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Werten bei 5,4 Hz etwa 59, bei 16,2 Hz
etwa 13%,. Damit ist anhand der MeBergeb-
nisse an einem realen Werkstoff' gezeigt, dafl
es in Ubereinstimmung mit theoretischen
Vorstellungen notwendig ist, die jeweilige
Schwingungsart anzugeben, bei der der kom-
plexe E-Modul eines Stoffes ermittelt wurde.
Dies ist insbesondere dann nétig, wenn aus
den MeBergebnissen ein Modell zur Beschrei-
bung des mechanischen Verhaltens ermittelt
werden soll (7).

In Gl [13] sind die exakten Umrechnungs-
beziehungen fiir iibliche Dampfungsmale an-
gegeben. Hierbei handelt es sich jedoch aus-
schliefilich um Dampfungsmale bei freien
Schwingungen. Die Moglichkeit, die Didmp-
fungsmafle bei freien Schwingungen in ent-
sprechende GréBen bei erzwungenen Schwin-
gungen, z. B. den mechanischen Verlust-
faktor tg § umzurechnen, ist, wie sich leicht
aus den obigen Ausfilhrungen zeigen I4Bt,
nicht allgemein gegeben, da diese Umrech-
nungsbeziehungen modellabhingig sind.

So gilt z. B. fiir das einfache Voigt-Kelvin-
Modell (Parallelschaltung von Feder und
Dampfer)

4
tgé:——nTz—; [14]
1+ (——)
27

und fiir das einfache Mazwell-Modell (Reihen-
schaltung von Feder und Dampfer)
A

tgé:—.

po (15]

Die den Gln. [14] und [15] entsprechenden
Umrechnungsbeziehungen zwischen dem me-
chanischen Verlustfaktor bei erzwungenen
Schwingungen tg d und dem bei freien
Schwingungen ermittelten logarithmischen
Dekrement A kénnen daher nicht allgemein
angewandt werden, sondern erst, wenn er-

wiesen ist, dal} sich der untersuchte Werk-
stoff wie ein Voigt-Kelvin- oder Maxwell-
Kérper verhilt (8). Die in G1. [13] angegebene
Beziehung fiir freie Schwingungen gilt da-

gegen allgemein fiir alle linear-visko-
elastischen Stoffe.
Zusammenfassung

Das mechanische Verhalten linear-viskoelastischer
Stoffe kann mit Modellen, die aus Federn und Dampfern
aufgebaut sind, beschrieben werden. Berechnet man die
komplexe Federkonstante dieser Modelle, so ergeben
sich bei freien und erzwungenen Schwingungen ver-
schiedene Werte. Es ist daher notwendig, zur kom-
plexen Federkonstante zusédtzlich die jeweils betrach-
tete Schwingungsart anzugeben. Dies wird durch Ver-
suche, die an Hart-PVC bei + 110 °C durchgefithrt
wurden, bestitigt.

Da die Federkonstante und damit auch der Elastizi-
tatsmodul vom zeitlichen Verlauf der Beanspruchung
abhangt (komplexer E-Modu!l bei freien und erzwunge-
nen Schwingungen, Retardationsmodul, Relaxations-
modul), sollte man nicht den £-Modul, sondern die Kon-
stanten des Stoffmodells (Relaxationsspektrum) als
StoffkenngriéBen bezeichnen.

Literatur

1) Nitsche, R. und K. 4. Wolf, Chemie, Physik
und Technologie der Kunststoffe in Einzeldarstellungen.
Bd. 1 (Berlin-Géttingen-Heidelberg 1962).

2) Stuart, H. A., Die Physik der Hochpolymeren,
Bd. IV (Berlin-Gottingen-Heidelberg 1956).

3) Bland, D. R., The Theory of Linear-Visco-
elasticity (Oxford-London-New York-Paris 1960).

4) Bergen, J. T., Viscoelasticity (New York-
London_1960).

5) Becker, G. W., J. Meifiner, H. Oberst und H.
Thurn, Elastische und viskose Eigenschaften von
Werkstoffen (Berlin-Kéln-Frankfurt 1963).

6) Holzmdller, W. und K. Altenburg, Physik der
Kunststoffe (Berlin 1961).

7) Heckel, K., Das Verhalten linear-viskoelastischer
Stoffe bei schwingender mechanischer Beanspruchung.
Habilitationsschrift TH (Miinchen 1966).

8) DIN 53445, Nov. 65, Abs. 2.3. Torsionsschwin-
gungsversuch (Berlin-Koln-Frankfurt 1965).

Anschrift des Verfassers:
Priv.-Doz. Dr.-Ing. Klaus Heckel,
Forschungsstelle filr Kunststoffe am Mechaniseh-techni-

schen Laboratorium der Technischen Hochschule,
8000 Miinchen

From the Centraal Laboratorium, TNO, Delf; (The Netherlands)

Free Damped Vibrations of Linear Viscoelastic Materials*)

By L. C. E. Struik
With 6 figures in 7 details and 2 tables

1. Introduction

Free damped vibrations are often used in
rheology for the determination of dynamic
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mechanical properties of linear viscoelastic
materials. This method has a serious dif-
ficulty : experiments using damped vibrations
cannot give direct information about
dynamic mechanical properties which are
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only defined for undamped sinusoidal os-
cillations. This problem has already been
discussed by various authors previously; see
for example Staverman and Schwarzl (1) and
Markovetz (2). To our knowledge no satis-
factory solution has so far been given in the
literature; it offers no general theory about
free vibrations of which the results can be
readily used in rheological measurements.

x(t) . K{t)
ALELLRRNLERARRRANY

linear

viscoelastic

spring
Inertia | —e ___tquilibrium_

__yx(n)

Force K(t)

All derivations in this paper are based on
only two assumptions for the mechanical
relaxation of the viscoelastic material. The
firstis that Boltzmann’s superposition principle
can be applied, the second that the relaxation
has a positive discrete relaxation spectrum.
The latter assumption can be justified from
irreversible thermodynamics, see Staverman
and Schwarzl (1).

/
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Fig. 1. Schematical illustration of the free vibrating system and the start conditions

We will attempt to present such a theory in
this paper.

The mechanical problem under conside-
ration is illustrated in fig. 1. An inert body I
is attached to a linear viscoelastic spring
fixed at one side. All inertia of the system
is concentrated in I. Free vibrations are
generated as follows: The system is at rest
for time ¢=<0. For time ¢ > 0 a time-
dependent force K (f) acts on I. This force is
finite and only non-zero over the limited
time interval 0 < t =<, These conditions
are called the Start Conditions. The response
after release of the force K (¢), i. e. for ¢ > £,
is called the Free Vibration.

Most of the free vibrating systems used
in rheological measurements, can be re-
presented in this way. A typical example is
the torsional pendulum (3, 10). In this case,
1 is a rotational inertia and the spring stands
for the viscoelastic specimen deformed by
torsion.

In Chapter 2, we will discuss the equation
of motion of this system, and further its
formal solution for free vibrations. We will
show that the free damped vibration is
governed by an eigen frequency, w, and a
logarithmic decrement, A. Part of these
considerations can already be found in the
literature. In Chapter 3 we will derive
formulae to calculate the dynamic mechanic-
al properties, viz. the dynamic modulus,
from w, and A.

2. Equation of Motion and its Formal Solution
for Free Damped Vibrations

2.1. The equation of motiont)

Combining Newton's second law, Boltz-
mann’s superposition principle and the start
conditions discussed above, we find for the
system of fig. 1 the following equation of
motion:

i
K() = I&(t) + g[M©) z(t) + [M (¢ — & « (§)a&]. (1]
0

In this formula z(t) is the deviation from
equilibrium (see fig. 1), M (¢) is the stress
relaxation modulus of the viscoelastic ma-
terial and g is a form factor, depending on the
deformation geometry of the specimen?).
Eq. [1] may easily be Laplace-transformed.
It follows?):

K(p)

D= T g ) .

1y This equation of motion has already been derived
by Brinkman (4) in 19565; see also Markoviiz (2).

%) A summary of form factors for various deformation
geometries is given by Ferry (3).

8y The term I {px(0+)+ #(0 +)}, arising by
Laplace-transformation of the term IZ(f) im [1], is
zero, because the force K (f) is finite and the inertia-
containing system was at rest for ¢ < 0 (start con-
ditions).
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x(p) = L{z(®)}
M*(p) = L{M(#)} + M(0)

[24]

2.2. The Analytical Expression for the Free
Damped Vibration (Formal Solution of
the Equation of Motion )

To find an analytical expression for the
free damped vibration we use the assumption
that the stress relaxation modulus, M (¢), has
a positive discrete relaxation spectrum. In
formula?):

N
M) = M(co) + yoge Ik [3]
k=1
with
aptr>0 £E=1,2,..,N
1> T k=1,2,..., (N —1) [4]

M(e0) =0

For M*(p) according to [2A] and [3] we
nd:

M#(p) = M(0) —> ~——— [5]

Substitution of [5] into the equation of
motion [2] gives:

(=

{1+ pg)
k=1

zP)=K@)ejgrg— - [6]
{p + Bj)

=
b

In this formula the constant ¢ is real and
positive. The numbers — §;, — f,, . . ., — fi,
... — fByysin [6] are the (N + 2) roots
of the equation:

N

Ip? o
Lo -S> %y,
—+ ”%Hm 0 (7]
It can be shown?) that at least N of these
roots, i. e. —f;, — fsy ..., —pn, are non-

positive real with:

— 1l < —fi < — Yz,
— 1/t < —Br < — 114 } [8]
— 1y < — By <0; — By =0 if M(co)=0

Further®) the two other roots — fy.1,
and — fy4smay be conjugate complex with
non-positive real part as well as non-positive
real.

) The number of time constants is taken finite; as
can be verified easily, the subsequent derivations also
hold if it is infinite.

®) Part of the proof is given by Elder (5); by con-
sidering eq. [7] for real p-values it may be verified
easily.

Two conjugate complex roots

We first consider the case of conjugate

complex roots®):
—BNs1 =00 = — A + iy
— frse=Do= — Iy — ey

i=Y—1
o=0; w,>0
Because all (N + 2) roots are different
from each other, and as a matter of course
also from the 71’s, we can separate the ration-
al part of [6] into partial fractions as follows:
N

(9]

- K Y1 V2 Ok ]
#() (p)[p—Po P— D —;le‘Fﬁk
[10]
The constants yy, ys, 03, 0, . . ., o in [10]

are the residues of the rational funection in

{6] at the points py, By, — B, — Pas - - -+ — PN
From [8] and [9] it follows that:

=",

or real and positivefork =1, 2, ..., N.} (1]

Laplace-inversion of [10] leads to:

[4
w(t) = Af K (&) ¢ Dcos {wyft — &) + ¢} dé
V]

N ¢
+ D or[ K (§) ¢ Pkas [12]

k=10
In [12] the real constants 4 and ¢ depend
on y, and y, by elementary goniometric
formulae.
From [12] we derive the expression for the
free vibration. For £ > ¢, K(¢) = 0, and [12]
reduces to:

o(t) = €L cos (ot + @) + Cosin (ot + @)}
N
+de Bt
k=1

with:

{13]

to
L= A[K (&) et PE cos (w, &) dE [14A]
0

Ly
L=A[E@etsin(@de  [14B)]
[}

to
dy = o K (&) e P gg . [14C)
o
Formula [18] can be simplified to:
N
z(t) = Be Motcos (wet + y) +Edk e
k=1 [15]
7= 05 0,>0; fp>0; k=1,2,...,N—1
By=0

°) B, means conjugate complex to p,; labelling with
a da,sh, as common for conjugate complex numbers, is
used in another sense in this paper.
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In [15] the real constants B and y depend
on {;, {; and ¢ by simple goniometric for-
mulae.

In [15] the constants w, and 4, do not
depend on K (f) as they are the imaginary
and the real part of a complex root of eq. [7]
in which neither K (f) nor K (p) appears. We
may therefore formulate our result as
follows:

The free damped vibration consislts of two
parts: first, an exponentially damped har-
monic vibration of which the frequency w,
and the damping term 4, do not depend on
K (t) (the manner in which the free vibration
was initiated ) ; second, a swm of exponentials.

From eq. [14C] it does not follow that all
constants dir must have the same sign. This
means that the sum of exponentials (each
absolutely not increasing because the fx's are
non-negative) is not necessarily monotonic?).
A special case is that of a K () with no
change of sign over the interval (0, #)); the
integral in [14C] then has the same sign for
each k. Consequently because of [11], all
constants dr have the same sign now. In
this special case the sum of exponentials is
monotonie.

All roots non-positive real

As can be verified easily, no damped
harmonic vibration as given in [15] will
result in this case of ,,over-critically damp-
ing®.

3. Theory Concerning the Determination of the
Complex Dynamic Modulus by Free Damped
Vibrations

3.1. The dynamic modulus; its determination

with free vibration experiments

The complex dynamic modulus M (w) of
a linear viscoelastic material is defined for a
stationary harmonic vibration with angular
frequency w, see Staverman and Schwarzl (1).
The stress-strain amplitude ratio being 4,
the positive phase angle 8, M (w) is given by:

M () = Aet?? [16]
i=V=—1

The complex dynamic modulus M (w) can
be measured directly by experiments, using
forced sinusoidal oscillations [see Staverman
and Schwarzl (1)]. However, especially for
materials with low damping, i. e. with small
values of phase angle d, and further at very

7) If the sum of exponentials is not monotonic, it has
extrema. The separation of the exponentially damped
harmonic vibration from the non-monotonic sum of

exponentials may then become a difficult problem in
the practice of free vibration measurements.

low frequencies, the measurement of phase
angle § is a difficult problem. Therefore, the
dynamic modulus M (o) is often measured
by free damped vibration techniques. A
specimen is made part of the mechanical
system, illustrated schematically in fig. 1;
it plays the role of viscoelastic spring. A free
damped vibration is initiated by applying
a force K (#), obeying the start conditions
specified in the Introduction. Finally, the
free damped vibration is recorded.

We have already discussed that (para-
meters of) this free damped vibration do not
give direct information on the dynamic
modulus, as it is not defined for this case.
However, it remains to be seen if there is
any other uniquely defined material pro-
perty that can be obtained directly.

3.2. The Material Property M*(p,) as Obtain-
ed Directly from Free Vibration Measure-
ments

From the theory given in Section 2.2. we
know that the free vibration contains at most
one simple damped harmonie vibration,
characterized by a frequency w, and a
damping term 4y; see formula [15]. It is only
present if the system is not over-critically
damped. If we measure?®) 4, and w, we have
experimentally found the root

Do = — A+ i3
of eq. [7]. (Follow the reasoning in 2.2. in

the reverse direction.) When we remember
[5], it follows that:

%"’2— + M*(p,) = 0. [17A]

In other words, from p,, calculated from
the measured values of 1, and w, we im-
mediately find the value of the function
M*(p) for p = p,. The very simple formula
reads?):

M (po) = — [17B]

Ips?
g

Splitting [17B] in real and imaginary
parts and introducing the logarithmic decre-
ment, A, according to1?)
27 A

(2

A= [17C]

8) The measurement of 1, and w, implies that the
damped harmonic vibration in [15] can be separated
from the sum of exponentials. We do not discuss
under what circumstances this is actually possible.

%) A is the natural logarithm of the decay per period
of the damped harmonic vibration in [15].

10y Notice that [17B] is a generalization of the
classical equation for free vibrating systems with a
Hookean spring.
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we find :
I 02 2
M) = Re (20 (pg) = 2% (1 ) | 117y
My = I () = 225 2L 78]

From the definition formula [2A] for
M*(p) we observe that the function M*(p)
and therefore also its value M*(p,) in the
point p, is a material property uniquely
defined.

3.3. The Significance of the Function M*(p)
and its Commection with the Dynamic
Modulus M (w)

To begin with, we give two formulae; the
first, [18A], is identical with the definition
eq. [2A] of M*(p) for p = A + tw; the
second, [18B], follows from Bolizmann’s
superposition principle and the definition
formula [16] for the dynamic modulus M (w).

MG+ iw) = M(0) + e P +1p1 (1) ds [18A]
0

M (w) = M(0) +[e M (pydt. [18B]
0

‘Taking 4 = 0 in [18A], it follows that

M () = M*(iw) . [18C]
M*(p} is desired
for p=icay,

Jm{p)
M*(p) is found
for p=p, \
Nopy i
Pk
i
|
I
| definition domain of
1 the dynamic modulus
! M () = M¥(iw)
!
i
]
|
1
1
i
-1/t -1/Tk -ty

— Re(p)

Fig. 2. The complex p-plane

Consider now fig. 2; plotted is the complex
p-plane. The function M*(p) is defined by
[18 A] for complex values of p. For materials
with a positive discrete spectrum the integral
[18A] only converges for Re(p) > — 1fzy;
see [3]. For other p-values, M*(p) can be
defined by analytic continuation. From [18C]

it follows that the dynamic modulus M (w)
is a special case of M*(p) for p = tw, i.e.
for p-values on the positive imaginary axis.
Therefore M*(p) is called the (generalized)
complex modulus for the complex frequency p't).
The conclusion of Section 3.2. may now
be reformulated : With free vibration techniques
one measures the complex modulus M*(p,)
for the complex eigen frequency p, of the
mechanical system. While we intended to
determine the dynamic modulus, for example
at a frequency w,, we have found the value
of M*(p) in the wrong point: in the point
Po = — Ay + tw, instead of in the desired
point ¢y (see fig. 2). To obtain the dynamic
modulus we must know how to calculate
M*(py) and M* (i), one from the other.

3.4. Derivation of Formulae to Calculate M*(p,)
and M (w,), one from the other Analytical
Expressions

To begin with, we specify some notations.
My(p) = Re {M*p)};  Hy(w) = Re (M ()} [194]
My(p) = Im{M*(p)};  M,(w) = Im {M (w)} [19B]

tan 8(p) = My(p)/My(p); tan 6(w) = My(w)/M,(w) [20]

As indicated, all quantities related to the
dynamic modulus are labelled with a hori-
zontal dash; this notation should not be
confused with the usual notation of complex
conjugated quantities in the same manner.,

From the assumption that M (f) has a
positive discrete relaxation spectrum, it
follows that the funtion M*(p), given in
eq. [5], is analytic in the entire p-plane,
except in the simple poles — 1/7x (B = 1, 2,
..., N) on the negative real axis; see fig. 2.
As a consequence, we can expand M*(p)
around the point p, = — 45 + 1wy, as well
as around the point fw, in an infinite con-
vergent T'aylor series. The radius of con-
vergence R is at least w, in both cases,
because the distance of the nearest pole to p,
as well as to iw, is at least w, Writing
according to [17C]:

, A
ion — o=+ 2o = (5 ) o [21]

we find the following series to calculate the
dynamic modulus M (w,) = M*(iw,) from
M*(p) and its derivatives in the point
P = Po:
— * X (— )k
H (o) = M¥po) +2 =
E=1 ¥

AN\E 3kM*(p)
Pkl L -
X(Zn) “"’[ Pak ]m'

For details see Hiedemann and Spence (6) or
Kénig and Mesxner (7).

[22]

11)
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The derivatives to p are expressed as
partial derivatives to w, with A constant;
this is allowed because M*(p) is analytic.

For the calculation of M* (p,) from M (w)
we obtain in the same manner:

— = (3)k
a5(p) = Mo + 3
A \E gk M ()
% (—2—7—;) ka[ dek ]wo

Because M (o) is a function of w only, the
partial derivatives as in [22] are replaced by
normal derivatives in [23].

Both series, [22] and [23], converge for
A < 2 7 because B = w,. Therefore, the use
of these series in the next theory implies the
restriction 4 < 2x. As will be discussed in
Section 3.5., experimental values for A are
generally smaller than about 1 to 1.5.
Accordingly, the restriction A < 2z has no
significance regarding to the applicability of
the theory.

(23]

Successive Approximations

In practice, the series [22] and [23] cannot
be summed rigorously, because we never
know more than a limited number of higher
derivatives. Therefore, we now consider the
successive approximations for M (w,) and
M*(p,), which arise if we sum in respectively
[22] and [23] only the first n terms. For the
0-order and mntt-order approximation ib
follows that: _

For the calculation of M (w,) from M* (p,):

(M (wo)}y = M*(py) [24A]
(I (o)} = M*(po) +

< (—i)f [ AN M H(p)
+ 2 50 (7)ot [T, | 2

n=12... .
For the calculation of M* (p,) from M (w,):
{3(po)}o = M () [25A]

{M*(po)}n = jT(C‘)o) +

n

13 G5 [ S,

[25B]

n=12...

Truncation errors in the approximation
formulae

Truncation errors in the approximation
formulae can be found by using a general
relation derived in the Appendix:

# [ )

p=—4i+tw.

[26]

For the error e, in [24B], defined by:

en™ T (w00) — (I (wn)} 271
we find from [22], [24B] and [26] that:
< (AN (A2m)n+1
len| < Mz(ioi%_}_l(Qn) = My(p,) 1— 427 "
(28]

In the same manner we find for the error
ex’ in [25B] and defined by:

en’ % M*(p0) — {M*(p)}n 129]
the following:
/o T (A2m)n+1
len| < My(er) =4z [30]

To derive [30], [26] is used for the special
case p = iy

Approximation errors in storage and loss
COMPONEnts

First we specify a notation. The absolute
error in the storage modulus M, (w,) calculat-
ed by the n'-order approximation formula
[25B] is written as:

M y(wg) — {M1(e00)}n = On M y(e0o) -

In the same manner we use the abbre-
viations nM,(wy), OnMy(py) and 8 My (p,).

From these definitions, together with
formulae [27] to [30], we obtain upper limits
for the absolute errors:

B " A2 myn+
[0 My(wo)] 5 |OnMo(wo)| < |en] < My(po) EI/—L*/}/ZT;)
[31A]
— A2 m)n
1303001 130 Mt < o] < o SLLTE
[31B]

Further, we could derive upper limits
for the relative errors in storage and loss
components. Table 1 gives a summary!?). The
upper half of this table concerns the cal-
culation of M (w,) from M*(p,) by the n'-
order approximation formula [24], the lower
half the reverse problem. Two types of
relative errors are distinguished. The first:
deals with the error in the quantity obtained,
relative to the original quantity. An example
is:

6nM1(wo)
My(py) °

Limits for these errors are given by
formulae [32A], [32B], [32D], [33A] and
[33C]. The second type concerns the error
in the obtained quantity relative to itself,

12) The limits given in table 1 are not the best upper
limits. Better formulae could be derived but are very
complicated. For the case A <1, in which we are
mainly interested, (see Section 3.5.), the differences
with the formulae of table 1 are small,
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Table 1. Upper limits for various relative errors concerning the ntb-order approximation; n =1, 2, ...

Approximation Type of Upper limit for the absolute valug of the rel. error Form.
formula rel. error general formulae, 4 < 27 simplification, 4 < 1 no.
6nM1(wo) (A/2 myn+2 — 2A
Mgy | O 3241
O M () 2 (A2 )2 n+2 32 B2
Hpy | G=AR~F(+ 42w 244 (ARt [32B1%)
[24B] 80 J () 2 (A2 myn+2
M no o 1 2.60 (A/2mn+? 32C]?
Mop) > @) | g | T— ARm—3(ARmF T (AR ) (4f2n) [32C1)
n=12,... 5an(wo) (Af2 myn+1 it 39D
M) | -4 L1 (A2 )t (32D]
S M y{y) (A)2 m)n+1 i
SnMi(p)) | — (A2 7+ - 33A
Ty | e T AEw [33A]
[25B] On M1 (p,) 2 (A2 a)n+? 28 (A2 mn 42 33|12
M) — Wiy | Mp) | T —4Ra0 0+ 42 (A/2) [33B1°)
A< 2x On Mo(p0o) (A/2 m)n+1 1
n=1,2,... Mz(wo) 1 —42n) 1.19 (4/2 m)n+ [33C]
On Mo(po) (4)2 myn+2 n+1
ipy) L — A2 ¢ 1.41 (A2 m)n+ [33D]

1) Only valid if 4 < 0.9 .

2) Only valid if M*(p,) is measured by free vibration methods, i. e. if [34] holds.

an example is:
S M y(e0y)
M (o)

Limits of this type are given by formulae
[32C], [32E], [33B] and [33D].

Two sets of formulae for the error limits
are given in table 1. The left ones, except
[32C], are valid for A < 2 =, the right ones
are simplified formulae only valid for A4 <1,
Three of the formulae in table 1, viz. [32B],
[32C] and [33B], are only valid if M*(p,) is
measured by free vibration techniques. To
understand that this represents a restriction,
let us summarize what was exactly done in
the preceding theory. We considered the
function M*(p) and tried to find its value in
some point from its value in another point.
The only assumption for M*(p) was that it
was analytic in the complete complex p-
plane, except for a series of simple poles at the
negative real p-axis. But the very fact
that M*(p,) is measured by free vibrations
gives additional information, viz.:

tan0(p0) = Malp){Mslpo) = 71— -

Eq. [34] follows immediately from [17D]
and [17E].

[34]

In table 1, the general formulae [32A],
[32D], [33A] and [33C] are obtained im-
mediately from [31A] and [31B]. Formula
[32B] is a special case of [32A] if M*(p,) is
measured by free vibrations; it follows by
substituting [34] in [32A]. Formulae [32E]
and [33D] are derived from respectively
[32D] and [33C] by using the following
relation18):

My(po) - 1

A
1= (2—n) = Mw) 11— A2z ° 5]

The left hand side of [35] is derived from
[24A] and [31B] for » = 0; the right hand
side from [25A] and [31B] for = = 0.
Formula [33B] is found from [31B], [34]
and [35] by writing:

Sudi(py) | _ | SnM(p) Mo(wn) Milpy) |
M(p) M) Malpo) Ma(po)

Again this formula is only valid if M* (p,)
is measured by free vibrations. Finally, we
derive formula [32C]. From [29A] and [32B]

%) By using [25B] for the case n = 1 (first order
approximation) it follows from dM;/dw = 0 that:
(Am?  _ Myp) _ 1
1—42x I (w,) 1—A42=
This formula is used in section 3.7.

1 —

[35A]
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for the case n = 0, it follows that:

1 Miy(py) )
0=
142 (4)2 7)* = Hywn
T — AR~¢ (1 + A7)
- 1 [36]
- VEE
=427 (1 + A2n)
if A< 0.9

Formula [32C] follows from the right hand
side of this unequality and from [32B]. The
simplified formulae, only valid for A4 <1,
were found by substituting 4 = 1 in the
denominator of the general formulae.

3.5. Usefulness of the Approximation Formulae

From table 1 it can be seen that for the
approximation formulae [24] and [25] the
error limits continuously decrease with the
order of the approximation. However, the
usefulness of the formulae in practice strongly
depends on the velocity of convergence.
Table 1 shows that the logarithmic decre-
ment, A, is the dominating factor in this
connection. We therefore first consider the
range of values for A covered in the measure-
ment practice.

There are two reasons to assume that
is not greater than about 1. First, if we wish
to measure 1, and o, of a damped sinusoidal
vibration according to [15] with some
accuracy, the decay per period, viz. exp. (A),
may not be too large. If A becomes large,
the number of periods for which the oscillation
is above the noise level of the apparatus
becomes too small for accurate measurements.
Of course, the maximum admissible value
of A depends on the accuracy of the record-
ing system; a practical limit turned out to be
in the order of 1.

Second, it will be shown in 3.7. that the
quantity Az is approximately equal to the

loss factor tan 6 of the dynamic modulus.

If A exceeds 1, consequently tan 6 must be
greater than approximately 0.3. But, in this
case, the measurement of the dynamic
modulus M (w) directly by forced sinusoidal
vibrations becomes much more practical
than the free damped vibration technique'*).

From table 1 we see that all error limits
decrease by a factor of 2x/A, if the order
of the approximation is increased by 1.

14y Many investigators, including the present author,
actually use free vibration techniques to measure the
dynamic modulus of materials with a loss factor of 1
or more, for example polymers in the glass-rubber
transition. We shall discuss this matter in Section 3.7.

Therefore, if A <1, in all cases each
approximation is at least 2z ~ 6 times
better than the foregoing; this means that
the covergence is rapid and that the formulae
are suitable for practical calculations.
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Tig. 8. Limits for 6, M,/M, and 6, M,/M,, respectively

the relative errors in the dynamic storage and loss

modulus, if calculated from M*(p,) by the Oth., 1st.
and 2nd-order approximation formula (24 B)

Some additional information is summariz-
ed in fig. 3 and table 2. It concerns the
calculation of M (w,) from M*(p,), to be
performed if the dynamic modulus should be
determined by free vibration techniques.
Plotted in fig. 3 are error limits versus
logarithmic decrement A for 0%-, 1- and
9nd_order approximations of M; and M,
We clearly observe that the error limit for
the nth-order approximation of the loss
modulus M, is approximately twotimessmaller
than the error limit for the (n — 1)-order
approximation of the storage modulus M,
(compare also [32C] and [32 E]). This means
that approximations of the same order for
J, and M, considerably differ in accuracy,
the one for M, being the best.

Table 2 lists the error limits for the O'"-,
1st-, 20d. and 3%- order approximations at
a fixed value of A, viz. A4 = 1. This value of
A being the maximum experimental value,
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table 2 also summarizes the maximum errors
that are possible in practical calculations.

Table 2. Limits of relative errors in 9, for 4 =1

M*(po)— M (eo,)
n
M (o) M (o)
0 6.6 22.4
1 1.04 3.6
2 0.17 0.57
3 0.025 0.09

We observe that the 2%-order approxi-
mations have an accuracy better than
about 0.5%,. This order of approximation
is therefore sufficient for calculations with
experimental data. A scheme for this will
be given in a subsequent paper.

3.6. General Conclusions About the Differences
between M*(p,) andM (w,), A <1

For the differences between the moduli
M*(p,) and M (w,), as measured respectively
with free damped and forced undamped
vibrations we now shall draw some definite
conclusions. /A is restricted not to exceed a
value of 1.

Quantitative Conclusions

The relative differences in storage and loss
moduli do not exceed values of respectively 6
and 19%. These values were taken relative
to the dynamic storage and loss moduli M, ()
and M,(w,). This conclusion is based on
formulae [35] and [36].

Qualitative Conclusions

To find qualitative conclusions, we use the
first order approximation formula [25B].
Split into real and imaginary components it
reads:

[37A]

dH () ]
dnw o

{My(po)h = Myfey) + (A/2 ) [Cg‘frll(z;) ]

((poh = T — (4)27) |

.[37B]

Whereas these formulae are accurate
within 1 and 39, respectively, (see table 1),
the same is true for conclusions drawn from
them. The results are illustrated in fig. 4.
Plotted are the dynamic storage and loss
moduli M, and M, both vs angular frequency
o for a hypothetical material; the diagram
used is double logarithmic. As indicated in
fig. 4. a material with a positive discrete

relaxation spectrum shows various maxima
in M,, accompanied by steplike increments
of M,.

Ll Ml (Pl fﬁ,(wo)
TTTTT My (py) SHy(wp)

n 4,
In M2

nw

Tig. 4. The difference between M,(p,) and M (w,), as
it is determined by the slope dM,/d In @ in the dynamic
loss modulus

From [37A] it follows that: the storage
modulus M, (p,) may be smaller, greater or
equal to M,(w,), depending on dM,/dIn w
being respectively positive, negative or zero.
At the low frequency side of a peak in M,,
Mi(p,) < M, (w,), at the top of the peak
Mi(py) = Mi(wy); at the high frequency side
My (po) = My (). (See fig. 4.)

From [37B] it follows that: the loss
modulus M, (p,) s always greater than
M, (w,) because dM,/dIn v = 0.

3.7. The Relation Alm ~ tan §(w,)
Combining [34], [35A] and [36], we obtain:

(A4/2 7)* 2
(A/m) (427) {1 + (4)27)%}
Af2n)%} < =

R e T U= 4Ry
[38]
Fig. 5 gives an illustration; plotted are
the upper and lower bounds for tA/ 7; as

arn

functions of A. As we are mainly interested
in the case 4 < 1, we may simplify [38] to:

A ~ tan 8(w,) . [39]

The maximum error in this formula is
less than 239, if 4 <1, see fig. 5.

Formula [39] tells us that the restriction
A <1, introduced in Section 3.5., is equi-
valent with a restriction for the loss tangent
of the viscoelastic material;

tan 6(w,) < 0.3 . [40]
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of A tan &

In many cases, materials with a loss
factor in the order of 1 or more are investigat-
ed by free vibration techniques. To avoid a
A greater than 1 a Hookean, extra stiffness, is
then placed parallel to the specimen; the loss
tangent of the combination being smaller than
about 0.3 in this way. The complex modulus of
the combination is measured, that of the spe-
cimen is calculated afterwards. It should,
however, be realized that this method
introduces sources for serious errors; it would
be better to use forced sinusoidal vibrations
for a direct measurement of the dynamic
modulus.

3.8. The Reasonable Accuracy of the Usual
Theory of Free Vibrations

The usual theory of free damped vibrations
is incorrect, as the dynamic modulus is
introduced illegitimately into the classical
equation of motion for free vibrating sys-
stoms. For a description of this theory and
its limitations, see Staverman and Schwarzl
(1), and also Markovitz (2). Whereas the
introduction of the dynamic modulus is
illegitimate it can be performed in several,
conflicting ways. It is therefore not sur-
prising that two different formulae to
calculate the dynamic modulus from w,
and A are current in the literature, the
formula with the + being more widely used
than that with a — sign.'®)

Fepu="2(1£55) WA
- Iog A
(M y(eo0)}u = (’; = [41B]

1) {M (wg)}y means M (), calculated with the
usual theory, so also {My(we)}u-

The strong analogy of these formulae with
[17D] and [17E] is obvious. In the usual
theory, the formula with a — sign interprets
M*(p) for p = — Ay + twy as M (w,). The
formula with the + sign does the same thing
but it moreover calculates the real part of
the modulus incorrectly. Formulae [41A]
with the — sign and [41B] therefore are
identical with our zero-order approximation
[24A]. Consequently, if we use them, it
follows from 3.6. that we find M, too large;
M, may be found smaller, equal or greater
than its actual value, this depending on the
slope dM,/d In o of the dynamic loss modulus;
see fig. 4.

— -g-': Tan b (wy)
o o1 02 03 04
210 - 1 1 1 !
—{#, o0y, 0414)-
— Mt /My, (1 A)s
B ey = :
Vodulus ——{t} /4y, 41B) | max.
ratio ] \ _

l70 ““““
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0 05 10 15
A

Tig. 6. Bounds for the errors in the usual theory of free
vibrations as functions of A

Tig. 6 gives further illustration. Plotted
versus / are upper and lower bounds for
{ M, (wo)}u/ M1 (w,) if calculated with formula
[41 A] respectively with the — and 4 sign,
and further for {M,(wy)}u/M;(w,) calculated
with [41B].

For the maximum errors at 4 =1 we
find from [35] and [36]:

loret (41A) | < 65%  [ovel (414) ] < 11.5%
|6rel (41B)] < 19%, .

Obviously, formula [41 A] with the — sign
is better than that with the + sign.

Finally, it is surprising that the wusual
theory, although incorrect, gives resulis which
in most cases are accurate enough. For example
for organic and inorganic glasses, metals
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and some rubbers well above the glass
transition, the errors are negligible because

tan § and therefore also A is much smaller
than 1 (see 3.7.). Of course, this is the reason
why the usual theory has been used so long
without revision.
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Appendix

A Formula for the Higher Derivatives of the
Complex Modulus for Materials with a Positive
Discrete Relaxation Spectrum

For a material with a positive discrete

relaxation spectrum it follows (see formula
[6]) for:

p=—l+iv A=Z0w>0 i=yY—1 [A, 1]
that:
o (1 — hk)
M3(p) = M) — Z (1 — Atg)? + (wrp)?
AY
Xp OTE
2 T gt [4.2]
Consequently :
Myp) >0 if w>0 [A, 3]
w" d”M* [ Z o (wTr)?
- (1 + prp)nti
o (wTE)?

= A

)nk)z + wz.rkZ}(n+1)/2

X WOTE
(1 — A7g)?2 + wiTp?
n—1
2
| =,
[A, 4]

[ w? Tyl
(1 — A1g)? + w?tp?

Formula [A, 4] contains a number of
formulae for the higher derivatives of the
dynamic modulus M* ({w). This subject will
be discussed extensively in a subsequent
article (9).

Summary

A mechanical system consisting of an inert com-
ponent, attached to a linear viscoelastic spring, is
studied theoretically. Basic assumptions about the
viscoelastic material are Boltzmann’s superposition
principle and a positive discrete relaxation spectrum.
The equation of motion and its formal solution for free
damped vibrations are discussed.

The theory focusses on the determination of the
complex dynamic modulus, defined for undamped
sinusoidal vibrations, by free damped vibrations.
Simple approximation ~formulae to calculate the
dynamic modulus from free vibration data, i. e. eigen
frequency and logarithmic decrement, are given; upper
limits for the approximation errors could be derived.
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