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1. Discussion

Ting (1963) has considered certain non-
steady flow problems for the “second order”
fluid of Coleman and Noll (1960). He found
that bounded solutions could not be obtained
to the problems he attempted in the cases of
“physical interest’’. In this paper considera-
tion is given to the difficulty encountered
by Ting. 1t is concluded that the second and
third order approximations of Coleman and
Nolls “‘simple fluid” are unsuitable for use
in unsteady flow problems when a Laplace
Transform technique is used in their solution.
It is shown that bounded solutions to pro-
blems considered by 7Ting can be obtained
for other equations of state.

The equations of state of Coleman and
Nolls “simple fluid” are

T = —pl+ T [
3
(4 :_1" [Ce(tN] . (2]

where 7T is the stress tensor, I the substitution
tensor, p an arbitrary isotropic pressure, F
a tensor valued functional and C; is the
history of the right Cauchy-Green tensor.
The first approximation used in the
reduction of [2] into a manageable form is
the assumption that the fluid has a fading
memory. This essentially enables us to write
[2] as
T = {A)D, A®), . . ., AW), (3]

where f is a function and the 4™ are related
to the successive rate-of-strain tensors eg’;)
by
(n) _ (n)
A =2 ei’;c .

Thus, we can write

Ay [_‘ZL c (t’)] 4]
ST LA T sy L

The second approximation used is the as-
sumption that the fluid flows slowly and so

(Received July 24, 1969)

many of the A™’s (which involve powers of
the velocity) can be neglected. In this way,
it is possible to obtain Coleman and Nolls
“third-order’”” fluid and their “second-order”
fluid, which was used by Tling (1963).

The “second-order” fluid has equations
of state

T=—pI+a; AD + x, A® + x5 AV, [5]

Ting found that he could obtain bounded
solutions only when «; > 0 and «, > 0. This
is contrary to the findings of Coleman who
insists that «, < 0.

In unsteady flow problems, the time
dependence is often separated from the
differential equations by the use of Laplace
transforms. Kssentially, this technique re-
places all time derivatives by a parameter y,
which can take values from minus infinity to
plus infinity. Thus, terms like [4], occurring
in the equations of motion via the stress
tensor, yield terms of the form

7 Cu(y), (6]

where C;(y) is the Laplace transform of Cj(¢).
The assumption of slow flow is no longer
strong enough to neglect such terms as these,
since y can be infinitely large.

Truesdell (1964) and Wang (1965) have
shown that the “‘second- and third-order”
equations of state can represent slightly
elastic liquids in situations in which the
motion is not necessarily slow. However,
this is possible only because the “‘slow flow”
approximation is replaced by the assumption
that the constants involved are small. When
Laplace transforms are used, approximations
involving the smallness of the constants
cannot be used for the same reasons as
above.

Hermes and Fredrickson (1967) have al-
ready questioned the validity of the “order”
equations of state. They state that the
assumptions made to obtain the ‘“‘order”
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equations of state are probably not valid
when the kinematic state of the material
particle undergoes rapid changes.

It is concluded that the ‘“‘second- and
third-order” equations of state are unsuitable
for use in unsteady flow problems, especially
when Laplace transforms are used.

In this paper, we investigate some of the
unsteady flow problems considered by Ting
(1963) in the light of the previous discussion.
We characterize the elastico-viscous liquid
by equations of state of the form

Pik = —Ppgir + Dik (7]
t
’: , axi 0 ok (e g ’
P zk:2f‘l’(t—t)maxh1;re(l)"“ (2, ') dt’,
% [8]
o0 —(t-t)
Mhﬂ=f£961 dr, (9]

where the displacement functions
't =2 (w, £, 1)

represent the position at time ¢ of the
element which is instantaneously at the
point 2t at time ¢, p is an arbitrary isotropic
pressure, p;; is the stress tensor, eﬁ-:}g is the
rate-of-strain tensor and N(z) is a distribu-
tion function of relaxation times z. The
elastico-viscous liquid represented by [7],
[8], and [9] is known as liquid B’ (Walters
1962).

We shall make use of the Laplace trans-
formation. If @ is the Laplace transform of
any quantity @ then

B = [D(t) evide. [10]
0

In order to obtain the Laplace trans-
formation of the equations of state [7]-{9],
it is first noted that for those problems in
which the rate of strain is zero for £ < 0 (i. e.
“generation’’ problems) eq. [8] can effectively
be written as (cf. Thomas and Waliers, 1966)

. 0zt 0ok

73k L
rtﬁzﬁwu ) s

'™ 9x'T

emr (o, ¢y dt’, [11]
0

where it is assumed that there is no dis-
continuity in the strain at ¢ = 0.

If use is now made of Duhamels theorem
[see, for example, Carslaw and Jaeger (1948)
and Thomas and Walters (1966)] the trans-
form of the equation of state given by [11]
relevant to the following problems is

(12]

= ~(1) N(T)
pxy—— 2Bxyfmd1.
0

The reason why 7Ting could not obtain
bounded solutions to the problems he con-
sidered is that in using the “second-order”
fluid he agsumed implicity that the integral
in [12] can be written as

[N@ 1 —yrldr, [13]
0
which is not valid even for liquids with short
relaxation times (Thomas and Walters, 1966).

2. Flow caused by a tangential surface force

a) Generation of flow

Fielder and Thomas (1967) have obtained
a solution for the unsteady meotion of a
lamina starting from rest in a viscoelastic
liquid under the influence of a constant
force. They found only the velocity of the
lamina, and did not consider the velocity
profiles of the liquid.

We shall consider the generation of flow
in a viscoelastic fluid (at rest at time ¢ = 0),
contained between the planes y = 0 and
y = h, caused by a constant force (f, 0, 0)
acting on the face y = b of the liquid for
time £ > 0.

All quantities are referred to the cartesian
frame of reference (x, y, 2).

If we assume a velocity distribution of
the form

(u(y,8),0,0) 0<y<h, t>0, [14]
the initial condition is given by
u(y,0) =0, O<y<h, [15]

and the equation of continuity is automatic-
ally satisfied.

The equations of motion in the absence of
a pressure gradient reduce to

ou _ Opay
Q 7 (ys t) — ay

where ¢ is the density of the fluid. The
appropriate boundary conditions may be
written in the form

w(0,8)=0 t>0,
Py (ht) =] t>0,
where f is a constant.

By using [12] the transformed equation
of motion [16] becomes

, [16]

[17]

2 _
'7‘?/—2'=q2'u/, [18]
where
Y N@)
2
g _Qy/fl“‘?”' dr, [19}
0
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subject to the boundary conditions

di
) =
N(z)
yf T+y7 dt
]
A solution of [18] and [20] is given by
_ _ fgsinhgy .
@y y) = ot coshgh (211

It is now convenient to introduce an ex-
pression for the relaxation spectrum N(7) in
terms of a limiting viscosity at small rates
of shear (7,), a retardation time (1,) and a
relaxation time (4,), i.e.1)

(A — 4s)

7 8z — 4y,

N(R) = 0 22 0(2) + [22)
where A; > 4, > 0, which reduces liquid B’
to Oldroyds liquid B [Oldroyd (1950), Walters
(1962)].

Using (22) and (19) we see that

2 VU a+ yﬁl_!.) 23
wo(L T 7 A - [23]
If we now non-dimensionalize in the follow-

ing manner

n, = j’Qu (t) e st , [24]
0
eq. [21] on using [23] becomes
Ty ) = {}i glz}m%. [25]

cosh g,

Before evaluating the Laplace inversion
of 4,, it is necessary to give some con-
sideration to the singularities of 4, with
respect to s. These singularities are the zeros
of s{s(1+ 9,s)}'?cosh ¢;. Thus, the com-
plete set of singularities is given by s = 0,
and those given by

g = (n—{-%}ni, n—0,1,2,.... [26]
i.e.?)
—on F fnv
SN = ﬁ;‘"‘, [27]

N=2n+ 1)m/2,

1} 6 (z) is the Dirac delta function defined by d(z) =0,
z = 0, and fﬁ(x)dx:jé(x)dx: 1.
— 00 0
%) The singularities of @, (s, y,) €*** given by [27] are
simple poles if fx == 0 and double poles if fx = 0.

sty

where

ay =1+ 8, N2 and By = {(1+ S, N?)2 — 4 §, N2juz,
[28]

Since S, > 0 (eq. [22]) it is obvious that all
the singularities lie in that part of the
complex plane for which Res < 0, except
for the singularity at s = 0.

In order that we may ascertain the
positions of the singularities we consider the
function

B(m) = (1 + Sym) — 48, m . [29]
Solutions of B(m) == 0 are
_ (28— 8) + 2V8,(8,— 8))
m; = R
82
and
My = (281 — 85) — 28, (S, — 8y) ‘ 130]

8,2

By considering the function B(m) and A4 (m)
=1+ Sym with their derivatives and using
the fact that S; > S, > 0, we are able to
make the following observations concerning
the distribution of the singularities

—ay — fy

25,

+_ —oaN+tBw
SN= o9
~ M1

and sy = . [31]

For m, < N? << m, the singularities are
conjugate point pairs about points on that
portion of the real negative axis between P,
and P, where

[32]

By considering those values of N2 for
which sy is real (i.e. B(m) > 0, see fig. 1)
we see that
(i) for N2 < m,,

s% decreases with increasing N%and

P, < st <0
and sy increases with increasing N2 and

1 .
—E<8N<P2;

(il) for N2 > m,,
sy increases with increasing N? and
+ 1
Pl < 8§y < — -S—;
and sy decreases with increasing N2 and
sy < Pq.
It should be noted that sy has a limit

. 1 _
point at — — and sy has one at — oc.
2
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Bim).

"‘2.[:; j"’l
\\ //
sy real. s".m;plex. —»s“‘real.

Fig. 1 The variation in sign of B(m) (eq. [29]).

The arrangement of singularities is illus-
trated in fig.2.

x. denotes sy

o denotes sy+

¢

Fig. 2 Contour of integration and the distribution of
singularities

We may now proceed to evaluate the
complex inversion integral

O+ico
1 _
Wy t) = 5y | Tl 9 Shds 0> 0) [39]

O—ico

by means of Cauchys Residue theorem. To
this end we define a contour I", A BCDEFGH
in the direction indicated by the arrows in
fig. 2. The curves represented by ABC may
be considered as a sequence of semicircles
which do not pass through any of the
singularities. If we represent ABC by s
= Re'®(— n < 0 <=, R > R,) then the in-
tegral around 4 BC will vanish as B —> oo
provided ¢ > 0 and

| @,y (y,, 8)| < constant. R-H | [34]

where R, and » are constants such that
% > 0. [Carslaw and Jaeger (1947)].
Since y, < 1 it is obvious that

sinh ¢, y,
cosh ¢,

is finite, [35]

provided cosh ¢; # 0, which is true except
at the singularities.

Similarly
1+ 8,822, . | 1
T+ 8, is bounded, provided s == — 5 [36]

Thus, from eq. [25], we see that

constant

[al(yla's)| < Rs/z

and the condition (34) is satisfied.

We now construct a sequence of circles
{Cs} [ef. Ting (1963), see fig. 2] whose radii
decrease as J increases, around the limit

point (s = — —);-) such that
2
im [ u(y;, 8)eids =0. [37]
J— oo ¢,
The singularities just to the left of s = — —)SIT
2

are given by sy, where N = (20 - 1) /2
and N% >m,. We thus define {Os} to be a
1

sequence of circles with centres at s = — —
2
which pass through the points sj, where
J=mnm and J >J'. J' being such that
the largest circle C;. does not contain any
of the singularities to the right of s = — SL
2
nor any singularities with a non-zero imagi-
nary part. Thus, from fig. 2, we see that the
circles {Cs}, J > J’, do not pass through
any of the singularities.

The radii &7 of {C} are given by
L 8 (14 8, 48, e 1

& 35, 5 B8
and thus Jlim e =0,
On the circles {C},
s+—l~:eJew(—n < 0 <n

S,
and

d. , ;

d—z —ieyel. [39]

Using [35], [36], [39], and [25] together with
the fact that the {C’J} do not pass through
any singularities we obtain

_ sty 172 : constant el *1
~’Al‘q(?/u §)e’ds| < ey f [51%:

Oy

-7

[40]
From [38] and [40] we see that

Jli>moo ;f @Yy, 9) el ds = 0.
Cr
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If we now apply Cauchys residue theorem
to the contour I' we obtainl), as J — co and
R — oo,

1 Gtioo
T ] i1 (Y15 9)
C—ico

= the sum of all the residues of &, (y,, s) ¢* 1 in I". [41]

flhds

By calculating the residues and using [33]
and [41] we obtain after some reduction

u
T (yla tl)

=, +22 Kl ) smNye ‘Nt‘/“’S‘G (84} »
n=>0

where

( ﬂN 21
Gy (ty) [cosh( HSI)

2(8, — 2
+ {1 + N (Sz Sl)} sinh (ﬂN fl)] [42]
ﬁN 1

and ay, fv are defined by [28].

To obtain the corresponding result for a
Newtonian fluid it is necessary to put
8, =8, = 01in egs. [19] and [25], and thus
by a similar analysis we obtain

) =y + Z

This solution agrees with that given by
Lamb (1945).

eV [43)

% . 1)
U Y1,

b) Verification of the solution

It is necessary to show that our solution
satisfies the original differential equation,
the initial condition and the boundary con-
ditions. Following Carslaw and Jaeger (1947)
(pages 76, 91) we consider u (y,, t;) given by
eq. [33].

Using [22] we see that the equation for p'zy
given by [11] may be written in the form
[cf. Walters (1960) (1962)]

o\ 0
(1 + ﬂ.lﬁ) Dy = 2 1)y (1 + /lzﬁ) eélz)l.
From [44], [16], and [24], the differential
equation which w (y,, t;) must satisfy is

Ou + 0w 0w _ Ou
oty LotE T Oy * 0t dy?

[44]

[45]

The corresponding boundary and initial
conditions, [15] and [17], should be written

1) The singularities lying on the real axis to the right
of the largest of the {Cy} can be regarded as being
inside I, for the purpose of calculation, since this gives
the same result as evaluating the contributions of a
sequence of small circles formed by surrounding each
singularity separately as shown in fig. 2.

in the form (cf. Carslaw and Jaeger (1947),
page 133, and Doetsch (1961), page 163):

for fixed y; in 0 <y; <1, u—>0 as t;, >0, [46]
for fixed >0, (Peyr—1 as y, > 1

(where (pzy): = paylf) > [47]

for fixed >0, u—>0 as y,—0. [48]

Following Carslaw and Jaeger (1947)

(page 131) we choose a new path of integra-
tion L’ (see fig. 3), which begins at infinity
in the direction args = — @,, where 3 x/4
> @, > n/2, passes to the right of the
origin, keeping all singularities to the left,
and ends in the direction args = @;. It is
possible to define such a curve since the
integrand does not have a sequence of
singularities extending to infinity along a
line parallel to the imaginary axis.

Fig. 3. New path of integration

From [25] and [34] we see that
_[ Wy (4, 8) Slds,

taken over the arcs BB'B”’, A’ A'A of the
circle of radius R, tends to zero as R — oo.
Since there are no singularities between L
and L' we may rewrite our solution [33] as

1 f %y {1+S s}lﬂ sinh g, ¥, Shds |
2x4 ) #2148, cosh ¢,

% (Y1, ) =
[49]

We must now evaluate the order of
magnitude of the integrand in [49]. On L’
we may put s = r; ¢t® when r; > R,, say.
We may assume that

P b,

14+ 8,s=rd? and 1+ Sys=rye
1 2

Having chosen @, we see that @5 > x/2,
provided r; > — sec @,/S,.
Thus, when r; > max (R,, — sec ®,/8S,),

3a/d > D, > Dy, > Dy > 7f2. [50]
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Using [23], [24], we may now write ¢, in
the form
7. = 11 O(ry) e, [561]

where C(r)) = ryfr; and 0y = @, + D, — D,
From [50] we have that & > 0, > #/2 and
obviously C(r,) is always bounded on L'.

If we use eq. [51] together with the in-
equalities

cosha > | cosh (@ + ib)| > sinha,
cosha > |sinh (¢ + ¢b) | > sinha,
we obtain the inequality

_sinh ¢, y;
cosh ¢,

< exp (— (1 — yy) Flry)

. [l + exp(— 2y, F(rl))]
“L 1 —exp(— 2 Fry)

where F(ry) = (r, C(ry) )2 cos %

But 1 <1-+4exp(— 2y, F(ry)) <2 and
1>1—exp(— 2F(r)) >"1,when r, >R,,
say. Thus, on L' we obtain the following
estimate for the integrand of [49]:

laty,, s) et

4 uy C2 exp (¢, ry cos D; — (1 — yy) (Ol r1)Y2 cos %)
< ’

730
[52]

where r;, > R = max (Rl, - »SGLS@L,
C, < C(ry) < Cs. :

Using [52] it is easy to show that we have
the uniform convergence that allows dif-
ferentiation under the integral sign in [49],
for all the derivatives required in [45] when
t, > 0and 0 < g, < 1. It follows immediate-
ly that the differential eq. [45] is satisfied
by % (yy, ;) as given by [49] and therefore
by [33].

We now show that the initial condition [46]
is satisfied. For a fixed ¥, in 0 < %, < 1 the
integral [49] is uniformly convergent for
t,<< 0 and is thus a continuous function of ¢,
in ¢, > 0. Hence,

Rz) and

1 “ Ug {l + 813}1/2 sinh ¢, ¥,

2m¢ ) 2 \1 4+ 8,8 cosh ¢,
Ll

im0 -

But the same integral, taken over the arc
B"B'HAA"” of fig. 3, tends to zero when
7, —> 00. Since there are no poles within the
closed contour of fig. 2, it follows that

limu(y.,8) =0.

{,—0

Lastly, we show that the boundary con-
ditions [47] and [48] are satisfied. We know
that

1 fuo{l—i-sls} cosh ¢ y; Slids
2n1 s |1+ 8, cosh ¢,

L’

ou
e (Y1, t) =

From [52] we see that this integral con-
verges uniformly for fixedt; >0in 0< ;< 1.
It is thus a continuous function of y, in
this interval. Therefore

1 uy (1 + 818) 44,
2nifis“i1+szs}e ds
LI

~ uo{l + (gl - 1) e_t'/S’} when &> 0. [53]

lim (y1 s =

th—1 6

Using this expression for 2 % “ (4 ¥y, 1) it may
1

be shown that the boundary condition [47]
is satisfied.
From eq. [53] we see that

g and lh_r)nooa—(l t,)

) = .

This shows that as f; — oo the velocity
(at y, = 1) approaches that for steady
simple shearing flow, but since —%— (1,0)=10
(Lit,)att, =0

equal to 8 uyfS,. (The corresponding value
for this discontinuity in the Newtonian case
is ).

The phenomenon of a discontinuity in the
rate of strain, without an instantaneous
change in deformation, when a stress is
suddenly applied may well be possible in
some fluids including the Newtonian fluid
[Oldroyd (1965)]. Ting showed that for the
“second-order” fluid of Coleman and Noll

%L(yl, t,) is continuous at ¢ = 0. This was
1
to be expected since Oldroyd (1965) has

already pointed out that the Coleman and
Noll “simple” fluid did not allow for the
possibility of the above phenomenon.

We know that w(y,, t;) is given by [49] for
0 <y, <1. From [52] we see that the
integral in [49] converges uniformly for a
fixed #,(>0) in 0< y < 1. Therefore,
u(y; £;) is a continuous function of y; in
[0,1], and is zero when y; = 0, and so

there is a discontinuity in 5 ou

lim u(y;, t) =0 for afixed t, (> 0).
¥, —0

This completes the verification that «(y,, t,)

is in fact a solution of the differential eq. {45]

with the boundary conditions [47] and [48]

and the initial condition [46].



Waters and King, Unsteady flow of an elastico-viscous liquid

351

¢) Decay of the steady flow

In this section we consider the decay of
the steady state obtained in the previous
section when the tangential surface force
ceases to act. Thus, by assuming a velocity
distribution of the form [14], the initial con-
dition becomes

ugg.n) =12,

O<y<h,
Mo v ’

t< 0.

The boundary conditions may be written as
0,t) =0
(0.9 t>0.
Pay(h, t) =0

The corresponding transformed equation of
motion becomes?)

a*a an, U
—@a+—"—-=0,
a1 No ¥

where ¢* is given by [23],

[54]

subject to the

boundary conditions
@(0.y) =0,
0% [0y —4)
ALy Y A Rt VN
oy &7 e 1%9]

A solution of [54] and [55], in terms of the
dimensionless variables [24] is given by

_ U Y

P U 1+s8 ]1/2 sinh ¢, ¥, )

s §3/2 l—{—éSV]

cosh ¢, (561
The Laplace inversion of [56] is obtained

by a method analogous to that used in the

previous section and the final solution ig

given by

xNb

e

gt Z L - [57]
This solution may be verified by a similar
method to that used in the previous section
2 (b). The corresponding Newtonian solution
is given by

— (1, 1)722 —_~%1nNy1 N [58]

3. Parallel flow through a channel under a
constant pressure gradient

a) Generation of steady flow

We now consider the generation of flow
through a channel, bounded by the fixed
planes y = 0 and y = h;, under a constant

pressure gradient ETZ (= k).

Y Wazn account is taken of the rate of strain for
t < 0 an extra term appears in [12].

D‘ZV1:1+SZN;9

By assuming a velocity distribution and
initial condition of the form [14] and [15],
the relevant equation of motion is

du op

o . apxy
o T T o

oy
subject to the boundary conditions

w(0,1) = u(h,t) =0 (t> 0). [59]

As in the previous problem we use a Laplace
transformation and obtain the transformed
equation of motion,

0% .- kg
—a—y? - u = 0 )’2 . [60]
where ¢% is given by [23], subject to
#(0.y) = @(h,y) =0. [61]

A solution of [60] and [61] in terms of the
dimensionless variables [24] is given by

@, 8 [sinhgiy — sinh ¢, + sinh (g, (1 — yl))
uy 8 sinh ¢,
[62]
kh?
where %, = — e
The singularities of %, (y,, s) ¢’ with

respect to s are given by s = 0 and sinh ¢,
= 0. Thus, in this case, the complete set
of singularities is given by the simple poles
s =0 and s¥ = :—WZ;S,i /ify»‘v, where

>

By, = {(1

and Ny =naxn, n=20,12..

Thus, the arrangement of singularities is
essentially the same as for the previous
problem. We find the inversion of [62] by
choosing a similar contour to fig. 2. The
sequences of semicircles 4 BC and small
circles {Cs} are chosen not to pass through
any of the singularities, and thus we obtain
after some reduction?)

+ 8y NYJE— 48, Ny
[63]

K2
g U101 [64]

a Nl

S G

= — 4y (y, — 1) — 32 z
n=1
where N=(2n — 1) x.
The justification of this solution can be
carried out by a method similar to that in
2(b). The corresponding Newtonian solution
is
& sin Ny, Nt

1) 32 5

u
%’(}‘(ynh):'—‘iyl(?]l“ o

[65]
[ef. Bromwich (1930)].

?) N, even gives a zero residue.
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b) Decay of the steady flow

As in the first problem we now consider
the decay of the steady flow that has been
produced by the constant pressure gradient
when the pressure gradient ceases to act.

We assume a velocity distribution of the
form [14] and the initial condition is then
given by

u(y’t)::%(y_h) O<y<h, t<0.

The boundary conditions are given by [59].
The transformed equation of motion is

Pu 2 = ¢ky Pk (A~ )
— Y g —p) 4 L V")
g~ 2770?( )+ ey (L+ 174
[66]
subject to
@(0,y) =ulhy)=0. [67]

A solution of [66] and [67] in terms of the
dimensionless variables [24] is given by

W, _ —8 [?/1(?/1_ b
U, 8 2 .

L {sinh ¢, — sinh g, y, + sinh (¢,(y — l))}]
ssinh ¢, ’

On inversion, by a similar method to 2(a),
we obtain the solution

oo . N ah
u sSin 98,

— () =32 T e P oay), 8]
%o n=1

with N = (2% — 1)z, which can also be
verified in a manner similar to 2(b). The
corresponding Newtonian solution is

m > sinNy1 —N2t,
”u—(?h,tl):Szz N3 ¢
o 1

n=

[69]

4. Conclusions

As expected, the presence of elasticity
does not affect the terminal velocity profiles,
which are the same as for a Newtonian fluid.
Fig. 4 and 5 show the effect of §; and S, for
the generation of flow due to a constant
tangential force. Fig. 6 shows the velocity
at y; = 1 for a fixed value of S; and various
values of S, The corresponding decay

curves are shown in figs. 7, 8 and 9. A
similar set of figures for the generation and
decay of flow in a channel due to a constant
pressure gradient is given in figs. 10 to 15.
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From fig. 4 it may be observed that, for
small time, the effect of a relatively small
amount of elasticity tends to increase the
velocity of the fluid near y;, = 1, but de-

crease it near y, = 0. For larger time the
effect of elasticity is to increase the velocity
for all y;, until the terminal velocity is
reached. The effect of a small amount of
elasticity on the decay of the flow when the
tangential force ceases to act (fig. 7) is seen,
for small time, to decrease the velocity more
quickly near y, = 1 and more slowly near
y, = 0. For larger time the effect of elasticity
18 to decrease the velocity for all y, before
decaying to zero.

The effect of a similarly small amount of
elasticity on the generation of flow through
a channel under a constant pressure gradient
is seen to increase the velocity for all ¢, and
t; (fig. 10), and when the pressure gradient
ceases to act the resulting decay of the
steady flow is accelerated by the presence
of the small amount of elasticity (fig. 13).

It is of interest to note that in both the
“generation of flow”” and “decay’ problems
the effect of a larger amount of elasticity is
such that the velocity profiles overshoot the
terminal velocity before eventually tending
to it with increasing time (figs. 5, 11, 8, 14).
In fact, when the velocities are plotted
against time for a particular y, it is found
that the velocity oscillates about the terminal
velocity before tending to that terminal
velocity for sufficiently large time (figs. 6, 9,
12, 15). In all cases increasing S, for a
particular value of §; tends to dampen the
oscillation.

The oscillatory behaviour of viscoelastic
liquids in unsteady flow problems has been
noted before, theoretically by Fielder and
Thomas (1967) and experimentally by Hermes
and Fredrickson (1967).

The four problems considered in this paper
could be very easily set up experimentally
and so conceivably may be of some use in
determining S§; and 8, for specific liquids.
It may be more convenient, experimentally,
to consider the velocity development (or
degeneration to, for the decay) from a slower
but steady state instead of from rest. The
above analysis may be easily adapted in this
case.

The more difficult problems of the genera-
tion and decay of steady flows in a pipe of
circular cross-section, which may be more
easily set up experimentally, are at present
under consideration.
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Summary

Consideration is given to the reasons why the Cole-
man and Noll second order fluids are unsuitable for use
in the solution of unsteady flow problems for elastico-
viscous liquids, especially when Lapluce transforms are
used. A number of unsteady flow problems are then
solved using a constitutive equation of the ,,integral”
type. The presence of elasticity in the liquid is shown
to have quite a dramatic effect on the velocity pro-
files.

Zusammenfassung

Es werden die Grinde betrachtet. aus denen die
Coleman- und Noll-Flissigkeiten nicht geeignet sind, um
Probleme der instationdren Stromung elastoviskoser
Flussigkeiten zu losen, besonders wenn Laplace-Trans-
formationen benutzt werden. Einige Probleme des in-
stationdren Flieflens werden dann mit Hilfe einer Zu-
standsgleichung vom Integraltyp gelost. Es wird ab-
schlieBend gezeigt. daB eine in der Flussigkeit vorhan-
dene Elastizitat einen starken EinfluBl auf die Geschwin-
digkeitsprofile hat.
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A theoretical study on fiber spinnability

By C. D. Hun

With 6 figures

1. Introduction

In preparing polymer solutions or melts for
manufacturing synthetic fibers, one of the
fundamental questions one faces is the
criterion for spinnability. It is commonly
understood that only a certain class of
liquids is spinnable under the set of spinning
conditions. Tt is also possible that the liquid
which is spinnable at one set of spinning
conditions may not be spinnable at another
set of spinning conditions. It is generally
known that spinnability depends, among
many other things, on (a) the rheological
properties of liquids to be spun, (b) jet
stretch, (¢) the hole size and shape, and (d)
the rate of mass and heat transfer between
the extruded filament and the coagulation
medium (in the case of wet spinning) or the
cooling medium (in the case of melt spinning).
Here jet stretch is defined by the ratio of the

(Received August 2, 1969)

velocity of the filament at the take-up device
to the average velocity of the spinning
solution at the exit of a spinnerette hole.

Nitschmann and Schrade (24) appear to be
the first who attempted to explain the
problem of spinnability in terms of material
properties. T'hiele and Lamp (37) investigated
the technique of measuring spinnability by
devising a suitable apparatus and determined
the spinnability of colloidal solutions by
means of high speed photography. And in
their later study (38) the same authors
reported that maximum spinnability was
obtained at intermediate values of viscosity
and elasticity.

Today it is generally accepted, from
practical industrial experience, that almost
all spinnable liguids being used for manu-
facturing synthetic fibers exhibit normal
stress effect, i. e., elastic effect. Very recently,

24



