How specific is the arachidonic acid-induced mouse ear oedema for lipoxygenase (LO)- and cyclooxygenase (CO)-inhibitors?

W. Pignat, R. Kienzle and I. Böttcher

Research Department, Pharmaceuticals Division, Ciba-Geigy Ltd., Basel, Switzerland

Introduction

Arachidonic acid (AA) applied topically to the ears of mice produces an acute transient inflammatory reaction with immediate erythema and oedema formation (maximum at 1 h) and elevated tissue concentrations of prostaglandins (PGs) and leukotrienes (LTs) [1].

From inhibitor studies it has been concluded that this model may be especially suitable for the detection of LO-inhibitors *in vivo* [2]. We have tested different pharmacological classes of compounds to re-evaluate the specificity of this model. The same compounds were also tested in the croton oil-induced ear oedema model in mice and rats.

Materials and methods

AA-induced mouse ear oedema [2]

Male mice (Tif: MAGf/SPF, 24–28 g body weight, 8 animals per group) were anaesthetized and AA (Sigma, 4 mg/25 μ l acetone) was administered to the inner surface of the right ear using a micropipette. Drugs were administered topically 30 or 180 min prior to AA in 25 μ l of ether: pyridine: water (75:20:5). One hour after AA ear pieces of uniform size were punched out (diameter 7 mm) and weighed. Dose response curves and ED₅₀-values were estimated graphically. Statistics: Student's t-test.

Croton oil-induced ear oedema in mice and rats [3]

Male mice (Tif: MAGf/SPF, 24–28 g body weight, 8 animals per group) or male rats (Tif: RAIF/SPF, 110–130 g body weight, 5 animals per group) were anaesthetized and cutaneous inflammation was induced by applying a solution of 3% croton oil (Fluka) in ether: pyridine: water (72:20:5) to the inner surface of the right ear of mice (25 μ l) or rats (50 μ l). Test compounds were dissolved in the inflammation-inducing irritant. Six hours later uniform ear pieces (mouse: diameter 7 mm, rat: diameter 9 mm) were punched out and weighed and ED₅₀-values were estimated accordingly.

Compounds used were: Phenidone, hydroquinone, diphenyldisulfide and mepyramine from Fluka, nordihydroguaiaretic acid (NDGA) and salbutamol from Sigma, all other compounds were synthesized in Ciba-Geigy Labs.

Results and discussion

CO-inhibitors, LO-inhibitors, dual CO/LO-inhibitors as well as corticosteroids, β_2 -stimulators and H₁-antagonists were tested in the AA-induced ear oedema model. ED₅₀-values are given in Table 1.

In the standard model (drug administration 30 min prior to AA) by far the most potent compounds were β_2 -stimulators. The ED₅₀ of formoterol was < 0.1 µg/ear. The LO-inhibitor Takeda AA 861 as well as several CO-inhibitors

Table 1

Effect of topically applied compounds on arachidonic acid- and croton oil-induced ear oedema.

Drug	ED _{so} (µg/ear)			
	Arachidonic acid oedema (1 h)		Croton oil oedema (6 h)	
	Mouse Drug: -30 min	Mouse Drug: –180 min	Mouse Drug: simult.	Rat Drug: simult.
Steroids				· <u> </u>
Hydrocortisone	> 200	8	50	150
Dexamethasone	> 200	3	3	2
Clobetasol-17-propionate	> 200		3	1
CO-inhibitors				
Indomethacin	120	~ 200	> 1000	2000
Flurbiprofen	160		> 1000	4000
Naproxen	> 1000		> 1000	2800
CO/LO-inhibitors				
Phenidone	170	8-200*	> 1000	> 6000
NDGA	600		> 1000	2000
BW 755 C	> 1000		> 1000	> 4000
Benoxaprofen	> 1000		> 1000	1500
Lo-inhibitors				
Hydroquinone	> 1000		> 1000	> 4000
AĂ 861	200	40-200*	>1000	2300
Diphenyldisulfide	> 1000		> 1000	> 4000
β_2 -stimulators				
Formoterol	0.06	0.2	5	20
Salbutamol	1.0		80	200
H ₁ -Antagonists				
Ketotifen	130	800	> 1000	> 2000
Mepyramine	> 1000		> 1000	> 2000

* Plateau: 40-50% inhibition.

(indomethacin, flurbiprofen) and dual CO/LOinhibitors (phenidone, NDGA) were moderately active $(ED_{50} > 100 \le 600 \,\mu\text{g/ear})$. Other LO-inhibitors (diphenyl/disulfide, hydroquinone), CO/ LO-inhibitors (BW755C, benoxaprofen) and naproxen (CO-inhibitor) were even less inhibitory $(ED_{50} > 1000 \,\mu g/ear)$. The antihistamine ketotifen exhibited moderate activity $(ED_{50} \sim 130 \,\mu g/ear)$, whereas mepyramine was nearly inactive $(ED_{50} > 1000 \,\mu g/ear)$. Corticosteroids (hydrocortisone, dexamethasone, clobetasol- 17-propionate) were inactive under acute test conditions (at 200 µg/ear) but potent inhibitors when administered 3 hours prior to AA $(ED_{50} < 10 \,\mu g/ear)$. Pretreatment (3 hours) enhanced the activity of phenidone and AA 861. The oedema was inhibited by 40 to 50% with concentrations of 8 and 40 µg/ear respectively, but even at high concentrations (1000 μ g/ear) not

more than 60% inhibition was obtained. Indomethacin had about the same activity as in the standard model, formoterol was about 4 times less active, but still the most potent compound. Comparing the results in the AA-induced – and the croton oil-induced oedema models, we have found that some but not all tested CO-, LO- and dual CO/LO-inhibitors were moderately active in the AA-induced oedema (ED₅₀ 120-600 μ g/ear), whereas all of them were either inactive or only slightly active at high concentrations (1000 µg/ ear) in the croton oil oedema models in mice and rats. In these standard models high croton oil concentrations (3%) were used to induce maximal inflammatory responses. Under these experimental conditions only corticosteroids and $\bar{\beta}_2$ -stimulators were potent inhibitors. However, recent results from Tubaro et al. [4] and ourselves (unpublished data) indicate that the croton oil mouse

ear oedema, when induced by low irritant concentrations (0.3%) can be effectively suppressed by CO-inhibitors (indomethacin, flurbiprofen), as well as by LO-inhibitors (AA 861) and dual CO/LO-inhibitors (NDGA) at concentrations (ED₅₀ \geq 200 < 1000 µg/ear), which are in the same range as those shown to be inhibitory in the AAinduced oedema.

In conclusion, several LO- and dual CO/LO-inhibitors, which are nearly inactive in the standard models of croton oil induced ear inflammation, exhibit moderate activity in the AA-induced mouse ear oedema when applied topically. These data confirm the recent results of Young *et al.* [2] and Carlson *et al.* [5]. However, potent CO-inhibitors (indomethacin, flurbiprofen) are at least comparably active in this model indicating that the AA-induced inflammation is promoted via products of the cyclooxygenase- and the lipoxygenase-pathway. Additionally, we found moderate activity of the H₁-antagonist ketotifen, Carlson *et al.* of chlorpheniramine, promethazine and atropine [5].

By far the most potent compounds in the AA-induced as well as in the croton oil-induced ear inflammation are β_2 -stimulators and corticosteroids.

These results indicate that topically applied AA is not only the substrate for local PG- and LT-production, but is also a local irritant inducing complex proinflammatory reactions which can be effectively inhibited by mechanisms other than LOand CO-enzyme inhibition.

References

- E. E. Opas, R. J. Bonney and J. L. Humes, Prostaglandin and leukotriene synthesis in mouse ears inflamed by arachidonic acid. J. Invest. Dermatol. 84, 253-256 (1985).
- [2] J. M. Young, D. A. Spires, C. J. Bedford, B. Wagner, S. J. Ballaron and L. M. De Young, *The mouse ear inflammatory* response to arachidonic acid. J. Invest. Dermatol. 82, 367-371 (1984).
- [3] G. Tonelli, L. Thibault and I. Ringler, A bio-assay for the concomitant assessment of the antiphlogistic and thymolytic activities of topically applied corticoids. Endocrinology 77, 625-634 (1965).
- [4] A. Tubaro, P. Dri, M. Melato, G. Mulas, P. Bianchi and P. Del Negro, *The effects of NSAIDs on the croton oil ear model* are dependent on the dose of the irritant used. Agents and Actions, in press.
- [5] R. P. Carlson, L. O'Neill-Davis, J. Chang and A. J. Lewis, Modulation of mouse ear edema by cyclooxygenase and lipoxygenase inhibitors and other pharmacologic agents. Agents and Actions 17, 197-204 (1985).