so to speak. 

F o r m u l a e  (1) and  (2) i n  combinat ion  wi th  the condit ion [v] < ]u] def ine  

a process which  8hall be named  Process A. 
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The discussion is split up according the level of s. 

Before we go into details we shall introduce the notations: 

1) By subscript s we indicate sign-bits. 

2) The digits of 

U : ~sUO. U l U 2  ~3'~4 

3) The digits of 

V: V s V O . v  l v 2 v  3 v 4 x l x g . .  . . 

4) The number built up by  the digits of v that  belong to the level of u 

vO: V s v  O . v  l v  2 v  3 v  4 

5) The cut-off part  of v 

A v :  0 0 . 0 0 0 0 x l x 2 . . ,  always being non-negative 

6) The sum s taking one of the following three appearances 

S~So.SlS2S~S 4 for lev(s) =lev(u)  

SsSoS 1 . s~s s s  4 for lev (s) > lev (u) 
8:  

s s s s . s ~ S s S o S l O 0 0  (for instance) for 
lev (s) < lev (u) 

7) and by  E u we indicate the value of a bit  in the last position of u. 

We shall Mso talk of the positions of a double-precision u and hereby 
is meant  the positions marked x 

'l~8U 0 o ~/~i ?~2 ~3 U4 

X X . X  X X X X X X X ~  

i.e. a number placed in the level of u, but  having twice the number of 
digits following the point (though n o t  twice the number of sigrfificant 
figures). 

lev (s) < Icy (u). 

Here vl = v O  because, whether lev(s)=lev(u)  or lev(s)<lev(u) ,  both 
s : =  u + v  and vl :=  s - u  take place within the same level, lev(u); 
consequently vl :=  s - u  must be the exact reversal of s : =  u + v  

which arithmetically is equivalent to u + v0. Further  u l  = u and hence 
6 U =  0.  

However, we cannot be sure that  the ALGOL statement ev : =  v - v l  

shall yield ev=(vO+zlv)-vO=Av except if l e v ( v l ) = l e v ( v ) .  Thu~ we 
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have to consider the possibility lev(v)~=lev (vl) or, because of  v l  = vO, 

lev (v) 4 lev (v0). 

lev(v) < lev (v0) requires that  v is negative and of the type  

v:  l l . l l l l l x ~ x a x 4 x s x 6 . . .  

i.e. v0: 11 .1111  
vl :  11 .1111  

giving ev: O 0 . O 0 0 0 1 x 2 x a x 4 x  5 which is not the correct value because 
x ~ x a x 4 x  5 at least is short of the last bit of v. 
That  is: if -½E~ < v < 0 then c : =  ev + eu w i l l  be in error by  those 

figures in v which are to the right of the positions in a 
double-precision u plus one position. This would be the state 
of affairs if truncation before addition was strictly followed. 
However, i~ the reasonable idea of simply putting v = 0 when 
abs(v) < ½E u is the built-in process of the machine we get 
vO = O, ev = v and hence c : = ev + eu is correct (in fact lev (v) < 
lev(v0) has not occurred). As this is the way the computer 
GIER works and because we actually are aiming at a descrip- 
tion valid for GIER,  the above case shall be omitted when 
we later summarize the shortcomings of Process A. 

lev(v) > lev(v0) requires v positive and of the type  

v:  O 0 . O 0 0 0 x l x ~ x a x ~ x s x 6 . . .  

i.e. vO :=  0 and hence ev = v 

that  is c : =  ev ÷ eu  is  correct. 

lev (s) >lev (u). 
Here we shall have to treat  separately the four possible combinations 
of bits in the last figure of v0 and u. 

I u: . . . 0 / g i v e s v l = v 0  
v0: .0 ! 

u l  = u ,  e u = O  

If l e v ( v ) = l e v ( v O )  we are sure that  
e v = v - v l = v - ( v - A v )  is reproduced by  the ALGOL statement 
e v : = v - v l ;  

However, owing to v: x x . x x x O x x x . . .  

v0: x x . x x x O  

The only possibility that  lev (vl) = lev(v0) ~= lev (v) is v0 = 0 
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o r v :  O 0 . O 0 0 0 x x x . .  . 

which never could give lev (u + v) > l ev  (u). 
Hence c : =  ev + e u  is correct. 

I I  v0:U: ....0}1 gives v l = v O - E  u 

~I = U, eU = 0 

I f  l e v ( v ) = l e v ( v O - E u )  we are sure t h a t  our ALGOL s ta tement  
will reproduce 

ev = (vO + • v ) -  ( vO-  Eu) = Z~ + ~v  

which is the correct value. 
A little reflection shows, t ha t  here (owing to the specific last  bits) 
lev (v) = lev (vl) except when - E~ < v < 0 or 0 < v < 2 E  u. 

Taking into account  t h a t  l ev(s )> lev(u)  the  possibilities t h a t  
lev (v) # lev (v 1) are confined to - E u < v < 0 or in fact  

v: l l . l l l l x x x 2 x 3 x a x s . . .  

v0: l l . l l l l  
v l :  1 1 . 1 1 1 0  

giving e v : =  O 0 . O 0 0 1 x l x ~ x 3 x  4 while the  correct value E ~ + z J v  

obviously mus t  comprise a t  least the nex t  bit  x~. 
Notice t h a t  u in these cases has to be 10 .0000 .  
Thus:  c : = ev + eu  will be correct except  for the  special cases where 

u:  1 0 . 0 0 0 0  and  - E  u < v < 0 

in which we loose the  figures to the r ight  of a double precision u. 
(v = - E  u could be excluded since x 5 here equals 0). 
Again, if v is pu t  to zero when abs (v) < ½E u the interval  in question 
is - E  u < v < -½Eu,  and  what  we loose is precisely the last figure 
Of V. 

III u: " " ! /  gives v l = v O  
v0:  .0] 

In  this case lev (ul) = l e v  (~) and  eu = 0 0 .  0 0 0 1  = E=. Fur the r  the 
only  possibil i ty t h a t  l e v ( v l ) = t e v ( v O ) # l e v ( v )  is v O = O  which 
not  could occur owing to lev(s )> lev(u) .  Consequently e v =  

v - ( v - A v ) = A v  is reproduced by  ev : =  v - v l  and c : =  e v + e u  

gives correctly E~ + A v. 

IV u: . . . 1 |  
gives v l  = v O + E  u I v0: .1 

u l  = u - E  u 

I f  l e v ( u l ) = l e v ( u )  and  l e v ( v l ) = l e v ( v )  we get 
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e u  = E ~  

ev = - E ~  + A v  

i.e. c : =  e u + e v  takes the value A v  which is correct. 
Now we discuss the questionable cases one by one. 

lev(ul)41ev(u) shall not occur because u l = u - E  u here means 
the mere removal of an existing last bit and this never alters the 
level. 

lev(vI)41ev(v). Here a positive v may give rise to the possibility 
lev(vl) > lev(v), and a negative v to lev(vl) <lev(v). 
v positive. 

If lev(vl)>lev(v) v must be of the type 
v: 00.0111xlx~* hence 

v0: 00.0111 
vl :  00 .1000 
ev:  11.111 lx  1 i.e. , , ~ E u + A v  short of the last bit of v. 

As to u it has to be of the type 
u: 0 1 . 1 x x l *  giving 

u l :  01 .1xx0  
e u :  0 0 . 0 0 0 1 ~ E  u 

Thus c : =  ev  + e u  will not give the correct value A v ,  the error 
being a truncation of the last bit of v. 

v negative. 
If lev(vl)<lev(v) v must be of the type 

v: l l . 1 0 1 1 x l x  2 hence 
v0: 11.1011 
vl :  11.1100 
ev: l l . l l l l x l x ~ - E u + A v  where A v  always will be cor- 

rect since what we loose is the last bit of vl, i.e. zero. 

In  summarizing the whole of Process A: 

/ v l  : =  s - - u ;  ev  : =  v - - v I ;  

u l  : =  s - - v l ;  e u  : =  u - u l ;  I 
! 

(3, ProcessA) 

* Note the part icular  way in which the strLags consisting of digit 1 should ma tch  
each other :  

u :  O l . l l x x x l  

v:  O 0 . O 0 1 1 1 1 x x x .  
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and making allowance for the specific t reatment of abs(v)< ½E u as e.g. 
takes place in the GIER computer, we conclude tha t  provided ]v I < ]u[ 
c gives the exact correction sought for except in the following special 
c a s e s :  

al  u:  I 0 . 0 0 0 0 - - - 2  and - E u < v < - ½ E  u (consequently lev(s)> 
lev(u)) causing the error to be the last figure of v. 

a2 u:  O l . l l . . l x x . . x l  

v: 0 0 . 0 0 . . 0 1 1 . .  1 l x i x ~ x a . . ,  x /  (and consequently lev(s) >lev(u)) 
in which cases the last figure of v, x~ (subf for finis), is lost. 

Even more bi~efly we can state tha t  in the rare cases in which Process 
A is incorrect the error is a cut away of the last figure of v and will never 
exceed ½E u. And when the error equals ½E u the result is equivalent to 
using no Process A (c = 0), i.e. we never do things worse than the bare 
addition s : = u + v. 

I t  should be noticed tha t  only when lev (s)> lev(u) and combination 
I I I  or IV occurs need we evaluate eu; in all other cases c :=  ev is suf- 
ficient. 

The process could be put in a compact form by writing 

8 : =  ~ + V ;  

c:-- (v-  
For the sake of completeness we shall present an extension of (3) 

which masters cases al ,  a2. 
What  we do is to evaluate vlabi : = v -  (vl + ev) (vlabi for last bit of v) 

and add this quant i ty  to c: 

c : = ev + eu + vlabi ; 

Written in the compact fashion c assumes the monstrous appearance 

(8- + (v-  ÷ ( v -  ; 
In case a2 this is sufficient in the sense tha t  the pair of numbers (s,c) 

here comprises all information about the addition u + v .  In  case a l  it is 
the triple (s, c, vlabi) tha t  comprises all information concerning the result 
from the addition. We confine ourselves to showing by means of examples 
how this works. 

Ex. 1 u: 10.0000 
v: l l . l l l l O x ~ x ~ x d x  5 

s :  101.111 
vl:  11 .11100 0 0 0 0 ev: O 0 . O 0 0 1 0 x ~ x a x  4 

u l :  10.0000 eu: 0 

v l + e v :  l l . l l l l O x ~ x 3 x 4 0  vlabi: O 0 . O 0 0 0 0 0 0 0 x s O 0 0 0  
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s : i o i . l l l ,  c : 0 0 . 0 0 0 1 0 x ~ x 3 x 4 1  v l a b i : O O . O O O O O O O O x s O 0 0 0  

[ Note'. .... c . '= c + v l a b i  will give nothing but  c. 

~Ex. 2 u: 01 .1101  
v: 0 0 . 0 0 1 1 0 1 1  
s: I 0 . 0 0 0  

vl :  0 0 . 0 1 0 0 0 0  ev :  1 1 . 1 1 1 1 0 1 0 0 0  
u l :  0 1 . 1 1 0 0  e u :  0 0 . 0 0 0 1 0 0 0 0  

v l  + e v :  0 0 . 0 0 1 1 0 1 0  v l a b i :  0 0 . 0 0 0 0 0 0 1 0 0 0 0  

Is: 010 .000 ,  c : =  ev + e u  + v l a b i  : 0 0 . 0 0 0 0 0 1 1 0 0 0  

Finally we want to give the results when we apply our Process A to 
cases where tvl > Iul. Of course this is not necessary, the problem has 
been completely solved in the preceding. However, it shall prove useful 
to t ry  to drop the condition lvl < Iul which we otherwise have to admin- 
ister for instance in the following way: 

i f  a b s ( u )  > a b s ( v )  then c :  . . . .  
else c : =  . . .  

We prefer to stick to the condition ]v I < lul and instead reverse the order 
in which vl and u l  are evaluated, i.e. we consider what  we shall call 

Process B: 

8 :---- U - b Y ;  

u l  : = s - v ;  e u  : = u - u l  ; I (4, ProcessB)  
v l : = s - u l ;  e v : =  v - v l ;  c : =  e v + e u ;  

We shall not go through all the laborious considerations which, though 
different from those of Process A, present no new aspects. We just give 
the results straight, away and, as was the case when Process A was 
summarized, they are valid for machines which in case Iv[ < ½E~ replaces 
v by  zero. 

Provided iv[ < [u] Process B will give the value of c except when: 

b l lev(s) < lev (u), and (extending the mantissa somewhat) 
u negative: 10.111 z l z  ~ . . .  z I 

vposi t ive:  00 .0001  1 . . .  l x l x 2 . . . x  I 

which causes the last figure, x~, to be lost provided: 
1) not  all among the figures z l , z  ~ . . . .  z / a r e  zero 
2) not  all among those of x l , x  ~ . . . .  x :  tha t  are in the level of s 

are zero. 
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b2 lev(s) < lev(u),  
u:  0 1 . 0 0 0 0  

v: - l < v < O ,  11 . . . . .  xlx2 . .x  I 
which causes an error  of + ½E u in c provided  those figures among 
xt,x2,. .xI t h a t  are in the  level of s are no t  all zero. 

b3 u:  1 0 . 0 0 0 0  and  - E u < v <  -½E u 
which causes the  two last  figures of v to  be lost. 

b4 u:  0 1 . 1 1 1 1  
v: E u < v < u  and of the type O x . x x x l x . .  
which causes c to  be in er ror  b y  - E  u. 

In  s u m m a r y  we have  t h a t  in the  cases b 1, b3 the  error  is a defect  of the  
last  or the  two last  figures of v and will never  exceed ½Eu. Here  we shall 
no t  do thing worse t han  the  bare  addi t ion  itself. In  the  cases b~, b 4 on 
the  con t r a ry  the  correct  value of c is con tamina ted  b y  + ½E: and - E :  
respect ively,  and  it  would ac tua l ly  be be t t e r  not  to make  use of c. How- 
ever,  b~ and  b 4 are indeed rare  cases. 

I f  we compare  the  shortcomings of Process B to  those of Process A 
we see the  price for  having reversed the  proper  order  into which vl  and 
u l  should be eva lua ted :  i t  is the  poss ib i l i ty - - inheren t  in Process B - - o f  
loosing the  last figure of u l  or u t h a t  is responsible for  the  cases 
b 2 and  b 4. 

2. Application to step-by-step methods for differential equations. 

The  above sys temat ic  t r e a t m e n t  has been worked out  main ly  for the  
purpose of clearing up  all obscure points  of a me t h o d  which has been 
used at  l~egneeentralen during the  last  year  and  has p roved  v e ry  useful, 
as shall be demons t r a t ed  below. 

I t  is well-known t h a t  when  a quan t i t y  is bui l t  up  ~ o m  repea ted  addi-  
t ion the  crude t runca t ing  ar i thmet ic  has a one-sided, i.e. systematic ,  
effect  on the  result .  This  ill effect  can be decisively reduced  b y  using 
one of the  Processes A or B above.  The  way  of doing this in case of a 
s tep-by-s tep  in tegra t ion  is shown in the  following sketch:  

u : =  initial  u;  

c : =  0; 

L :  v : =  ( (evaluat ion  of v>)+c ;  

8 : =  ~ - t -V ;  
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c : =  ( v -  + 

go to L ;  

or p u t  in a compac t  fo rm:  

u : =  initial  u;  

c : =  0; 

L :  v : = ( (evaluat ion  of v)) + c; 

go to L ;  

We shall a t  once comment  on the  choice of correct ion process, i.e. 
c : =  ( v - ( s - u ) ) +  ( u - ( s - ( s - u ) ) ) ~ e u + e v  t aken  i r respect ively of the  

absolute magni tudes  of u and v. 
In  fac t  three  ways of proceeding could be considered. I f  we do no t  

th ink  of a v e r y  accura te  process we could decide upon  using only  
c :=  v -  ( s -  u )~  ev, realizing that, eu ~ 0 will not  happen  v e ry  often.  I n  
the  general  case we would here  have  to insert  the condit ion Ivl < [u[ for  

instance like 

c :=  if abs (v) < ab8 (u) then  v - ( s -  u) else u - ( s - v )  ; 

However ,  in the  ease of an in tegra t ion  we are sure t h a t  except  for  quite  
incidental  s i tuat ions the  contr ibut ion,  v, f rom the  step will be defini tely 
smaller in absolute magn i tude  t han  the  var iable  u itself. Thus,  in this 
case we in fac t  ge t excellent  results f rom an uncondi t ional  use of 
c : = v - (s - u). Nex t  we could th ink  of a more exact  process and here the 
quest ion is if we should stick to  Process A or mingle up  wi th  B as be- 
comes the  resul t  when the  condi t ion Ivt < lu] is dropped.  We shall no t  
t r y  a discussion as to  wha t  ex t end  B is inferior to  A, b u t  s ta te  the  in tu i t ive  
impression t ha t  t tmy in pract ice  are about  equal ly  good. Final ly  we 
could th ink  of a ve ry  exact  process i.e. taking c : =  ev + eu + vlabi which 
yields a double-precision result  (in the  sense previously  given). 
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While the first process not is very much simpler than the second and 
while the cases in which process A, B do not work correctly are of very 
little practical concern the writer suggests that  the process given in the 
sketch be used for our present purpose as well as in the general case. 

The results now to be presented have been taken from a treatment of 
the following intiM value problem: 

Given 
2 1 y"  = y' 

1 - x  (1 - x )  ay- 
and 

y (x=0)  = s i n ( -  1); 

Find values of y(x) in some interval 0 < x < x~. The exact solution is 

1 
y = s i n - -  

x - - 1  

The step-by-step integration was performed by  means of the following 
fourth order Runge-Kut ta  formulae: 

dy/dx = f (x ,y)  

Yi+i = Yi T ~(k i -~ 2k2 -~ 2k a + ]c a) , 

Ic 1 = h'f(xl,y~) k~ = h ' f  x i+-  ~, y~+ , 

k s =  h ' f ( x i + ~ , Y t + ~ ) ,  k~= h ' f (x t+h,  Yi+ks) ,  

h being the steplength. 
The program was written in ALGOL and run on a GIER computer 

having a floating point representation of 29 significant binary digits in 
the mantissa, the range of which is [mantissa I < 2 (i.e. 28 digits in the 
fraction). This corresponds to 8-9 significant decimal figures. 

The following three concurrent integrations have been performed: 

11 straightforward use of the Runge -Ku t t a  formulae 
12 the same formulae now having c inserted according the sketch. 
I a instead of c another mechanism has been inserted which allows of 

a correct rounding arithmetic in the crucial addition staCement: 
s :=  u + v (we return to this rounding mechanism below). 

Finally the exact solution, s in(1 / (x-  1)), has been evaluated. 
The steplength was put  to h=.00005 and the integration run over 
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6400 s t e p s  g i v i n g  0 < x <  .320, a n  i n t e r v a l  in  w h i c h  t h e  h i g h e r  o r d e r  

t e r m s  a r e  c o m p l e t e l y  neg l ig ib l e .  

T h e  r e s u l t s  fo r  s e v e n  v a l u e s  of x a r e  g i v e n  in  t h e  t a b l e  be low.  It must 
be emphasized t h a t  t h e  a d d i n g  u p  of x, x : =  x + h ,  h a s  b e e n  t r e a t e d  

i d e n t i c a l l y  fo r  aU t h r e e  i n t e g r a t i o n s ,  I l I~  In, a n d  t h e  p roc e s s  h a s  b e e n  

t o  use  c a c c o r d i n g  t h e  s k e t c h .  

Step- 
number  

n 

100 
200 
400 
800 

1600 
3200 
6400 

Exac t  
x solution 

s inl / (x - 1) 

.005 --,844 175 437 

.010 --.846 885 566 

.020 --.852 321 573 

.040 --.863 247 488 

.080 --.885 216 752 

.160 --.928 545 844 

.320 --.994 983 369 

( I 1  - 

e x a c t  sol.) 
x 109 

--93 
- 186 
--376 
- 756 

-- 1505 
--3166 
--6737 

(_7 s - 

e x a c t  sol.) 
x 10 9 

0 
+2 
+2  
+2  

0 
0 

- 2  

( I  3 - -  

exact  sol.) 
x 10 9 

+ 4  
+2  
+2  

0 
- 3 2  
- 3 2  
- 6 9  

T h e  conc lu s ion  i s :  

T h e  c r u d e  t r u n c a t i n g  a r i t h m e t i c  p r o d u c e s  e r r o r s  t h a t  a r e  n o t i c e a b l e  

a f t e r  100 s t e p s  a n d  g r o w  p r o p o r t i o n a l l y  t o  t h e  n u m b e r  of s t e p s  a t  a r a t e  

of  a b o u t  2 -80=  .93-10  -9 p e r  s t ep .  

I n  u s i n g  t h e  c o r r e c t i o n  e t h e  e r r o r s  a r e  b r o u g h t  d o w n  t o  a l m o s t  ze ro  

a l l  t h r o u g h  t h e  e x t e n d e d  i n t e g r a t i o n  c o m p r i s i n g  6400 s t eps .  

R e g a r d i n g  13 t h e  v a l u e s  a c t u a l l y  a p p l y  t o  cases  w h e r e  h = 2 t ( in teger ) .  

W h e n  u s i n g  t h e  r o u n d i n g  m e c h a n i s m  for  x : = x + h o u r  spec i f ic  h = .00005 

p r o d u c e s  e r r o r s  t h r e e  t i m e s  t h o s e  a b o v e .  H o w e v e r ,  t h e  w r i t e r  be l i eve  t h a t  

on  a w h o l e  a c o r r e c t l y  r o u n d i n g  a r i t h m e t i c  n e e d s  no  c o r r e c t i on .*  

T h e  m e c h a n i s m  for  e s t a b l i s h i n g  c o r r e c t  r o u n d i n g  is as  fo l lows :  

s r o u n d e d  : = s + 2 × c; 

w h e r e  c h a s  b e e n  e v a l u a t e d  a c c o r d i n g  to  P r o c e s s  A :  

c : =  i f  abs(v) <= abs(u) t h e n  ( v - ( s - u ) ) + ( u - ( s - ( s - u ) ) )  
e l se  (u--(s--v))+ (v-(s-- (s- -v)) )  ; 

I f  w e  t h i n k  of a c o m p u t e r  h a v i n g  t h e  u s u a l  r o u n d i n g  p r o c e s s :  

s r o u n d e d  : =  u+(v z-l~. ~** fo r  ]v] < [u] b u i l t  in ,  i t  e m e r g e s  t h a t ,  p r o -  

* I t  should be noticed that the Process A and B when applied to a rounding arithmetic 
will give the rounding error as well. This was Gill's [1] original Mm (to be mentioned below) 
and is quite obvious from the basic idea, namely that ev + eu gives the discrepancy between 
u + v  and ul  A-vl =s  whatever be the source of ~his discrepancy. 

** This to be understood in the proper way, i.e. in ease v is negative the positive 
quantity ½Eu is to be added the eomplementarily notated mantissa of v. 
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vided our actual computer when ]vl < ½Eu replaces v by zero, our process 
above reproduces the behaviour of the rounding computer except when: 

1 )  - ½~E u < v < - ~ E  u causing s + 2 × c to be in error by - Eu, and if 
u = s has the mantissa: 10.0000 the error even mounts to - 2 E  u, 

2) lev(s)<lev(u) and at the same time - ½ E u > v  or 0 < v  and when 
moreover we in v have the digit 1 situated two positions to the 
right of the last figure of u, i.e. in our notation when 

V : V s V  0 , V l V 2 V s V 4 X l  1 x~ . . . .  

Under these circumstances s + 2 × c is ½E~ too large, 

and finally when 

3) the mantissa of u is 10.0000 and - E u < v <  - ~E~ giving s +  2 xc  
the value u: 10. 0000 while the rounding computer yields the 
problematic result of 101.111.  

I t  should be added tha t  the ill effect from 1) might be removed in using 

i f  v < 0 ^ s  - -  u t h e n  c : =  0; 

s rounded : = s + 2 × c; 

Finally there remain a few remarks on how the method was developed. 
Gill [1] has developed a variant of his own among the many existing 

fourth order Runge-Kut ta  methods. The merit of his formulae was 
tha t  they brought down the storage requirement and in addition the 
reduction of accumulation from rounding errors was cleverly built in. 

Through a detailed s tudy of his paper [1] the idea to use vl :=  s - u  

was found. However, in working with fixed point arithmetic Gill was 
not troubled by the automatic shifts when levels are altered, and this 
in turn means tha t  he need not introduce u l  and he did not have to 
consider all the subtleties we have encountered. Concerning Gill's fourth 
order Runge-Kut ta  formulae the writer's opinion is that  they are too 
complex to be recommended nowadays because the reduction of storage 
requirement they bring about is of little practical concern and because 
once his trick regarding the rounding errors is understood and has been 
put into ALGOL statements as shown above it is universally applicable. 
His method is often referred to in textbooks from the period 1956-62, 
but unfortunately wit~hout proper explanations of the way his trick 
works*. 

* E .g .  R o m a n e l l i  [2] g ives  r a t h e r  de ta i l ed  work ing  in s t ruc t ions  wh ich  p r e t e n d  to yie ld  
t h e  r educ t ions  of r o u n d i n g  errors ;  however ,  in fac t  his  p rocedure  g ives  no  such  reduc t ion .  

BIT 5 - -  4 
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The writer is only aware of one other paper on the present subject: 
Reducing truncation error by programming by J. M. Wolfe [3]. How- 
ever, his way of treating the problem follows a different line. 
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