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1. Introduction

A neutrally buoyant particle suspended in
a flowing viscous fluid often translates with
the local velocity of the fluid in the absence
of the particle. However, Brenner, investigat-
ing the Stokes resistance of an arbitrary
particle in arbitrary flow fields (1), has
shown that this is not true generally, and
that certain rigid particles, in some kinds
of shear flow, migrate across the undisturbed
streamlines. Such a migration of liquid
droplets in Poiseuille flow through a tube
was studied by Goldsmith and Mason (2),
who give references to other work on the
subject. Brenner’s methods for rigid particles
do not involve the detailed calculation of
velocity fields and are not applicable to
liquid drops, although the limiting behavior
of infinitely viscous drops can be inferred.

The radial migration occurring in Poiseuille
flow was discussed by Goldsmith and Mason
(2) in terms of the non-uniformity of the
fluid wvelocity gradient; they proposed a
formula with which they analyzed their data.
Here we undertake a detailed hydrodynamic
treatment of drop migration in a non-
uniform shear flow. Although for the flow
to be appreciably non-uniform over the
particle, the particle size cannot be very
small compared to the size of the apparatus
producing the flow, nevertheless we shall
not consider here the interaction between
the particle and the apparatus walls. Wall
effects are, however, taken into account
explicitly later (3).

In this investigation we shall find the
radial migration of a liquid drop suspended
in a viscous fluid contained between counter-
rotating discs, by calculating velocity fields
outside and inside the drop. Flow between
counter-rotating discs is chosen because it
is a simple form of nonuniform shear field
which is also experimentally realizable. The
methods used here may be applicable to
flow fields of greater importance. Since a
knowledge of the deformed shape of the drop
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is essential to this calculation, we shall
discuss T'aylor’s theory (4) of deformation in
detail, presenting new observations which
confirm an aspect of the theory not pre-
viously tested experimentally.

2. Fundamental Assumptions

Throughout this investigation, the fluid
motions will be assumed sufficiently slow
that the quasistatic creeping motion equa-
tions can be applied. If the velocity and
pressure fields are » and p, these equations
and the equation of continuity are

nVio="Vp, V-v=0, 1]

where 7 is the fluid viscosity. Suppose the
fluid to be contained between two infinite
parallel discs that rotate about a common
perpendicular axis in opposite directions,
with counterclockwise angular velocities w;
and —w, as shown in fig. la, and the

Fig. 1. (a) Counter-rotating

disecs, with  coordinate

systems z,, ¥,, 2, and x, y, 2.

(b) Spherical polar coordin-

ates r, §, @ with the y-axis
as polar axis

distances from the stationary plane that
must exist between them to the correspond-
ing disc are A; and h,. In terms of the unit
vectors i, j, k of a right-handed Cartesian
coordinate system x,, y,, 2, with its origin
in the stationary plane and j directed along
the axis of rotation of the dises, the y,-axis,
the velocity o)’ and pressure pl=)’
between the discs in the absence of suspended
particles are

o) =i kyyzy — kkayy,,

where k = (w; + wp)[(hy + hy) = y[ly = wyfh, .
The boundary condition that the fluid should
stick to the dises at y,=h, and y, = —h,,
as well as [1], is satisfied by v’ and p(=)",

Suppose that a liquid drop of viscosity 2, #
and radius b is suspended at (0, 0, w). In
previous publications (2, 5, 6) the viscosity
ratio 2 was denoted by p, but here we shall
use p for the pressure. We introduce a
coordinate system =z, y, 2z with its origin at
the drop center, related to z, v, z by x=x,,
Y=Y, 2=2—w, in which [2] gives for
the undisturbed velocity v’ and pressure
P

pe2)’” = constant,, [2]

veo)'=i(kyz —kwy) —kkxy, plo)’=constant.

The actual fields »” and p" that exist
outside the drop and the fields »” and P”’
ingide it must now be determined to satisfly
[1] and also the following boundary con-
ditions, which are analogous to those used
by Taylor (7). At great distances from the
drop, v and p’ must reduce to v’ and
p¥"; both' normal velocity components
must vanish on the drop surface, and the
tangential velocities must be continuous
there; the fangential stress must also be
continuous across the interface.

The solution of this problem is facilitated
through its separation into two parts, v
and p” being written as the sum of two
terms,
pi=p+p (3]
where o', 9" and v, p with the corresponding
internal fields V', P’ and V, P separately
satisfy [1] and the boundary conditions at
the drop surface, but at great distances v

b y

v”:v’—i—v,

W,

and v reduce respectively to »(>=)" and v(
given by

() =ikwy, vd=ikyz—kkzy. [4]

Because [1] and the boundary conditions
are linear, addition of +" and v yields the
solution to the original problem.

3. Spherical Drop

We shall first solve this problem for a
spherical drop, writing »%’, p%’, 29, ete., for
the resulting fields. The velocity components
outside and inside a spherical drop in
uniform shear flow, obtained by Bariok and
Mason (5) from Taylor’s hyperbolic-flow
solution (7), immediately yield the fields
v%’, p% and VO, PY, where the velocity
gradient G =k w. There is no resulting force
on the drop.

To find +° p° a general solution of [1]
given by Lamb (8) will be used:

1
o= D> (VX (i) + VB + 5 (0 +3) M 72 Uy

—nMrpmin,
P=2Pm- [5]
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Here M =1/(n+1)(2n+3) and the sum-
mation extends over positive and negative
integers n; Puwy, DPuw and xw are solid
spherical harmonics of degree n; r is the
radial vector iz + jy + kz. The radius
vector r=|r| and the angles 6 and @ form
the spherical polar coordinate system of
fig. 1D, the corresponding unit vectors being
iy, ip and ig. The puw), Pwy, xm) are con-
veniently expressed in terms of », 6, @ by
means of the Legendre polynomials P, and
associated Legendre polynomials P in
which the argument cos 0 is always under-
stood; Jahnke and Emde (9) give general
formulas for them and tabulate all the ones
we shall use. The field »(=), pt=) of [4] is
expressed by [5] when the single harmonic
x5y is inserted in it, with
xg;’):—;-k'rszz—é—kWBcoszO—1).

To obtain the fields v9, p® we use [5] with
the harmonies XE‘S) and XQ 5y which is
assumed to be

x?_g) = — %—04 kbr-3P,.
Similarly, for V9, P° we use [5] assuming
1
x?z) = §C’2kr2P2.

The constants C_, and C, will be evaluated
below. The resulting components o, v, v
and VY, V9, V% are

v =0, vo=k(1—0%r%C,) r2sinf cos O,
V,=0, Vog=0, Vo=kC,r*sin O cos b . (6]
Since X =V2=0, v3=7V), and vp="Vy if
1—C_;=0C,, the boundary conditions for
the velocity can be satisfied.

To satisfy the boundary condition for the
tangential stress, we use a formula given by
Brenner (9) for the radial-stress vector sz,
which is the radial component of the stress
tensor m:

Hy=nrt Y {(n — )V X(rym) + 2(n—1) VO,
—@nt+4n+3) Mrpmy/n+nin+2) MrEVpmy/n}. [7]

This yields for the outer and inner radial-
stress vectors my and IT},

/UB:O:

2, =0, av,=0, aly=nrk(l+4C_;b°r7)
X rtsin 6 cos @,
H;’T=O, m),=o0, Il =Anr2kC,risin b cos P,

so that continuity of tangential stress
requires (1+4C_;)=1C,. This together

with the previously obtained relation
1-C ,=0C,, gives
Co=@—1/A+4, C=>5/0+4}.

The force and torque on the sphere, which
depend only on p_y and y,, according
to Brenner (10), are zero because the latter
vanish. The pressures p° and P? are constant.
To write down the complete solutions %",
P and VO, PO it is only necessary to add
the two partial solutions, as in [3].

4. Drop Deformation

If the interfacial tension p between the
drop and suspending fluid is finite, deforma-
tion by the shear field will occur until the
discontinuity in =z, at the interface  is
balanced by the pressure distribution arising
from the non-uniform curvature according
to the formula of Laplace. It has just been
shown that =% = II;,; accordingly the
deformation of the drop depends only on
the discontinuity between #%, and II.,. The
result of a velocity field of the form of »%
has been shown by Taylor (4) to be a de-
formation of the drop to a shape expressed
b

Y F=r—-b(1+2Db22y)=0,
D=Gbny (194 + 16)/(16 1 + 16)<1. [8]

D, the deformation, is dimensionless. The
longest and shortest axes of the ellipsoid [8]

lie in the x y plane making an angle of -

with the z- and y-axes, the drop being
extended in the first and third quadrants
and compressed in the second and fourth;
the third axis of the drop, lying along the
z-axis, equals the radius b of the original
sphere.

This result can be generalized to an
arbitrary flow field u() by expanding the
original flow in a Taylor series about the
drop center C:

u(e0) = [uloo)], 4 [Vuleo)], - r + —;— rr:[VVu(e)], +. .-,

where bracketing with subscript ¢ denotes
evaluation at C. The pwy, Pwmy, %) required
in [5] to give u° satisfying the boundary
conditions on a fluid sphere and reducing
to the sum of the first two terms of this
series are

oa oo o0 1 (c0),
Ay =8 r, @§2)>=756 irr,
Py = — b r3Sirr (52 —2)/0+ 1),
Py = — —;—bs =8 S e r 2f(2 + 1),
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and
21 s q(o0)
Pe) = —5~ Anb 287 trrf(A+ 1)

3

Pl = — & sg°°> irrj(h+ 1)

with y(:9 give the correspondmg field U°
ingide. Here & and SY a

gl — ? [V xul=)],, §0) = 5 [Vu<°°> +(Vu)f],.

The drop deforms to a shape given by

197 + 16 S§°°)=rr)

2bn .
164+ 16 b?

r:b<l+

of which [8] is a special case. Since the
second term in the parenthesis is small
compared to 1, its square and higher powers
can be neglected; this allows the equation
to be transformed, by squaring, to the
standard form for an ellipsoid,

[ 4bn 192+16
b2( 7 T16i+16

where I is the dyadic idemfactor. To the
order of our approximation, it is evident
that the drop deforms into an ellipsoid with
its principal axes coincident with those of
the local fluid rate-of-strain tensor S,
their lengths differing from the undistorted
drop radius & by small amounts proportional
to the principal rates of strain.

Two examples of this of special interest
are drop deformation in hyperbolic-radial
flow and in plane-hyperbolic flow, these
flows being important in connection with
extrusion through a nozzle and a slot
respectively. The effect of these flows on
suspended rigid particles is to orient them,
as previously described (11); what happens
when the particles are liquid will now be
discussed.

Hyperbolic-radial flow is defined by

s<°°>):rr: 1, [9]

u—sz——]Gy~-——sz [10]
When ¢ >0, [10] represents flow outwards
along the x-axis and radial inflow in the yz-
plane; when G < 0 the flow is reversed. If
the principal semiaxes of the deformed drop
are by, b, and bz, directed along the z-, y-,
and z-axes, [9] gives, to order Gbyfy,

by="b(1+2D), by=>5b(1—D), b,=b(1 — D), [11]

where D is given in [8]. The drop is a
spheroid, prolate or oblate according as
D> 0 or D< 0, this ultimately depending
on the sign of ¢ in [10].

A particular case of [9] which is especially
convenient for experimental verification is
drop deformation in plane-hyperbolic fow
given by

1
we= iz ——jGy. 2]
In this case, the drop deforms into an
ellipsoid with
by =b(1+D), by=b(1— D),

b,=5b. [13]

Let D;y be the apparent deformation in the
zy-plane defined by

Dzy = (ba: - by)/(bx + by) .
This is not the xy-component of a tensor.
For flows [10] and [12], ny=—z—D and D,

respectively. For the latter, a plot of b,/b,
by/b and b,/b against D,, should yield straight
lines with slopes 1, —1 and 0, according to
[13]. On the other hand, the theory of
deformation in hyperbolic flow might not
be obeyed, the drop deforming into a
prolate spheroid with b, =by. This was
inferred by Rumscheidt and Mason (6) from
their observations, which were limited by
the experimental arrangement to views along
the z-axis. In this case, if the volume of the
drop is unchanged, the semiaxes will be

given by [11], if EDM is substituted for D.
The slopes of plots of bzfb, by/b and bz/b
against D,, would thus be i 2

[14]

-5 and —-3—.
Since no experiments in which all three axes
of the drop were measured have been
reported, we have made these observations
and the results are described in the ex-
perimental section.

5. Boundary Condition Equations

The velocity fields outside and inside a
drop, deformed in this way, suspended
between counter-rotating discs, will now be
calculated. We shall consider fields »”, p”
and V", P” that satisfy the boundary
conditions enumerated earlier, where the
drop surface S is not spherical but given by
[8]. Separating the problem into parts as
before, we observe that the fields v and ¥’
are those for a deformed drop suspended in
the uniform shear flow v =ik wy;
because of the symmetry of this configuration,
no force can act in the z-, y- or z-direction.
Accordingly the fields »', V' are of no
interest and will not be considered further.
On the other hand, the fields v, p and ¥, P
must be calculated explicitly. The problem
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is simplified because D is so small that its
square and higher powers are negligible;
thus on the surface § the leading terms of the
binomial theorem expansion of [8] yield

= b7 (1 4+ 2n Dsin 0 cos § sin D) . [15]

Since v and ¥V reduce to v and V0 for a
spherical drop, they can be written

v=2"4 Dot 4- 0(D%, V=V+ DV 4 0(D?.

In the evaluation of v and V on S, since
[vlls = [o's + 0 (D), we find

[v]s = [’]s + D[v']y + 0 (D7),
Vls=[Vs + DV + 0(D%),

where bracketing with subscript § or &
denotes evaluation on 8 with [8] or on the
sphere r=5b. That the unknown fields »t, ¥1
are required to satisfy boundary conditions
on a sphere and not § simplifies the problem
considerably.

The first requirement is that the tangential
velocity is continuous at S. Since both outer
and inner normal velocities vanish at S, the
entire velocity vector will be continuous
there; this condition is easily formulated
from [16]:

[v —V]s=[v"—Vg+ D[v! + V] =0.
Substitution of [6] into this gives

[16]

[v —Vis=ig[k {(1—0>r>C_y) — Oy} r*sinf cos g
+ Dot — V1 =0.

Using [15], we obtain from this after collect-
ing terms and substituting for C,:

[v*— V1] = ——::)Ti,_zjkb2 C_,(1 —cos40)sin®. [17]

Vanishing of both normal velocities will now
be assured by making one of them zero;
thus we shall require [v - n]s = 0, where n
is a unit vector normal to S. Since the vector
VF is normal to the surface F =0, as shown
by Gibbs and Wilson (12), we form VF using
F given by [8]:
VF =i, — 2b D {i,(2rsin 0 cos 0 sin &)
+ipr (cos? § — sin? 6) sin @ + iy 7 cos O cos P}.
The unit vector in the same direction is
found by dividing this by its magnitude. To
first order in D we have
n=VF/(VF -VF\i2=i —2D(ijgcos20sin®
+ ig4cos 0 cos D), [18]

(V- nlg=1[F°ilg

— 2D[P°- (igcos 2 §sin D + iycos § cos D)y

4+ D[Vi-iJ=0.

After substitution of [6] and [15] this yields
the boundary condition

[V1-iJy=2kbCysinOcos?Ocosd.  [19]

To express the third condition to be
satisfied at S, that the tangential stress is
continuous, we must find the normal-stress
vector s - n and take its tangential compo-
nent. This is accomplished by operating on
7t - n with the dyadic I—nn: as described
by Gibbs and Wilson (12), I —n n annihilates
all vectors parallel to n, leaving those
perpendicular to n unchanged; thus
I—mnn)-m-n is z-n with 1ts normal
component removed, that is, the required
tangential stress vector. I — nn is a gene-
ralization of the dyadic I — i, i, used by
Brenner in the Appendix of {10) to find the
tangential stress on a sphere. The boundary
condition of continuity of tangential stress
at § then becomes

[(I—nn): (@ —I) - nlg=[I— nn)- (77°—II° - nlg
+ DI —ipiy) (Bt — ) i, ] + 0 (DY) =0,

from which we find

D [ig (7} —IT)5) + ig (7o — I} g)],

—[nn- (@ — % nlg — [(729 — % - n]. [20]

To obtain the stress tensors 7% and IT°, we
apply equations for finding = from », p in
spherical polar coordinates, given, for
example, by Milne-Thomson (13), using [6]
and noting that the pressures p°, P? are

constant. The rv-, 06-, @D~ and r -
components vanish, leaving
Hog=—nk(l —C_br % rsin?f,

e =nk(l4+40_3b5r % rsing cos §,
I y=—AnkCyrsin’g,
), =AnkCyrsindcos .
Then, from [18] we get
(@ — ) - =ig (74— 11}y)
—2iyD(nY,—1II,)cos20sind
—2iyD(nf) 5 —1I) ) cos O cos D
— 21, D (7 4—1II ;) cos 0 cos @,
and
np-(@W—I% n=—2iD(n0,—1II),) cosf cos D.

Substitution of these expressions into [20]
yields the last boundary condition:

{7, — 1], = — 10i,n kb C_gsin* 6 cos  cos D

+ 10i45nkbC_;sin® 0 (6 cos?f — 1)sin D [21]
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6. Harmonics in Lamb’s Seolution

We now must find v!, p! and ¥, P! to
satisfy [17], [19] and {21]. Again using [5],
we select the puwy, Puwy, xm for v, p' by
assuming, subject to a posterior: verification,
that they will be the same functions of
r, 0, ® as the pm), Pmy, ym) that appear in
the solution of the problem of an infinitely
viscous deformed drop, A=co. For this
limiting case the boundary conditions are
the same as if the drop was a rigid body,
being completely specified by the limiting
form of [19]. Since when A= co there is no
internal motion, we obtain this form by
setting V=0 and inserting the limiting
value C_;=1 into [19]:

[v') = —

A boundary-value problem expressed in this
way can be solved using a general method
given by Brenner in his investigation of the
Stokes resistance of a slightly deformed
sphere (10). Thus, the pmy, @umy and ymy that
must be inserted in [5] to yield v are found
to be:

10 iy k0% sin® § cos? O sin @ . [22]

5
Py = .3_A9; nkbsr=2 P cos @,

p( 2)—A< nkbdr *2P(1)cosl_15

@(1 9 % (12 kb7 rt Pgl) cos D,

@}, = EI- BY kb5 2 PO cos &,

X(1_5) = — —;- C(}g EbT s Pil) sin @,

Yy =— % COEbs -2 PDgind .  [23]

The coefficients 4™, B™ and O™, intro-
duced for generality, are equal to unity
when Z=oco. By 1nsert1ng Diny» Dy, Ainy D
[6] and setting » = b, one can verify that
these yield o! satlsfymg [22]. To obtain the
complete solution », [5] is used with the
Piny> Plwy» xiw listed above multiplied by D,
together with x5y and X gy

To solve the problem when 1 is finite, we
shall use the piy, Dy, xm given by [23]
to find !, p!, but the coefficients 4™, B™,
O™ are at present unknown. For V1, PL we
select pmy, Py, xw analogous to those of

[23], but regular at the origin, and also with
coefficients to be determined, namely,

5
Plgy = ?Ag) Inkb2r PPcos @,

Py = AP inkr PPV cos &,

Dy = 3 Bm kr2 PV cos @,

@21) = % B(ll) kber Pgl) cos D,

Ay = — = Cfll) kb2t PVsind,

Yy = — 0(12) kr2 PDsin & . [24]
When 1= oo, B, BY, ¢ and P

vanish, but the behavior of A and 4®
cannot be predicted. We then insert [23]
and [24] into [5] and [7] using spherical
polar coordinates, to evaluate the left-hand
sides of [17], [19] and [21]. As an example,

we give the result for [vg— Vily:
[”}p - V%D]b

1 1 5 1

— 2 (1) _ - g @ L~ pl

kDb {(24 40 — 5 B+ o4l + 5 BY)
X (3 +5c0s20) + Lo lpoi 1w ]
PRI R B s M

+ 5 (O — OD) (cos 2 0 + 7 cos 4 6)

5
+ 57 (C’il; — 0(21)) cos 26J sin® .

This is compared with the @-component of
the right-hand side of [17] and the coefficients
of sin @, cos 2 6 sin @, and cos 4 6 sin P,
which are linearly independent, are equated.
In this way twelve independent equations

for the AYY, B, % are obtained; the
solution is:

AN = (T2 + 344+ 22)TA+ 1) (A + 4),
AN =32+ 142230+ 1) (A +4),
BY = (1224 207+ 8)/T(A+ 1) (2 + 4),
BY=(322+81—8)380A+1)A+4)),
00 = —1)/(+2),

CW = (A —1) (- 16)/(A + 4,

AP = _12@2+4)/T(A+1) (4 + 4),
AV =105 — 8834+ 1) (A + 4),

BN =4202+ 3421 A+ 1) (A + 4),
BD =20+ 1430+ 1)(+4),

CV =20 -1)/0+2)A+4),

O = 20 (A — 1)J(A + 4)2. [25]
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7. Migration Velocity

Brenmer (10} shows that the force and
torque acting on a particle can be expressed
respectively in terms of the harmonics p_g
and y. appearing in [5], the force being
F= —4av(rp_y). Here the torque
vanishes since y_g = 0; however, we find

kbt o n?
4

7(372 + 144 — 2) (19 4 + 16)
A+ 120+ 4 :

An independent check of [26] for the limiting
case A=co was made from Brenner’s theory (1)
for a rigid particle in an arbitrary flow.
Thus, a stationary drop must be held in
place by an external force equal and opposite
to the hydrodynamic force F, which tends
to impel it in the z-direction, towards or away
from the axis of revolution of the discs.
Conversely, a free drop will migrate along
the z-axis; to find its velocity, one should in
principle superpose on the system a uniform
streaming velocity —w, to be determined by
making F vanish. Because of the linearity of
the boundary conditions and the equations
of motion [1], w will be the same as the
velocity imparted to a drop by F in a
quiescent fluid. Moreover, the difference
between the velocity of the deformed drop
and that of a spherical drop will be pro-
portional to D2, because F contains D —

F=—4nkkb®*D=Fk

[26]

indeed, the neglected term in the velocity
may even be of order D3, this being certainly
the case for a rigid body whose shape is given
by [8] moving along the z-axis, as can be
seen from Bremner’s equation 4.15 (10) for
the translation of a slightly deformed sphere.
We are therefore justified in applying the
result of Hadamard and Rybczynski, given
by Lamb (8), for the velocity of a fluid sphere
whose motion is restrained by a hydro-
dynamic force F. This is then used with [26].
F=_—6nbnwBi+2(34i+3),

19

- _ 7 2 53 —1
w 24kkbw7)y K, [27]

where the viscosity-ratio factor K (1) is
K(A) = (3224147 —2) (191 +16)/19 (31 + 2)
X(A+1) (2 +4).

Now wis simply k dw/dt. If the deformation
of the drop changes with w according to [8],
then the trajectory of the droplet can be
found by integration; it is

In (wfwe) = — BByt K(A) t,

where ¢ is the time and w, is the value of w
at {=0.

The direction of migration depends on the
algebraic sign of K (1) and on 1; K(A) is
plotted in fig. 2. For large 4, inward migration,
towards the axis of rotation of the disecs, is
indicated ; however, at 1=0.139 K vanishes
and the drop should not migrate, and for
0 << 1< 0.139, outward migration is predicted.

1.0 \ :
S 05 -
v Fig. 2. Calculated viscosity-
ratio factor K (1) plotted
: against A
0.0 ﬁ
I I L
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8. Experimental

Experiments to measure the three axes of deformed
drops in hyperbolic flow were performed as described
by Rumscheidt and Mason (6), with the four-roller
apparatus used by them, to produce the flow (12).
Photographs were taken viewing along the z- and z-
(or y-} axes, windows having been put in the sides of
the apparatus to allow this. Drops of silicone fluid
(Dow Corning, 200 series, 5000 centistoke grade) or
water, suspended in Pale 4 oxidized castor oil (Baker
Castor Oil Co., Bayonne, N. J.), and water drops
suspended in silicone fluid were used. Measurement of
the projected photographs of the drops yielded the
three principal axes. The results of all the experiments
were similar; we present in detail observations of a
silicone drop, b = 0.128 cm, suspended in castor oil
and subjected to hyberbolic flow [12] with velocity
gradients G varying from 0.0088 sec™ to 0.136 sec—.
The room temperature was 24.6°C. In fig. 3, the
observed by/b, b,/b and b,/b are plotted against Dy,
obtained from [14]. The full lines are theoretical,
calculated from [13] with D= Dg,; the dashed lines
are calculated from [11] with D =D,,. The experi-
mental b, /b and b, /b plots are insufficiently sensitive to
distinguish whether [11] or [13] is obeyed; however,
the b,/b plot shows definitely that b,/b is nearly equal
to unity, in good agreement with the theory. Some
observations made of highly deformed drops show that
when D is not small &,/b > 1 + Dy, by/b=1— Dyy
and b,/b < 1; however, even with drops deformed into
threads, b, < by,.

The experiments on drop migration between counter-
rotating discs gave no conclusive results. They were
done in the apparatus described by Anczurowski and
Mason (14), which was fitted with two horizontal
transparent discs 1 cm apart, of radius 15 cm; the dise
surfaces deviated from flatness by 0.001 cm. The space
between the discs was filled with a mixture of silicone
fluid (Dow Corning, 200 series, 10000 centistoke
grade) and tetrachlorodifluoroethane made up to have
the same density as the particles used in each experi-
ment. Rigid spheres and water, glycerol and corn
syrup drops were used; the rigid particles migrated in
an erratic way (presumably because of imperfections
in flow) and the drops migrated inwards at all 2 at
comparable velocities to those of the rigid spheres.
Since no conclusive results were being obtained, the
experiments were stopped. The principal difficulty was
finding a suitable pair of liquids with equal densities.
From [25], it is seen that high interfacial tension is
desirable so that the velocity gradient % w can be
increased without the drop deforming excessively. No
system was found in which the migration velocity,
calculated from [27], is greater than the erratic drift
velocities observed with rigid particles.

Acknowledgements

Our thanks are due to Dr. M. T'akano and
Mr. M. Ihnat for assistance in the drop
deformation experiments and to Mr. E.
Anczurowski for assistance in the counter-
rotating disc experiments.

Summary

When a liquid drop is suspended in a viscous fluid
undergoing shear flow, it deforms; if the deformation
is small, the drop becomes an ellipsoid with its prin-
cipal axes directed along the principal directions of
strain of the fluid. In general, the lengths of the axes
are all different; this is the case for hyperbolic flow,
for which explicit theoretical formulas are given.

Experimental observations of all three axes of deformed
drops in hyperbolic flow agree with the theory.

The migration of a liquid drop in the non-uniform
shear field between counter-rotating discs is calculated
by finding in detail velocity fields that satisfy the
creeping motion equations. If the drop shape is only
glightly different from spherical, it is possible to find
the velocity and pressure fields by a perturbation scheme
in the small parameter characterizing the deformation,
using Lamb’s general solution in spherical harmonics(8).
The harmonics required in the solution are found by
first solving the problem of an infinitely viscous de-
formed drop, which is the same as a rigid body; the
solution for drops of any viscosity is then determined
by using the same harmonics but with different coeffi-
cients. A force is found to act on a fixed drop along the
line joining the drop center to the axis of rotation of
the dises. The velocity at which a free drop migrates
along this line is then found by using the solution of
Hadamard and Rybezinski for a sedimenting liquid
sphere. Experiments in a counter-rotating disc appara-
tus gave inconclusive results.

Zusammenfassung

Dieser Beitrag enthalt eine Theorie des Verhaltens
eines Fliissigkeitstropfens, der in einer viskosen Fliissig-
keit suspendiert ist, die einer ungleichférmigen Scher-
stromung unterworfen wird und sich zwischen zwei
parallelen Scheiben, die langsam um eine gemeinsame
Achse gegeneinander rotieren, befindet. Es wird voraus-
gesagt, dafl der Tropfen auf die Achse zuwandert, wenn
seine Viskositat 13,99, der Viskositdt der suspendieren-
den Flissigkeit tiberschreitet; andernfalls entfernt er
sich von der Achse mit einer Geschwindigkeit proportio-
nal seinem Verformungsparameter.

Eine Verallgemeinerung der Theorie der Verfor-
mung eines Tropfens zu einem Ellipsoid, die fiir will-
kiirliche Scherfelder gilt, zeigt, daB. seine drei Haupt-
achsen alle verschieden sein konnen. Dieses Ergebnis
wird bestdtigt durch Experimente beim hyperbolischen
FlieBen.
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