
Journal of Systems Integration, 5, 21%252 (1995)
Q 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Parallel Logic Language for Transaction
Specification in Multidatabase Systems

EVA KUHN* eva@mips.complang.tuwien.ac.at
University of Technology Vienna, Institute of Computer Languages, Argentinierstraf3e 8, 1040 Vienna, Austria,
Europe

AHMED K. ELMAGARMID ake@cs.purdue.edu

YUNGHO LEU** yhl@cs.ntitedu.tw
Indiana Center/br Database Systems, Purdue University, Department q[Computer Sciences, West Lafayette,
IN 47907, USA

NOUREDDINE BOUDRIGA
CS Dept, School of Telecommunications, University of Tunis II, 2083 Ariana, Tunisia

nab@espttn.esptt.tn

Received November 26, 1990," Revised March 28, 1995

Editor:

Abstract. The realization of truly heterogeneous database systems is hampered by two principal obstacles.
One is the unsuitability of traditional transaction models; this has led to the proposal of a number of new,
advanced transaction models. The second is the lack of appropriate programming support for these advanced
concepts. This paper addresses these two issues by pointing out the advantages of using a logic-based approach
for the integration of autonomous software systems.

Keywords: multidatabase systems, heterogeneous transaction processing, parallel and distributed computing,
Prolog, coordination languages.

1. I n t r o d u c t i o n

While significant advances have been made in the physical connect ion of he terogeneous

and isolated data repositories into networks, the deve lopmen t of appropriate software to

permit uniform access to these resources has lagged behind. In writ ing global applica-

tions, p rogrammers must be free to concentra te on specifications directly related to the

task at hand, unencumbered by larger sys tem-integrat ion issues such as ne twork interfac-

ing (connect ion to and reliable communica t ion with other sof tware systems), scheduling

and load balancing, or opt imizat ion of execut ion plans. Mul t idatabase systems (MDBSs)

address this p roblem by providing uni form access to the distributed data. An M D B S

aims to make heterogeneous systems interoperable through varying levels of integration.

In its most general form, the M D B S can be seen as a tool that a l lows the specification

* The work is supported by the Austrian FWF (Fonds zur FiSrderung der wissenschaftlichen Forschung),
project "Multidatabase Transaction Processing", contract number P09020-MAT.
** Current address of the author: Department of Information Management, National Taiwan Institute of
Technology, Taipei, Taiwan, ROC.

220 E. KUHN, ET AL.

and synchronization of arbitrary data and control flow patterns between the distributed
systems (work flow management) in a reliable way.

Integration consists of two aspects. First, semantic data integration compensates for
the design autonomy of the local systems. Each local software system is autonomous in
its underlying data model (e.g., relational, object-oriented, deductive, or hierarchical) and
in the naming, structuring, and scaling of local data. Investigations into semantic data
integration, particularly using an object-oriented approach, form a major focus in MDBS
research. Second, global transaction management deals with the semantics and execution
of MDBS transactions. As will be discussed below, traditional transaction models are
insufficient, as the requirements of global transaction processing differ greatly from those
of local transaction processing. For example, the treatment of communication and system
failures falls under the control of the global transaction manager, which masks the failure
of single components to avoid the abortion of long-lived and costly global transactions.
In this paper we shall focus on this second aspect of integration.

Global and local transactions differ in that the former must maintain local system auton-
omy. Thus, traditional concepts applicable to local systems cannot simply be transferred
to the MDBS layer. For example, local systems must access subtransactions of MDBS
transactions while simultaneously serving local users, thus creating hidden indirect, con-
flicts between global subtransactions. To maintain global serializability in the presence
of such indirect conflicts, the serialization order of all subtransactions of global transac-
tions must be checked at all sites. This process is compromised if the commit order in
the schedules of local systems does not reflect the serialization order [3]. Such anoma-
lies complicate MDBS transaction processing and either lead to the placing of strong
assumptions on the local systems to be integrated (such as the requirement of rigorous
local schedulers with a visible two phase commit protocol) or require new transaction
models and techniques. To overcome this anomaly, an optimistic ticket method has been
proposed in [15] that enforces artificial conflicts; it has the potential drawback, how-
ever, of creating a performance bottleneck. Weaker criterions than serializability, such
as quasi-serializability [9], have also been proposed for MDBS transactions.

The MDBS transaction manager must also fulfill new issues which do not arise in local
database systems. These include:

Long-running transactions. Due to their long-running nature, MDBS transactions are
highly resource-intensive. In the model of an electronical software supermarket, a
transaction is composed of subtasks that can be bought by the systems of autonomous
institutions in the network; the transaction provides support for the coordination of
those services. An MDBS transaction must pay for the services it has used. Since
the failure of one service must not cause the abortion of the entire MDBS transaction,
alternative solution pathways must be available. Function replication, as suggested in
the Flex Transaction model [11], suggests that there exist other systems in the network
providing an equivalent service. Many other advanced models [11] incorporate the
possibility of the specification of alternatives for failed components.

Early commitment. The lenghty holding of locks by an MDBS transaction at one local
system may be a severe violation of local autonomy. In recognition of this, sev-

A PARALLEL LOGIC LANGUAGE 221

eral methods have proposed the relaxation the isolation property [1] of transactions,
permitting every view of intermediate effects before the MDBS transaction commits.
Transactions supporting cooperative work, such as cooperative design processes, then
become possible.

To facilitate this relaxation, the concept of semantic compensation has been intro-
duced. Atomicity requires that either all or none of the operations of a global trans-
action be performed. If side-effects can become visible early, other subtransactions
may base their computations on this information. While an undo in the classical
sense thus precluded, semantic compensation may be possible. Compensation, as
originally proposed in [16], [14], is part of many advanced transaction models [11].

Environmental changes. The environment of an MDBS may change frequently: new
local systems to be integrated may be added, the restrictions placed on local systems
may change, an alternative global correctness criterion might appear more useful, or
an application may require a different global transaction model. Given this fludity
in models and criteria, the MDBS transaction manager must be flexible and allow
dynamic adjustment to satisfy changing requirements.

Advanced transaction models have proposed various approaches to the above problems.
Many of them extend or relax classical transaction properties. We will summarize some
of the principal ideas of these new models and in particular emphasize the fcatures of
the Flex Transaction model [10], [24] in more detail.

An advanced transaction model requires a convenient notation with which to specify
transactions. This language should be declarative, permitting the user to specify global
application semantics possibly and to partipate in interactive communication (e.g., con-
firming the performance of certain tasks). A specification formulated in such a language
has the additional advantage of being runnable. This language should be powerful enough
to allow the modeling of all possible control and data flow patterns. It should not be
limited to a set of predefined functions but should instead be based on an open frame-
work like the ACTA (actions) system described in [7]. Moreover, the language should
hide from the user all other aspects related to coordination, including communication
reliability, implementation of concurrency, and recovery alter system failures. We be-
lieve that this goal can be best achieved by a general-purpose, computationally complete
programming language.

This paper is structured as follows. In Section 2, we derive the requirements for an
MDBS transaction language by analyzing recent transaction models. In Section 3, we
present the VPL (Vienna Parallel Logic) language and, in Section 4, we demonstrate, with
several examples, how VPL can serve as the specification language for different kinds
of transactional work flows. In Section 5, we demonstrate that transaction processing in
VPL encompasses much more than the specification of the data and control flow between
activities. For example, communication reliability is ensured and a well-defined recovery
behavior after system failures is provided.

222 E.K~HN, ET AL.

2. Specification Potential of MDBS Transactions

In this section, we analyze the information-carrying potential of an MDBS transaction as
the first step toward defining useful linguistic constructs for an MDBS transaction spec-
ification language. We separate those properties of a global task that must be specified
explicitly (including the subtransactions comprising a global transaction or the preferred
subtransaction among alternatives) from those issues that can be hidden from the user.
The latter include the physical distribution of services (modeled for the user by the name
and location of a service), reliable communication protocols, and global correctness.
While a language possessing many advanced features is more likely to satisfy all our
requirements, we also hope to arrive at a straight forward structure which provides the
essential features in a highly declarative way.

In the following subsection, we present a list of the most significant features offered
by the advanced transaction models. This list is not comprehensive, since it is strongly
constrained by the local systems to be integrated by a global transaction. The new
requirements for transaction processing to be posed by future application domains cannot
now be fully envisioned.

2.1. Alternatives

In a heterogeneous environment, partial failures may occur as single components suffer
from independent failures. Moreover, in accordance with connection autonomy, systems
may refuse connection over an unpredictable time period. As stated above, a global
transaction is by nature a persistent activity for which abortion is undesirable. Therefore,
in contrast to the approach taken by many classical transaction managers, the possibility
of a rollback and re-start must be minimized if the transaction cannot accomplish its goal
(this may occur if serializability is violated or a deadlock has arisen). This stipulation
implies either that global concurrency control must be pessimistic or that the serializ-
ability requirement must be relaxed. Moreover, the global scheduler must be aware of
services that can replace a failing subtransaction (function replication). Function repli-
cation provides a means for software fault-tolerance to be controlled at the application
level.

The specification of alternatives can be made when the MDBS is installed and can later
be refined. For example, information about alternatives can be stored in the integration
directory along with information on logical data integration (e.g., semantic relations [20]).
However, in many instances, the definition of alternatives is tightly bound to the semantics
of the global transaction and must therefore be part of its specification.

Alternatives can be specified along several lines:

1 of n. In the simplest method, a task is defined and a number of servers are designated
as capable of accomplishing this task. Preferences and constraints among these
servers can also be stated (see Section 2.2), constraining the execution parallelism.
"1 task of n tasks" has a declarative reading "task1 OR task2 OR . . . OR taskn," with

A PARALLEL LOGIC LANGUAGE 223

OR denoting either sequential or parallel execution or an unspecified concurrency
which depends on given preferences and constraints.

k of n. A task consists of k subtasks. A set of n servers (k _< n) exists with the property
that each server can perform one subtask. The task is fulfilled if all k sub-tasks have
been performed by k different servers. Here, we assume that each subtransaction
can be started only once; variants in which one server performs multiple subtasks
are discussed in Section 2.6.

Selection of arbitrary patterns. In this most general case, n servers offer n different
services. The goal of the global task is specified as a set of subsets of the n services.
The global task has been accomplished when one such subset has been accomplished.

2.1.1. Alternatives in Flex Transactions

The Flex Transaction model supports nondeterministic specifications through the defini-
tion of multiple commit sets. Every commit set represents an acceptable state; preferences
between these commit sets cannot be defined. Thus, an execution model for a Flex trans-
action is designed to accomplish any of these possible commit sets in a nondeterministic
manner. This is similar to the nondeterministic selection of one from among several
potential guarded clauses [8]; there, the first clause to complete its guard is usually se-
lected. Similarly, in the Flex execution model [23], all choices are left open for as
long as possible, but the first commit set to be accomplished is then given preference.
The Flex model is a comprehensive framework that can encompass the selection of any
alternative, as shown in these examples.

Exa mple 1 (1 of n)
Let tkzm, tara, ttwa, and tddta be airline reservation transactions. The set of commit sets
{{tkz~,},{t },{ttvj~,},{td~Ita}} specifies the selection of one airline transaction from
among these four. Thus, the goal of the Flex Transaction is achieved if a flight can be
booked at any one of the airline databases.

E x a m p l e 2 (k of n)
Let topera, tconcert, and ttheatre be transactions that represent evening activities in Vienna.
The task of the Flex Transaction is to reserve tickets for two evenings activites withou!

duplication. The set of commit sets is therefore {{top t t}, {topera,ttheatre},
{t t,ttheatre}}, selecting two of three events.

Exa mple 3 (pattern)
A trip from Vienna to Tunis can be made either by booking a flight or by booking travel

by train and by ship. The set of commit sets is theretbre {{tfzight}, {tt~i,~, tship}}.
This Flex Transaction specifies the selection of two patterns out of three transactions.

The Flex model allows the syntactic specification of subsuming patterns. If the commit
set C = {tt,-ai,~, tship, tear } is added to Example 3, C subsumes the commit set {ttra/,a,
tship }. In this specification, tca,- is a non-vital transaction, as defined in transactions. In

224 E. KUHN, ET AL.

the Flex execution model proposed in, [23] we have simply excluded such specifications
and thus would ignore commit set C. Non-vital transactions are also discussed in [4] and
[281.

2.2. Execution State Dependencies

During its lifetime, a transaction may pass through several execution states, which are
listed in Table 1. After state P is reached, a decision to commit or abort the transaction
is made by the global transaction manager.

Table 1. Transaction execution states

N not executing (not yet begun)
E executing (begun)
P prepared (if two-phase commit is provided)
S succeeded (committed)
F failed (aborted)

If the local scheduler of a given transaction supports a visible two-phase commit
protocol [1], the transactions may be as follows:

N --* E ---~ P --+ S

N --4 E ---~ P ---~ F

If the local scheduler of a transaction does not support two-phase commit, so that the
local transaction commits or fails immediately, the transitions may be as follows:

N --+ E --+ S

N --+ E --+ F

Dependencies may be placed on any of these execution states. The transition of a
transaction to its next state may thus be dependent on the execution state of one of more
other transactions of the same global transaction. Execution state dependencies constrain
the potential parallelism of a specification and can be viewed as concurrency control
statements.

E x a m p l e 4 (Concurrency Control)
Let t flight and thote l be flight and room reservation transactions, respectively. Let a
dependency be specified by which thotel must not be started before t flight has succeeded
(i.e., the transition N ~ E of thotel depends on the success of tytioht). This dependency
constrains the execution of thotel tO be sequentially implemented after the successfully
completed execution of tflight.

Similarly, we may add two transactions t~vis and thertz to reserve a rental car, and
state that the start of the~tz depends on the failure of t~vis; this is another example of
sequential execution.

In summary, concurrency allows the specification of:

A PARALLEL LOGIC LANGUAGE 225

�9 s e q u e n t i a l or

�9 p a r a l l e l or

�9 neu t r a l execution.

While parallel execution requires a fair parallel execution of the transactions, neutral
execution includes the possibility that the transactions may run either in parallel or in
any sequential order. Neutral specifications are more declarative than are their parallel
and sequential counterparts as they leave the concurrency control specification open.
Depending on hardware and network capabilities, the scheduler (compiler/interpreter)
may select between parallel or sequential execution.

2.2.1. Execution State Dependencies in Flex Transactions

The Flex Transaction model supports internal dependencies that allow the start of sub-
transactions to be dependent on the success or failure of one or more other transactions
(positive/negative dependencies). Recursive dependencies are forbidden in a correct
specification. As Flex supports r/ondeterministic specifications (see Section 2.1), not all
dependencies are relevant for all possible commit sets [23], [19]. We use the relation
" ~ s " to denote a success dependency between two transactions t,~ and t j ; t~ -<s tj states
that tj must not be started until ti has succeeded. A success dependency t~ -<,s' tj need
not be tested if ti or tj will not be part of the final solution; i.e., there is no possible
commit set to which both, ti and tj belong. In general, a success dependency (ti ~<s
tj) is relevant for a certain commit set C if and only if ti E C and tj ~ C. A failure
dependency is denoted by ti < F tj and states that the start of tj depends on the failure
of ti. A failure dependency ti -<r tj is relevant for a commit set C if and only if tj c
C and t~ r C.

Example 5 (Relevance of Dependencies in Flex Transactions)
Let us assume the same set of commit sets as in Example 3. A success dependency exists
between ttrain and tship (ttrai n -<5' tship) by which the ship must not be booked unless a
train ticket is booked. If there are no further dependencies specified, the flight reservation
transaction can run in parallel. For the flight transaction, the success dependency ttrain
-4 S tship is irrelevant, because both ttrai~ and tship are extraneous to the commit set to
which t flight contributes.

E x a m p l e 6 (Contradictor 3, Dependencies (a))
Using once again the commit sets of Example 3, let us now assume that there exists

a failure dependency ttrain -<F tship. For the commit set {t f l ight}, this dependency
is irrelevant, but it introduces a contradiction for the commit set {ttrain,tship}; both
transactions are needed for this commit set, but the dependency indicates that ttrai n must
fail in order to allow the start of tship.

Syntactically, the Flex model does not restrict the specification of such dependencies,
but the execution model for Flex Transactions handles "contradictory" specifications
correctly in that it ignores irrelevant dependencies. If required, adequate warnings can

226 E.K~HN, ET AL.

be provided. Another example of contradictory dependencies, with ti '<F tj and ti -<s
tj, is as follows:

Example 7 (Contradictory Dependencies (b))
Let us assume a Flex Transaction consisting of two airline transactions tklm and ttwa and
the hotel reservation transaction thi~to~. The set of commit sets consists of C1 = {tkzm,
thilton} and C2 = {ttwa, thilton}. The internal dependencies are tkzm -< s thilton and tktm
-~F thilton.

According to our definition of relevant dependencies, tklrn MS thilton is relevant only
for commit set C1, and tklm -<F thilton is relevant only for commit set C2. Thus, the
semantics of this Flex Transaction specification are that tklm must be executed before
thilton and ttwa can be executed. If tklrn succeeds, thilton is executed. If tklrn fails, ttwa
and thilton are executed in parallel.

The same situation could be represented in a more declarative manner with the follow-
ing dependencies: tklrn MS thilton and tklm -~F ttwa.

If failure dependencies are used in combination with function replication, they may be
understood as preferences among alternatives, as shown in the following example.

Example 8 (Preferences)
Let us add to Example 1 the following failure dependencies: tau a ~ F tk/m, tklm -4F
tdelta, and tdelta -<F ttwa. This specifies the following preference ordering: try taua
first, then tklm, then tdelta, then twa, and finally give up. The addition of these failure
dependencies transforms the original specification of parallel function replication into
sequential function replication.

Internal dependencies are defined over the domain of those transactions which make
up a Flex Transaction. They have the following properties:

(A) ti 7~s ti.

(B) ti CF ti.

(C) If t~ -<s tj then tj ~ s ti.

(D) If ti -<F tj then tj ~F ti.

(E) If ti -<s tj and tj -<s tk then ti ~ s tk.

(F) If ti -'<F tj and tj -<f tk then ti '<F tk.

(G) If ti -~F tj and tj -<s tk then t~ -~F tk.

(H) If ti -<s tj and tj -<F tk then ti -<s tk.

As stated previously, recursive specifications are automatically excluded. The Flex
Transaction specification must be completely defined, in that all dependencies must be
explicitly stated. For example, in Example 8, the dependencies tara -<F tdelta, taua -<F
tt~:,~, and tkzm -<F ttwa must be added to produce a correct specification.

The above discussion indicates that the formulation of Flex Transactions by means
of internal dependencies is not trivial. The Flex Transaction model is a comprehensive

A PARALLEL LOGIC LANGUAGE 227

f r amework that permits the formulat ion all types o f concurrency control patterns. H o w -

ever, specifications of large transactions would become quite cumber some if the original
notation is used.

Table 2. Dependencies in ACTA

dependency relation description

commit ti C'D tj

strong-commit ti $ C D tj
abort ti AT) tj
weak-abort ti 3.A27) tj
termination ti "]"7:) tj
exclusion ti ET~ tj
force-commit-on-abort ti C2k/[7) tj
begin ti /3'D tj
serial ti ,$7~ tj
begin-on-commit ti BCD tj
begin-on-abort ti /3.A7) tj
weak-begin-on-commit t~]d2C7) tj

if both transactions commit, then the commitment of ti must
precede that of tj
if ti commits, then tj commits
if ti aborts, then tj aborts
if ti aborts and tj has not yet committed, then tj aborts
tj cannot commit or abort until ti either commits or aborts
if t i commits and tj has begun executing, then tj aborts
if ti aborts, then tj commits
tj cannot begin executing until t i has begun
tj cannot begin executing until ti either commits or aborts
tj cannot begin executing until ti commits
tj cannot begin executing until ti aborts
if ti commits, then tj can begin executing

2.2.2. E x e c u t i o n S t a t e D e p e n d e n c i e s in A C T A

The A C T A f ramework [7] allows general execut ion state dependencies to be specified

as binary relations be tween two transactions ti and tj. It is assumed that a history exists

which indicates the relat ive sequence of events, each event being a state transition of a

transaction. For example, the dependencies that can be modeled using the A C T A open

f ramework are shown in Table 2.

Table 3 shows the established correspondences .

Table 3. Correspondences

t i 13CD tj =~ ti ~ s tj 1
ti B317) tj =~ ti ~ F tj 1

2.3. C o m m i t G r a n u l a r i t y a n d C o m p e n s a t i o n

In Sect ion 1, we explored the rationale for the relaxat ion of the isolation property of

classical transactions in many advanced transaction models and the consequent need

for semantic compensat ion. In the environment , the control of transaction commi tmen t

becomes highly problematical . We will first explore the possibi l i ty of specifying the

granulanity of commi tmen t as an al ternative to the immedia te c o m m i t m e n t of every
transaction.

228 E.K~HN, ET AL.

2.3.1. Commitment in Nested Transactions

Classical nested transactions [25] do not relax the isolation property. A transaction
depends on all of its subtransactions, and the commitment of a subtransaction is delayed
until the global (highest-level) transaction commits. Thus, the granularity of commitment
is implicitly at the level of the entire global transaction.

This idea of nested transaction concept has been incorporated into advanced transaction
models, necessitating refinement of the notion of commitment granularity in that context.

2.3.2. Compensation in Sagas

In the Saga model, a global transaction (or Saga) consists of several transactions tl t~.
Each ti (i = 1 , . . . , n) is accompanied by a compensating action ci. The commitment
granularity is implicit in this model, in that every ti commits immediately, ti must not
be started unless ti-1 has committed. The Saga succeeds if tn succeeds. If ti+l fails,
the compensating actions ci ,ci-1, . . . ,cl are executed.

2.3.3. Compensation and Commitment in Flex Transactions

In the Flex Transaction model, transactions are specified as compensatable or noncom-
pensatable. Transactions of the former type commit immediately and must be coupled
with compensatory actions. Noncompensatable transactions are required to support a
two-phase commit protocol in which their commitment can be triggered by the commit-
ment of the global transaction.

The distinguishing feature of Flex Transactions is the inclusion of transactions of both
types in nested structures. A Flex Transaction may include not only subtransactions
at local systems but may also be composed of other Flex Transactions. The commit-
ment granularity is explicitly determined by the transaction type. A transaction of the
noncompensatable type delegates its commitment to its caller (the innermost enclosing
transaction).

If a transaction is of the compensatable type, it commits immediately. This commitment
implies the Commit of all nested noncompensatable subtransactions.

A compensatable subtransaction that has committed is compensated if either:

�9 the Flex Transaction fails (e.g., there are no additional commit sets that can be
fulfilled), or

�9 the Flex Transaction succeeds with a commit set C so that tr or

�9 the Flex Transaction is aborted (e.g., by an external signal, or by an encosing Flex
Transaction).

Additionally, no enclosing transaction of t may have committed, preventing cascading
compensations. In terms of software composition, these compensating semantics are

A PARALLEL LOGIC LANGUAGE 229

structured with a larger module (transaction) which is responsible for the handling of its
composite the sub-modules.

Exa mple 9 (Noncascading Compensation)
Let us assume a compensatable Flex Transaction TLo,~ao,~ that arranges a trip to London
consisting of flight, hotel, and car reservations and a couple of tickets for evening events.
Assume that airline transactions are compensatable: a ticket can be returned without
incurring extra costs. Although a user may find no tickets are to be available, a seat
may later open up because another flight reservation has been compensated. All other
transactions are noncompensatable.

Let TLo,~go,~ be part of another Flex Transaction specification Tt~oZiaau that books a
package trip to London for a couple and at the same time books a sailing course for their
son (Ts~a).

Let us now assume that TLondon commits and Tsea cannot be fulfilled; TLo~zdon is then
compensated. This is accomplished by calling the compensate action of the TLondon
package, thus compensating, the originally noncompensatable hotel, car, and evening
reservation transactions.

2.3.4. Representation of Compensation and Commitment in ACTA

In the ACTA framework, the granularity of commitment can be modeled by means of
delegation, in that a transaction may delegate the responsibility of commitment to another
transaction. The ACTA model can be used to control a variety of levels of commitment
granularity. In [7], Sagas are formalized through the medium of ACTA.

2.4. Data Dependencies

Dependencies may exist among the data components of a transaction. Some transaction
models, including ACTA, assume that a transaction can be decomposed into read/write
operations, information which is then used to guide global schedulers. The subactivities
of a global transaction are termed methods. An MDBS system which accesses a server
or local database system through a local user interface may not necessarily encounter a
read/write operation interface. More advanced applications such as mult i-media systems,
computer aided design systems, or cooperative workgroups, typically provide high-level
functions. When the semantics of a method are known, data dependencies can be derived
and used for global concurrency control.

More important are data dependencies that refer to output data of a transaction. Such
dependencies may dynamically refer to the quality of a produced solution. For example,
a user may state that, if a flight costs less than a specified amount, a more expensive
hotel room can be booked. The user may constrain the total price of a trip, encouraging
alternatives to be tried. These examples involve the definition of the semantic failure of
a transaction, or situations in which a solution does not satisfy certain conditions.

230 E. KUHN, ET AL.

Current advanced transaction models do not offer a satisfactory solution to the issue of
data dependencies. The Flex Transaction model and Sagas provide no support for data
dependencies.

2.5. User Interaction

The above examples indicate the importance of user input in defining the semantics of
the global transaction. Such preferences as a short layover time versus a higher fare
must be formulated by the user. Such information varies with each transaction, requiring
a declarative language that can be easily used by an intermediary such as a travel agent.
This situation is essentially different from a classical database system which attempts to
mask all control information from the user.

The MDBS user formulates queries over a larger, more complicated, and heterogeneous
set of data. Thus, more responsibility is required and a complete transparency of all
underlying heterogeneities can never be entirely achieved. We believe that dynamic and
ad-hoc approaches are needed, which can later be refined toward a tighter and more static
integration.

It is clearly impossible to envision all possible situations and queries which may arise
in a public network consisting of hundreds or thousands of database systems. The MDBS
user must therefore be equipped with a tool that is not restricted to a certain set of vendor-
defined functions. An MDBS user who is willing to learn a single powerful, high-level,
general-purpose tool will have achieved freedom from software support teams or the
need to await more sophisticated versions of specialized MDBS transaction software.

An analogy may be made with the growing role of CAD systems. Since many designers
fear becoming dependent on a single office CAD expert, some offices have avoided the
purchase of any CAD system. Similarly, travel agents will chafe at the restrictions
imposed by the pre-defined functions of their transaction software by their dependency
on outside support, particularly when these factors prevent the formulation of certain
client requests.

Users will clearly be involved in non-static MDBS transaction specifications, adding
interactivity to the requirements of any declarative transaction specification language.
Throughout the execution of a long-lived transaction, such as those in a cooperative
workgroup, user input may be necessary. Some subtasks of a global transaction, such as
making a phone call or sending a fax, may be external events that cannot be performed
by a computer but must be performed or acknowledged by the user.

2.6. Advanced Control Mechanisms

Several mechanisms are available to achieve more sophisticated control of transactions.
These include:

External constraints. The transition of a transaction to another execution state can be
made dependent on environmental or external constraints. In the Flex Transaction

A PARALLEL LOGIC LANGUAGE 231

model, the start of a transaction can be defined as dependent on time constraints. For
example, booking an opera ticket can be constrained to be performed during office
hours.

Other constraints that can be imposed include resource availabliltiy, current server
load (devices from management information about the network load), the state of a
permanent object, or the recurrence of certain events.

The imposition of external constraints may either be immediate or may be involved
when a specified event occurs (delayed decision).

Timeout . Timeouts are essential to guarantee the correctness of a global transaction.
Although the generation of timeouts is primarily under the control of the transaction
execution model, they may also be specified as part of the semantics of the global
transaction. For example, in the travel example provided previously, if a flight
reservation cannot be made prior to a certain date, the flight transaction should be
abandoned.

Re t ry condi t ion. A retry condition is a method of handling failures. While function
replication substitutes a failed component with another, a retry condition retries the
same transaction again. A retry condition may involve a counter or other constraints
and can be associated with a time-interval.

For example, at a weekly time-interval, a client may check with an airline on the
availability of inexpensive seats that have opened up due to cancellations. The retry
condition ensures that no other flight has been booked by the client and that the
travel date is not overshot.

Repet i t ion. A global transaction may require several executions of the same subtransac-
tion. Let us assume that a travel club wishes to book a flight for all 'r~ member s - -on
the same airline.

If a method that represents the flight reservation cannot be parameterized to simulta-
neously handle z~ tickets, it must instead be possible to generate several instances of
the same transaction. The original Flex Transaction model employed retrial and rep-
etition. Later work on this model, however, restricts each subtransaction to a single
use. Repetition can therefore only be simulated by artificially renaming transactions;
in our example, h , - - . ,t,~ would all denote the same subtransaction. This somewhat
clumsy approach merits further investigation.

Dynamic in te r rup t s . The global transaction manager automatically aborts unneeded
sub-transactions. There is clearly a need for user-controlled interactive interrupts
which permit the aborting of a subtransaction or the global transaction at any time.
More advanced signals like pause and continue may also be constructed, and it may
be important to migrate an activity to another site. These latter features are primarily
useful for long-running transactions.

C u r r e n t state. Users may wish to determine the current state of a transaction and to get
detailed information about the execution states of all subtransactions and their results

232 E.K~HN, ET AL.

to date. In the travel agency used above, the client may wish to know what parts
of the trip have already been booked and at what price. In a workflow management
system with automatized office control flow, a user may wish to learn the actions
triggered by a fax she sent.

Dynamic changes. If a user orders a complicated trip-booking transaction composed
of many subtransactions which takes several days to implement, it is possible that,
within this time, the client requirements may change, necessitating ad-hoc alterations
in the transaction specification. Such a retrospective change of a running process is
clearly a difficult task.

3. A Parallel Language Based on Logic

The advanced transaction features discussed above can either be supported by a special-
ized operating system layer or by a distributed and parallel programming language that
provides concurrency, communication, and synchronization. Moreover, the maintenance
of persistent objects and a well-defined behavior in case of failure are essential for such
a language. An instructive comparison may be made with the implementation require-
ments for the ConTract model, a model for defining and controlling long-lived, complex
computations which is decribed in [29].

Traditionally, programming support has been provided by operating systems. However,
sockets, RPC (remote procedure call), and other related operating system libraries are not
well suited to MDBS transaction specification. Even the most advanced libraries which
provide reliable group-based communication, such as the ISIS programming package
described in [2], are insufficient to express a complex MDBS transaction.

Recently, specialized workflow languages like IPL [5] (InterBase Programming Lan-
guage) have been developed. IPL has been developed to implement Flex Transactions and
provides graphical user interfaces. The limitation of such special-purpose languages lies
in their close relationship with a single model, which is most often within the imperative
programming paradigm.

A rule-base language is well suited to approach many of the issues explored in the
previous section. Dependencies can be formulated quite naturally as rules, which can
be stored in an integration directory. Intelligent integration rules can be supported,
and tight integration can be maintained. Knowledge can be automatically derived from
existing rules. Given these merits, we have therefore directed our efforts toward the
development of a rule-based language for the specification and control of the execution
of multidatabase transactions. In this paper, we focus only on transaction control. A rule-
based language also offers advantages for the representation of semantic data integration
[20], since first-order logic naturally suits the representation of SQL statements.

3.1. History of VPL

The design of VPL (Vienna Parallel Logic) was principally motivated by the need to
represent transaction control in Prolog. Prolog was at that time employed for semantic

A PARALLEL LOGIC LANGUAGE 233

data integration (a problem independent of physical distribution), and we subsequently
recognized that explicit language constructs were needed to specify transaction control.

Our investigations concluded that languages from the family of concurrent logic lan-
guages [26] are unsuitable for MDBS transaction specification. Their draw backs include:

�9 They forbid backtracking; only a single solution can be computed. The formulation
of alternatives is therefore precluded.

�9 Their failure behavior is unacceptable; if one process fails, the whole system fails.

�9 They do not provide a reliable communication mechanism; a course of action in case
of communication and systems failures is not specified.

�9 The commitment granularity is limited to a single clause, making delegation impos-
sible.

�9 They do not allow the explicit spawning of a process at a remote site; a request for
a service at a particular server cannot be specified.

Concurrent logic languages do incorporate many attractive features, including a high-
level, shared-data-based communication via logic variables and declarative constructs to
model concurrency. However, they are unsuitable in open environments where partial
failures may occur.

Influenced by concepts embodied in the Flex Transaction model, we have developed
a coordination paradigm [18] that includes concurrency, reliable communication, trans-
actions, and object-orientation 1. This toolkit can be incorporated into any existing pro-
gramming language. Our extension of the logic-based programming language Prolog
are termed Prolog&Co and VPL. Prolog&Co adds the toolkit to Prolog in form of
a set of built-in functions, whereas VPL represents a smooth embedding of the toolkit
into the Prolog syntax. Another difference to Prolog&Co is that VPL is mulfi-threaded.
Similarly, C extended by coordination results in C & C o [13], [12]. As the toolkit adopts
many concepts from the Flex Transaction model, any representative of the resulting
class of coordination languages is particularly well suited to the representation of Flex
Transactions.

In the following section we will discuss the VPL language in more detail and illustrate
its application to transaction specification and execution. Every specification given in
terms of VPL is runnable and can be executed as is by a VPL runtime machine. Thus the
examples provided below can be directly executed on our prototype VPL engine.

3.2. A Brief Language Overview

VPL is a superset of sequential Prolog and is described in [21] in more detail.
extensions in ~ L include:

The

234 E. KUHN, ET AL.

3.2.1. Concurrency

Concurrent language constructs serve to model parallelism explicitly. Sequential AND/OR
constructs of Prolog can be extended naturally to be parallel or neutral.

AND operators are described in Table 4. G denotes a goal (in terms of transactions,
this is a subtransaction or a subactivity). G succeeds if both G1 and G 2 succeed. Each
composition of goals by means of an AND operator results in a new goal. The failure
of a goal results in backwards execution.

Table 4. AND operators in VPL

goal G semantics of G

G1 & G2 sequential AND: the start of G2 depends on the success of G1
G1 && G2 parallel AND: G1 and G2 are started in parallel
G1 and G2 neutral AND: G1 and G2 can be executed in any order

Prolog (and VPL) is tuple-oriented. Solutions are tried one after another, with every
solution addressing a single tuple rather than a set. I f alternative routes to the fulfillment
of a goal are specified, an alternative solution path can be explored. A general search
over all possible solutions is implemented by a backtracking procedure which, unlike
exhaustive search, can be implemented efficiently on traditional computer systems.

A clause has the form "H ~-- G.". A procedure consists of several clauses with the
same head functor. All clauses of a procedure must have the same rule-operator +--- (" :-" ,
" : : -" , or " < - ") . A procedure defines the method of achieving a goal. If n clauses with
the same head are specified, there exist n alternative ways of fulfilling the goal. The
first successful alternative is adopted. The ordering in which of alternatives are tried is
explained in Table 5. If no " l " (commit operator) appears in G, another clause can be
selected on backtracking.

Table 5. OR operators in VPL

clause Ci semantics of Ci's procedure

H :- G. sequential OR: Ci+1 is started only after Ci has failed
H ::- G. parallell OR: all C~ are started in parallel
H < - G. neutral OR: the Ci can be executed in any order

AND/OR create concurrent processes which are controlled by the local VPL system.
To create a process at a X'I~L system at a remote site, the primitive "process(Where, Goal,
PID, Type)" is used. "Where" specifies a coordination system (e.g., VPL or C & C o) at
a certain site; e.g., vpl@tuwien.ac.at. "Where" can also be defined either as 'LOCAL, '
meaning that the process will run as another thread in the local VF'L system, or as
'REMOTE' , meaning that the process can be sent to any reachable ~ system on
the Internet (automatic load balancing). "Goal" represents the task to be executed by

A PARALLEL LOGIC LANGUAGE 235

the process. "Type" is either 'DEP ' (dependent) or ' INDEP' (independent). "PID," or
process identification, is a unique identifier of the process.

The process primitive starts the process and succeeds immediately. The result of a
process can be checked by testing its PID. The commit "1" of a 'DEP' process (see
transactions below) is delegated to its caller.

A transaction (see Section 3.2.4 below) depends on processes of type 'DEP' and im-
plicitly waits until all PIDs are identified as 'SUCCEEDED. ' Processes of type ' INDEP'
are similar to vital transactions, and the caller is not dependent on their termination state.

If a process of type ' INDEP' is not terminated when a system failure occurs, it will be
automatically restarted with the same arguments (i.e., the same image) after the system
has recovered. If a process is started a second time 2, VPL tests whether the process
has already terminated or is still running, in which case it is re-started with its previous
image. All ' INDEP' processes are started automatically, and all 'DEP ' processes are
re-started by recovered ' INDEP' processes. If, on re-execution, an ' INDEP' process is
encountered that has already been automatically recovered, the second re-start from the
VPL program is ignored.

The primitive "signal" sends a signal ('ABORT, ' 'PAUSE,' 'CONTINUE, ' 'MIGRATE')
to a process that is uniquely identified by its PID.

3.2.2. Communication

Communication is accomplished via shared logic variables. In VPL, both the ordinary
Prolog variables and additional communication variables are supported. The bindings
(assigned values) of the former are undone on backtracking (like in Prolog), while a
value written into a communication variable is permanent. Communication variables are
created with the operator "#" and are persistent.

Communication variables can be shared between parallel or distributed processes (by
passing them in the arguments of a goal) and form a unique mechanism for inter- and
intra-process communications. All participating processes maintain an unchanging and
shared view of an object. Communication variables are incorporated in a distributed
environment through replication strategies based on primary copy migration [22]. They
offer the advantages of resiliency to system failures and reliability of communication.
Communication variables can contain other communication variables as subcomponents
which are automatically shared. They can thus be used to construct a variety of commu-
nication structures, including streams.

3.2.3. Implicit Synchronization

Unification ("=") in Prolog between two terms can be considered as a symmetric as-
signment operation that tries to equalize both terms, possibly by binding variables on
both sides. The existing Prolog unification mechanism may encounter a communica-
tion variable which must be bound to produce this state of equality. In this case, the
unification mechanism suspends until another concurrent process writes a value to that

236 E. KUHN, ET AL.

variable. The ordinary unification mechanism is prohibited from binding a communica-
tion variable. Note that the selection of a clause (goal-head unification) employs also
"=" unification and thus can cause implicit synchronization.

3.2.4. Transactions

The "1" (commit) operator determines language transactions (versus the database trans-
actions addressed in Section 3.3) and can appear in goals at any point at which an AND
operator can appear. It can also appear directly after the rule-operator and at the end
of the clause. "1" has the declarative reading "AND." "1" acts to symmetrically cut
alternatives in sequential, parallel and neutral procedures and also controls commitment
granularity.

A communication variable is bound, or assigned a value, by a new unification operator
"=#=" (full unification). Values assigned in this way become visible only when the
next " l" operator is executed (in one atomic step). This step renders the value of
the communication variable globally visible to all processes that share it. The atomic
writing of a group of communication variables is thus made possible. The statement
that a communication variable is written means more precisely that a value is issued via
"=#=" and then committed.

The predicate "cvar(X)" serves to test whether its argument is still an undefined com-
munication variable; the test is assured on transaction commit.

Within a transaction, compensating actions can be defined by means of the predicate
"compensate(Action)." They are collected until the next " l" where they are enabled but
not executed.

If backtracking occurs, a committed transaction is not rolled back over its individual
goals, but instead all its compensating actions are executed. As in the Flex Transaction
model, outermost transactions are responsible for the compensation of their subtransac-
tions; there are no cascading compensations.

The predicate "prepare(Action)" is designed in analogy to the prepared phase of clas-
sical transactions. The prepared phase within VPL acts semantically to define an action
that will be executed when it is clear that the ~ transaction can succeed. It defines a
post-condition for a transaction that is executed on commitment.

3.3. Local System Interface

Interfaces to local systems are not an intrinsic VPL function but can readily be imple-
mented using VPL. The interface to a local system to be integrated must be conceptu-
ally simple to permit systems to be easily exchanged without modifying the transaction
specification. Such an interface is similar to that of the ConTract model [29], which
differentiates between scripts and steps. The latter formulate actions to be taken at the
local system and are thus defined by the specifications of the interface to that system.
Scripts program the composition of steps and thus correspond to what we call "explicit
MDBS transaction specifications."

A PARALLEL LOGIC LANGUAGE 237

Our proposed interfaces follow a procedure termed "remote_call(Where, Query)." Query
may have the form "query(In, Out, Err)" if the local system does not understand Prolog;
otherwise, it can directly contain a goal. A remote_call is responsible for the concurrency
control protocol in the MDBS, In [6], we describe remote_calls under a variety of as-
sumptions about local systems. Since a remote_call consists of only about 15 lines of VPL
code, VPL itself can serve to implement the communication protocols of the MDBS. In
this paper, we assume that these protocols are already supported in a library and need not
be specified by the user. The user may select the appropriate remote_call; remote_callxc-
calls a noncompensatable transaction, while remote_callc calls a compensatable transac-
tion. Remote_callc executes a "1" and thus commits the database transaction it calls.
Within the committed language transaction, a compensating action is defined. If the
remote_callc is later aborted by its calling transaction, this compensating action is called
automatically. In contrast, the commit of remote_callNc is delegated to its caller; thus,
many database subtransactions can be committed within one atomic step.

It is important to note that the language commit triggers commitments in local database
systems, and the specification of a language compensate action can be a remote_call that
represents the compensating action of the database transaction. All these actions are
controlled by the VPL language.

3.4. System Architecture

At every participating site, a coordination kernel must be running as an operating system
process, as shown in Figure 1. A coordination kernel implements reliable communication
between processes. Every VPL or C & C o system communicates with its local coordi-
nation kernel to access a communication variable (also termed communication object).
The VI~ system itself provides the interface to a local database system. In other MDBS
architectures, this is also called a "gateway process," "multidatabase interface," "remote
system interlace," or "local access manager."

In contrast to client-server based MDBS architectures, any VPL system can serve as
the MDBS in the architecture proposed here. The shared data communication paradigm
results in symmetric communication, and, if the necessary remote_call procedures are
supported for every VPL system, there is no need for a single centralized MDBS.

4. Transaction Specification With VPL

Using explicit concurrency operators, within VPL, a large class of relevant transactions
can be specified. More precisely, transactions that have a declarative reading can be
formulated. Communication variables, permit the modeling of all types of control and
data flow. In [23], we demonstrated the automatic mapping Flex Transaction into VPL
programs. We also analyzed a relevant sub-class of Flex Transactions, termed binary
Flex Transactions, that are directly modeled by sequential/parallel AND/OR.

In the ensuing sections, we will first illustrate declarative transaction control with
selected examples (Section 4.1). Declarative transaction control permits specification

238 E. KUHN, ET AL.

site 2

site 1

Sybase Oracle I 1MS

coordination kernel

(+
DB2 IMS I Ora~'~ I

Figure 1. Systems Integration with the VPL Coordination Language

A PARALLEL LOGIC LANGUAGE 239

solely through the concurrency and transaction mechanisms of ~ L . In Section 4.2, we
provide examples involving communication variables

In the following, LTAi denotes a local subtransaction at a local database system called
from VPL. LTAi is the goal "remote_call(LDBSi, query(t~,Result,Error))," where LDBS~
specifies the VPL system that serves as the interface to the local database system where ti
is executed. LDBS is the abbreviation for "local database system." A local subtransaction
LTAi must be started only once during the execution of its global transaction, denoted
by gta. If the gta uses communication variables, we assume that they are passed as
arguments (denoted simply by "gta(.. .)"); this is advantageous if the gta is recoverable
(see Section 5.1).

4.1. Declarative Transaction Control

4.1.1. Alternatives

Alternatives are represented by defining several clauses for a procedure.

1 of n. Logical OR selects one of n alternatives. The rule-operator provides control
over the trial of alternatives in parallel, sequence, or without specification.

Example 10 (1 of n (Example 1 specified in VPL))
In this example, no failure dependencies exist between tkz.~, t ~ , ttwa, and tddz~.
This situation can be specified as a global transaction gtal0:

gtal0 < - LTAkz~.
gtal0 < LTAaua.
gtal0 < - LTAtwa.
gtal0 < - LTA~/elt~.

k of n. The selection of k of n alternatives cannot be formulated declaratively without
constraining the possible degree of parallelism or introducing artificial dependencies.
"k of n" must be modeled with the assistance of communication variables; this will
be illustrated in Section 4.2.

In the following example, we attempt to model the selection of two events out of
three by artificially preferring a solution involving the procurement of opera tickets.
As soon as an opera ticket can be booked, it is committed (this is a modification of
the original problem formulation).

Example 11 (k of n (modified Example 2 specified in VPL))
gta11 :-LTAope~-a I one-of(LTAtheat~.~,LTAconc~t).
gta11 :-LTAth~at~.~ I one_of(LTAop LTAcone~.t).
gtall : - L T A c o ~ . t I one-of(LTAopera,LTAthe~tre).

one_of(LTA 1, LTA2) < - LTA 1.
one_of(LTA1, LTA2) < - LTA2.

240 E. KUHN, ET AL.

Selection of arbitrary patterns. If patterns are not overlapping, they can be represented
declaratively; otherwise, a similar problem may arise to that encountered when se-
lecting k of n.

Example 12 (pattern (Example 3 specified in VPL))
gta12 < - LTAtrain and LTAship.
gta12 < - LTAflight.

4.1.2. Execution State Dependencies

A failure dependency can be modeled with sequential OR. Analogously, a success depen-
dency constrains AND parallelism and requires sequential AND. The success or failure
of a transaction t in VPL is directly reflected in the success or failure of the goal that
calls t, thus avoiding the need for extensive state-testing.

Example 13 (preferences (Example 8 in VPL))
gtal3 : - LTAa~.
gta13 :- LTAktm.
gta13 :- LTAd~zt~.
gta13 :- LTAt~.

If some alternatives are to be tried in parallel and others in sequence, then the procedure
must be split into several segments, as in this example.

Example 14 (preferences (modified Example 1 in VPL))
Let us assume that the following failure dependencies are given which indicate that
European airlines are preferred: taua -<F tdelta, tklm -~F tdelta, and taua -~F ttwa, tram
-~ F ttwa.

gta14 :- european_airline.
gta14 :- us_airline.

european_airline < - LTA
european_aMine < - LTAkt,~.

us_airline < - LTAdetta.
us_airline < - LTAt~a.

4.1.3. Commitment Granularity and Compensation

A desired commitment granularity can be explicitly selected by the VPL programmer
with the aid of the " l" operator. A goal that does not commit individually delegates its
commit to its caller. Compensating actions are defined as clauses and can denote actions
at local database systems.

Example 15 (noncascading compensation (Example 9 in VPL))

A PARALLEL LOGIC LANGUAGE 241

gta15 < - london and sailing.

london < - LTAfz~gt~t and LTAhoteZ and LTA~ar and LTAevents and
compensate(sell(trip_to_london)) I .

sailing < - LTAs~,.

Global transactions are not committed in these examples unless explicit ly specifies by
the placement of " l " at the conclusion of the gta. Thus, they can be involved in the
composition of other global transactions.

4.1.4. Advanced Control Mechanisms

Exte rna l const ra ints . External constraints can be easily represented in VPL. For exam-
ple, the predicate "actual_time(Time)" returns in its argument the actual time. If a
transaction ti must be started only during office hours, we write:

. . . actual_time(T) & T greater 9:00 & T less 17:00 & LTAi . . .

The specification of constraints in VPL is thus straightforward.

4.2. General Transaction Control

We shall now provide examples of the use of the VPL communication mechanism. Using
communication variables a wide range of control and data flow types can be programmed.

Let us define a predicate " ca l l ITA(LTA, Pre, Post, PID, State, C)" that calls a sub-
transaction and executes a pre- and a post-condition. "Pre," "Post," "PID," "State," and
"C" are communication variables that can be shared between different activations of
" c a l l i T A . " "State" allows an external examination of the execution state of the local
execution. It is set to 'SUCCEEDED' if the LTA has succeeded and the postcondition
can be fulfilled. It is set to 'FAILED' either if the precondition cannot be fulfilled
or if the LTA or the postcondition fails. The "test@re" predicate guarantees that the
precondition can succeed only once--prevent ing a second activation of the LTA, and
on backtracking sets "State" to 'FAILED. ' "C" signals to the independent process that
it should commit. "PID" is automatically bound to 'SUCCEEDED' by VPL after the
process has successfully completed or to 'FAILED' if the execution was unsuccessful.

We have modified the goal of the process such that it must wait until condition "C"
allows it to commit.

We define the predicate "set" to write a value into a communication variable and to
immediately commit this writing so it can be observed by other concurrent processes.
The process must be started with type ' INDEP' because "call_LTA" can be used to start
alternatives. Type 'DEP ' would leave the caller dependent on all alternatives and would
negate caller success if one alternative is rejected.

We implement "call_LTA" as follows:

242 E. K/,)HN, ET AL.

call_LTA(LTA, Pre, Post, PID, State, C) < -
process('LOCAL',

test_pre(Pre) & LTA & Post & set(State,'SUCCEEDED') & C] ,
PID,
'INDEP').

set(CVar, Val) < - CVar=#= Val [.

test_pre(Pre) :- Pre and compensate(set(State, 'FAILED')) I �9
test_pre(Pre) :- set(State, 'FAILED') & fail.

4.2.1. Alternatives

k of n. Example 16 (k of n (Example 2 specified in VPL))
gtal~(.. .) < -

call-LTA(LTAopera, true, true, PIDo, Stateo, Co = true) &&
call-LTA(LTAtheatre, true, true, PIDt, Statet, Ct = true) &&
call-LTA(LTAe t, true, true, PIDe, Statec, Ce = true) &&
control16(Stateo, Statet, Statee, Co, Ct, Ce).

contro116('SUCCEEDED', 'SUCCEEDED', Statec, Co, Ct, C~) < -
Co =#= false and Co =#= true and Ct =#= true.

controlI6('SUCCEEDED', Statet, 'SUCCEEDED', Co, Ct, C~) < -
Ct =#= false and Co =#= true and Ce =#= true.

control16(Stateo, 'SUCCEEDED', 'SUCCEEDED', Co, Ct, Co) < -
Co =#= false and Ct =#= true and C~ =#=- true.

The predicate "control16" waits until it determines that a commit set has been reached,
thus implementing implicit synchronization via goal-head unification. It then requests
the C variable of the transaction extraneous to the selected commit set to be set
to "false," thus triggering the abortion of the corresponding transaction. Finally, it
requests the C variables of the selected transactions to be set to "tree" at the end of the
next transaction. This links the commitment of these transactions to the commitment
of their governing transaction. On commitment of the governing transaction, all
C variables are bound in an atomic step which activates all processes awaiting the
setting of C to "true". Note that a goal "Ci = true" implements a synchronization
point.

Selection of arbitrary patterns. Example 17 (overlapping patterns)
Let us extend Example 3 to include the reservation of a rental car. However, if a
flight is booked, a bicycle may be reserved instead of a car. The global transaction
is fulfilled if either ttrain, tship, and tcar; tflight and tear; o r t flight and tbicycl e c a n

be booked.

gtalr(. . .) < -

A PARALLEL LOGIC LANGUAGE 243

call-LTA(LTAshw, true, true, PIDs, States, Cs = true) &&
call-LTA(LTAtrain, true, true, PIDt, Statet, Ct = true) &&
call-LTA(LTAfught, true, true, PIDf, State f, Cf = true) &&
call-LTA(LTAbicyde, true, true, PIDb, Starch, Cb = true) &&
call_LTA(LTA true, true, PIDc, State~, Cc = true) &&
control17(States, Statet, State f, Stateb, Statec, Cs, Ct, C f, Cb, Cc).

control17(' SUCCEEDED', ' SUCCEEDED' ,Statef,Stateb,' SUCCEEDED',
Cs,Ct,Cf,Cb,Cc) <-

Cf =#= false and Cb =#= false and Cs =#= true and
Ct =#= true and Cc =#= true.

controllz(States,Statet,' SUCCEEDED' ,Stateb,'SUCCEEDED',
Cs,Ct,Cf,Cb,Cc) <-

Cs =#= false and Ct =#= false and Cb =#= false and
Cf =#= true and Cc =#= true.

control17(States ,Starer , 'SUCCEEDED' , 'SUCCEEDED' ,State~,
Cs,Ct,Cf,Cb,Cc) <-

Cs =#= false and Ct =#= false and C~ =#= false and
Cf =#= true and Cb =#= true.

Without the use of communication variables, this transaction could not be formulated
without violating the condition that a transaction can be started only once or without
introducing artificial dependencies.

4.2.2. Execution State Dependencies

Success and failure dependencies. If the subtransactions of a Flex Transaction cannot
be divided into groups based on success and failure dependencies, they must be tested
via communication variables.

Example 18 (IF-THEN-ELSE)
The semantics of the following transaction are: if a flight can be booked to Paris
(tflight), then reserve a hotel (thoteZ) there; otherwise, book an overnight ferry to
Budapest (tship). This can be specified in Flex via the dependencies tflwht ~S thotd
and t flight ~F tship and the set of commit sets { {tflight , thotd}, {tsh,~p} }.

In VPL we represent this transaction as:

gta18(...) < -
call~TA(LTAfzight, true, true, PIDf, Starer, Cf=true) &&
callITA(LTAhotd, Statef=true, true, PID~> Stateh, Ch=true) &&
call-LTA(LTAship, PIDf='FAILED', true, PIDs, States, Cs=true) &&
contro118(Statef, Starch, States, C f, Ch, Cs).

conIrolls('SUCCEEDED', 'SUCCEEDED', States, C f, Ch, Cs) < -

244 E. KUHN, ET AL.

Cy =#= true and Ch =#= true and Cs =#= false.

controlls(Statey, Stateh, 'SUCCEEDED', C f, Ch, Cs) < -
Cy =#= false and Ch =#= false and Cs =#= true.

We shall now illustrate the specification of more complicated dependencies (as in
ACTA) in VPL. Such dependencies can result in either optimistic or pessimistic
concurrency control. When possible, we will opt for the pessimistic method, in
which no transaction can be activated until it is guaranteed that the dependency can
be satisfied. In Section 5.4, we will outline optimistic testing by means of event
streams.

The implementation of these dependencies also depends on whether or not a local
subtransaction commits individually and thus is of the compensatable type. For
example, to guarantee commitment dependency (ti C/) tj) for noncompensatable
transactions, it is sufficient to test whether ti has committed under the postcondition of
tj. However, if tj is compensatable, the test must be performed under the precondition
of tj. Otherwise, the commitment of tj cannot be prevented.

For the following examples, we assume noncompensatable subtransactions that are
called with remote_callNc and delegate their commitment to the caller.

If the dependency is fulfilled, the gta succeeds; otherwise, the gta fails. Our imple-
mentation of the gta is reduced to show the dependency between t/ and tj. Other
transactions may also be called in the gta, possibly between t/ and tj. We assume
that communication variables are shared and thus can also be set elsewhere. Compo-
sition of several dependencies is possible by connecting their pre-, post- or commit
conditions by logical AND.

Commit dependency, gtacD implements ti C79 tj:

gtacD(. . .) < -
call_LTA(LTA/, true, true, PID/, State/, true) &&
call_LTA(LTAj, true, Fj=true, PIDj, Statej, true) &&
controlcD(PID/, Fj).

contrOlGD('SUCCEEDED', Fj) < - set(Fj, true).
controlcD('FAILED', Fj) < - set(Fj, true).

We have implemented CD such that tj must wait until t /has terminated before it can
commit. Controlling the PIDi differs from controlling State/in that PID/=' SUCCEEDED'
implies that ti was needed for the global transaction, whereas State/='SUCCEEDED'
indicates only that ti succeeded (having reported prepared), but it is still unclear
whether the global transaction will be committed or t/will be compensated.

Strong-commit dependency, gtascD implements t/ SCZ9 tj:

g tascD(. . .) < -
call_LTA(LTAi, true, true, PID/, State/, true) &&

A PARALLEL LOGIC LANGUAGE 245

call_LTA(LTAj, true, true, PIDj, Statej, true) &&
controlscD(PIDi, PIDj).

controlscD('SUCCEEDED', 'SUCCEEDED') < - true.
controlscD('FAILED', PIDj) < - true.
controlscD(PIDi, 'FAILED') < - PIDi='SUCCEEDED' &

signal(PIDi, ' ABORT').

We have implemented ,SCUD by requiring tj to succeed if ti succeeds. If ti fails,
tj may either succeed or fail. If t,i fails, tj is compensated (its process is sent the
'ABORT' signal).

Abort dependency, gtaAD implements t,z ,AT) tj:

gtaaD(...) < -
calIITA(LTA~, true, true, PIDi, Statei, true) &&
call_LTA(LTAj, true, Fj=true, PIDj, Statej, true) &&
controIAD(PIDi, Fj).

controlaD('FAILED', Fj) < - set(F 3, false).
controlAD('SUCCEEDED', Fj) < - true.

tj must not succeed if ti aborts. If t,,, succeeds, the execution state of tj is not relevant.

Weak-abort dependency, gtawD implements ti 1/VT)b:

gtawD(...) < -
calI_LTA(LTAi, true, true, PIDi, State~, lrue) &&
calI_LTA(LTAj, true, true, PIDj, State 3, Cj=true) &&
controlwD(PIDi, C j).

controlwD('FAILED', Cj) < - set(Cj, false).
controlwD('SUCCEEDED', Cj) < - true.
controlwD(PID,i, Cj) < - cvar(PIDi).

tj may commit only if t~ has not already failed. If t~ has already succeeded, tj may
commit. If ti is still running, which is ensured by the "cvar" test, tj may also commit.

Termination dependency, gtaTD implements ti "/'7) tj:

g tarn(. . .) :-
call_LTA(LTAi, true, true, PIDi, State~, true) &&
call_LTA(LTAj, true, Fj=true, PIDj, Statej, true) &&
controlyD(PIDz, Fj).

controlTD('SUCCEEDED', Fj) < - set(Fj, true).
controlTD('FAILED', Fj) < - set(Fj, true).

Exclusion dependency, gtaED implements h 37) ta:

246 E. Ki]HN, ET AL.

gtaED(...) < -
calI_LTA(LTAi, true, true, PIDi, Statei, true) &&
call_LTA(LTAj, true, Fj=true, PIDj, Statej, true) &&
contrO1ED(PIDi, Fj).

controlED('SUCCEEDED', Fj) < - set(Fj, false).
contrOlED('FAILED', Fj) < - true.

Compare with the implementation of AD.

Force-commit-on-abort dependency, gtacMD implements ti CAAD b:

gtaCMD(...) <-
call_LTA(LTAi, true, true, PIDi, Statei, true) &&
call_LTA(LTAj, true, true, PIDj, Statej, true) &&
contro1CMD(PIDi, PIDj).

controlcMD('FAILED', 'SUCCEEDED') < - true.
controlcMD('SUCCEEDED', PIDj) < - true.

tj must succeed if ti fails. Otherwise, the execution state of tj is irrelevant.

Begin dependency, gtaBD implements ti BD tj:

gtaBD(.. ,) < -
call_LTA(LTAi, set(Fj, started), true, PIDi, Statei, true) &&
call_LTA(LTAj, Fj=started, true, PIDj, Statej, true).

The fact that ti has begun is signaled to tj by the fact that ti in its precondition sets
Fj to 'started.' This is tested in the precondition of tj.

Serial dependency, gtasD implements ti $7~ tj:

gtasD(.. .) :-
call_LTA(LTAi, true, true, PIDi, State/, true) &&
controlsD(PIDi, Fj) &&
call_LTA(LTAj, Fj=true, true, PIDj, Statej, true).

controlsD (' SUCCEEDED', Fj) < - set(F j, true).
controlsD('FAILED', Fj) < - set(Fj, true).

b must wait until ti has terminated. This is tested in precondition of tj.

Begin-on-commit dependency, gtaBCD implements ti BC~ tj:

gtaBcD <-- LTAi & LTAj.

Begin-on-abort dependency, gtaBAD implements ti /3.A~D tj:

A PARALLEL LOGIC LANGUAGE 247

gtaBAD :-- LTAi.
gtaBAD :-- LTAj.

Weak-begin-on-commit dependency. If implemented pessimistically, g t a w c D equals
gtasD.

4.2.3. Data Dependencies

Communication variables can serve to model data dependencies. For example, output
data can be shared as communication variables between several processes which monitor
their states and values as the basis of decisions. The output variable of the remote_call
is a communication variable, the value of which can be tested by the VPL program. For
example, this value can be used to constrain the total price of reserved travel. Since the
representation of queries was not discussed in detail in this paper (the remote_call was
assumed), we will not provide any examples of the process.

4.2.4. User Interaction

Unlike Prolog, VPL is capable of effectively interpreting input and output. User input is
represented as a stream of communication variables. When a value is committed in the
stream, it becomes visible and persistent.

Let us assume that a transaction requires an interactive retrial:

r e t ry (Use r) : -#U1 & User=#= ['retry ? ' IU1] I UI = [y e s l U 2] .

Depending on the user 's input, the predicate "retry" succeeds or fails. It can be used
to trigger the retrial of a transaction.

4.2.5. Advanced Control Mechanisms

Timeout . All parallel operators of VPL guarantee a fair execution and thus can be used to
specify a timeout ("sleep(N)" waits for N seconds). The following example illustrates
the "call_with_timeout" procedure that calls a transaction T. If the timeout expires
before T succeeds, "call_with_timeout" fails and causes the abort of T. Ctrl is a
communication variable and is shared between the two OR parallel branches.

call_with_timeout(T, N, Ctrl) : : - T & Ctrl =#= true I .
call_with_timeout(T, N, Ctrl) : : - s l e e p (N) & Ctrl =#= false I fail.

Retry condition. An example of this retry condition has been provided in Section 4.2.4.

To control the retrial of a transaction, we write:

248 E. KUHN, ET AL.

. . . test & LTA~ . . .

test : - flue.
test : - retry_condition.

The first test clause will succeed as required for the first (forwards) execution of
ti. If the execution of ti fails, backtracking occurs and "test" is asked for another
solution. The second test clause is then tried; this calls the retry condition. If retrial
succeeds, forwards execution is started and ti is re-entered. The number of retries of
ti is equal to the number of solutions.

For example, a retry condition that is fulfilled N times can be specified as:

retryN(0) : - I fail.
retryN(N) : - true.
retryN(N) : - N1 is N-1 & retryN(N1).

Repetition. If a subtransaction must be reused several times within a transaction, we
can simply rewrite the subtransaction the required number of times.

Dynamic interrupts. VPL's primitive "signal" can be used to dynamically interrupt run-
ning processes.

Current state. As the values of communication variables can be observed by parallel
processes, they can readily be used to check the results or states of transactions
performed to date.

Dynamic changes. Since Prolog-based languages permit dynamic program changes,
such changes can actually be programmed. Advanced programming techniques in
Prolog are discussed in [27].

5. Advanced Aspects of VPL-Based Transaction Specification

An MDBS transaction consists of more than simply the specification of the control and
data flow between parallel activities.

5.1. Fault-Tolerance

Using the VPL recovery mechanism, a gta can be started as an ' INDEP' process, guaran-
teeing that the gta will eventually be performed. The execution of distributed transactions
is thus rendered independent of system and site failures. Perpetual activities can thus be
modeled as ' INDEP' processes that never terminate. Furthermore, I/O via communica-
tion variables is highly reliable, and user input is never lost.

A PARALLEL LOGIC LANGUAGE 249

5.2. Delayed Compensation

A compensating action can be specified a s a n unbound communication variable. This
communication variable can later be bound, permitting the delayed specification of a
compensating action in a manner analagous to the formation of a prepared state.

5.3. Advantages of Prolog

A number of advantages of logic-based languages have been discussed throughout this
paper. Additonal advantages include:

VPL can be used to specify control and data flow, as it is a query and transaction
control specification language.

A VPL specification is runnable.

The formulation of knowledge can be accomplished using the rules of Prolog.

Scheduling can be improved using metaschedulers which incorporate information
regarding the duration of transactions [19] or by allowing the VPL system to exploit
the maximum parallelism allowed by a specification.

Many formulations are possible for any query.

Backtracking within VPL involves the automatic trial of alternative solution paths.
The "IF t flight " THEN thot~l ELSE t~hip" case originally presented in Example Exam-
ple 1 8 must be representative of this capability, which will not be further addressed
in this paper due to length limitations.

Example 19 (IF-THEN-ELSE with Backtracking)
In Example 18, alter the success of t flight and the failure of tho~l, the commit set
{t.,h,~,} cannot be reached because of the failure dependency tfliqht -<F tst~zp. This
dependency states that t~f, ip must not be tried unless tflzfjht has failed. If we allow a
slightly different interpretation of this dependency, we may model the same example
in a declarative way, allowing backtracking:

gtam :- LTAfzi~o~t & LTAhoteZ.
gtam :- LTAst~z~).

The failure of thotr causes backtracking and thus the abortion of t fz/~hL, which in
turn either causes its abort at the local database system or its compensation. In either
case, we may state that tflzght is unsuccessful and allow the solution {tship}.

If we extend Example 18 by the clause

control ls ('SUCCEEDED' , 'FAILED' , State~, Cf, Ch, C~) <
set(C f, false).

250 E. Ki.)HN, ET AL.

the same behavior can be achieved. Setting Cf to 'false' triggers the abortion of the
process, calling LTAflight and thus setting PIDf to 'FAILED. ' Thus, LTAship can
be started.

5.4. Reliable Event Streams

A stream of communication variables can be shared among several active local transac-
tions, and each transaction can be asked to write its significant events on that stream.
This stream can then be considered as a history and used for optimistic concurrency
control. The appropriate modification of the call_LTA predicate is readily accomplished
through the addition of an event stream argument. Every state transition of the local
transaction is then written into this stream.

6. Conclusions

The processing of MDBS transactions imposes a number of new requirements on tradi-
tional transaction models. Moreover, an advanced language is needed for the specification
of MDBS transactions.

In this paper, we have shown how a general-purpose, logic-based coordination language
can serve this purpose. In VPL all control flow patterns can be specified, often in multiple
ways. All specifications using ~ can be executed directly. Using VPL, a user is thus
no longer dependent on predefined functions and is capable of formulating any MDBS
transaction.

Prototype implementations of our coordination tools are available for UNIX worksta-
tions connected by local or wide area networks, supporting the IP protocol (send e-mail
to eva@ mips.complang.tuwien.ac.at).

Our next step will involve the design and implementation of a graphical user interface
that will expedite VPL programming. We also plan to develop protocols tailored for the
communication of very large amounts of data with the intention of integrating multi-
media data.

Acknowledgments

We acknowledge the support and encouragement of Manfred Brockhaus, the chair of
the Computer Languages Department at the TU Wien, and the helpful comments of
Alexander Forst, Wei Liu, Herbert Pohlai, Konrad Schwarz, and Thomas Tschernko on
this text.

Notes

1. Due to space limitations, object-orientation is not discussed in this article. Details may be found in [18], [5]

2. For implementation of the fault-tolerant communication protocol, see [17].

A PARALLEL LOGIC L ANGUAGE 251

References

1. R Bemstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

2. K. E Birman, "The process group approach to reliable distributed computing." Communications of the
ACM, 36(12), pp. 37-53, 1993.

3. Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, and A. Silberschatz, "On rigorous transaction schedul-
ing." tEEE Transactions on Software Engineering, 17(9), pp. 954-960, 1991.

4. A. Buchmann, M. T. ()szu, M. Homick, D. Georgakopoulos, and E A. Manola, A transaction model
for active distributed object systems. In A. K. Elmagarmid, editor, Database Transaction Models for
Advanced Applications, chapter 5, pp. 123-158. Morgan Kaufmann Publishers, 1992.

5. O. Bukhres, A. Elmagarmid, and e. KiJhn, Advanced languages for multidatabase systems. In O. Bukhres
and A. K. Elmagarmid, editors, Object-Oriented Multidatabase Systems. Prentice-Hall, 1995. to appear.

6. O. Bukhres, e. Kiihn, and E Puntigam, A language multidatabase system communication protocol. In
Proceedings of the 9th International Cor~erence on Data Engineering, pp. 633 640. IEEE Computer
Society, April 1993.

7. R Chrysanthis and K. Ramamritham, ACTA: The SAGA continues. In A. K. Elmagarmid, editor,
Database Transaction Models fi)r Advanced Applications, chapter 10, pp. 351 397. Morgan Kaufmann
Publishers, 1992.

8. E. D~jkstra, "Guarded commands, nondeterminacy, and formal derivation of programs." Communications
(~fthe ACM, 18(8), pp. 453457 , 1975.

9. W. Du, A. Elmagm'mid, and W. Kim, "Maintaining quasi serializability in multidatabase systems." In
Proceedings of the 7th International Con/>renee on Data Engineering, pp. 360-367, Kobe, Japan, April
1991.
A. Ehnagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz, "A multidatabase transaction model for
lnterBase." In Proceedings of the 16th International Co*:ference on Very Large Data Bases, pp. 507-
518, Brisbane, Australia, August 1990.
A. K. Ehnagarmid, editor, Databave 7)ansaction Models/br Adwmced Applications. Morgan Kaufnmnn
Publishers, 1992.
A. Forst, e. Kuhn, and O. Bukhres, "General purpose work flow languages." International Journal on
Parallel and Distributed Databases, 3(2), pp. 187 218, 1995. Special Issue on Software Support for
Work Flow Management, Kluwer Adademic Publishers.
A. Forst, e. Kiihn, H. Pohlai, and K. Schwarz, "Logic based and imperative coordination languages."
In Seventh International Col!ference on Parallel and Distributed Computing Systems, PDCS'94, pp.
152-159, Las Vegas, Nevada, October 6-8 1994. 1SCA, ACM, IEEE.
H. Garcia-Molina and K. Salem, "Sagas." In Proceedings qf the ACM SIGMOD Annual Cot!fbretlce, pp.
249-259, San Francisco, May 1987.
D. Georgakopoulos, M. Rusinkiewicz, and A. Shcth, "On serializability of multidatabase transactions
through forced local conflicts." In Proceedings of the 7th International Cor!fi, rence on Data Enk, ineering,
pp. 314-323, Kobe, Japan, April 1991.
J. Gray, "The transaction concept: Virtues and limitations." In Proeeedings of the VLDB (V e�9 Large
Databases), pp. 144-154, Cannes, France, September 1981.
e. Ki_ihn. "Fault-tolerance for communicating multidatabase transactions" In Proceedings o/ the 27th
Hawaii hlternarional Cor:ference on System Sciences (HICSS), pp. 323-332, Wailea, Maul, Hawaii,
January 4-7 [994 ACM, [EEE.
e. Kiihn, "A universal model for the coordination of distributed systems." Technical report, University
of Technology Vienna, 1994.
e. Kiihn, W. Liu, and H. Pohlai, "Scheduling transactions on distributed systems with the VPL engine."
In ln: Proceedings of the Second Biennial European Joint Cot~/erence on Engineering Systems Design,
ESDA '94, pp. 335-347, London, England, July 4-7 1994. The American Society of Mechanical Engineers
(ASME).
e. K~hn and T. Ludwig, VIP-MDBS: A logic multidatabase system. In Proceedings of the International
Symposium on Databases in Parallel and Distributed @,stems, pp. 190-201, Austin, Texas, December
1988. IEEE Cmnputer Society Press. Also included as part of the text of a new IEEE Computer
Society Press tutorial Multidatabase Systems: An Advanced Solution.fi)r Global h!/brmation Sharin,~, by
A. R. Hurson, M W. Bright and S. Pakzad, 1993.

i0.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

2 5 2 E. K O H N ~ E T AL.

ienna V parallel 21. e. Kfihn, H. Pohlai, and F. Puntigam, Concurrency and backtracking in , Logic . Computer Lan-

guages, 19(3), pp. 185-203, July 1993.
ien~a V Daralle~ ,, 22. e. Kiihn, H. Pohlai, and F. Puntigam, "Communication and transactions in . Logzc Computers

and Artificial Intelligence, 13(4), pp. 301-319, 1994.
23. e. Kiihn, F. Puntigam, and A. K. Elmagarmid, "An execution model for distributed database transactions

and its implementation in VPL." In Proceedings of the International Conference on Extending Database
Technology, EDBT'92, pp. 483--498, Vienna, March 1992. Springer Verlag, LNCS.

24. Y. Leu, Flexible Transaction Management in the InterBase Project. PhD thesis, Purdue University,
August 1991.

25. J. E. Moss, "Nested transactions: An introduction." In B. Bhargava, editor, Concurrency Control and
Reliability in Distributed Systems, pp. 395-425. Van Nostrand Reinhold, 1987.

26. E. Shapiro, "The family of concurrent logic programming languages." ACM Computing Surveys, 21(3),
pp. 413-510, September 1989.

27. Ehud Shapiro, The Art of Prolog. The MIT Press, 1986.
28. L. Suardi, M. Rusinkiewicz, and W. Litwin, "Execution of extended multidatabase SQL." In Proceedings

of the 9th International Conference on Data Engineering, pp. 641-650, Vienna, Austria, April 1993.1EEE
Computer Society.

29. H. Wiichter and A. Reuter, The ConTract model." In A. K. Elmagarmid, editor, Database Transaction
Models for Advanced Applications, chapter 7, pp. 219-263. Morgan Kaufmann Publishers, 1992.

