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Werten bei 5,4 Hz etwa 5~o, bei 16,2 Hz 
etwa 13%. Damit ist unhand der MeBergeb- 
nisse an einem realen Werkstoff gezeigt, dab 
es in Ubereinstimmung mit theoretischen 
Vorstellungen notwendig ist, die jeweilige 
Schwingungsart anzugeben, bei der der kom- 
plexe E-Modul eines Stoffes ermittelt wurde. 
Dies ist insbesondere dann nStig, wenn aus 
den MeBergebnissen ein Modell zur Beschrei- 
bung des mechanischen VerhMtens ermittelt  
werden soil (7). 

In G1. [13] sind die exakten Umrechnungs- 
beziehungen fiir iibliche Dgmpfungsmage an- 
gegeben. Hierbei handelt es sich jedoch aus- 
schlieBlich um Dgmpfungsmal3e bei freien 
Schwingungen. Die MSglichkeit, die Dgmp- 
fungsmal3e bei freien Schwingungen in ent- 
sprechende Gr6gen bei erzwungenenSchwin- 
gungen, z. B. den mecha,nischen Verlust- 
faktor tg 3 umzurechnen, ist, wie sich leicht 
aus den obigen Ausfiihrungen zeigen l/if3t, 
nicht Mlgemein gegeben, da diese Umrech- 
nungsbeziehungen modellabhgngig sin& 

So gil.t z. B. fiir das einfache Voigt-Kelvin- 
Modell (Parallelschaltung von Feder und 
Dgmpfer) 

A 

tg ~ = ~z A 2 ; [14] 
1 + ( ~ )  

und ftir das einfache Maxwell-Modell (Reihen- 
sehaltung von Feder und Dgmpfer) 

~g ~ = _A. [15] 
g'g 

Die den Gln. [14] und [15] entsprechenden 
Umrechnungsbeziehungen zwischen dem me- 
chanischen Verlustfaktor bei erzwungenen 
Schwingungen tg d und dem bei freien 
Schwingungen ermittelten logarithmischen 
Dekrement A k6nnen daher nicht allgemein 
angewandt werden, sondern erst, wenn er- 

wiesen ist, dab sich der untersuchte Werk- 
stoff wie ein Voigt-Kelvin- oder Maxwell- 
KSrper verhglt (8). Die in GI. [13] angegebene 
Beziehung ftir freie Schwingungen gilt da- 
gegen allgemein fiir alle linear-visko- 
elastischen Stoffe. 

Zusammen/assung 
Das mechanische Verhalten linear-viskoelastischer 

Stoffe kann mit Modellen, die aus Federn und Dgmpfern 
aufgebaut sind, beschrieben werden. Berechnet man die 
komplexe Federkonst~n~e dieser Modelle, so ergeben 
sich bei freien und erzwungenen Schwingungen ver- 
schiedene Werte. Es ist daher notwendig, zur kom- 
plexen Federkonstante zusgtzlich die jeweils betrach- 
fete Schwingungsar~ anzugeben. Dies wird durch Ver- 
suche, die an I-Iart-PVC bei + l l 0 ~  durchgef/ihrt 
wurden, bestgtigt. 

I)a die Federkonstante und damit such der Elastizi- 
t/itsmodul yore zeitlichen Verlauf der Beanspruchung 
abhgngt (komplexer E-Modul bei freien und erzwunge- 
nen Schwingnngen, l~etardationsmodul, l%elaxations- 
modul), sollte man nicht den E-Modul, sondern die Kon- 
stanten des Stoffmodells (Relaxationsspektrum) als 
Stoffkenngr6Ben bezeJchnen. 
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l. Introduction 
Free damped vibrations are often used in 

rheology for the determination of dynamic 
*) Paper read at the Annual Meeting of the German 

Rheologists, Berlin-Dahlem June 7-10, 1966. 
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mechanical properties of linear viscoelastic 
materials. This method has a serious dif- 
ficulty : experiments using damped vibrations 
cannot give direct information about 
dynamic mechanical properties which are 
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only  defined for u n d a m p e d  sinusoidal os- 
cillations. This problem has a l ready been 
discussed by  various authors  previously;  see 
for example  Staverman and Schwarzl  (1) and 
Markov i t z  (2). To our knowledge no satis- 
f ac to ry  solution has so far  been given in the 
l i te ra ture ;  i t  offers no general  t heo ry  about  
free v ibra t ions  of  which the  results can be 
readi ly  used in theological  measurements .  

x(t) ,K(t)! 

viscoelastic 
spring 

Inertio ! ~ I I___e_qu_.ilibri_um 
-: l , w  

Force K( t )  

Fig. 1. Sehematical illustration of the free 

We will a t t e m p t  to present  such a t h e o r y  in 
this  paper .  

The  mechanical  problem under  conside- 
ra t ion  is i l lus t ra ted in fig. 1. An iner t  body  I 
is a t t ached  to  a l inear viscoelastic spring 
fixed at  one side. All iner t ia  of  the  sys tem 
is concent ra ted  in I.  F ree  v ibra t ions  are 
genera ted  as follows: The  sys tem is a t  res t  
for t ime t - -<0.  For  t ime t > 0 a t ime- 
dependen t  force K (t) acts on I. This force is 
finite and only non-zero over  the l imited 
t ime intervM 0 < t _< t 0. These conditions 
are called the Start  Condit ions.  The  response 
af te r  release of the  force K(t) ,  i. e. for t > t 0, 
is called the  Free Vibration.  

Most of the  free v ibra t ing  systems used 
in rheologieal  measurements ,  can be re- 
p resen ted  in tMs way.  A typica l  example  is 
the  tors ional  pendu lum (3, 10). In  this case, 
I is a ro ta t iona l  iner t ia  and the  spring s tands 
for the  viscoelastic specimen deformed by  
torsion.  

I n  Chapter  2, we will discuss the  equa t ion  
of mot ion  of  this system, and fu r the r  its 
formal  solution for free vibrat ions.  We will 
show t h a t  the  free damped  v ibra t ion  is 
governed  b y  an eigen /requency, ~o o, and  a 
logarithmic decrement, A .  :Part of  these 
considerat ions can a l ready be retold in the  
l i te ra ture .  In  Chapter  3 we will derive 
formulae  to calculate the  dynamic  mechanic-  
al propert ies ,  viz. the  dynamic  modulus,  
f rom ~o 0 and A. 

All der ivat ions in this paper  are based on 
only two assumptions  for the  mechanical  
re laxat ion  of the  viscoelastic material .  The  
first is t h a t  Bol t zmann  ' s superposi t ion pr inciple  
can be applied, the  second that the  re laxat ion  
has a positive discrete relaxation spectrum. 
The la t ter  assumpt ion  can be justified f rom 
irreversible the rmodynamics ,  see Staverman 
and Schwarzl  (1). 

x(t) 

X--.l \ /  

I ,,\ \ /~, 
\ I ~ , ,  
~,I ~ / ',,' . . . .  

i i $ ~d 
0 t o ~ W . 

I b tlme. t 

I.= free vibrat ion 

K( t )=O 

vibrating system and the start conditions 

2. Equation of Motion and its Formal Solution 
for Free Damped ~ril)rations 

2.1. The  equation o / m o t i o n  1) 

Combining Newton ' s  second law, Boltz- 
m a n n ' s  superposi t ion principle  and the  start 
conditions discussed above,  we find for the  
sys tem of  fig. 1 the  following equat ion  of  
mot ion:  

t 

K (t) = I ii(t) + gig(o) x(t) + I~1(t -- ~) x (~)d$]. [1] 
0 

In  this formula  x (t) is the  deviat ion f rom 
equi l ibr ium (see fig. 1), M ( t )  is the  stress 
re laxa t ion  modulus  of  the  viscoelastic ma- 
terial  and g is a fo rm factor ,  depending on the  
deformat ion  geomet ry  of  the  specimenS). 
Eq.  [1] m a y  easily be Laplace- t rans formed .  
I t  followsa) : 

K (p) [2] 
x(p) -- ip  ~ + gM*(p) 

1) This equation of motion has already been derived 
by Brinl~man (4) in 1955; see also Markovitz (2). 

~) A summary of form factors for various deformation 
geometries is given by Ferry (3). 

~) The term I { ? z ( O + ) +  ~(0+)}, arising by 
Laplace-transformation of the term I~(t) in [1], is 
zero, because the force K(t) is finite and the inertia- 
containing system was at rest for t <_ 0 (start con- 
ditions). 
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with  ~o K(T)X(T) == LL {K(t)}det~e-~t(x(t)} K(t) dt } 
M*(T ) = L {M(t)} + M(0) 

[2A] 

2.2. The Analytical Expression /or the Free 
Damped Vibration (Formal Solution o/ 
the Equation o /Mot ion)  

To find an  analy t ica l  expression for the  
free damped vibra t ion we use the  assumpt ion 
t h a t  the  stress re laxat ion modulus,  M (t), has 
a positive discrete relaxation spectrum. In  
formula  a) : 

~v 
M (t) = ~ (~) + ~c,~ e-t/~ [3] 

k = l  
wi th  

~r vk> 0 k = l ,  2 . . . . .  N ] 

~+~>z~ k = l ,  2 . . . . .  (N-- l )  I [4] 
M ( ~ )  >-- o 

For  M*(p) according to [2A] and  [3] we 
find: 

N 

M*(p) = M(0) - -~=  ; 1  2 P z k "  [5] 

Subst i tu t ion of  [5] into the  equat ion of  
mot ion [2] gives: 

/g 
n (1 + p~) 

k = l  
x (p) = .K (p) e ~v + 2 [6] 

] = l  

In  this formula  the  cons tant  ~ is real and  
positive. The numbers  - fl~, - f i 2  . . . . .  - -  / ~ ,  

. . . .  -flzr in [6] are the (N + 2) roots 
of  the  equat ion:  

~v a~ 0. [7] ~__L + M ( 0 ) - - ~  1 + T** 
g k = l  

I t  can be shown ~) t h a t  a t  least N of these 
roo~s, i. e. - f l~ ,  - f l~  . . . .  , - f l ~ ,  are non- 
positive real wi th :  

- -  1 / ~ ,  < - -  f l ,  < - -  1/u I 

- 1 / ~  < -/~ < - 1/~+~ / [8] 
- 1/~v < - ~ s  _<0; - ~ a  = o  if  M ( ~ )  = 0  

Fur the r  ~) the  two other roots - f l x + ~ ,  
and  - flzc+~may be conjugate complex wi th  
non-posit ive real par t  as well as non-positive 
real. 

a) The number of time constants is taken finite; as 
can be verified easily, the subsequent derivations also 
hold if it is infinibe. 

~) Part  of the proof is given by Elder (5); by con- 
sidering eq. [7] for real p-values i t  may be verified 
e a s i l y .  

Two conjugate complex roots 

We first consider the  case of conjugate 
complex roots 6) : 

- - f l x + l : T o = - - 2 0 + i c o o  h 
-- filv+~i =l/----'-l= Po = -- ;% - icoo ~ [9] 

) 
2. o~>0; coo> 0 

Because all (2V + 2) roots are different 
from each other,  and as a ma t t e r  of course 
also from the  ~ ' s ,  we can separate the  ration- 
al par t  of [6] into par t ia l  fractions as follows : 

2V 

x @ ) = ~ ; ( p )  f - T o  p ~o = 
[10] 

The constants  Yl, Y~, al, a~ . . . . .  air in [10] 
are the  residues of  the  ra t ional  funct ion in 
[6] a t  the  points P0, P0, - ill, - f12 . . . . .  - f iN.  
F rom [8] and  [9] i t  follows t h a t :  

[11] a~ real and positive for k = 1, 2 , . . . ,  N. J 

Laplace-inversion of [10] leads to :  
t 

x(t) -~ AfK(~) e-&(t-Ocos {co0(t - -  ~) + ~o} d~ 
0 

/v t 

k = 1 0  

In  [12] the  real constants  A and ~o depend 
on 71 and  7~ by  e lementary  goniometrie 
formulae.  

F r o m  [12] we derive the expression for the 
free vibrat ion.  For  t > to, K(t)  = 0, and  [12] 
reduces to :  

x(t) = e -~~ {~ cos (cost + ~) + ~ sin (cos t + ~)} 
AT 

+ ~d~ e-~k t [133 
k = l  

with:  
to 

~t = A f  K($) e + &~ cos (coo $) d~ [14A] 
0 

to 
~ = AfK(~) e+&~ sin @o~)d~ [14B] 

0 
to 

dk = ak~ K (~) e+ Pk ~ d~. [140] 
0 

Formula  [13] can be simplified to :  

x (t) = B e -  a, t cos (coot + V) + ~ d k  e -~kt 

l o ~ 0 ;  coo>0;  fl~> 0; : - - 1 , 2  . . . . .  N - - 1  
P~v----- 0 

[151 

~) 250 means conjugate complex r To; labelling with 
a dash, as common for conjugate complex numbers, is 
used in another sense in this paper. 
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In [15] the real constants B and ~ depend 
on ~1, $2 and ~ by  simple goniometric for- 
mulae. 

In [15] the constants coo and 2 0 do not 
depend on K(t) as they are the imaginary 
and the real part  of a complex root of eq. [7] 
in which neither K(t) nor K (p) appears. We 
may therefore formulate our result as 
follows : 

The /tee damped vibration consists o/ two 
parts: first, an exponentially damped har- 
monic vibration o/ which the /requeney coo 
and the damping term 2 0 do not depend on 
K (t) (the manner in which the /ree vibration 
was initiated); second, a sum o/exponentials. 

From eq. [14C] it does not follow that  all 
constants de must have the same sign. This 
means that  the sum of exponentials (each 
absolutely not increasing because the fl~'s are 
non-negative) is not necessarily monotonic 7). 
A special case is that  of a K(t) with no 
change of sign over the interval (0, to); the 
integral in [14C] then has the same sign for 
each ]c. Consequently because of [11], all 
constants de have the same sign now. In 
this special case the sum of exponentials is 
monotonic. 

All roots non-positive real 
As can be verified easily, no damped 

harmonic vibration as given in [15] will 
result in this case of ,,over-critically damp- 
ing". 

3. Theory Concerning the Determination of the 
Complex Dynamic Modulus by Free Damped 
Vibrations 

3.1. The dynamic modulus; its determination 
with/ree vibration experiments 

The complex dynamic modulus M(co) of 
a linear viscoelastic material is defined for a 
stationary harmonic vibration with angular 
frequency o9, see Staverman and Schwarzl (1). 
The stress-strain amplitude ratio being A, 
the positive phase angle d, M (co) is given by:  

M(~o) = Ae  +i~ [16] 

i =  ~_-~ 
The complex dynamic modulus M(co) can 

be measured directly by  experiments, using 
forced sinusoidal oscillations [see Staverman 
and Schwarzl (1)]. However,  especially for 
materials with low damping, i. e. with small 
values of phase angle d, and further at very 

~) I f  the sum of exponentials is not monotonic, it has 
extrema. The separation of the exponentially damped 
harmonic vibration from the non-monotonic sum of 
exponentials may then become a difficult problem in 
the practice of free vibration measurements. 

low frequencies, the measurement of phase 
angle c3 is a difficult problem. Therefore, the 
dynamic modulus 2~r(co) is often measured 
by  free damped vibration techniques. A 
specimen is made part  of the mechanical 
system, illustrated schematically in fig. 1; 
it plays the role of viscoelastic spring. A free 
damped vibration is initiated by  applying 
a force K(t), obeying the start  conditions 
specified in the Introduction. Finally, the 
free damped vibration is recorded. 

We have already discussed that (para- 
meters of) this free damped vibration do not 
give direct information on the dynamic 
modulus, as it is not defined for this ease. 
However,  it remains to be seen if there is 
any other uniquely defined material pro- 
per ty  that  can be obtained directly. 

3.2. The Material Property M* (Po) as Obtain- 
ed Directly/rom Free Vibration Measure- 
ments 

From the theory given in Section 2.2. we 
know that  the free vibration contains at most 
one simple damped harmonic vibration, 
characterized by  a frequency co o and a 
damping term 20; see formula [15]. I t  is only 
present if the system is not over-critically 
damped. I f  we measure s) 2 0 and e) 0 we have 
experimentally found the root 

P 0 =  - 2 0 + i c o 0  
of eq. [7]. (Follow the reasoning in 2.2. in 
the reverse direction.) When we remember 
[5], it follows that :  

IP~ + M*(po) = o. [17A] 
g 

In other words, from Po, calculated from 
the measured values of 20 and coo, We im- 
mediately find the value of the function 
M* (p) for p = P0. The very simple formula 
reads 9) : 

~/* (P0) Ip~ . [17 B] 

Splitting [17B] in real and imaginary 
parts and introducing the logarithmic decre- 
ment, A, according to 1~ 

A 2 ~Zo [17C] 
(D O 

s) The measurement of 20 and co0 implies that  the 
damped harmonic vibration in [15] can be separated 
from the sum of exponentials. We do not discuss 
under what circumstances this is actually possible. 

9) A is the natural logarithm of the decay per period 
of the damped harmonic vibration in [15]. 

10) Notice that  [17B] is a generalization of the 
classical equation for free vibrating systems with a 
Hookean spring. 
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we find: 

M~(po)=Re{M*(po)} Io~J (] -- 4 - ~ )  =-V- 
I~oJ A 

M2 (Po) = I m  {M*(po)} g 

[]TD] 

[17El 

From the definition formula [2A] for 
M* (p) we observe that  the function M* (p) 
and therefore also its value M* (Po) in the 
point Po is a material property uniquely 
defined. 

3.3. The Significance o/the Function M*(p) 
and its Connection with the Dynamic 
Modulus M (o~) 

To begin with, we give two formulae; the 
first, [18A], is identical with the definition 
eq. [2A] of M*(p) for p = 4 + i ~ o ;  the 
second, [18B], follows from Boltzmann's 
superposition principle and the definition 
formula [16] for the dynamic modulus _~f (w). 

c o  

M*(2 + ia)) -~ M(O) + ~e-(~+i~ [18A] 0 oo 
.M(eo) -~- M(O) +~e-i~tj~i(t)dt. [18B] 

0 

T a k i n g  4 = 0 in [18A], it follows that  
~(~) ~ M*(i~). []SC] 

I~(p) is desired 

for p = i~o o - ~  I 

\ I\ 
i \  ~ @P~ i~(~ ~ ........ 

)( X i -~o )( 
- I / ~  - I/Z'k -I, VN 

definit ion domain of 
the dynamic modulus  

(to) - M*( ia4) 

* Re (p) 

Fig. 2. The complex p-plane 

Consider now fig. 2; plotted is the complex 
p-plane. The function M*(p) is defined by  
[18A] for complex values of p. For materials 
with a positive discrete spectrum the integral 
[18A] only converges for Re(p) > - I / ~ N ;  
see [3]. For other p-values, M*(p) can be 
defined b y  analytic continuation. From [18 C] 

it follows that  the dynamic modulus ~ ( w )  
is a special case of M* (p) for p = ico, i .e .  
for p-values on the positive imaginary axis. 
Therefore M*(p) is called the (generalized) 
complex modulus/or the complex frequency p11). 

The conclusion of Section 3.2. may now 
be reformulated: With free vibration techniques 
one measures the complex modulus M*(po) 
/or the complex eigen frequency Po o/ the 
mechanical system. While we intended to 
determine the dynamic modulus, for example 
at a frequency %, we have found the value 
of M* (p) in the wrong point: in the point 
P0 = - ; to  + i(~ instead of in the desired 
point i~  o (see fig. 2). To obtain the dynamic 
modulus we must know how to calculate 
M* (P0) and M* (i ~0), one from the other. 

3.4. Derivation o/Formulae to Calculate M * (po) 
and M (%), one/ram the other Analytical 
Expressions 

To begin with, we specify some notations. 
MI(p) = Re {M*(p)}; Ml(w) = Re {M((o)} [19A] 

Ms(p) = I m  {M*(p)}; Ms(w ) : Im {-M(~o)} [19B] 

tan 6(p) = M2(p)/MI(p); tan 6 (w) : M~(w)/-Ml(w) [20] 

As indicated, all quantities related to the 
dynamic modulus are labelled with a hori- 
zontal dash; this notation should not be 
confused with the usual notation of complex 
conjugated quantities in the same manner. 

From the assumption that  M(t) has a 
positive discrete relaxation spectrum, it 
follows that  the funtion M*(p), given in 
eq. [5], is analytic in the entire p-plane, 
except in the simple poles - 1/v~ (k = 1, 2, 
�9 . . ,  N) on the negative real axis; see fig. 2. 
As a consequence, we can expand M*(p) 
around the point P0 = - ; to  + i w0, as well 
as around the point i w o in an infinite con- 
vergent Taylor series. The radius of con- 
vergence R is at least w 0 in both cases, 
because the distance of the nearest pole to P0 
as well as to i o9 o is at least ~0. Writing 
according to [17C]: 

i~oo-po= + ~0 = (2~-~-~) O~o [2,] 

we find the following series to calculate the 
dynamic modulus -717(co0) ~ M*(iw0) from 
M*(p) and its derivatives in the point 
P = P0:  

o o  

(~o) = M*(po)  + ~. ( -  i)k 
k! 

] 
0m~ J~o . [22] 

11) For details see Hiedemann and Spenee (6) or 
K6nig and Meixner (7). 
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The derivatives to 79 are expressed as 
partial derivatives to ~, with 2 constant; 
this is allowed because M* (79) is analytic. 

For the calculation of M*(79o) from ~(o))  
we obtain in the same manner: 

M*(po) = ~@o) + ~  (i)~ 

Because M (co) is a function of w only, ~he 
partial derivatives as in [22] are replaced b y  
normal derivatives in [23]. 

Both series, [22] and [23], converge for 
A < 2 u because R >_ %. Therefore, the use 
of these series in the next theory implies the 
restriction A < 2 ~. As will be discussed in 
Section 3.5., experimental values for A are 
generally smaller than about  1 to 1.5. 
Accordingly, the restriction A < 2 ~ has no 
significance regarding to the applicability of 
the theory.  

Successive A 7979roximations 
In  practice, the series [22] and [23] cannot 

be summed rigorously, because we never 
know more than a limited number of higher 
derivatives. Therefore, we now consider the 
successive approximations for ~(w0) and 
M* (790), which arise if we sum in respectively 
[22] and [23] only the first n terms. For the 
0-order and #h-order approximation i~ 
follows that :  

For the calculation of/~r (~o0) from M* (790) : 

{M@o)}o = -M*(po) 

{-~r@o)}n = M*(TO) + 

(-- i) ~ A (_~_~) ~Oo~ [ 6~M*(p) ] + 

n - -  1, 2 , . . .  

[2r 

[24B] 

For the calculation of M* (790) from 7~ (COo) : 
J 

{M*(po)}o = .M @o) 

{M*(po)},~ = ~ @o) + 

+ ~  (~)~ [ A ~ o  ~ [ ~ ( ~ 1 ]  
~2~-~. ~-2-~! L d~e J~,~ 

n = 1, 2 , . . .  

[2~A] 

[25B] 

Truncation errors in the approximation 
/ormulae 

Truncation errors in the approximation 
formulae can be found by  using a general 
relation derived in the Appendix: 

o~ [ a~M*(r) 1 I < ~ h )  / 
[--~! [ - -  ~ - - ] ~ 1  - -  [26] J / 9 = - - ~ +  ion.  

For the error en in [24B], defined by :  

e~ ~l -~ @0) - { i  (~0)}~ [27] 
we find from [22], [24B] and [26] that :  

~=n+l" 
[2s] 

In  the same manner we find for the error 
en' in [25B] and defined by :  

e~'d~1M*(P~ -- {M*(po)h [29] 
the following: 

(A/2 ~)n + t 
I~'l ~ ~(~0) ~ :  A ~ '  [30] 

To derive [30], [26] is used for the special 
case 79 = i co 0. 

Approximation errors in storage and loss 
components 

First we specify a notation. The absolute 
error in the storage modulus ~ 1  (%) calculat- 
ed by  the ntn-order approximation formula 
[25B] is written as: 

In the same manner we use the abbre- 
viations ~nM2(e)o), ~nM1(79o) and ~nM2(79o). 

From these definitions, together with 
formulae [27] to [30], we obtain upper limits 
for the absolute errors: 

- -  ( A / 2  z~)n + 1 
I~M,@o) l, l e~2Y~(~o)[ < [e~l < M~(po) ( 1 -  AI2:~) 

[31A] 

(A/2 ~r)n + 1 
}~nM~(po)l, [(~nM2(po)[ < [en'l <-~r~(O)o) (1 - -  A/2~) " 

[31B] 

Further,  we could derive upper limits 
for the relative errors in storage and loss 
components. Table 1 gives a summaryl~). The 
upper half of this table concerns the cal- 
culation of _~(w0) from M* (790) b y  the n th- 
order approximation formula [24], the lower 
half the reverse problem. Two types of 
relative errors are distinguished. The first 
deals with the error in the quant i ty  obtained, 
relative to the original quantity. An example 
is: 

~nMl(wo) 
M~(po) 

Limits for these errors are given by  
formulae [32A], [32B], [32D], [33A] and 
[33C]. The second type  concerns the error 
in the obtained quanti ty  relative to itself, 

1~) The  l imi ts  g iven  in  t ab l e  1 are n o t  t h e  be s t  uppe r  
l imits .  B e t t e r  fo rmulae  could be  der ived  bu~ are v e r y  
compl ica ted .  F o r  t h e  case A g 1, in  which  we are 
m a i n l y  in teres ted ,  (see Sect ion 3.5.), t h e  differences 
w i th  t he  fo rmulae  of  t ab l e  1 are  small .  
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Table 1. Upper limits for various relative errors concerning the nth-order approximation; n = 1, 2, . . .  

Approximation Type of Upper limit for the absolute value of the tel. error Form. 
formula tel. error general formulae, A < 2 ~ simplification, A -- 1 no. 

[24B] 
M*@o) -+ ~ @3) 

A<2z~  
n =  1 ,2 , . . .  

[ 2 5 B ]  

~(~o) -+ M*(~o) 
A < 2 ~  

n = 1, 2 , . . .  

Mdpo) 
$n Ml(o)o) 

Mdpo) 

~n Ml@o) 

~n M3@o) 
M~(po) 

M~(o~o) 

~Ml(po) 

d~M~(p3) 
Mdpo) 

dnM3(po) 
M~@0) 

a~M~(po) 
M~@o) 

~) Only valid if A < 0.9 ~. 

tan ~(p0) (A/2 ~)n+~ 
(1--  A/2~) 

2 (A/2 ~)n+~ 
(1 - -  A/2 ~)~ (1 + A/2 ~) 

2 (A/2 ~)n+2 1) 
1 -- A/2 ~ -- 3 (A/2~) ~ + (A/2 z~) 3 

(A/2 :~)n+l 
(1 - -  .4/2 ~) 

( A/2 ~)~+1 
(1 - -  A/2 ~)~ 

tan 6@o) (A/2 z)n+l 
(1 - A/2 ~) 

2 ( A / 2  ~ ) n + 2  

(1 - A/2 ~)~ (1 + A/2 ~) 
(.4/2 ~)n + l 

(1 - A/2 ~) 
( A/2 z)n + l 

"(1 - -  ./1/2 z~) ~ 

3) Only valid if M*(p3) is measured by free vibration methods, i. e. if [34] holds. 

2.44 (A/2 ~)n+~ 

2.60 (_4/2 z)n+ 3 

1.19 (A/2 z)n+l 

1.41 (A/2 7~) n+l 

2.8 ( A/2 ~) n + ~ 

1.19 (A/2 zt)n+l 

1.41 (A/2 z)n+l 

[32A] 

[32 B] 3) 

[32C] 3) 

[32])] 

[32E] 

[33A] 

[aS B] ~) 

[33C] 

[33D] 

an example  is : 

M l @ 0 )  

Limits  of  this  t ype  are given b y  formulae  
[32C], [32E],  [33B] and  [33D]. 

Two sets of  formulae  for the  er ror  limits 
are given in tab le  1. The  left  ones, excep t  
[32C], are val id  for  A < 2 ~, the  r ight  ones 
are simplified formulae  only  val id for  A < 1. 
Three  of  the  formulae  in table  1, viz. [32B], 
[32C] and [33B], are on ly  val id  i f  M*(po)  is 
measured  b y  free v ibra t ion  techniques.  To 
u n d e r s t a n d  t h a t  this  represents  a res t r ic t ion,  
let  us summarize  wha t  was exac t ly  done in 
the  preceding theory ,  We considered the  
funct ion  M*  (p) and t r ied  to find its value  in 
some poin t  f rom its value  in ano the r  point .  
The  only  assumpt ion  for M*  (p) was t h a t  i t  
was analy t ic  in the  complete  complex p- 
plane, excep t  for a series of  simple poles a t  the  
negat ive  real p-axis. B u t  the  v e r y  fac t  
t h a t  M* (Pc) is measured  b y  free v ibra t ions  
gives addi t ional  in /ormat ion ,  viz. : 

tan 6(Po) = M3(po)/Ma(po) -~ ( A/~) 1 - -  (A/2z) ~ " [34] 

Eq.  [34] follows immedia te ly  f rom [17D] 
and  [17El.  

In  tab le  1, the  genera] formulae  [32A], 
[32D], [33A] and [33C] are ob ta ined  im- 
media te ly  f rom [31A] and  [31B]. F o rm u la  
[32B] is a special case of  [32A] i f  M*(p0) is 
measured  b y  free v ibra t ions ;  i t  follows b y  
subs t i tu t ing  [34] in [32A]. Fo rmulae  [32E] 
and  [33D] are der ived f rom respect ive ly  
[32D] and  [33C] b y  using the  following 
re la t ion 13) : 

l_(_~z ) < M3(po) < 1 i[35] 
~3(coo) 1 -- A/2 

The  lef t  hand  side of  [35] is der ived f rom 
[24A] and  [31B] for  n = 0; the  r ight  h an d  
side f rom [25A] and [31B] for n = 0. 
F o r m u l a  [33B] is found  f rom [31B], [34] 
and [35] b y  wri t ing : 

Ml(po) M3(~o) M~(po) M~(po) 

Again this  fo rmula  is on ly  val id  i f  M*  (Po) 
is measured  b y  free vibrat ions .  Final ly ,  we 
derive formula  [32C]. F r o m  [29A] and  [32B] 

18) By using [25B] for the case n = 1 (first order 
approximation) it follows from dMz/do~ > 0 that: 

(A/2 ~)~ M~@o) 1 
1- 1 A/2~ -~ ~ . [35A] 

-- M~(COo) I -- A/2 

This formula is used in section 3.7. 
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for the case n = O, it follows that :  

o <_ 1 < M~(po) 
1 -k 2 (A/2 ~)~ M~(wo) 

(1 --  A[2~) ~ (1 + A/27c) 

1 / [36] 
~-- (A/2 z) 2 

1 --  2 (1 - -  A/2 z~) ~ (1 + A/2 z~) 

if A < 0.9 ~. 

Formula [32 C] follows from the right hand 
side of this unequali ty and from [32B]. The 
simplified formulae, only valid for A __- 1, 
were found by substituting A = 1 in the 
denominator of the general formulae. 

3.5. Use/ulness o/ the A pproximation Formulae 
From table 1 it can be seen tha t  for the 

approximation formulae [24] and [25] the 
error limits continuously decrease with the 
m'der of the approximation. However, the 
usefulness of the formulae in practice strongly 
depends on the velocity of convergence. 
Table 1 shows that  the logarithmic decre- 
ment, A, is the dominating factor in this 
connection. We therefore first consider the 
range of values for A covered in the measure- 
ment practice. 

There are two reasons to assume that  A 
is not greater than about 1. First, if we wish 
to measure 2 o and e% of a damped sinusoidal 
vibration according to [15]  with some 
accuracy, the decay per period, viz. exp. (A), 
may not be too large. I f  A becomes large, 
the number of periods for which the oscillation 
is above the noise level of the apparatus 
becomes too small for accurate measurements. 
Of course, the maximum admissible value 
of A depends on the accuracy of the record- 
ing system ; a practical limit turned out to be 
in the order of 1. 

Second, it wilI be shown in 3.7. tha t  the 
quant i ty  A/~ is approximately equal to the 
loss factor tan 5 of the dynamic modulus. 
I f  A exceeds 1, consequently tan ~ must be 
greater than approximately 0.3. But, in this 
case, the measurement of the dynamic 
modulus 7g (~) directly by forced sinusoidal 
vibrations becomes much more practical 
than the free damped vibration technique la). 

From table 1 we see that  all error limits 
decrease by a factor of 2 z/A, if the order 
of the approximation is increased by 1. 

~4) Many investigators, including the present author, 
actually use free vibration techniques to measure the 
dynamic modulus of materials with a loss factor of 1 
or more, for example polymers in the glass-rubber 
transition. We shall discuss this matter in Section 3.7. 

40 

Therefore, if A _< 1, in all cases each 
approximation is at least 2~ ___ 6 times 
better than the foregoing; this means that  
the covergence is rapid and tha t  the formulae 
are suitable for practical calculations. 
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Fig. 3. Limits for ~nMIlM1 and ~nM~IM~, respectively 
the relative errors in the dynamic storage and loss 
modulus, if calculated from M*(po) by the 0 th-, 1 st- 

and 2nd-order approximation formula (24B) 

Some additional information is summariz- 
ed in fig. 3 and table 2. I t  concerns the 
calculation of 2~(~oo) from M*(po), to be 
performed if the dynamic modulus should be 
determined by free vibration techniques. 
Plotted in fig. 3 are error limits versus 
logarithmic decrement A for 0 th-, 1 st- and 
2hal-order approximations of _aTr 1 and _aT 2. 
We clearly observe tha t  the error limit for 
the nth-order approximation of the loss 
modulus2172is approximately two times smaller 
than the error limit for the (n - 1)t~-order 
approximation of the storage modulus -]~z 
(compare also [32C] and [32E]). This means 
tha t  approximations of the same order for 
2~ 1 and 2~2 considerably differ in accuracy, 
the one for _aTr I being the best. 

Table 2 lists the error limits for the 0 th-, 
1 st-, 2 nd- and 3 ~a- order approximations at 
a fixed value of A, viz. A = 1. This value of 
A being the maximum experimental value, 
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table 2 also summarizes the maximum errors 
that  are possible in practical calculations. 

Table 2. Limits os relative errors in % for A = 1 

M*(po) --~ M (O~o) 
n 

_~(o~o) -~(~Oo) 

0 6.6 22.4 
1 1.04 3.6 
2 0.17 0.57 
3 0.025 0.09 

We observe that  the 2nd-order approxi- 
mations have an accuracy bet ter  than 
about  0.5%. This order of approximation 
is therefore sufficient for calculations with 
experimental data. A scheme for this will 
be given in a subsequent paper. 

3.6. General Conclusions About the Differences 
between M*(po) and_~ (Oo) , A ~_ 1 

For the differences between the moduli 
M* (P0) and J~r(co0) , as measured respectively 
with free damped and forced undamped 
vibrations we now shall draw some definite 
conclusions. A is restricted not to exceed a 
value of 1. 

Quantitative Conclusions 

The relative differences in storage and loss 
moduli do not exceed values o/ respectively 6 
and 19%. These values were taken relative 
to the dynamic storage and loss moduli 7 ~  (%) 
and 2~2(COo). This conclusion is based on 
formula~ [35] and [36]. 

Qualitative Conclusions 

To find qualitative conclusions, we use the 
first order approximation formula [25B]. 
Split into real and imaginary components it 
reads: 

- r 1 {M~(po)}~ : M~(wo)- (A/2~) [ ~ j ~ o  I [37A] 

I 
{M2(p0)}~ = 2~2(o0) + (A/2 ~) L d-~]~-n~ ]~ ~ ]. [37B] 

Whereas these formulae are accurate 
within 1 and 3% respectively, (see table 1), 
the same is true for conclusions drawn from 
them. The results are illustrated in fig. 4. 
Plot ted are the dynamic storage and loss 
moduli _~r~ and _~2 both vs angular frequency 
o for a hypothetical material; the diagram 
used is double logarithmic. As indicated in 
fig. 4. a material with a positive discrete 

relaxation spectrum shows various maxima 
in _~r2, accompanied by  steplike increments 
of -~1- 

In M 2 

T 

[ 1 I I I MI (Po) ~ - M I ( % )  

J i I i MI (Po)  ~ 4 1 ( ~ ~  
i --I ' ! -  

, , . I  

~ tn u~ 

Fig. 4. The difference between -~l(P0) and Ml(oo), as 
it is determined by the slope dM~/d In o) in the dyaamic 

loss modulus 

From [37A] it follows that :  the storage 
modulus M__l (po ) may be smaller, greater or 
equal to M 1(%), depending on dM2/d in oJ 
being respectively positive, negative or zero. 
At the low /requency side o/ a peak in M2, 
Ml(PO ) ~--_/_~1(o0), at the top of the pealc 
Ml(PO ) Ml(w0); at the high frequency side 
M1 (Po) >-- MI (Oo). (See fig. 4.) 

From [37]3] it follows that :  the loss 
modulus M~(po ) is always greater than 

(O o) because dMUd In >_ O. 

3.7. The Relation A/~ ~_ tan ~(w0) 

Combining [34], [35A] and [36], we obtain: 
( A/2 zO ~ 

1 (1 = ~ / 2  ~)2 { 4 - - 5 ( A / 2 z ) - - 2 ( A / 2 z 0 2  

+ ( A / 2 z ) a } < _  (A/z) -----1-]- (A/2z){1 + (A/2~) ~} 
tan ~ (Oo) (1 --  A/2 zO ~ 

[38] 

Fig. 5 gives an illustration; plotted are 

the upper and lower bounds for A/~ as 
tan 

functions of A. As we are mainly interested 
in the case A ~ 1, we may  simplify [38] to:  

A/~ "~ tan 6'(Oo) . [39] 

The maximum error in this formula is 
less than 23% if A ~ 1, see fig. 5. 

Formula [39] tells us that  the restriction 
A ~ l, introduced in Section 3.5., is equi- 
valent with a restriction for the loss tangent 
of the viscoelastic material: 

tan 6(~o0) ~ 0.3. [40] 
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Fig. 5. Upper and lower bounds for A/z as functions 
tan of A 

In  many cases, materials with a loss 
factor in the order of 1 or more are investigat- 
ed by free vibration techniques. To avoid a 
A greater than 1 a Hookean, extra stiffness, is 
then placed parallel to the specimen; the loss 
tangent  of the combination being smaller than 
about 0.3 in this way. The complex modulus of 
the combination is measured, tha t  of the spe- 
cimen is calculated afterwards. I t  should, 
however, be realized tha t  this method 
introduces sources for serious errors; it would 
be better to use forced sinusoidal vibrations 
for a direct measurement of the dynamic 
modulus. 

3.8. The Reasonable Accuracy o] the Usual 
Theory o] Nree Vibrations 

The usual theory of free damped vibrations 
is incorrect, as the dynamic modulus is 
introduced illegitimately into the classical 
equation of motion for free vibrating sys- 
stems. For a description of this theory and 
its limitations, see Staverman and Schwarzl 
(1), and also Marl~ovitz (2). Whereas the 
introduction of the dynamic modulus is 
illegitimate it can be performed in several, 
conflicting ways. I t  is therefore not sur- 
prising tha t  two different formulae to 
calculate the dynamic modulus from coo 
and A are current in the literature, the 
formula with the + being more widely used 
than  tha t  with a - sign25) 

I~~ (1 A2 {2~r~(O)o)}u= - - ~  \ __ - ~ )  [41A] 

{~d~o)}~- s~176 A [ , i lB ]  
g 

15) {2~1(COo)} u Ineans_~fl(COo) ' calculated with the 
usual theory, so also {3/2((oo)}u. 

The strong analogy of these formulae with 
[17D] and [17El is obvious. In the usual 
theory, the formula with a - sign_interprets 
M*(p)  for p = - 4 o  + i co0 as M(m0). The 
formula with the + sign does the same thing 
but it moreover calculates the real part  of 
the modulus incorrectly. Formulae [41A] 
with the - sign and [41B] therefore are 
identical with our zero-order approximation 
[24A]. Consequently, if we use them, it 
follows from 3.6. tha t  we find ~2  too large; 
M 1 may be found smaller, equal or greater 
than its actual value, this depending on the 
slope d~2/d In co of the dynamic loss modulus; 
see fig. 4. 

o o,# o2 o.3 o A  
2 ,0  ~ ' ' 

- - ' [~ l Iu /~t .~, i lA J+ 
1,5--___{I~2}ui~2.f l#B) maX. 

Modulus 
ratio ~_ ~ 

r a i n  

0,S 

o,5 1,o 1.5 
, A 

l~ig. 6. Bounds for the errors in the usual theory of free 
vibrations as functions of A 

Fig. 6 gives further illustration. Plotted 
versus A are_ upper and lower bounds for 
{2~r: (coo)},/Ml (coo) if calculated with formula 
[41A] respectively_ with the - a n d  + sign, 
and further for {~r~ (coo)},/_~f2 (coo) calculated 
with [41 B]. 

For the maximum errors at A = 1 we 
find from [35] and [36]: 

I~rcl (~la) -1 < 6.5% [C3re I (41A) +] _-< 11.5% 
[~rol (~lB)l < 19%. 

Obviously, formula [41A] with the - sign 
is better than that  with the + sign. 

Finally, it is surprising that  the usual 
theory, although incorrect, gives results which 
in most cases are accurate enough. For example 
for organic and inorganic glasses, metals 
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and some rubbers  well above the  glass 
t ransi t ion,  the  errors are negligible because 
t an  ~ and therefore  also A is much  smaller 
t han  1 (see 3.7.). Of  course, this  is the  reason 
w hy  the  usual t heo ry  has been used so long 
wi thou t  revision. 
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Appendix 
A Formula for the Higher Derivatives of the 
Complex Modulus for Materials with a Positive 
Discrete Relaxation Spectrum 

F o r  a m a t e r i a l  w i t h  a p o s i t i v e  d i s c r e t e  
r e l a x a t i o n  s p e c t r u m  i t  f o l l o w s  (see f o r m u l a  
[5]) for: 

T = - - ) . + i o )  A-- - - -0 ; r~>0  i = l / - - ~ l  [A, 1] 

that : 

M*(p) = M(0) = (1 -- 2,k) ~ + (co~k) 2 

~T 
0% r 

+ i ~  (1 - z,k) ~ + (~Tk) ~ " [A, 2] 

C o n s e q u e n t l y  : 

Mp(p) > 0 if ( o >  0 [A, 3] 

~ dnM*(P) = ~=1 c~k(~176 I 
n! dp n (1 + pTk) n+1 

N ak (~ ~k) n 

-< ~ {(1 -ZT~)~ + m~rk~}(~+~)/~ k=l 

2V 

= (l -- X~k) ~ + c~Tp 

2 [ ] X ( 1  - -  Ark) 2 + eo2~k ~ <_ M:(p). 

[A, 4] 

F o rm u la  [A, 4] contains a n u m b er  of 
formulae  for the  higher  der ivat ives  of the  
dynamic  modulus  M* (i~o). This subject  will 
be  discussed ex tens ive ly  in a subsequent  
art icle (9). 

Summary 

A mechanical system consisting of an inert com- 
ponent, attached to a linear viscoelastic spring, is 
studied theoretically. Basic assumptions about the 
viscoelastic material are Boltzmann's superposition 
principle and a positive discrete relaxation spectrum. 
The equation of motion and its formal solution for free 
damped vibrations are discussed. 

The theory focusses on the determination of the 
complex dynamic modulus, defined for undamped 
sinusoidal vibrations, by free damped vibrations. 
Simple approximation formulae to calculate the 
dynamic modulus from free vibration data, i. e. eigen 
frequency and logarithmic decrement, are given; upper 
limits for the approximation errors could be derived. 
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