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1. Introduction 

Recently we have investigated the problem 
of heat transfer due to stea@ rotations of a 
sphere in an infinitely extending non- 
N e w t o n i a n  fluid which is otherwise at rest (1). 
Solutions have been obtained for two differ- 
ent types of thermal boundary conditions, 
i. e. (i) the sphere is maintained at a constant 
or variable temperature and (ii) it is thermally 
insulated. I t  is observed that  in both these 
cases deviations from N e w t o n i a n  behaviour 
result in some significant changes in the 
temperature distribution. Latin" Giesek~s (2) 
has experimentally investigated a similar 
type of problem using a slightly viscoelastic 
fluid having a relatively high viscosity. With 
this material a situation is realized where the 
secondary flow separates into two different 
zones. I t  is found that,  particularly in this 
ease, the temperature distribution undergoes 
marked changes. This encouraged us to make 
a more detailed study of the temperature 
field for a similar situation, maintaining the 
sphere thermally insulated and choosing the 
parameters entering the problem in such a 
way that  the experimental conditions are 
approximated. 

I t  is found that  the parameter responsible 
for the deviations from N e w t o n i a n  flow 
behaviour plays an important role in bringing 
out considerable changes in the temperature 
field, as will be discussed in detail in section 3. 

2. Theory 

Since the mathematical calculations for 
the posed problem have already been provid- 
ed in (1), we give below only a short outline 
of the basic theory. 

We choose the constitutive equation of a 
viscoelastic fluid, applying the usual ap- 

proximation of slow motions, in the form 

s - -  p 1 + 2 t~o[f0) + x0(2)f(2) + Xo(ll)f(1) ~ + . . . ] ,  [1] 

where s represents the stress tensor, p the 
undetermined pressure, 9o the N e w t o n i a n  
viscosity, ~0 (2) and z0 (11) two constants having 
dimensions of time and characterizing visco- 
elasticity of the fluid in a first approximation ; 

f ( ' )  represent the corotational kinematic 
tensors defined by the following relations: 

1 
f O ) = = 2 1  (17v + v ! 7 ) ,  t o = ~ ( V v - - v 1 7 ) ,  

f( ,~+l)  = DfO~) 
Dt  + to . f(~O f O 0 .  to.  [2] 

For details of eqs. [1] and [2] cf. Giesekus  
(a ,  4)1). 

The solution to the problem is obtained 
by solving the equations of momentum and 
continuity 

D v  
17. s _ ~=Dt , 1 7 . v  0 [3] 

and the equation of energy 
D T  

cp =Dt --  k17~ T + t r ( s .  f (O) ,  [4] 

where 0, cp and k respectively represent the 
density, specific heat and heat conductivity. 
I t  is understood that  the dependence of the 
material constants on temperature is neglect- 
ed. 

Choose a system of spherical polar co- 
ordinates (r, #, ~) with origin at the centre 
of the sphere and the polar angle v~ and 

1) As is well known,  in  this  app rox ima t ion  (often re- 
ferred to as "Rivlin-Ericksen f luid") Oldroyd and  Walters 
fluids B are included as pa r t i cu la r  cases, second-order  
special izat ion being given by  ~o (n) ~ - -  2 no(2). How- 
ever,  in the  p resen t  p rob lem u0(2) does no t  en te r  and  
t h u s  we f ind no difference in t he  predic t ions  b y  con- 
sidering second-order  effects for the  above  m e n t i o n e d  
fluids. I n  contras t ,  differences are found  for h igher-  
order  effects, cf. foo tnote  3. 
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azimuthal angle ~ being measured from the 
axis of rotation and some convenient meri- 
dian plane respectively. Let u, v, w represent 
the components of v in the increasing 
directions of r, vq, q0. I f  a sphere of radius 
a rotates with constant angular velocity D 
and is thermally insulated, eqs. [3] and [4] 
are to be solved under the boundary con- 
ditions 

u = v ~ O ,  w = a g ? s i n ~  

OT a t  r = a ,  [5] 
0~-= 0, 

q k = V ~ w = O ~  
I at r - + ~ .  [6] 

T = T ~  ) 

We render all the quantities dimensionless 
by using a as characteristic length, a g? as 
characteristic velocity, T~ as characteristic 
temperature. On doing so the parameters 
tha t  enter the problem are 

R Qa ~ D (Reynolds n u m b e r ) ,  [7] 
~o 

(~ _ Vo Cp ( Prandtl n u m b e r )  [8] /c 

~2 a 2 c~ Too ' [9] 

and 
~0 u0 (11) m = [10] 

2 ~  a ~ 

Assuming Reyno lds  number R to be small, 
we expand azimuthal component of velocity 
in a series of the form 

w = a ~ [ w l +  R ~ w ~ +  " . . ] ,  [11] 

and introduce the stream function for second- 
ary flow through 

u - -  r ~ s i n v  ~ 0v ~ ' v r s i n v  ~ Or ' [12] 

where 
~0 = a a D  R[~0~ + R~o~ + �9 �9 . ] .  [13] 

I t  may be pointed out that,  in the brackets 
of eqs. [11] and [13], there is no contribution 
of terms arising from odd powers of R in view 
of symmetry of the problem. 

Substituting from eqs. [11] and [13] into 
the equation of momentum [3] and making 
use of the boundary conditions [5] and [6], 
we get 

s in  
w~ - -  ~ , [14] 

where 
= r/a. [16] 

As may be seen from eq. [15] the nature 
of the secondary flow depends on the choice 
of m only. For m < 1/12 it resembles to that  
of a N e w t o n i a n  fluid, 1/13 < m ~ 1/4 depicts 
breaking into two distinct zones, separated 
by a sphere of radius 

8 m  
~O--l_4m, [17] 

and m > 1/4 depicts complete reversal of the 
secondary flow field. 

As for the velocity components, we expand 
the temperature in the form 

T =  Too[1 + R ~ T I +  R ' T 2 +  . . - ] .  [lS] 

Substitution of the above equations and the 
respective expressions for the stress com- 
ponents into the energy equation [4] leads to 
an infinite set of partial differential equations 
in T1, Te, . . . ,  obtained by equating coeffi- 
cients of like powers of R on both sides of 
its). Solving the first two equations in 
succession and using the boundary conditions 
[5] and [6] we find: 

T1 = flcr X~(~, O), [19] 

~v2=fl~[gl(~,~,m . . . .  )+ ~Y2(~,~,m)]. [20] 

The functions X1, Y1 and Y2 expressible 
in terms of Legendre polynominals of even 
order are given by eqs. (3.15), (3.23) and 
(3.25)-(3.30) of (1), where r should be re- 
placed by ~a). Eq. [19] takes account of the 
dissipation arising due to primary flow, given 
by eq. [14]. However, in eq. [20] there are 
two different contributions; the first (re- 
presented by El) takes account of change 
in dissipation due to second and third order 
flows, while the second (represented by Ye) 
takes account of heat convection due to 
second-order flow and is composed of two 
terms, one being independent of m, whereas 
the second depending on m linearly4): 

:Y~(~,v~,m) = ZI(~, ~) + ra Z~(~, v~ ) . [21] 

, rio R ~) Betbre doing  th i s  ~2 is to  be s u b s t i t u t e d  Dy ~ ~ ,  

i. e. R is to  be  u n d e r s t o o d  as a nond imens iona l  q u a n t i t y  
for D. 

3) I n  eq. (3.15) r ead  t h e  coefficient of  P~(/~) as 
C~ M1 + etc. while in eq. (3.29) read Q1 =/3 a ~ 
r 5 8 r 4 
• ( 2 m - - 1 / 2 ) .  

4) I n  con t ra s t  to  th is ,  Y1 ha s  a more  compl ica ted  
s t ruc tu re ,  con ta in ing  also t e r m s  w i th  m ~ a n d  those  
ar is ing f rom t h i r d  order  coefficients, n o t  recorded 
expl ici t ly  in t h e  cons t i tu t ive  eq. [1], cf. Giesekus (4) 
a n d  Walters a n d  Waters (5). The  respect ive  resu l t s  of  
(1), therefore,  refer  on ly  to Oldroyd a n d  Walters fluid B. 
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Since the experiments ,  ment ioned earlier 
in the text ,  are per formed using fluids with 
high viscosities i. e. with Prandtl numbers  
a >~ 1 bu t  showing slight deviations from 
Newtonian behaviour ,  we consider only the 
convect ion effects in T 2 given by  eq. [21] and 
neglect  the te rm Yl in eq. [20]. 

3. Discussion 

F or  the Polysi loxane M 20000, util ized in 
the  exper iment  by  Giesekus (2), physical  
constants  have the values 

= 0.97 g/cuff, ~?o = 200 Poise, 

Cp 0.37 cal/g grad = 1.55 X l07 erg/g grad,  

k = 0.12 kcal/m h grad - -  1.40 7,, 104 erg/cm see grad,  

while the radius of the sphere made from 
teflon was chosen as a = 1 era. For  the above 
values of the physical constants,  Prandtl 
number  a and the pa ramete r  5) fi become 

a ~  2 X 105, [3~ 3 • 10 -8.  [22] 

Taking these, we have calculated the 
t empera tu re  contr ibut ions T~ and T~ as 
given by  eqs. [19] and [20]. These, in turn,  
are sufficient to calculate the complete in- 
crease of t empera tu re  A T =  T -  To~, as 
given by  eq. [.18] - cf. footnote  5 - as a 
funct ion of Reynolds number  to the order  of  
approximat ion  utilized: 

,4T .... R ~ T~ + R 4 T~.  [23] 

We note t ha t  the approx imat ion  me thod  adop ted  
for the  solution of  the  problenl  takes  hea t  conduct ion 
as t he  main  mechanism and  thus  t rea t s  the  mechanism 
of  convection due to second-order  flow as per turba t ion .  
In  view of this, smallness of  the  product  R = ~ restr icts  
the  range of val idi ty of  the  above expression. Presen t ly  
we find g ~ 2 • 10 -2 i. e. D ~ 20 r .p .m.  Since ill the  
exper iment ,  cited earlier, the  rota t ional  speed is chosen 
to be about  800 r .p.m.,  we do not  expec t  to ge t  a close 
agreement  be tween the  observed and  the  calculated 
t empera tu re  dis t r ibut ion bu t  only to find similari ty in 
the  main features. 

I f  it  is desired to have  solutions which correspond 
more  closely to the  exper imenta l  si tuation,  we mus t  
solve the  energy equat ion,  by  re ta ining convect ion 
due to secondary flow fully, only neglect ing higher- 
order  dissipation te rms:  

( 82T 2 0 T  1 82T cot, ~ a ~  

where u~ and  v~ represent  nondimensional ized veloci ty 
components  of secondary flow. Though  the  solution of 

~) I t  is evident  from the  eqs. [18], [19] and [20] t ha t  
Too does not  really enter  in the  problem.  Because of  
this  reason, we have chosen T~o = 1 to calculate ft. 

the  above equat ion  under prescr ibed boundary  con- 
dit ions can be obta ined using s t andard  met lmds,  i t  is 
found to lead to very  laborious calculations and  there- 
fore we have n o t  t aken  t h e m  up here. 
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Fig. 1. I so therms  depict ing the  t empera tu re  d is t r ibut ion 
T~; 2 "~ I02 <~ T~ <~ 9 • 102, two neighbouring iso- 

the rms  differing b y / A T  1 .... 102 

The numericM evaluat ions of T 1 a s  well 
as T 2 for various values of pa rame te r  m have  
been per formed using an IBM 360-44 com- 
puter .  The results of these are depicted by  
the plots of isotherms in figs. 1-a. Moreover,  
we have p lo t ted  in fig. 4 the t empera tu re  
dis tr ibut ion Oil the axis of  ro ta t ion  and tile 
equator ia l  plane respectively.  

The t empera tu re  field T 1 arising from 
dissipation due to p r imary  flow (fig. 1) shows 
a near ly  radial  decay, as expected.  Only in 
the immedia te  surrounding of the sphere we 
observe some deviat ions originating in t h a t  
the in tens i ty  of dissipation is m ax im u m  on 
the equator ia l  plane. 

Contr ibut ion to t empera tu re  T 2 arising 
from heat  convect ion due to secondary  flow 
for a Newtonian fluid (m = 0) shows negat ive 
values in some neighbourhood of the axis of 
rota t ion,  bu t  positive values near  the 
equator ia l  plane (fig. 2 a). This m ay  be easily 
unders tood if  we take account  of the di- 
rect ion of secondary flow, in which the  fluid 
comes in at, the  axis and is th rown out  near  
the equator .  Since this direct ion is reversed 
in the whole field for highly viscoelastic 
fluids (e. g. m = 100) we observe correspond- 
ing reverse in the  t empera tu re  d is t r ibut ion 
also (fig. 2b). 

When  the fluid is only ve ry  slightly visco- 
elastic (m ~ 1/12) , the  t empera tu re  distribu- 
t ion once again resembles t h a t  for a Newton-  
ian fluid, bu t  the t empera tu re  profile as 
whole flattens markedly  as a resul t  of 
reduct ion of the veloci ty  of second-order flow 
due to counteract ing viscoelastic forces 
(fig. 3a). In  the case when m exceeds the 

2~5" 
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Fig. 2. Isotherms depicting the temperature distribution T2: 
(a) for m = 0 with two neighbouring isotherms differing by 
A T ~ = 0 . 5 0  • 105and(b) f o r m = 1 0 0 w i t h A T ~ = 0 . 4 0  • 108; 

the marked region signifies the negative values of T2 

. . . .  ~.,7o % . & o b)  rn =1/8 

o 

~0 ~ 

90 o 
0 [ 2 3 4 5 6 7 

.... 3/20 ~ ~ "~  ~ ~ - 5/28 

i; o~ o 8 0 0  

90  ~ - 90  o 
0 7 2 3 4 5 6 7 

r 
e)  r n = B / / 6  ~ ~-, o f )  I n = l ~ 4  

o o 

7 

5 

5 

4 

3 

2 

7 

0 
0 7 2 3 4 5 6 7  

~ 5  

6 

3 

2 -  ~ x  , |  
0 

0 7 2 3 4 5 6 7  
r 

7 

6 -  

5 

3 

2 -  

7- 

0 -  
0 l 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

)o 

0 o 

Fig. 3. Isotherms depicting the temperature distribution T2: 
m = ~[~2, A T 2 = 0 . 2 0 •  (b) m = ~/8, zJT2 = 0.10 • 105; 

3 4 3 5 (c) m =  /~3, A T ~ = 0 . 5 0 •  (d) m =  /~s, A T ~ = 0 . 2 0  • 10 ; 
(e) m=3/ t6 ,  A T ~ = 0 . 2 5 •  105; (f) m=~ /4 ,  A T 2 = 0 . 5 0 •  105 
The marked regions signify the negative values of T~ while the 
dashed curves represent the sphere of separation for secondary flow 
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:Fig. 4. Profiles of temperaturg T~ for m = 0, a/l~, 1/s , 
3/30, 5/~8, 3/16 and 1/4- (a)on the axis of rotation 

and (b) on the equatorial plane 

va lue  1/12 and  the  separat ion o f  the  secondary  
f low occurs,  the  t emperature  field T 2 is 
inf luenced in such a w a y  that  three  different 
regions,  separated  b y  two  zero- isotherms,  
occur. One o f  these ,  ly ing  in the  outer  f low 
zone,  is similar to  that  o f  N e w t o n i a n  case but  
is m o v e d  a w a y  from the  surface o f  the  
sphere,  whereas  the  other  or ig inat ing on  the 
sphere ex tends  up  to  the  axis o f  ro ta t ion  and 
encloses  a certain region wi th  pos i t ive  va lues  
o f  T~. As  m increases this  region becomes  
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l a rge r  a n d  l a r g e r  a n d  e v e n  e x t e n d s  b e y o n d  
t h e  i n n e r  f low zone.  Th i s  d e v e l o p m e n t  is 
d e m o n s t r a t e d  in figs. 3 b - e .  W h e n  m = l/a, 
i. e. t h e  i n n e r  f low zone  covers  t h e  w h o l e  
f ield (fig. 3f) ,  one  o f  t h e  z e r o - i s o t h e r m s  
v a n i s h e s  a n d  t h u s  t h e  t e m p e r a t u r e  d i s t r i -  
b u t i o n  r e s e m b l e s  t h a t  o f  h i g h l y  v i s coe l a s t i c  
f luids,  cf. fig. 2b .  

B e c a u s e  t h e  v a r i a t i o n s  in  t e m p e r a t u r e  a re  
m o s t  p r o n o u n c e d  on  t h e  ax i s  o f  r o t a t i o n  
(~ = 0 ~ a n d  on t h e  e q u a t o r i a l  p l a n e  (0 ---- 90 ~ 
we h a v e  p l o t t e d  t h e  prof i les  o f  t e m p e r a t u r e  
T 2 for  b o t h  o f  t h e s e  cases  in  fig. 4. T h e s e  
prof i les  b r i n g  o u t  a m o r e  d e t a i l e d  p i c t u r e  o f  
t h e  t e m p e r a t u r e  v a r i a t i o n s  w i t h  i n c r e a s e  
of '[?~+. 

F o r  a l l  cases  u n d e r  c o n s i d e r a t i o n  i t  is seen  
t h a t  t h e  t e m p e r a t u r e  a t t a i n s  t h e  a b s o l u t e  
e x t r e m u m  a w a y  f r o m  t h e  sphere .  Th i s  m a y  
be  e x p l a i n e d  as  a result ,  o f  v e l o c i t y  d i s t r i b ~ -  
t i on  o f  s e c o n d a r y  flow, w h i c h  a lso  has  m a x i -  
m u m  i n t e n s i t y  a t  some  d i s t a n c e  f r o m  t h e  
sur face .  F u r t h e r ,  i t  is o b s e r v e d  t h a t  t h e  
d e s c e n t  or  a s c e n t  is s t e e p e s t  n e a r  t h e  s e p a r a t -  
ing  sphe re  w h e n  i t s  r e l a t i v e  r a d i u s  $0 is n o t  
v e r y  l a rge  (as e. g. for  m = 1/s a n d  a/+=0 ). Th i s  
is in  a g r e e m e n t  w i t h  t h e  e x p e r i m e n t a l  ob-  
s e r v a t i o n s  m a d e  for  w h i c h  ~0 z 2. 

F r o m  figs. 4 a  a n d  4 b  i t  is seen that .  t h e  
a b s o l u t e  m a x i m u m  of  t e m p e r a t u r e  T 2 on  
t h e  ax i s  of  r o t a t i o n  is a b o u t  d o u b l e  to  t h a t  
on  t h e  e q u a t o r i a l  p l ane .  Th i s  is due  to  t h e  
t y p i c a l  c h a r a c t e r  o f  s e c o n d a r y  flow, w h i c h  is 
a lso  d o u b l y  i n t e n s i v e  on t h e  ax i s  t h a n  on t h e  
e q u a t o r i a l  p l a n e  p r o v i d e d  e q u a l  d i s t a n c e s  on 
t h e m  are  t a k e n  for  t he  s ake  o f  c o m p a r i s o n .  
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Summary 

In continuation of an earlier investigation, where the 
problem of heat transfer due to a sphere steadily 
rotating in an infinitely extending non-Newtonian fluid 
is discussed under various types of thermal boundary 
conditions, we presently reconsider this problem for 
the case in which the sphere is thermMly insulated in 
some more details. The main attention is given to a 
situation where the secondary flow breaks down into 
two distinct zones and in which heat convection is 
strongly dominating over dissipation effects due to 
viscoelasticity. I t  is found that, for flow situations from 
beginning of separation up to complete reversal, the 
temperature distribution also undergoes marked 
changes. The chosen conditions correspond to those 
used in a recently reported experiment performed with 
polysiloxane. The theoretical and the observed results 
provide a fairly good qllalitative agreement. 

Zusammen[assun9 

Das in einer frfiheren Untersuchung behandelte 
Problem der WS~rmeiibertragung in einer unendlich 
ausgedehnten nichVNewtonschen Flfissigkeit infolge 
der station~ren Rotation einer Kugel bei verschiedenen 
thermischen Randbedingungen wird fiir den Fall der 
thermisch isolierten Kugel hier ausfiihrlieh diskutiert. 
In erster Linie werden Bedingungen betrachtet, bei 
denen die Sekund/~rstr6mung in zwei getrennte Zonen 
zerf~llt und die Konvektion von erheblieh stgrkerem 
Einflug ist Ms die Dissipationseffekte infolge Visko- 
elastiziti~t. Man finder, dab die Anderung der Sekundi~r- 
strSmtmg "corn Beginn der Trenmmg in zwei Zonen bis 
zur vollstSi\digen Richtungsumkehr yon einer aus- 
gepri~gten Anderung der Temperaturverteilung be- 
gleitet ist. Der hier untersuchte Fall entspricht gen~ihert 
den Bedingungen eines vor kurzem beschriebenen Ex- 
periments, bei dcm SilikonS] verwendet wurde. Die vor- 
hergesagten Ergebnisse stimmen mit den beobachteten 
in qualitativer Hinsicht recht gut fiberein. 
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