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1. Introduction

Recently we have investigated the problem
of heat transfer due to steady rotations of a
sphere in an infinitely extending non-
Newtonian fluid which is otherwise at rest(1).
Solutions have been obtained for two differ-
ent types of thermal boundary conditions,
i. e. (1) the sphere is maintained at a constant
or variable temperature and (ii) it is thermally
insulated. It is observed that in both these
cases deviations from Newtornian behaviour
result in some significant changes in the
temperature distribution. Later Ghesekus (2)
has experimentally investigated a similar
type of problem using a slightly viscoelastic
fluid having a relatively high viscosity. With
this material a situation is realized where the
secondary flow separates into two different
zones. It is found that, particularly in this
case, the temperature distribution undergoes
marked changes. This encouraged us to make
a more detailed study of the temperature
field for a similar situation, maintaining the
sphere thermally insulated and choosing the
parameters entering the problem in such a
way that the experimental conditions are
approximated.

1t is found that the parameter responsible
for the deviations from Newtonian flow
behaviour plays an important role in bringing
out considerable changes in the temperature
field, as will be discussed in detail in section 3.

2. Theory

Since the mathematical calculations for
the posed problem have already been provid-
ed in (1), we give below only a short outline
of the basic theory.

We choose the constitutive equation of a
viscoelastic fluid, applying the usual ap-
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proximation of slow motions, in the form
s =—pl+ 2n[fO + ) fO) o0, fO -], [1]

where s represents the stress tensor, p the
undetermined pressure, 7, the Newfonian
viscosity, »,® and »,11 two constants having
dimensions of time and characterizing visco-
elasticity of the fluid in a first approximation ;
J® represent the corotational kinematic
tensors defined by the following relations:
f(l):é(Vv +vV), a):—;—(Vv — V),

P

(@]
[ = D‘lf)ti +@-f—f.w, 2]

For details of eqs. [1] and [2] cf. Giesekus
(3, 4)1).

The solution to the problem is obtained
by solving the equations of momentum and
continuity

V.v—0 [3]
and the equation of energy
@cp—%:kVZT—i—tr(s-f(l)), (4]

where g, ¢y and k respectively represent the
density, specific heat and heat conductivity.
It is understood that the dependence of the
material constants on temperature is neglect-
ed.

Choose a system of spherical polar co-
ordinates (r, #, ¢) with origin at the centre
of the sphere and the polar angle ¢ and

1) As is well known, in this approximation (often re-
ferred to as “ Rivlin-Ericksen fluid”) Oldroyd and Walters
fluids B are included as particular cases, second-order
specialization being given by x,(1) = — 2 x,®). How-
ever, in the present problem x,(?) does not enter and
thus we find no difference in the predictions by con-
sidering second-order effects for the above mentioned
fluids. In contrast. differences are found for higher-
order effects, cf. footnote 3.
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azimuthal angle ¢ being measured from the
axis of rotation and some convenient meri-
dian plane respectively. Let u, v, w represent
the components of v in the increasing
directions of r, 4, ¢. If a sphere of radius
o rotates with constant angular velocity £2
and is thermally insulated, egs. [3] and [4]
are to be solved under the boundary con-
ditions

u=v=0, w=alsind
oT at r=ua, 51
— =0,
or
w=v=w=—20,
} at r-—>o0. [6]
T=1T,

We render all the quantities dimensionless
by using @ as characteristic length, a 2 as
characteristic velocity, 7'., as characteristic
temperature. On doing 8o the parameters
that enter the problem are

2
R = Q‘; 2 (Reynolds number) , 7
0
_ ToCp
0= (Prandtl number) , [8]
. 7o
B = otatey Ty ’ (9
and
PYEE]
= _%’7; Q°a2 [10]

Assuming Reynolds number R to be small,
we expand azimuthal component of velocity

in a series of the form
w=alw + R2w, + -], [11]

and introduce the stream function for second-
ary flow through

_ 1 oy _ 1 oy
T sng a6 U rsmg a0 A
where
p=0a"Q B[y, + By, + - -], [13]

It may be pointed out that, in the brackets
of eqgs. [11] and [13], there is no contribution
of terms arising from odd powers of R in view
of symmetry of the problem.

Substituting from eqgs. [11] and [13] into
the equation of momentum [3] and making
use of the boundary conditions [5] and [6],
we get

w — sin 9

) S Ez *
(6—1p

w= g [1 —4m (1 + %)]sinzﬁcosﬁ, [15]

[14]

where
E=rla.

As may be seen from eq. [15] the nature
of the secondary flow depends on the choice
of m only. For m < 1/, it resembles to that
of a Newtonian fluid, 1/;, < m <1/, depicts
breaking into two distinct zones, separated
by a sphere of radius

[16]

8m
S=i"am’ (7]
and m > 1/, depicts complete reversal of the
secondary flow field.
As for the velocity components, we expand

the temperature in the form

P=T [1+ BT, + BT+ 1. [18]

Substitution of the above equations and the
respective expressions for the stress com-
ponents into the energy equation [4] leads to
an infinite set of partial differential equations
in T, T,, * - -, obtained by equating coeffi-
cients of like powers of B on both sides of
it?). Solving the first two equations in
succession and using the boundary conditions
[5] and [6] we find:
T,=poX, (&9,

Ty=polY (5, 0,m,...) + o Xy(&, &, m)].

(19]
(20]

The functions X,, ¥; and Y, expressible
in terms of Legendre polynominals of even
order are given by eqgs. (3.15), (3.23) and
(3.25)—(3.30) of (1), where r should be re-
placed by £3). Eq.[19] takes account of the
dissipation arising due to primary flow, given
by eq. [14]. However, in eq. [20] there are
two different contributions; the first (re-
presented by Y;) takes account of change
in dissipation due to second and third order
flows, while the second (represented by Y,)
takes account of heat convection due to
second-order flow and is composed of two
terms, one being independent of m, whereas
the second depending on m linearly?):

Y&, B, m) = (&, B) + mx, (&, 9) . [21]
2) Before doing this 2 is to be substituted by "l R,
o

i. e. R is to be understood as a nondimensional quantity
for £.

%) In eq. (3.15) read the coefficient of P,(u) as
% — isk%— + etc. while in eq. (3.29) read @, = fo?
X (2m — 1/2).

4) In contrast to this, Y, has a more complicated
structure, containing also terms with m? and those
arising from third order coefficients, not recorded
explicitly in the constitutive eq. [1], cf. Giesekus (4)
and Walters and Waters (5). The respective results of
(1), therefore, refer only to Oldroyd and Walters fluid B.
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Since the experiments, mentioned earlier
in the text, are performed using fluids with
high viscosities i. e. with Prandtfl numbers
o> 1 but showing slight deviations fromn
Newtonian behaviour, we consider only the
convection effects in 7', given by eq. {21} and
neglect the term Y, in eq. [20].

3. Discussion

For the Polysiloxane M 20000, utilized in
the experiment by Giesekus (2), physical
constants have the values

e = 0.97 glem®, 7, = 200 Poise,
cp = 0.37 cal/g grad = 1.55 X 107 erg/g grad,
k = 0.12 keal/m h grad = 1.40 X 10* erg/cm sec grad,

while the radius of the sphere made from
teflon was chosen as ¢ =1 cm. For the above
values of the physical constants, Prandtl
number ¢ and the parameter®) f become

ox 2% 105, B~ 3 x103. [22]

Taking these, we have calculated the
temperature contributions 7'y, and 7T, as
given by eqs. [19] and [20]. These, in turn,
are sufficient to calculate the complete in-
crease of temperature AT =T — T.., as
given by eq. [18] — cf. footnote 5 — as a
function of Reynolds namber to the order of
approximation utilized:

AT = R*T, + R T,.

We note that the approximation method adopted
for the solution of the problem takes heat conduction
as the main mechanism and thus treats the mechanism
of convection due to second-order flow as perturbation.
In view of this, smallness of the product R?o restricts
the range of validity of the above expression. Presently
we find B 52 X 1021 e. 2 20 r.p.m. Since in the
experiment, cited earlier, the rotational speed is chosen
to be about 800 r.p.m., we do not expect to get a close
agreement between the observed and the calculated
temperature distribution but only to find similarity in
the main features.

If it is desired to have solutions which correspond
more closely to the experimental situation, we must
solve the energy equation, by retaining convection
due to secondary flow fully, only mneglecting higher-
order dissipation terms:

(23]

@T 29T 1 &7 cot ﬁai)
(e caeteor ™ 5 o

T v, 3T\ QcfR® |
~6R2(u1'a?+—$—6—19) = —Ts1n ¥, [24)

where %, and », represent nondimensionalized velocity
components of secondary flow. Though the solution of

5) It is evident from the eqs. [18], [19] and [20] that
T, does not really enter in the problem. Because of
this reason, we have chosen T, = 1 to calculate 5.

the above equation under prescribed boundary con-
ditions can be obtained using standard methods, it is
found to lead to very laborious calculations and there-
fore we have not taken them up here.
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Fig. 1. Isotherms depicting the temperature distribution
Ty 2x102< Ty <9 X% 10% two neighbouring iso-
therms differing by A7, = 102

The numerical evaluations of 7', as well
as 7', for various values of parameter m have
been performed using an IBM 360-44 com-
puter. The results of these are depicted by
the plots of isotherms in figs. 1-3. Moreover,
we have plotted in fig. 4 the temperature
distribution on the axis of rotation and the
equatorial plane respectively.

The temperature field 7', arising from
dissipation due to primary tlow (fig. 1) shows
a nearly radial decay, as expected. Only in
the immediate surrounding of the sphere we
observe some deviations originating in that
the intensity of dissipation is maximum on
the equatorial plane.

Contribution to temperature 7', arising
from heat convection due to secondary flow
for a Newtonian fluid (m = 0) shows negative
values in some neighbourhood of the axis of
rotation, but positive values near the
equatorial plane (fig. 2a). This may be easily
understood if we take account of the di-
rection of secondary flow, in which the fluid
comes in at the axis and is thrown out near
the equator. Since this direction is reversed
in the whole field for highly viscoelastic
fluids (e. g. m = 100) we observe correspond-
ing reverse in the temperature distribution
also (fig. 2b).

When the fluid is only very slightly visco-
elastic (m <1/,,), the temperature distribu-
tion once again resembles that for a Newton-
ian fluid, but the temperature profile as a
whole flattens markedly as a result of
reduction of the velocity of second-order flow
due to counteracting viscoelastic forces
(fig. 3a). In the case when m exceeds the
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Fig. 2. Isotherms depicting the temperature distribution 7',:

(a) for m = 0 with two neighbouring isotherms differing by

AT, = 0.50 x 10% and (b) for m = 100 with AT, = 0.40 x 108;
the marked region signifies the negative values of 7',
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Fig. 3. Isotherms depicting the temperature distribution 7',:
m = Y, AT, =0.20X10%; (b) m = Y, AT, = 0.10 x 105;
() m= 3y, AT;=10.50%10%; (d) m = 35, AT, = 0.20 x 105%;
(e) m =35, AT, =025 x 10%; (fym =1,, AT, = 0.50 x 10°
The marked regions signify the negative values of 7', while the
dashed curves represent the sphere of separation for secondary flow
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Fig. 4b

Fig. 4. Profiles of temperature 7', for m = 0, Y,,, Ys,
35, Ssg, 316 and Y,: (a) on the axis of rotation
and (b) on the equatorial plane

value !/;, and the separation of the secondary
flow occurs, the temperature field 7T, is
influenced in such a way that three different
regions, separated by two zero-isotherms,
occur. One of these, lying in the outer flow
zone, is similar to that of Newtonian case but
is moved away from the surface of the
sphere, whereas the other originating on the
sphere extends up to the axis of rotation and
encloses a certain region with positive values
of T,. As m increases this region becomes
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larger and larger and even extends beyond
the inner flow zone. This development is
demonstrated in figs. 3b—e. When m =1/,
i. e. the inner flow zone covers the whole
field (fig. 3f), one of the zero-isotherms
vanishes and thus the temperature distri-
bution resembles that of highly viscoelastic
fluids, cf. fig. 2b.

Because the variations in temperature are
most pronounced on the axis of rotation
(# = 0°) and on the equatorial plane (¥ = 90°)
we have plotted the profiles of temperature
T, for both of these cases in fig. 4. These
profiles bring out a more detailed picture of
the temperature variations with increase
of m.

For all cases under consideration it is seen
that the temperature attains the absolute
extremum away from the sphere. This may
be explained as a result of velocity distribu-
tion of secondary flow, which also has maxi-
mum intensity at some distance from the
surface. Further, it is observed that the
descent or ascent. is steepest near the separat-
ing sphere when its relative radius &, is not
very large (as e. g. for m = 15 and 3/,). This
is in agreement with the experimental ob-
servations made for which &, ~ 2.

From figs. 4a and 4b it is seen that the
absolute maximum of temperature 7', on
the axis of rotation is about double to that
on the equatorial plane. This is due to the
typical character of secondary flow, which is
also doubly intensive on the axis than on the
equatorial plane provided equal distances on
them are taken for the sake of comparison.
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Summary

In continuation of an earlier investigation., where the
problem of heat transfer due to a sphere steadily
rotating in an infinitely extending non-Newtorian fluid
is discussed under various types of thermal boundary
conditions, we presently reconsider this problem for
the case in which the sphere is thermally insulated in
some more details. The main attention is given to a
situation where the secondary flow breaks down into
two distinct zones and in which heat convection is
strongly dominating over dissipation effects due to
viscoelasticity. It is found that, for flow situations from
beginning of separation up to complete reversal, the
temperature distribution also undergoes marked
changes. The chosen conditions correspond to those
used m a recently reported experiment performed with
polysiloxane. The theoretical and the observed results
provide a fairly good qualitative agreement.

Zusammenfassung

Das in einer fritheren Untersuchung behandelte
Problem der Wirmeiibertragung in einer unendlich
ausgedehnten nicht-Newfonschen Flussigkeit infolge
der stationaren Rotation einer Kugel bei verschiedenen
thermischen Randbedingungen wird fiir den Fall der
thermisch isolierten Kugel hier ausfithrlich diskutiert.
In erster Linie werden Bedingungen betrachtet, bei
denen die Sekundérstromung in zwel getrennte Zonen
zerfallt und die Konvektion von erheblich stiirkerem
Einflufl ist als die Dissipationseffekte infolge Visko-
elastizitdt. Man findet, dafl die Anderung der Sekundéir-
strémung vom Beginn der Trennung in zwei Zonen bis
zur vollstindigen Richtungsumkehr von eciner aus-
gepriagten Anderung der Temperaturverteilung be-
gleitet ist. Der hier untersuchte Fall entspricht genihert
den Bedingungen eines vor kurzem beschriehenen Ex-
periments, bei dem Silikondl verwendet wurde. Die vor-
hergesagten Ergebnisse stimmen mit den beobachteten
in qualitativer Hinsicht recht gut @tberein.
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