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Unsteady flow of an elastico-viscous liquid 
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1. Discussion 

Ting (1963) has considered certain non- 
steady flow problems for the "second order" 
fluid of Coleman and Noll (1960). He found 
that  bounded solutions could not be obtained 
to the problems he attempted in the cases of 
"physical interest". In this paper considera- 
tion is given to the difficulty encountered 
by Ting. I t  is concluded that  the second and 
third order approximations of Coleman and 
Nolls "simple fluid" are unsuitable for use 
in unsteady flow problems when a Laplace 
Transform technique is used in their solution. 
I t  is shown that  bounded solutions to pro- 
blems considered by Ting can be obtained 
for other equations of state. 

The equations of state of Coleman and 
NolIs "simple fluid" are 

T = --_p I + T' [1] 

t 
7" F [@(t')], [2] 

- - c o  

where T is the stress tensor, I the substitution 
tensor, p an arbitrary isotropie pressure, F 
a tensor valued functional and Ct is the 
history of the right Cauehy-Green tensor. 

The first approximation used in the 
reduction of [2] into a manageable form is 
the assumption that  the fluid has a fading 
memory. This essentially enables us to write 
[2] as  

T' =/(A)(g,  A(2) . . . . .  A(n)) , [3] 

where / is a function and the A(n) are related 
to the successive rate-of-strain tensors el. ~) 
by 

A (n) = 2 e (n) 
i k "  

Thus, we can write 

A(n) = i ~  Ct(t')]t,= t �9 [4] 

The second approximation used is the as- 
sumption tha t  the fluid flows slowly and so 

figures 
( R e c e i v e d  J u l y  24, 1969) 

many of the A('Ws (which involve powers of 
the velocity) can be neglected. In this way, 
it is possible to obtain Coleman and Nolls 
"third-order" fluid and their "second-order" 
fluid, which was used by Ting (1963). 

The "second-order" fluid has equations 
of state 

T = - -  p I + a~ A(1) + •2 A(2) + aa  A 0 )  2 �9 [5] 

Ping found that  he could obtain bounded 
solutions only when ~1 > 0 and ~2 > 0. This 
is contrary to the findings of Coleman who 
insists tha t  ~2 < 0. 

In unsteady flow problems, the time 
dependence is often separated from the 
differential equations by the use of Laplace 
transforms. Essentially, this technique re- 
places all time derivatives by a parameter y, 
which can take values from minus infinity to 
plus infinity. Thus, terms like [4], occurring 
in the equations of motion via the stress 
tensor, yield terms of the form 

: Ot (r), [61 

where Ct (y) is the Laplace transform of Ct (t). 
The assumption of slow flow is no longer 
strong enough to neglect such terms as these, 
since ~ can be infinitely large. 

Truesdell (1964) and Wang (1965) have 
shown that  the "second- and third-order" 
equations of state can represent slightly 
elastic liquids in situations in which the 
motion is not necessarily slow. However, 
this is possible only because the "slow flow" 
approximation is replaced by the assumption 
that  the constants involved are small. When 
Laplace transforms are used, approximations 
involving the smallness of the constants 
cannot be used for the same reasons as 
above. 

Hermes and Fredric]cson (1967) have al- 
ready questioned the validity of the "order" 
equations of state. They state that  the 
assumptions made to obtain the "order" 
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equations of state are probably not valid 
when the kinematic state of the material 
particle undergoes rapid changes. 

I t  is concluded that  the "second- and 
third-order" equations of state are unsuitable 
for use in unsteady flow problems, especially 
when Laplace transforms are used. 

In this paper, we investigate some of the 
unsteady flow problems considered by Ting 
(1963) in the light of the previous discussion. 
We characterize the elastico-viscous liquid 
by equations of state of the form 

Pik  ~ - -  P gik + P'ik , [7] 
t 

f Oxi OXlC e ( 1 ) m r  p ' i k  = 2 ~t](t --  t') Ox, m Ox, r (x', t') dt', 
_ ~ [8] 
c,~ y( t - t ' )  

N(~) e ~ d~, [9] ~ ( t - t ' ) = j  T 
0 

where the displacement functions 
x ' i  ~ x ' i (x ,  t, t') 

represent the position at time t' of the 
element which is instantaneously at the 
point x ~ at time t, p is an arbitrary isotropie 

(1) pressure, P~k is the stress tensor, e~k is the 
rate-of-strain tensor and N(v) is a distribu- 
tion flmction of relaxation times ~. The 
elastico-viseous liquid represented by [7], 
[8], and [9] is known as liquid B' (Walters 
1962). 

We shall make use of the Laplace trans- 
formation. I f  ~ is the Laplace transform of 
any quanti ty ~b then 

co 

= ~ qb(t) e - r t  d t .  [10] 
0 

In order to obtain the Laplace trans- 
formation of the equations of state [7]-[9], 
it is first noted that  for those problems in 
which the rate of strain is zero for t < 0 (i. e. 
"generation" problems) eq. [8] can effectively 
be written as (cf. Thomas and Walters, 1966) 

f Ox i Ox k p, ik ~ 2 t ~tt(t -- t') ~x,m Ox, r e(1)mr(x ', t') dt', [11] 
0 

where it is assumed that  there is no dis- 
continuity in the strain at t ---- 0. 

I f  use is now made of Duhamels theorem 
[see, for example, Carslaw and Jaeger (1948) 
and Thomas and Walters (1966)] the trans- 
form of the equation of state given by [11] 
relevant to the following problems is 

oo 

. . . .  <~)( N(r) d~. J ~  2 e x Y .  1 + y T  [12] 

0 

The reason why Ting could not obtain 
bounded solutions to the problems he con- 
sidered is that  in using the "second-order" 
fluid he assumed implicity that  the integral 
in [12] can be written as 

oo 

N(T) [1 --  r T] dr ,  [13] 
0 

which is not valid even for liquids with short 
relaxation times (Thomas and Walters, 1966). 

2. F l o w  caused by a tangent ia l  surface force 

a) Generation o/ [tow 

Fielder and Thomas (1967) have obtained 
a solution for the unsteady motion of a 
lamina starting from rest in a viscoelastic 
liquid under the influence of a constant 
force. They found only the velocity of the 
lamina, and did not consider the velocity 
profiles of the liquid. 

We shall consider the generation of flow 
in a viscoelastic fluid (at rest at time t ~ 0), 
contained between the planes y = 0 and 
y z h, caused by a constant force (/, 0, 0) 
acting on the face y ~ h of the liquid for 
time t /> 0. 

All quantities are referred to the cartesian 
frame of reference (x, y, z). 

I f  we assume a velocity distribution of 
the form 

(u(y, t), O, O) O <  y < h ,  t > O, [14] 

the initial condition is given by 
u(y, O) ~ O , O <  y <  h ,  [15] 

and the equation of continuity is automatic- 
ally satisfied. 

The equations of motion in the absence of 
a pressure gradient reduce to 

Ou Opxu 
- ~ - ( y , t ) : ~ y y ,  [16] 

where Q is the density of the fluid. The 
appropriate boundary conditions may be 
written in the form 

u ( O , t ) = O  t >  O, 

p~y(h , t )=/  t>  0, [17] 

where / is a constant. 
By using [12] the transformed equation 

of motion [16] becomes 
a~2 
Oy ~ = q ~ ,  [18] 

where 

0 

[19] 
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subject, to the  b o u n d a r y  conditions 

~(0, ~,) 0, [203 

Oy (h, ~,) = o o  

f N(T) d, 7 l + y ~  
o 

A solution of  [18] and  [20] is given b y  

~7(y, y) - -  / q sinh q y [21l 
7, 2 eosh q h 

I t  is now convenient  to in t roduce an ex- 
pression for the  re laxa t ion  spec t rum N(~) in 
t e rms  of a l imit ing viscosi ty  a t  small  ra tes  
of  shear  0lo), a r e t a rda t ion  t ime  (22)' and  a 
re laxa t ion  t ime  (21) , i. e. 1) 

N(~) = ,~0 -~ ~(~) + ,~o ( ~  ~1 ~2) ~(~ _ ~ ) ,  [22] 

where 21 > ~ > 0, which reduces liquid B '  
to Oldroyds l iquid B [Oldroyd (1950), Walters 
(}962)]. 

Using (22) and  (19) we see t h a t  

q2 ~ y (1 + y ;ti) [23] 
?70( 1 + Y~2) 

I f  we now non-dimensionMize in the  follow- 
ing manne r  

h 2 % 2~ '1o ~2 ?]o t 
s =  y ,  S ~ - -  h~ , S 2 -  h~ , t ~  ha , 

y / h  s(1 + S~s) 
Y~ ~ ,  U0 = - - ,  ql 2 -  

r~o (l + S~ s) 
co 

~1 f U (tl) e- s t~ dt~ , [24] 
o 

eq. [21] on using [23] becomes 

@.l(Yt, S)--- U(~l I1--}--S18/1/2 s i nhq lY l  [25] 
s 2/2 [1 + 82 s /  eoshq~ 

Before eva lua t ing  the  Laplace inversion 
of gl ,  i t  is necessary  to give some con- 
s iderat ion to the singularit ies of  'gl wi th  
respect  to s. These singularit ies are the  zeros 
of  s { s ( l  q - S ~ s ) } l i 2 c o s h q i .  Thus,  the  com- 
plete set of  singularit ies is given b3 s = O, 
and  those given b y  

i.e. 2) 

ql n +  ~ i ,  n 0,1,~,~ . . . ,  [26] 

szr = - ,  [27] 
2 St 

N = (2 n + 1) ~/2, 

1) d (x) is the  Dirae del ta  funct ion defined by  d (x) ~ 0,  
oo c~ 

x--b-0, and  f d(x) d x =  f S(x) d x =  1.  
- - o o  0 

2) The singularities of  g~(s, y~) e st~ given by  [27] are 
simple poles if fliV --t = 0 and  double poles if fin = 0. 

where 

a~v- -  1 + S 2 N  2 a n d f l N - ( ( 1 T S 2 N 2 )  e - 4 S ~ N 2 }  ~-~. 

[2s] 

Since S 2 > 0 (eq. [22]) it is obvious t h a t  all 
the  singulari t ies lie in t h a t  p a r t  of  the  
complex  plane for which Re s < 0, excep t  
for the  s ingular i ty  a t  s = 0. 

I n  order  t h a t  we m a y  ascer ta in  the  
posi t ions of  the  singularit ies we consider the  
funct ion 

B ( m ) ~ ( 1  + 82m) 2 - 4 8  l m .  [29] 

Solutions of  B(m)  --~ 0 are 

(2 S 1 - -  S2) -~- 2 g l . ~ l ( S '  1 - -  S2) -  
? # l  I ~ K~22 

and  
(2  S 1 - -  k~2) - -  2 ] / S  1 (L~ 1 S2)  

m 2 = 822 [30] 

B y  considering the  funct ion B (m) and  A ('m) 
= 1 -~ Sere with  the i r  der iva t ives  and  using 
the  fac t  t h a t  S~ > S~ > 0, we are able to 
m a k e  the  following observa t ions  concerning 
the  d is t r ibut ion  of the  singularit ies 

+ - -  aN ~- fiN and s~ -- aN -- fliV [31] 
sN - -  2 S~ 2 S 1 

For  m.~ < N 2 <  'm I the  singularit ies are 
conjugate  poin t  pairs  abou t  points  on t h a t  
por t ion  of the  real nega t ive  axis be tween  P1 
and  P o where 

, ,  ..... _L I1 
/ / - -  

s~ 
$2 V S,  

Po - - - - -  1 - -  1 - -  
" $2  $1 

[32] 

B y  considering those values  of  N 2 for 
which aN is real  (i. e. B ( m )  > 0, see fig. 1) 
we see t h a t  

(i) for N 2 < m  e, 

s + decreases wi th  increasing N 2 and  

P2 < s +  < 0 

a n d  s~ increases wi th  increasing N 2 and  
1 

- S t  < s ~  < P2; 

(ii) for N 2 >  ml, 

s + increases wi th  increasing N 2 and  
1 

P1 < s+ < 
$2 

and  s~ decreases wi th  increasing N ~ and  
s~ < P1. 

I t  should be no ted  t h a t  s + has  a l imit  
1 

point  a t  - ~ and  s~ has  one a t  - Q0. 
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Blm). 

Fig. 1 The variation in sign of B(m) (eq. [29]). 

The  a r rangement  of singularities is illus- 
t r a t ed  in fig. 2. 

x. denotes oN-, 

. denotes oN+ ~ u h 

B H 

Fig. 2 Contour of integration and the distribution of 
singularities 

We ma y  now proceed to  evaluate  the 
complex inversion integral  

a+icr ' f  u(yl ' t l)  = 2 ~ i  ~,l(yz, s) eSflds (a> 0) [33] 

by  means of  Cauchys Residue theorem. To 
this end we define a contour/~,  A B C D E F G H  
in the direct ion indicated by  the  arrows in 
fig. 2. The curves represented by  A B C  m a y  
be considered as a sequence of  semicircles 
which do no t  pass th rough  any  of  the  
singularities. I f  we represent  ABC by  s 
= R d ~  ~ < 0 < n , R  > R o )  t h e n t h e i n -  
tegral  a round  A B C  will vanish as R - +  c~ 
prov ided  t > 0 and 

I 'u'l (Yl, s) [ < constant. R-//, [34] 

where R 0 and  z are constants  such t ha t  
~: > O. [Carslaw and Jaeger (1947)]. 

Since Yl ~< 1 i t  is obvious t ha t  

sinh ql Y~ is finite, [35] 
cosh q~ 

prov ided  cosh ql # 0, which is t rue  excep t  
a t  the singularities. 

Similarly 

1 + S1 s 1/2 1 
I + S  2 s is bounded, provided s # - - ~ [ .  [36] 

Thus,  f rom eq. [25], we see tha t  

constant 
I u l ( y i ,  S) l < R21~ 

and the condit ion (34) is satisfied. 
We now construct  a sequence of  circles 

{Cj}  [cf. T i n g  (1963), see fig. 2] whose radii 
decrease as J increases, a round the limit 

p o i n t ( s - -  ~- ) such t h a t  

l im  ~ u l ( y l ,  s) e stlds = O. [37] 
J-*co Cj 

1 
The singularities just  to  the left  of  s --  

$2 
are given b y  s +,  where N ~ (2 n ~ l )~ /2  
and ~V ~ > m 1 . We thus  define {C j }  to be a 

1 
sequence of circles with centres a t  s - -  S~ 
which pass th rough  the points sj  +, where 
J = n ~ ,  and  J > J ' .  J '  being such t h a t  
the  largest circle C j ,  does no,t contain any  

1 
of the singularities to  the r ight  of  s --  S~ 
nor  any  singularities with a non-zero imagi- 
n a ry  part .  Thus,  f rom fig. 2, we see t h a t  the 
circles ( C j } ,  J > J ,  do no t  pass through 
any  of  the  singularities. 

The radii  sg o f { C  j}  are given b y  

1 + $2 J ~ - -  ((1 + ~2J~)~--4S1JO) 1/2 1 [38] t~J ~ 2 S 1 ~q2 

and thus  lim ea = O. 
J -+  co 

On the circles {Ca} ,  

1 ei0 ( s T ~ : e j  - - n  <~ 0 <~z) 

and 
ds e i o 
dO -- i e,s �9 [39] 

Using [35], [36], [39], and [25] together  with 
the fact  that. the. { C j )  do. no t  pass through 
any  singularities we obta in  

f fh(Y,  s) e st' ds 
Cj 

ej1/2 f c o n s t a n t  e I s I 

< i sl~l~ 

tt  
dO 

[40] 

F r o m  [38] and  [40] we see t h a t  

J~ra j" ~(y~, s) e s~ ds = O. 
cj  
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I f  we now apply  Cauchys residue theorem 
to the contour  P we obtain1), as J -§ co and 
R -> oo, 

i ~+i~ 
2 ~ i  ; /t1(Y1,8) e st 'd8 

(~-- ioo 
the sum of all the residues of ~1 (Yl, 8) e s t~ in F .  [41] 

B y  calculating the residues and using [33] 
and [41] we obtain af ter  some reduct ion 

U 
~ ( Y l ,  t l )  

: Yl + 2 
(-- 

N~ sin N Yl e- ~hv td" s, GN (h ) ,  
1)n + 1 

where 

GN (tl) = [cosh { fin tl 
\ 2 S  1 ] 

+ {i + N 2 ( $ 2 -  2SJ} sinh (flNh]] 
fN \ 2 S 1 ]] [42] 

and ~N, fin are defined by  [28]. 
To obtain the corresponding result  for a 

Newtonian  fluid i t  is necessary to pu t  
S 1 = S 2 : 0 in eqs. [19] and [25], and thus  
by  a similar analysis we obta in  

co 
U (Yl. tl) =Yz  + 2 ~  (- ])n+z u~ n=0 N sin N y  1 e -N~t t .  [43] 

This solution agrees with t ha t  given by  
Lamb (1945). 

b) Verification o~ the solution 

I t  is necessary to show t h a t  our solution 
satisfies the original differential equation,  
the initial condit ion and the bounda ry  con- 
ditions. Following Carslaw and  Jaeger (1947) 
(pages 76, 91) we consider u (Yl, tl) given by  
eq. [33]. 

Using [22] we see t ha t  the equa t ion  for P'xu 
given by  [11] may  be wr i t ten  in the form 
[cf. Walters (1960) (1962)] 

(1-~ ~1~)~)xy ~ 2 ?]0 (1 "~ ~2~t )e(xl). [44] 

From [44], [16], and [24], the  differential 
equat ion  which u (Yl, t J  mus t  satisfy is 

Ou S O~u a2u 03u [45] Otl + 1 ~  : ~ + S~ Ot Oy~ " 

The corresponding bounda ry  and initial 
conditions, [15] and  [17], should be wri t ten  

1) The singularities lying on the real axis to the right 
of the largest of the {C j )  can be regarded as being 
inside F, for the purpose of calculation, since this gives 
the same result as evaluating the contributions of a 
sequence of small circles formed by surrounding each 
singularity separately as shown in fig. 2. 

in the form (cf. Carslaw and Jaeger (1947), 
page 133, and Doetsch (1961), page 163): 

for f ixedyl  in 0 < Yl < 1, u - ~ 0  as t 1 - ~ 0 ,  [46] 

for fixed t 1>  0, ( P x y ) l - + l  as Y l - ~ I  
(where (Pzy)I = Pxy//) , [47] 

for fixed t 1 >  0, u - + 0  as Y l - ~ 0 .  [48] 

Following Carslaw and Jaeger (1947) 
(page 131) we choose a new pa th  of integra- 
t ion L'  (see fig. 3), which begins a t  infinity 
in the  direct ion arg s = - ~ 1 ,  where 3 z/4 
> r > n/2, passes to the  r ight  of the 
origin, keeping all singularities to the  left, 
and ends in the direction arg s = ~b~. I t  is 
possible to define such a curve since the 
in tegrand does not  have a sequence of 
singularities extending to infinity along a 
line parallel to the imaginary  axis. 

[l. H. 

Fig. 3. 1New path of integration 

F r o m  [25] and [34] we see t h a t  

; ul (Yl, s) e "~ tl d s ,  

t aken  over  the  arcs B B ' B " ,  A " A ' A  of the  
circle of radius R, tends  to zero as R ~-~ co. 
Since there  are no singularities be tween L 
and L'  we m a y  rewri te  our solution [33] as 

l f uo t l  + t,~1811/2 sinhqxYl eShd8 .  
u (yl, tl) = ~ - ~  t ~ J  cosh ql 

L, [49] 

We must  now evaluate  the order  of  
magni tude  of the  in tegrand in [49]. On L'  
we m a y  p u t  s = h e~r when r I > R1, say. 
We m a y  assume th a t  

1 + S 1 s - -  r2 e i % and 1 + S~ 8 = ra e i qv~ . 

Having  chosen (~1 w e  see t h a t  q)a > n/2, 
p rovided  r 1 > - sec dPl/S 2. 

Thus,  when h > max  (R1, - sec ~I/SJ ,  

3 z~/4 > q~l > q)2 > ~ba > zl/2. [50] 
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Using [23], [24], we may  now write ql in 
the form 

qi~ = r z C(r:) e iO~ , [51] 

where C (r:) = r~/r a and  00 = ~: § Ce - q)a. 
F rom [50] we have  t ha t  ~ > 00 > ~r/2 and 
obviously C(r~) is always bounded  on L' .  

I f  we use eq. [51] together  with the in- 
equalities 

cosha> ]cosh(a+ ib)] > sinha. 

cosha> Isinh(a+ ib) l > sinha, 

we obtain the inequal i ty  

sinh q~ y~ < 
cosh q: 

exp (-- (1 -- y:) F(r:)) 

1 + exp !~ 2y~ F(r:))] 
1 -- exp (-- 2 F(r:)) ] ' 

where F(r:)  = (r 1 C(r:)) 1/~ cos 0o 

Bu t  1 < 1 @ exp ( -  2 y: F(r~)) < 2 and 
1 > 1 - exp ( -  2 F(r:)  ) > 1/~ when r: >R~,  
say. Thus,  on L'  we obtain the following 
est imate  for the in tegrand of  [49]: 

4 u o C 1 / ~ e x p ( t : r : c o s q b ~ - - ( 1  - y l ) ( C l r l ) l / ~ c o s ~ )  
< 

r13/2 
[52] 

( sec~: R2) and w h e r e r : > R  0 = m a x  R1, S~ ' 
C 1 < C(r:) < C2. 

Using [52] it  is easy to show tha t  we have 
the uniform convergence t h a t  allows dif- 
ferent ia t ion under  the  integral  sign in [49], 
for all the  derivat ives required in [45] when 
t I > 0 and 0 < y~ < 1. I t  follows immediate-  
ly t ha t  the differential eq. [45] is satisfied 
by  u(y: ,  tl) as given by  [49] and therefore 
by  [33]. 

We now show tha t  the  initial condit ion [46] 
is satisfied. For  a fixed Yl in 0 < y: < 1 the 
integral  [49] is uni formly  convergent  for 
t 1 < 0 and is thus  a cont inuous funct ion of t: 
in t: /> 0. Hence,  

lim u(y l ,  t,) l ( uo t l  + Slst:/~ sinh q~ y: ds. 

/,, 

Bu t  the  same integral,  t aken  over  the arc 
B " B ' H A A "  of  fig. 3, tends to  zero when 
r I -~ c~. Since there  are no poles within the  
closed contour  of  fig. 2, it follows t ha t  

lim u(y:, t:) = O . 
t~--~0 

Last ly ,  we show th a t  the  boundary  con- 
ditions [47] and  [48] are satisfied. We know 
tha t  

au 1 ~ u0 l1 + S:s 1 eoshq:yl eSt~ds 
~ y ~  ( y .  t~) = 2 ~ i  j - -  s (1-+~js)  coshq: 

L' 

F r o m  [52] we see t h a t  this integral con- 
verges uni formly  for fixed t 1 > 0 in 0 ~< Y: <~ 1. 
I t  is thus  a cont inuous funct ion of Y: in 
this interval.  Therefore  

aU 1(U0[1~-$18 I lira ~ (y,, tl) yl----~l Oy 1 2z~i J S (1 + SssJ est:ds 

= % { 1 +  ( S ~ -  1)e  -t'/S~} when t l > O � 9  [53] 

Ou 
Using this expression for ~ (Y:, tl) it  m ay  

be shown th a t  the boundary  condit ion [47] 
is satisfied�9 

F r o m  eq. [53] we see t h a t  

0u 1 S~ u0 au lim - -  ( , t:) = and lira "W-- (1, tl) ~ "/t0�9 
t:--->O + ~Yl ~ tl -->c~ OYl 

This shows t h a t  as t I -+ c~ the veloci ty  
(at Y: = 1) approaches t h a t  for s teady 

�9 . . ~ 
rumple shearing flow, bu t  since -~-- (1, 0) = 0 

Ou ~ 
there  is a discont inui ty  in ~ (1, t:) a t  t 1 = 0 

equal  to S 1 Uo[S 2. (The corresponding value 
for this discont inui ty  in the Newtonian  case 
is %). 

The phenomenon  of a discont inui ty  in the 
ra te  of  strain, wi thout  an ins tantaneous  
change in deformation,  when a stress is 
suddenly  applied m a y  well be possible in 
some fluids including the Newtonian  fluid 
[Oldroyd (1965)]. T i n g  showed tha t  for the 
"second-order"  fluid of  Coleman and  Nol l  
Ou 
ayx (Yl, tl) is continuous at  t 1 = 0. This was 

to be expected  since Oldroyd (1965) has 
a l ready pointed  out  t ha t  the  Coleman and 
Noll  "s imple"  fluid did not  allow for the 
possibility of the above phenomenon.  
We know th a t  n ( y l ,  tl) is g i v e n ' b y  [49] for 
0 < y :  < 1. F r o m  [52] we see t h a t  the 
integral  in [49] converges uni formly  for a 
fixed t~(>  0) in 0 ~< Yl ~< 1. Therefore,  
u ( y  1 tl) is a cont inuous funct ion of  Y: in 
[0,1], and is zero when Y: = 0, and so 

lira u(y~, t l )  ~ 0 for a fixed t: (> 0) . 
yl--> 0 

This completes the verification tha t  u (Y:, t:) 
is in fact  a solution of the differential eq. [45] 
with the bounda ry  conditions [47] and  [48] 
and the  initial condit ion [46]. 
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c) Decay o~ the steady flow 
In  this section we consider the decay of 

the s teady state  obta ined  in the previous 
section when the tangent ia l  surface force 
ceases to act. Thus,  by  assuming a veloci ty  
dis tr ibut ion of the form [14], the initial con- 
dit ion becomes 

u ( y . t ) =  ] Y  , O <  y <  h ,  t <~ 0 .  
tlo 

The bo tmdary  conditions may  be wr i t ten  as 

u ( 0 ,  t ) = : }  t >  0 .  
P~u (h, t) = 

The corresponding t rans formed equat ion of 
motion becomes 1) 

a~2 / Y q~ 
OY ~ q2 gt + - = 0 ,  [54] 

~lo 7 

where q~ is given by  [23], subject  to the 
boundary  conditions 

a(0. r) = o ,  

aa /(& - ,,) 
a~- (h, 7) - [55] 

*]o( 1 + 7 '~2) " 

A solution of [54] and [55], in terms of the 
dimensionless variables [24] is given by  

51-  u~  uo l[ §  s i n h q l y ~  [56] 
s ~a2 (1 + ~'S 2J coshq,  

The Laplace inversion of [56] is obta ined 
by  a method  analogous to tha t  used in the 
previous section and the final solution is 
given by  

Nt~ 
u ~ ( - -  l ) n s i n  NYl  28, 
u ~ ( y I ' t l )  = 2 ~  N2 c GN(tl). [57] 

n,=0 

This solution may  be verified by  a similar 
me thod  to tha t  used in the previous section 
2 (b). The corresponding Newtonian  solution 
is given by  

'/tO n ~ 0  

3. Paral lel  f low through a channel  under a 
constant  pressure gradient 

a) Generation o/steady flow 
We now consider the generat ion of flow 

through ~ channel, bounded by  the fixed 
planes y 0 and y = hi, under  a constant  

ap ~) pressure gradient  ~xx(---- . 

1) W h e n  account  is t a k e n  of the  ra te  of s t ra in  for 
t < 0 an  ex t r a  t e rm  appears  in  [121. 

By  assuming a veloci ty  dis tr ibut ion and 
initial condit ion of the form [14] and [15], 
the re levant  equat ion of  motion is 

au _ ap ap.~ 
0 at am + ay ' 

subject  to the bounda ry  conditions 

u(O, t) ~ u(h, t) = 0 (t > 0). [59] 

As in the previous problem we use a Laplace 
t ransformat ion  and obtain the t rans formed 
equat ion of motion,  

a~ k q2 
ay ~ q~ ft - ~ ),2 , [60] 

where q2 is given by  [23], subject  to 

a(0, 7) = a(~, ~,) = 0. [61] 

A solution of  [60] and [61] in te rms of the 
dimensionless variables [24] is given by  

u'l __ 8 I s inh ql Yl - -  s inh gl + s inh (q~(1 - -  y,))} 
uo s2 / s inh qa I ' 

[62] 
k h ~ 

where u o ~ - ~8 *~o 

The singularities of ~1(Yl, s) e '~t~ with 
respect  to s are given b y  s = 0 and sinh ql 
----0. Thus,  in this case, the complete set 
of singularities is given by  the simple poles 

s =  0 and s • -- - ~  • where 
N1 2 S 1 ' 

~ N , =  1 + S v t  f lN~= {(l + , 9 3 N ~ )  2 - - 4 6 ' 1 N 1 }  1/2 2XV2~ 
[6"~] 

and N 1 =  n n ,  n =  0, t, 2 . . .  
Thus,  the a r rangement  of singularities is 
essentially the same as for the previous 
problem. We find the inversion of [62] b y  
choosing a similar contour  to fig. 2. The  
sequences of semicircles ABC and small 
circles {C j} are chosen not  to pass th rough  
any  of thes ingular i t i es ,  and thus  we obta in  
af ter  some reduct ion 2) 

U 
u~ (Ya, 11) [64] 

~ s i n  N Yl 2 $1 
- -  4 yl(ya - -  1) - -  32 N~ e GN(t,) ,  

w h e r e N : ( 2 n -  l) z .  
The  justification of this solution can be 

carried out  by  a me thod  similar to  t h a t  in 
2 (b). The corresponding Newtonian  solution 
is 

u ~ sin N y~ 
-.tto (Yl ,  /1) . . . .  4 Yl(Y~ - -  1) 3 2 / ,  - - N a  e -N2q 

[65] 
[cf. Bromwich (1930)]. 

~) N1 even  gives a zero residue. 
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b) Decay o/the steady flow 
As in the  first problem we now consider 

the decay  of the s teady  flow tha t  has been 
produced by  the constant  pressure gradient  
when the  pressure gradient  ceases to act. 

We assume a veloci ty  dis tr ibut ion of the 
form [14] and the initial condit ion is t hen  
given by  

/cy 
u(y , t )  = : - ~ o  ( y - -  h ) 0 < y < h ,  t ~ < 0 .  

The  boundary  conditions are given by  [59]. 
The t ransformed equat ion of  mot ion is 

O~u q~ k y q~ k (~tl - -  2~) 
ay 2 q~ 5 + ~ (y --  h) + Q Y (1  + r 2~ - -  0 ,  

[66] 

subject  t o  

a(0, r) = a(h, r) = o. [67] 

curves are shown in figs. 7, 8 and  9. A 
similar set of  figures for the generat ion and 
decay  of  flow in a channel  due to a constant  
pressure gradient  is given in figs. 10 to 15. 

l'Ov Jo). Ib). (c). Id). le]. 

o,t/ji/. 9 

g o J5 iJo. 
u (y,,t,)/0,. 

Fig. 4 

A solution of  [66] and [67] in terms of the 
dimensionless variables [24] is given by  

ft 1 _ - - 8  [.YI(Y~-- 1) 
"l~ o 8 

+ {sinh q z -  sinh q~y~s sinh +q~sinh (q~(y -- 1))}] . 

On inversion, by  a similar me thod  to 2(a), 
we obta in  the  solution 

oc Ng* 
o o  . 

u (yl, t 1 ) = 3 2  ~, s l nNy l  2S~ ~-~ z, ~ -  e a~v(tl), [68] 

0 . 6 . ~  

0.' ,.(y,.t,.)/u 1-0. 1~8. 
a .  

Fig. 5 

with N - ~  ( 2 n -  1)~, which can also be 
verified in a manner  similar to  2(b). The 
corresponding Newtonian  solution is 

u ~ s inNy~ e_N~fl. 

n=l 

4.  C o n c l u s i o n s  

As expected,  the  presence 
does not  affect the terminal  veloci ty  profiles, 
which are the same as for a Newtonian  fluid. 
Fig. 4 and 5 show the effect of  S 1 and S 2 for 
the generat ion of flow due to a constant  
tangent ia l  force. Fig. 6 shows the  veloci ty  
a t  Yl = 1 for a fixed value of  S 1 and  various 0.: 
values of  $2. The corresponding decay  Fig. 6 

u (! ot,) 

1.1). 
t,. 10. 

of  elasticity 

! 
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Fig. 14 
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Fig. 15 

From fig. 4 it  m a y  be observed that ,  for 
small time, the effect of a relatively small 
amount  of elasticity tends to increase the 
velocity of the fluid near Yl = 1, bu t  de- 

crease it near  Yl = O. For  larger t ime the 
effect of elasticity is to increase the velocity 
for all yl, until  the terminal  velocity is 
reached. The effect of a small amoun t  of 
elasticity on the decay of the flow when the 
tangent ial  force ceases to act (fig. 7) is seen, 
for small t ime, to decrease the velocity more 
quickly near Yl ~ 1 and more slowly near 
Yl = 0. For  larger t ime the effect of elasticity 
is to decrease the velocity for all Yl before 
decaying to zero. 

The effect of a similarly small amoun t  of 
elasticity on the generation of flow through 
a channel under  a constant  pressure gradient  
is seen to increase the velocity for all Yl and  
t 1 (fig. 10), and when the pressure gradient  
ceases to act  the resulting decay of the 
s teady flow is accelerated by the presence 
of the small amoun t  of elasticity (fig. ]3). 

I t  is of interest  to note t ha t  in both  the 
"generat ion of flow" and "decay"  problems 
the effect of  a larger amount  of elasticity is 
such tha t  the velocity profiles overshoot the 
terminal  velocity before eventual ly tending 
to i t  with increasing t ime (figs. 5, l l ,  8, 14). 
In  fact, when the velocities are plot ted 
against t ime for a particular Yl it  is found 
t h a t  the velocity oscillates about  the terminal  
velocity before tending to tha t  terminal  
velocity for sufficiently large t ime (figs. 6, 9, 
12, 15). In  all cases increasing S 2 for a 
part icular  value of S 1 tends to dampen the 
oscillation. 

The oscillatory behaviour of viscoelastic 
liquids in uns teady  flow problems has been 
noted  before, theoretically by Fielder and 
Thomas (1967) and experimentally by Hermes 
and Fredrickson (1967). 

The four problems considered in this paper 
could be very  easily set up experimental ly 
and  so conceivably m a y  be of some use in 
determining Si and  S 2 for specific liquids. 
I t  m a y  be more convenient, experimentally,  
to consider the velocity development (or 
degeneration to, for the decay) from a slower 
but  s teady state  instead of from rest. The 
above analysis may  be easily adapted  in this 
c a s e .  

The more difficult problems of the genera- 
t ion and decay of s teady flows in a pipe of 
circular cross-section, which may  be more 
easily set up experimentally,  are at  present 
under  consideration. 
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Summary 

Consideration is given to the reasons why the Cole- 
man and Moll second order fluids are unsuitable for use 
in the  solution of unsteady flow problems for elastico- 
viscous liquids, especially when Laplace t ransforms are 
used. A number  of unsteady flow problems are then  
solved using ~ const i tut ive equation of the , , integral" 
type. The presence of elasticity in the  liquid is shou n 
to have quite a dramatic  effect on the velocity pro- 
files. 

Zusammen/assu~g 

Es werden die Griinde betrachtet ,  aus denen die 
Coleman- und Noll-Flflssigkeiten nicht  geeignet sind, um 
Probleme der instationiiren Str6mung elastoviskoser 
Flfissigkeiten zu 16sen, besonders wenn Laplace-Trans- 
formationen benutz t  werden. Einige Probleme des in- 
station~ren FlieBens werden dann mit  Hilfe einer Zu- 
standsgleichung vom [ntegral typ gel6st. Es wird ab- 
seh!iegend gezeigt, dab eine in der Fliissigkeit vorhan- 
dene Elastizit/it einen starken EinfluB auf  die Geschwin- 
digkeitsprofile hat .  
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A theoretical study on fiber spinnability 

By C. D. Han 

With 6 figures 
(Reeeived August 2, 1969) 

I. Introduction 

In preparing polymer solutions or melts for 
manufacturing synthetic fibers, one of the 
fundamental questions one faces is the 
criterion for spinnability. I t  is commonly 
understood that  only a certain class of 
liquids is spinnable under the set of spinning 
conditions. I t  is also possible that  the liquid 
which is spinnable at one set of spinning 
conditions may not be spinnable at another 
set of spinning conditions. I t  is generally 
known that  spinnability depends, among 
many other things, on (a) the rheologieal 
properties of liquids to be spun, (b) jet 
stretch, (e) the hole size and shape, and (d) 
the rate of mass and heat transfer between 
the extruded filament and the coagulation 
medium (in the case of wet spinning) or the 
cooling medium (in the ease of melt spinning). 
Here jet stretch is defined by  the ratio of the 

velocity of the filament at the take-up device 
to the average velocity of the spinning 
solution at the exit of a spinnerette hole. 

Nitschmann and Sehrade (24) appear to be 
the first who at tempted to explain the 
problem of spinnability in terms of material 
properties. Thiele and Lamp (37) investigated 
the technique of measuring spinnability by  
devising a suitable apparatus and determined 
the spinnability of colloidal solutions by  
means of high speed photography. And in 
their later s tudy (38) the same authors 
reported that  maximum spinnability was 
obtained at intermediate values of viscosity 
and elasticity. 

Today it is generally accepted, from 
practical industrial experience, that  almost 
all spinnable liquids being used for mann- 
facturing synthetic fibers exhibit normal 
stress effect, i. e., elastic effect. Very recently, 

24 


