
:BIT 5 (1965), 37-50

QUASI DOUBLE-PRECISION IN FLOATING

POINT ADDITION

OLE MOLLER

Abstract .

The loss of accuracy incurred in adding a small, accurate quantity to a larger
one, using floating point addition, can be avoided by keeping account of a small
correction to the sum. This is particularly valuable in machines which perform
truncation, but no proper round-off, following arithmetic operations. In the first
part of the article the details of the method are discussed. In the second part the
effectiveness of the method is shown in an application to the step-by-step integra-
tion of ordinary differential equations.

1. T h e m e t h o d .

We shall invest igate the addi t ion u + v of two float ing point numbers .
To this end we in t roduce the not ion of level in tended as a sho r thand

for character izing the relat ion of the exponen t of numbers , i . e . we say
lower, equal or higher level according as the exponen t is less, equal or
greater . Thus in case of two numbers , a and b, we wri te in an obvious
m a n n e r :

]ev(a) < lev(b), or lev(a) = lev(b), or icy(a) > lev(b) .

We fur ther th ink of a f loat ing point a r i thmet ic using:

1) t rue complement representa t ion of negat ive numbers
2) the in te rva l of the mant issa : - 2 < mant issa < - 1

1< < 2
3) simple t runca t ion of digits f rom the r ight in the lower level addend,

i . e . no correct round-off of this is pe r fo rmed before addit ion.

W hen wri t ing down numbers we shall of ten i l lustrate the digits in using
a mant issa of 5 significant figures:

a : a ~ a o . a l % % a d , a s being the sign-bit.

The precise a im of the present invest igat ion is to give A L G O L state-
ments t h a t pick up the to ta l loss of bits f rom the addi t ion s t a t e me n t
s : = u + v in the fo rm of a defini te correction, c,

38 OLE IvI OLLER

Ex. u: 01"0110×2° /
v: 01 0011×2_9 'j s: 01 .1010×20 i .e. the loss

is given by the correction 01 .1000 × 2 -5.

We shall in the following suppress the strict floating point notation and
freely make use of fixed point notation. Thus the above example takes
the appearance:

u: 01 .0110 !
v: 00 .010011J s: 01 .1010

correction: 00 .000011 .

First we present the idea that underlies the whole of the following.
Consider the effect, of the following ALGOL statements,

8 : = ~ + V /
i

v l := 8--%b ~.
! ul := s - v l

(1)

A little consideration of the results of this shows that though u + v =s
may be false it is to be expected that u l + v l = s wi l l always be true.
We shall not give the proof of this fact but point at the leading
idea namely tha t vl and u l have been truncated precisely to have only
zeros to the right of what are the significant positions of s. On the other
hand note that vl + u = s is not always true owing to the possibility that
lev(s) is greater than lev(u). This is the reason why ul is introduced.

This suggests that the correction to the sum s might, be evaluated as
follows:

ev := v - - v l]

e u : = u - - ~ I / . (2)
c : = ev + euJ

We shall now go through a thorough testing of this idea, which de-
spite its simplicity has pitfalls in it.

We h a v e to distinguish between 1vt < [u] and]vr > luJ and shall fix
things in assuming Iv1 < Lul. Although the procedure will work even if
Ivl > fu[it is [vl < Zu[that gives the most clear and useful process, because
for]vl <]u] the principal term is ev and (as could be expected) eu is zero
in most cases, while if Iu] < Ivl we evaluate ev and eu, i.e. vl and ul , in
the wrong order, so to speak.

F o r m u l a e (1) and (2) i n combinat ion wi th the condit ion [v] <]u] def ine

a process which 8hall be named Process A.

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 39

The discussion is split up according the level of s.

Before we go into details we shall introduce the notations:

1) By subscript s we indicate sign-bits.

2) The digits of

U : ~sUO. U l U 2 ~3'~4

3) The digits of

V: V s V O . v l v 2 v 3 v 4 x l x g

4) The number built up by the digits of v that belong to the level of u

vO: V s v O . v l v 2 v 3 v 4

5) The cut-off part of v

A v : 0 0 . 0 0 0 0 x l x 2 . . , always being non-negative

6) The sum s taking one of the following three appearances

S~So.SlS2S~S 4 for lev(s) =lev(u)

SsSoS 1 . s~s s s 4 for lev (s) > lev (u)
8:

s s s s . s ~ S s S o S l O 0 0 (for instance) for
lev (s) < lev (u)

7) and by E u we indicate the value of a bit in the last position of u.

We shall Mso talk of the positions of a double-precision u and hereby
is meant the positions marked x

'l~8U 0 o ~/~i ?~2 ~3 U4

X X . X X X X X X X X ~

i.e. a number placed in the level of u, but having twice the number of
digits following the point (though n o t twice the number of sigrfificant
figures).

lev (s) < Icy (u).

Here vl = v O because, whether lev(s)=lev(u) or lev(s)<lev(u) , both
s : = u + v and vl := s - u take place within the same level, lev(u);
consequently vl := s - u must be the exact reversal of s : = u + v

which arithmetically is equivalent to u + v0. Further u l = u and hence
6 U = 0.

However, we cannot be sure that the ALGOL statement ev : = v - v l

shall yield ev=(vO+zlv)-vO=Av except if l e v (v l) = l e v (v) . Thu~ we

4 0 OLE MOLLER

have to consider the possibility lev(v)~=lev (vl) or, because of v l = vO,

lev (v) 4 lev (v0).

lev(v) < lev (v0) requires that v is negative and of the type

v: l l . l l l l l x ~ x a x 4 x s x 6 . . .

i.e. v0: 11 .1111
vl : 11 .1111

giving ev: O 0 . O 0 0 0 1 x 2 x a x 4 x 5 which is not the correct value because
x ~ x a x 4 x 5 at least is short of the last bit of v.
That is: if -½E~ < v < 0 then c : = ev + eu w i l l be in error by those

figures in v which are to the right of the positions in a
double-precision u plus one position. This would be the state
of affairs if truncation before addition was strictly followed.
However, i~ the reasonable idea of simply putting v = 0 when
abs(v) < ½E u is the built-in process of the machine we get
vO = O, ev = v and hence c : = ev + eu is correct (in fact lev (v) <
lev(v0) has not occurred). As this is the way the computer
GIER works and because we actually are aiming at a descrip-
tion valid for GIER, the above case shall be omitted when
we later summarize the shortcomings of Process A.

lev(v) > lev(v0) requires v positive and of the type

v: O 0 . O 0 0 0 x l x ~ x a x ~ x s x 6 . . .

i.e. vO := 0 and hence ev = v

that is c : = ev ÷ eu is correct.

lev (s) >lev (u).
Here we shall have to treat separately the four possible combinations
of bits in the last figure of v0 and u.

I u: . . . 0 / g i v e s v l = v 0
v0: .0 !

u l = u , e u = O

If l e v (v) = l e v (v O) we are sure that
e v = v - v l = v - (v - A v) is reproduced by the ALGOL statement
e v : = v - v l ;

However, owing to v: x x . x x x O x x x . . .

v0: x x . x x x O

The only possibility that lev (vl) = lev(v0) ~= lev (v) is v0 = 0

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION ~1

o r v : O 0 . O 0 0 0 x x x . . .

which never could give lev (u + v) > l ev (u).
Hence c : = ev + e u is correct.

I I v0:U:0}1 gives v l = v O - E u

~I = U, eU = 0

I f l e v (v) = l e v (v O - E u) we are sure t h a t our ALGOL s ta tement
will reproduce

ev = (vO + • v) - (vO- Eu) = Z~ + ~v

which is the correct value.
A little reflection shows, t ha t here (owing to the specific last bits)
lev (v) = lev (vl) except when - E~ < v < 0 or 0 < v < 2 E u.

Taking into account t h a t l ev(s)> lev(u) the possibilities t h a t
lev (v) # lev (v 1) are confined to - E u < v < 0 or in fact

v: l l . l l l l x x x 2 x 3 x a x s . . .

v0: l l . l l l l
v l : 1 1 . 1 1 1 0

giving e v : = O 0 . O 0 0 1 x l x ~ x 3 x 4 while the correct value E ~ + z J v

obviously mus t comprise a t least the nex t bit x~.
Notice t h a t u in these cases has to be 10 .0000 .
Thus: c : = ev + eu will be correct except for the special cases where

u: 1 0 . 0 0 0 0 and - E u < v < 0

in which we loose the figures to the r ight of a double precision u.
(v = - E u could be excluded since x 5 here equals 0).
Again, if v is pu t to zero when abs (v) < ½E u the interval in question
is - E u < v < -½Eu, and what we loose is precisely the last figure
Of V.

III u: " " ! / gives v l = v O
v0: .0]

In this case lev (ul) = l e v (~) and eu = 0 0 . 0 0 0 1 = E=. Fur the r the
only possibil i ty t h a t l e v (v l) = t e v (v O) # l e v (v) is v O = O which
not could occur owing to lev(s)> lev(u) . Consequently e v =

v - (v - A v) = A v is reproduced by ev : = v - v l and c : = e v + e u

gives correctly E~ + A v.

IV u: . . . 1 |
gives v l = v O + E u I v0: .1

u l = u - E u

I f l e v (u l) = l e v (u) and l e v (v l) = l e v (v) we get

~2 OLE MOLLER

e u = E ~

ev = - E ~ + A v

i.e. c : = e u + e v takes the value A v which is correct.
Now we discuss the questionable cases one by one.

lev(ul)41ev(u) shall not occur because u l = u - E u here means
the mere removal of an existing last bit and this never alters the
level.

lev(vI)41ev(v). Here a positive v may give rise to the possibility
lev(vl) > lev(v), and a negative v to lev(vl) <lev(v).
v positive.

If lev(vl)>lev(v) v must be of the type
v: 00.0111xlx~* hence

v0: 00.0111
vl : 00 .1000
ev: 11.111 lx 1 i.e. , , ~ E u + A v short of the last bit of v.

As to u it has to be of the type
u: 0 1 . 1 x x l * giving

u l : 01 .1xx0
e u : 0 0 . 0 0 0 1 ~ E u

Thus c : = ev + e u will not give the correct value A v , the error
being a truncation of the last bit of v.

v negative.
If lev(vl)<lev(v) v must be of the type

v: l l . 1 0 1 1 x l x 2 hence
v0: 11.1011
vl : 11.1100
ev: l l . l l l l x l x ~ - E u + A v where A v always will be cor-

rect since what we loose is the last bit of vl, i.e. zero.

In summarizing the whole of Process A:

/ v l : = s - - u ; ev : = v - - v I ;

u l : = s - - v l ; e u : = u - u l ; I
!

(3, ProcessA)

* Note the part icular way in which the strLags consisting of digit 1 should ma tch
each other :

u : O l . l l x x x l

v: O 0 . O 0 1 1 1 1 x x x .

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 43

and making allowance for the specific t reatment of abs(v)< ½E u as e.g.
takes place in the GIER computer, we conclude tha t provided]v I <]u[
c gives the exact correction sought for except in the following special
c a s e s :

al u: I 0 . 0 0 0 0 - - - 2 and - E u < v < - ½ E u (consequently lev(s)>
lev(u)) causing the error to be the last figure of v.

a2 u: O l . l l . . l x x . . x l

v: 0 0 . 0 0 . . 0 1 1 . . 1 l x i x ~ x a . . , x / (and consequently lev(s) >lev(u))
in which cases the last figure of v, x~ (subf for finis), is lost.

Even more bi~efly we can state tha t in the rare cases in which Process
A is incorrect the error is a cut away of the last figure of v and will never
exceed ½E u. And when the error equals ½E u the result is equivalent to
using no Process A (c = 0), i.e. we never do things worse than the bare
addition s : = u + v.

I t should be noticed tha t only when lev (s)> lev(u) and combination
I I I or IV occurs need we evaluate eu; in all other cases c := ev is suf-
ficient.

The process could be put in a compact form by writing

8 : = ~ + V ;

c:-- (v-
For the sake of completeness we shall present an extension of (3)

which masters cases al , a2.
What we do is to evaluate vlabi : = v - (vl + ev) (vlabi for last bit of v)

and add this quant i ty to c:

c : = ev + eu + vlabi ;

Written in the compact fashion c assumes the monstrous appearance

(8- + (v- ÷ (v - ;
In case a2 this is sufficient in the sense tha t the pair of numbers (s,c)

here comprises all information about the addition u + v . In case a l it is
the triple (s, c, vlabi) tha t comprises all information concerning the result
from the addition. We confine ourselves to showing by means of examples
how this works.

Ex. 1 u: 10.0000
v: l l . l l l l O x ~ x ~ x d x 5

s : 101.111
vl: 11 .11100 0 0 0 0 ev: O 0 . O 0 0 1 0 x ~ x a x 4

u l : 10.0000 eu: 0

v l + e v : l l . l l l l O x ~ x 3 x 4 0 vlabi: O 0 . O 0 0 0 0 0 0 0 x s O 0 0 0

4 4 OLE MOLLER

s : i o i . l l l , c : 0 0 . 0 0 0 1 0 x ~ x 3 x 4 1 v l a b i : O O . O O O O O O O O x s O 0 0 0

[Note'. c . '= c + v l a b i will give nothing but c.

~Ex. 2 u: 01 .1101
v: 0 0 . 0 0 1 1 0 1 1
s: I 0 . 0 0 0

vl : 0 0 . 0 1 0 0 0 0 ev : 1 1 . 1 1 1 1 0 1 0 0 0
u l : 0 1 . 1 1 0 0 e u : 0 0 . 0 0 0 1 0 0 0 0

v l + e v : 0 0 . 0 0 1 1 0 1 0 v l a b i : 0 0 . 0 0 0 0 0 0 1 0 0 0 0

Is: 010 .000 , c : = ev + e u + v l a b i : 0 0 . 0 0 0 0 0 1 1 0 0 0

Finally we want to give the results when we apply our Process A to
cases where tvl > Iul. Of course this is not necessary, the problem has
been completely solved in the preceding. However, it shall prove useful
to t ry to drop the condition lvl < Iul which we otherwise have to admin-
ister for instance in the following way:

i f a b s (u) > a b s (v) then c :
else c : = . . .

We prefer to stick to the condition]v I < lul and instead reverse the order
in which vl and u l are evaluated, i.e. we consider what we shall call

Process B:

8 :---- U - b Y ;

u l : = s - v ; e u : = u - u l ; I (4, ProcessB)
v l : = s - u l ; e v : = v - v l ; c : = e v + e u ;

We shall not go through all the laborious considerations which, though
different from those of Process A, present no new aspects. We just give
the results straight, away and, as was the case when Process A was
summarized, they are valid for machines which in case Iv[< ½E~ replaces
v by zero.

Provided iv[< [u] Process B will give the value of c except when:

b l lev(s) < lev (u), and (extending the mantissa somewhat)
u negative: 10.111 z l z ~ . . . z I

vposi t ive: 00 .0001 1 . . . l x l x 2 . . . x I

which causes the last figure, x~, to be lost provided:
1) not all among the figures z l , z ~ z / a r e zero
2) not all among those of x l , x ~ x : tha t are in the level of s

are zero.

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 45

b2 lev(s) < lev(u),
u: 0 1 . 0 0 0 0

v: - l < v < O , 11 xlx2 . .x I
which causes an error of + ½E u in c provided those figures among
xt,x2,. .xI t h a t are in the level of s are no t all zero.

b3 u: 1 0 . 0 0 0 0 and - E u < v < -½E u
which causes the two last figures of v to be lost.

b4 u: 0 1 . 1 1 1 1
v: E u < v < u and of the type O x . x x x l x . .
which causes c to be in er ror b y - E u.

In s u m m a r y we have t h a t in the cases b 1, b3 the error is a defect of the
last or the two last figures of v and will never exceed ½Eu. Here we shall
no t do thing worse t han the bare addi t ion itself. In the cases b~, b 4 on
the con t r a ry the correct value of c is con tamina ted b y + ½E: and - E :
respect ively, and it would ac tua l ly be be t t e r not to make use of c. How-
ever, b~ and b 4 are indeed rare cases.

I f we compare the shortcomings of Process B to those of Process A
we see the price for having reversed the proper order into which vl and
u l should be eva lua ted : i t is the poss ib i l i ty - - inheren t in Process B - - o f
loosing the last figure of u l or u t h a t is responsible for the cases
b 2 and b 4.

2. Application to step-by-step methods for differential equations.

The above sys temat ic t r e a t m e n t has been worked out main ly for the
purpose of clearing up all obscure points of a me t h o d which has been
used at l~egneeentralen during the last year and has p roved v e ry useful,
as shall be demons t r a t ed below.

I t is well-known t h a t when a quan t i t y is bui l t up ~ o m repea ted addi-
t ion the crude t runca t ing ar i thmet ic has a one-sided, i.e. systematic ,
effect on the result . This ill effect can be decisively reduced b y using
one of the Processes A or B above. The way of doing this in case of a
s tep-by-s tep in tegra t ion is shown in the following sketch:

u : = initial u;

c : = 0;

L : v : = ((evaluat ion of v>)+c ;

8 : = ~ - t -V ;

46 OLE MOLLER

c : = (v - +

go to L ;

or p u t in a compac t fo rm:

u : = initial u;

c : = 0;

L : v : = ((evaluat ion of v)) + c;

go to L ;

We shall a t once comment on the choice of correct ion process, i.e.
c : = (v - (s - u)) + (u - (s - (s - u))) ~ e u + e v t aken i r respect ively of the

absolute magni tudes of u and v.
In fac t three ways of proceeding could be considered. I f we do no t

th ink of a v e r y accura te process we could decide upon using only
c := v - (s - u)~ ev, realizing that, eu ~ 0 will not happen v e ry often. I n
the general case we would here have to insert the condit ion Ivl < [u[for

instance like

c := if abs (v) < ab8 (u) then v - (s - u) else u - (s - v) ;

However , in the ease of an in tegra t ion we are sure t h a t except for quite
incidental s i tuat ions the contr ibut ion, v, f rom the step will be defini tely
smaller in absolute magn i tude t han the var iable u itself. Thus, in this
case we in fac t ge t excellent results f rom an uncondi t ional use of
c : = v - (s - u). Nex t we could th ink of a more exact process and here the
quest ion is if we should stick to Process A or mingle up wi th B as be-
comes the resul t when the condi t ion Ivt < lu] is dropped. We shall no t
t r y a discussion as to wha t ex t end B is inferior to A, b u t s ta te the in tu i t ive
impression t ha t t tmy in pract ice are about equal ly good. Final ly we
could th ink of a ve ry exact process i.e. taking c : = ev + eu + vlabi which
yields a double-precision result (in the sense previously given).

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 47

While the first process not is very much simpler than the second and
while the cases in which process A, B do not work correctly are of very
little practical concern the writer suggests that the process given in the
sketch be used for our present purpose as well as in the general case.

The results now to be presented have been taken from a treatment of
the following intiM value problem:

Given
2 1 y" = y'

1 - x (1 - x) ay-
and

y (x=0) = s i n (- 1);

Find values of y(x) in some interval 0 < x < x~. The exact solution is

1
y = s i n - -

x - - 1

The step-by-step integration was performed by means of the following
fourth order Runge-Kut ta formulae:

dy/dx = f (x ,y)

Yi+i = Yi T ~(k i -~ 2k2 -~ 2k a +]c a) ,

Ic 1 = h'f(xl,y~) k~ = h ' f x i+- ~, y~+ ,

k s = h ' f (x i + ~ , Y t + ~) , k~= h ' f (x t+h, Yi+ks) ,

h being the steplength.
The program was written in ALGOL and run on a GIER computer

having a floating point representation of 29 significant binary digits in
the mantissa, the range of which is [mantissa I < 2 (i.e. 28 digits in the
fraction). This corresponds to 8-9 significant decimal figures.

The following three concurrent integrations have been performed:

11 straightforward use of the Runge -Ku t t a formulae
12 the same formulae now having c inserted according the sketch.
I a instead of c another mechanism has been inserted which allows of

a correct rounding arithmetic in the crucial addition staCement:
s := u + v (we return to this rounding mechanism below).

Finally the exact solution, s in(1 / (x- 1)), has been evaluated.
The steplength was put to h=.00005 and the integration run over

48 OLE ~fDLLER

6400 s t e p s g i v i n g 0 < x < .320, a n i n t e r v a l in w h i c h t h e h i g h e r o r d e r

t e r m s a r e c o m p l e t e l y neg l ig ib l e .

T h e r e s u l t s fo r s e v e n v a l u e s of x a r e g i v e n in t h e t a b l e be low. It must
be emphasized t h a t t h e a d d i n g u p of x, x : = x + h , h a s b e e n t r e a t e d

i d e n t i c a l l y fo r aU t h r e e i n t e g r a t i o n s , I l I~ In, a n d t h e p roc e s s h a s b e e n

t o use c a c c o r d i n g t h e s k e t c h .

Step-
number

n

100
200
400
800

1600
3200
6400

Exac t
x solution

s inl / (x - 1)

.005 --,844 175 437

.010 --.846 885 566

.020 --.852 321 573

.040 --.863 247 488

.080 --.885 216 752

.160 --.928 545 844

.320 --.994 983 369

(I 1 -

e x a c t sol.)
x 109

--93
- 186
--376
- 756

-- 1505
--3166
--6737

(_7 s -

e x a c t sol.)
x 10 9

0
+2
+2
+2

0
0

- 2

(I 3 - -

exact sol.)
x 10 9

+ 4
+2
+2

0
- 3 2
- 3 2
- 6 9

T h e conc lu s ion i s :

T h e c r u d e t r u n c a t i n g a r i t h m e t i c p r o d u c e s e r r o r s t h a t a r e n o t i c e a b l e

a f t e r 100 s t e p s a n d g r o w p r o p o r t i o n a l l y t o t h e n u m b e r of s t e p s a t a r a t e

of a b o u t 2 -80= .93-10 -9 p e r s t ep .

I n u s i n g t h e c o r r e c t i o n e t h e e r r o r s a r e b r o u g h t d o w n t o a l m o s t ze ro

a l l t h r o u g h t h e e x t e n d e d i n t e g r a t i o n c o m p r i s i n g 6400 s t eps .

R e g a r d i n g 13 t h e v a l u e s a c t u a l l y a p p l y t o cases w h e r e h = 2 t (in teger) .

W h e n u s i n g t h e r o u n d i n g m e c h a n i s m for x : = x + h o u r spec i f ic h = .00005

p r o d u c e s e r r o r s t h r e e t i m e s t h o s e a b o v e . H o w e v e r , t h e w r i t e r be l i eve t h a t

on a w h o l e a c o r r e c t l y r o u n d i n g a r i t h m e t i c n e e d s no c o r r e c t i on .*

T h e m e c h a n i s m for e s t a b l i s h i n g c o r r e c t r o u n d i n g is as fo l lows :

s r o u n d e d : = s + 2 × c;

w h e r e c h a s b e e n e v a l u a t e d a c c o r d i n g to P r o c e s s A :

c : = i f abs(v) <= abs(u) t h e n (v - (s - u)) + (u - (s - (s - u)))
e l se (u--(s--v))+ (v-(s-- (s- -v))) ;

I f w e t h i n k of a c o m p u t e r h a v i n g t h e u s u a l r o u n d i n g p r o c e s s :

s r o u n d e d : = u+(v z-l~. ~** fo r]v] < [u] b u i l t in , i t e m e r g e s t h a t , p r o -

* I t should be noticed that the Process A and B when applied to a rounding arithmetic
will give the rounding error as well. This was Gill's [1] original Mm (to be mentioned below)
and is quite obvious from the basic idea, namely that ev + eu gives the discrepancy between
u + v and ul A-vl =s whatever be the source of ~his discrepancy.

** This to be understood in the proper way, i.e. in ease v is negative the positive
quantity ½Eu is to be added the eomplementarily notated mantissa of v.

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 49

vided our actual computer when]vl < ½Eu replaces v by zero, our process
above reproduces the behaviour of the rounding computer except when:

1) - ½~E u < v < - ~ E u causing s + 2 × c to be in error by - Eu, and if
u = s has the mantissa: 10.0000 the error even mounts to - 2 E u,

2) lev(s)<lev(u) and at the same time - ½ E u > v or 0 < v and when
moreover we in v have the digit 1 situated two positions to the
right of the last figure of u, i.e. in our notation when

V : V s V 0 , V l V 2 V s V 4 X l 1 x~

Under these circumstances s + 2 × c is ½E~ too large,

and finally when

3) the mantissa of u is 10.0000 and - E u < v < - ~E~ giving s + 2 xc
the value u: 10. 0000 while the rounding computer yields the
problematic result of 101.111.

I t should be added tha t the ill effect from 1) might be removed in using

i f v < 0 ^ s - - u t h e n c : = 0;

s rounded : = s + 2 × c;

Finally there remain a few remarks on how the method was developed.
Gill [1] has developed a variant of his own among the many existing

fourth order Runge-Kut ta methods. The merit of his formulae was
tha t they brought down the storage requirement and in addition the
reduction of accumulation from rounding errors was cleverly built in.

Through a detailed s tudy of his paper [1] the idea to use vl := s - u

was found. However, in working with fixed point arithmetic Gill was
not troubled by the automatic shifts when levels are altered, and this
in turn means tha t he need not introduce u l and he did not have to
consider all the subtleties we have encountered. Concerning Gill's fourth
order Runge-Kut ta formulae the writer's opinion is that they are too
complex to be recommended nowadays because the reduction of storage
requirement they bring about is of little practical concern and because
once his trick regarding the rounding errors is understood and has been
put into ALGOL statements as shown above it is universally applicable.
His method is often referred to in textbooks from the period 1956-62,
but unfortunately wit~hout proper explanations of the way his trick
works*.

* E .g . R o m a n e l l i [2] g ives r a t h e r de ta i l ed work ing in s t ruc t ions wh ich p r e t e n d to yie ld
t h e r educ t ions of r o u n d i n g errors ; however , in fac t his p rocedure g ives no such reduc t ion .

BIT 5 - - 4

50 OLE MOLLER

The writer is only aware of one other paper on the present subject:
Reducing truncation error by programming by J. M. Wolfe [3]. How-
ever, his way of treating the problem follows a different line.

Acknowledgements.
I should like to thank several staff members of Regnecentralen for

valuable help in many respects. Especially Knud Hansen, Christian
Gram and Peter Vfllemoes have patiently gone through almost all of
the reasonings, and I am much indebted to Peter Naur for having
improved the rigour of the structure and wording of the present article.

R E F E R E N C E S

1. S. Gill, A process for the step-by.step integration of differential equations on an auto-
matic digital computing machine, Proe. Cambr. Ph. Soc. rot. 47 1951, pp. 96-108.

2. M. J. Romanelli, Runge~Kutta methods for the solution of ordinary differential equa-
tions, Ralston and ~Tilf, Mathematical Methods ~or Digital Computers 1959, chap. 9,

p. 115.
3. J. M. Wolfe, Reducing truncation errors by programming, ACM vol.7/6 june 1964 p. 355.

REGNECENTRALEN

ARHUS, DEN~ARK

