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1. Introduction 

A neu t ra l ly  b u o y a n t  par t ic le  suspended in 
a flowing viscous fluid of ten  t rans la tes  wi th  
the  local ve loc i ty  of  the  fluid in the  absence 
of  the  particle.  However ,  Brenner ,  invest igat-  
ing the  Stokes  resistance of  an a r b i t r a r y  
par t ic le  in a rb i t r a ry  flow fields (1), has 
shown th a t  this is no t  t rue  general ly,  and  
t h a t  cer ta in  rigid particles,  in some kinds 
of  shear  flow, migra te  across the  und i s tu rbed  
streamlines.  Such a migra t ion  of  l iquid 
droplets  in Poiseui l le  flow th rough  a tube  
was s tudied b y  Goldsmith  and M a s o n  (2), 
who give references to o ther  work on the  
subject .  Brenner ' s  methods  for rigid part ic les  
do not  involve the  detai led calculat ion of  
ve loc i ty  fields and are no t  applicable to 
liquid drops, a l though the  l imiting behavior  
of  infinitely viscous drops can be inferred.  

The  radial  migra t ion  occurring in Poiseui l le  
flow was discussed b y  Goldsmith  and M a s o n  
(2) in t e rms  of  the  non-un i fo rmi ty  of  the  
fluid ve loc i ty  grad ien t ;  t h e y  proposed a 
formula  wi th  which t h e y  ana lyzed  thei r  data .  
Here  we unde r t ake  a detai led h y d r o d y n a m i c  
t r e a t m e n t  of drop migra t ion  in a non-  
uni form shear  flow. Al though for the  flow 
to be apprec iably  non-uni form over  the  
part icle,  the  par t ic le  size cannot  be v e r y  
small compared  to the  size of  the  appa ra tus  
producing the  flow, nevertheless  we shall 
not  consider here  the  in te rac t ion  be tween  
the  par t ic le  and the  appara tus  walls. Wall  
effects are, however ,  t aken  into account  
expl ici t ly  la ter  (3). 

In  this invest igat ion we shall find the  
radial  migra t ion  of  a l iquid drop suspended 
in a viscous fluid conta ined  be tween  counter-  
ro ta t ing  discs, b y  calculat ing ve loc i ty  fields 
outside and  inside the  drop.  Flow be tween  
counter - ro ta t ing  discs is chosen because i t  
is a simple form of  nonun i fo rm shear field 
which is also exper imenta l ly  realizable. The  
methods  used here  m a y  be applicable to  
flow fields of  g rea te r  impor tance .  Since a 
knowledge of  the  deformed  shape of  the  drop 
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is essential to this calculation, we shall 
discuss T a y l o r ' s  theory (4) of deformation in 
detail, presenting new observations which 
confirm an aspect of the theory not pre- 
viously tested experimentally. 

2. Fundamental Assumptions 
Throughout this investigation, the fluid 

motions will be assumed sufficiently slow 
tha t  the quasistatic creeping motion equa- 
tions can be applied. I f  the velocity and 
pressure fields are v and p, these equations 
and the equation of continuity are 

~y 172 v = 17p, 17 �9 v = 0 ,  [1] 

where V is the fluid viscosity. Suppose the 
fluid to be contained between two infinite 
parallel discs tha t  rotate about a common 
perpendicular axis in opposite directions, 
with counterclockwise angular velocities m 1 
and - m  e as shown in fig. l a, and the 

Fig:  1. (a) C o u n t e r - r o t a t i n g  
discs,  w i th  coord ina te  
s y s t e m s  xo, Yo, % a n d  x, y, z. 
(b) Spher ica l  po lar  coordin-  
a tes  r, 0, q~ w i th  t h e  y-axis  

as polar  axis  

The actual fields v" and p" that  exist 
outside the drop and the fields v" and P "  
inside it must now be determined to satisfy 
[1] and also the following boundary con- 
ditions, which are analogous to those used 
by T a y l o r  (7). At great distances from the 
drop, v "  and p "  must reduce to v(~) '' and 
p(~)" ;  both ~, normal velocity components 
must vanish on the drop surface, and the 
tangential velocities must he continuous 
there; the tangential stress must also be 
continuous across the interface. 

The solution of this problem is facilitated 
through its separation into two parts, v" 
and p" being written as the sum of two 
terms, 

v " = v ' +  v, p " = p ' + p  [3] 

where v ' ,  p '  and v, p with the corresponding 
internal fields V',  P '  and V, P separately 
satisfy [1] and the boundary conditions at  
the drop surface, but at  great distances v' 

CI [~ca I b 

bl --~ 

distances from the stationary plane tha t  
must exist between them to the correspond- 
ing disc are h 1 and h 2. In terms of the unit 
vectors i, j ,  k of a right-handed Car te s ian  
coordinate system Xo, Y0, z0 with its origin 
in the stationary plane and j directed along 
the axis of rotation of the discs, the y0-axis, 
the velocity v(~) ' ' and pressure p(~)" 
between the discs in the absence of suspended 
particles are 
v ( ~ ) "  = i/c Yo Zo - -  k k x0 Yo, p ( ~ ) "  = c o n s t a n t ,  [2] 

where /c = (m I + me)/(h ~ + he) = mi /h  ~ = m~/h e . 
The boundary condition tha t  the fluid should 
stick to the discs at Yo= hi and Yo = - h e ,  
as well as [i], is satisfied by v(~) ' ' and p(~)". 

Suppose that  a liquid drop of viscosity 2, 
and radius b is suspended at (0, 0, m). In 
previous publications (2, 5, 6) the viscosity 
ratio 2 was denoted by p,  but  here we shall 
use p for the pressure. We introduce a 
coordinate system x, y, z with its origin at  
the drop center, related to x,  y ,  z by X=Xo, 
Y=Y0, Z = Z o - m  , in which [2] gives for 
the undisturbed velocity v(~) ' ' and pressure 
p ( ~ ) "  

v ( ~ ) " ~  i (l~ y z -- 1~ co y) -- k 1~ x y ,  p(~)"= constant. 

and v reduce respectively to v(~) ' and v(~) 
given by 

v ( ~ ) '  = i lc co y , v ( ~ )  = i k y z - -  k k x y . [4] 

Because [1] and the boundary conditions 
are linear, addition of v' and v yields the 
solution to the original problem. 

3. Spherical Drop 
We shall first solve this problem for a 

spherical drop, writing v ~  pO,, v0, etc., for 
the resulting fields. The velocity components 
outside and inside a spherical drop in 
uniform shear flow, obtained by B a r t o k  and 
M a s o n  (5) from T a y l o r ' s  hyperbolic-flow 
solution (7), immediately yield the fields 
v0, pO, and V ~ p0,, where the velocity 
gradient G =/c m. There is no resulting force 
on the drop. 

To find v ~ p0 a general solution of [1] 
given by L a m b  (8) will be used: 

v = V X (r  Z(n)) + VO(n) -t- ~ -  (u -I- 3) M r 2 V p ( n ) / y  

- -  n M r p(n) /~  } , 

p = 2: p(,~) �9 [5] 
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Here M = 1/(n + 1) {2 n + 3) and  the sum- 
mat ion  extends over positive and  negative 
integers n;  P<n), r and ~/(n) are solid 
spherical harmonics of degree n; r is the 
radial  vector i x +  j y +  k z .  The radius 
vector  r =  I rl and the angles 0 and ~b form 
the spherical polar coordinate system of 
fig. 1 b, the corresponding uni t  vectors being 
it, io and i~. The p(n), q3(n), Z(n) are con- 
venient ly  expressed in terms of r, 0, ~b b y  
means of the Legendre polynomials  Pn ,  and 
associated Legendre polynomials P(~), in 
which the a rgument  cos 0 is always under-  
stood; Jahnke and Erode (9) g ive  genera] 
formulas for them and tabula te  all the ones 
we shall use. The field v(~), p(~) of  [4] is 
expressed by  [5] when the single harmonic  
Z(~) is inserted in it, wi th  

(2) 

i(oo) 1 1 r 2 (3 cos 2 0 1) 
(2) : - ' 3  ]c r2 P2  : " ~  k - -  . 

To obtMn the fields v ~ po we use [5] wi th  
the  harmonics ~(~) and o which is ~(2) Z(_~),  
assumed to be 

1 
0 C 3 k b r - a P 2 .  Z(-a) = -- -~ - 

Similarly, for V ~ p0 we use [5] assuming 

zo 1 
(2) = -3- C2 ~C r 2 P2" 

The constants  C_ 3 and C 2 will be evaluated 
o v 0 ,  v o below. The resulting components  v~, 

and V ~ V0 ~ V ~ are 

vr=O, vo=O, v , = k ( 1 - - b  5r -~C3) r 2sin0cos0, 
V r = O ,  r 0 = O ,  V +  = k (J~ r 2 sin 0 cos 0. [6] 

Since v ~  ~  v~=V0 ~ and  v ~  ~ if  
1 - C _ 3 =  C~, the bounda ry  conditions for 
the  velocity can be satisfied. 

To sat isfy the b o u n d a r y  condit ion for the  
tangent ia l  stress, we use a formula given by  
Brenner (9) for the radiM-stress vector Zr, 
which is the  radial  component  of  the stress 
tensor ~:  

gI r = v]r -I ~= {(n -- 1) V X ( r  Z(n)) + 2 ( n  -- 1) 17~5(n ) 

- -  (2 n 2 + 4 n + 3) M r T(n)/~7 + n (n + 2) .M r z Vp(n)/~)}.  [7] 

This yields for the outer  and  inner radial- 
stress vectors o and Hr ~ 

. o = o ,  ~g0=o, ~%=v~-~k(l+4C_~b~ -~) 
• r 2 s i n 0 c o s q ~ ,  

U~ oo +, 

so t h a t  cont inui ty  of tangent ia l  stress 
requires (1 + 4 C_a) = 2 C~. This together  

wi th  the previously obtained relation 
1 - C_ 3 = C2, gives 

c_~ = (~. - 1)f(i + 4), c~ = 5I(i + 4). 

The force and torque on the sphere, which 
depend only on P(-2) and %(_~), according 
to Brenner (10), are zero because the la t ter  
vanish. The pressures pO and po are constant .  
To write down the complete solutions v ~ 
po,, and V ~ p0,, it  is only necessary to add  
the two part ial  solutions, as in [3]. 

4 .  D r o p  D e f o r m a t i o n  

I f  the interracial tension y between the 
drop and suspending fluid is finite, deforma- 
t ion b y  the  shear field will occur unt i l  the  
discont inui ty  in ~rr  at the i n t e r f a c e  is 
balanced by  the pressure dis tr ibut ion arising 
from the non-uniform curvature  according 
to the formula of Laplace. I t  has just  been 
shown tha t  a ~  H~ accordingly the  
deformat ion of the  drop depends only on 

0 t 0 t 
the discont inui ty  between ~ and /7~ .  The 
result  of a velocity field of the form of v ~ 
has been shown by  Taylor (4) to be a de- 
format ion of the drop to a shape expressed 
by  

F ~ - r - - b ( 1  + 2Db-~xy)=O,  
D = G b • y-1 (19 2 + 16)/(16~ + 16)~ 1. [8] 

D, the deformation,  is dimensionless. The 
longest and shortest  axes of the ellipsoid [8] 

1 
lie in the x y plane making an angle of W 

wi th  the  x- and  y-axes, the  drop being 
e x t e n d e d  in the first and  thi rd  quadrants  
and  compressed in the  second and four th ;  
the th i rd  axis of the  drop, lying along the  
z-axis, equals the radius b of the original 
sphere. 

This result  can be generalized to an 
a rb i t ra ry  flow field u(~) b y  expanding the  
original flow in a Taylor series about  the  
drop center C: 

1 
u(~)  = [u(r c + [ V u ( o o ) ] c  . r + ~ -  r r :  [ V V u ( ~ 1 7 6  c +... ,  

where bracket ing with  subscript C denotes 
evaluat ion at  C.  The io(n), r Z(n) required 
in [5] to give u ~ sat isfying the  b o u n d a r y  
conditions on a fluid sphere and reducing 
to the sum of  the first two terms of this 
series are 

(I) --=c "r, --(2) ---~--e .... 

~~ - - -  v b~ ~-~ S(~ ~)'. ~ ~ (5Z - -  2)/(Z + 1) , 

1 b~ ~-~ s~ ~ )  z / (~  + 1),  r  - - - ~  : r r  
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and 

~<2) = - ~ - z  ~ b-2 s~ ~) :rrI(~ + 1), 

3 SOp). r r/()~ + 1) 
q ) ~ 2 ) = - -  4 c " 

with ~(~) give the corresponding field U ~ ,~(1) 
inside. Here g~) and S(~ ~) are 

The drop deforms to a shape given by  

of which [8] is a special case. Since the 
second term in the parenthesis is small 
compared to 1, its square and higher powers 
can be neglected; this allows the equation 
to be transformed, by  squaring, to the 
standard form for an ellipsoid, 

b ~ j  y 1 6 Z + 1 6  Sc ) : r r =  1, [9] 

where I is the dyadic idemfactor. To the 
order of our approximation, it is evident 
that  the drop deforms into an ellipsoid with 
its principal axes coincident with those of 
the local fluid rate-of-strain tensor S~ ~), 
their lengths differing from the undistorted 
drop radius b by  small amounts proportional 
to the principal rates of strain. 

Two examples of this of special interest 
are drop deformation in hyperbolic-radial 
flow and in plane-hyperbolic flow, these 
flows being important  in connection with 
extrusion through a nozzle and a slot 
respectively. The effect of these flows on 
suspended rigid particles is to orient them, 
as previously described (II) ;  what happens 
when the particles are liquid will now be 
discussed. 

Hyperbolic-radial flow is defined b y  
1 . 1 

u =  i G x - - - f f  j a y - - - ~ - k G z .  [10] 

When G > 0, [10] represents flow outwards 
along the x-axis and radial inflow in the yz-  
plane; when G < 0 the flow is reversed. I f  
the principal semiaxes of the deformed drop 
are bx, by and bz, directed along the x-, y-, 
and z-axes, [9] gives, to order G b ~]/y, 

bx = b (1 + 2 D ) ,  by = b (1 --  D) ,  bz = b (1 - -  D) ,  [11] 

where D is given in [8]. The drop is a 
spheroid, prolate or oblate according as 
D > 0 or D < 0, this ult imately depending 
on the sign of G in [10]. 

A particular case of [9] which is especially 
convenient for experimental verification is 
drop deformation in plane-hyperbolic flow 
given by  

I 1 
u = - ~ i G x - - ~ - j G y .  [12] 

In this case, the drop deforms into an 
ellipsoid with 

bx = b (l + D) , by = b (1-- D) , b~=b. [13] 

Let  Dxy be the apparent deformation in the 
xy-plane defined by  

Dxy = (bz --  by)/(bx + by). [14] 

This is not the xy-component of a tensor. 
3 

For flows [10] and [12], D r y =  y D and D, 

respectively. For the latter, a plot of bx/b, 
by/b and bz/b against Dxy should yield straight 
lines with slopes 1, - 1  and 0, according to 
[13]. On the other hand, the theory of 
deformation in hyperbolic flow might not 
be obeyed, the drop deforming into a 
prolate spheroid with bx = by. This was 
inferred by  Rumscheidt  and Mason  (6) from 
their observations, which were limited by  
the experimental arrangement to views along 
the z-axis. In this case, if the volume of the 
drop is unchanged, the semiaxes will be 

given by  [11], 2 if ~ D x y  is substi tuted for D. 

The slopes of plots of bx/b, by/b and bz/b 
4 2 2 

against Dry would thus be 3 ' 3 and - ~-. 

Since no experiments in which all three axes 
of the drop were measured have been 
reported, we have made these observations 
and the results are described in the ex- 
perimental section. 

5. Boundary Condition Equations 
The velocity fields outside and inside a 

drop, deformed in this way, suspended 
between counter-rotating discs, will now be 
calculated. We shall consider fields v", p"  
and V' ,  P "  that  satisfy the boundary 
conditions enumerated earlier, where the 
drop surface S is not spherical but  given by  
[8]. Separating the problem into parts as 
before, we observe that  the fields v' and V' 
are those for a deformed drop suspended in 
the uniform shear flow v(~) ' = i k  ~ y ;  
because of the symmetry  of this configuration, 
no force can act in the x-, y- or z-direction. 
Accordingly the fields v', V' are of no 
interest and will not he considered further. 
On the other hand, the fields v, p and V, P 
must be calculated explicitly. The problem 
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is simplified because D is so small t h a t  its 
square  and  higher  powers  are negligible; 
thus  on the  surface S the  leading te rms  of the  
binomial  theorem expansion of  [8] yield 

rn = bn ( i  + 2 n D sin 0 cos 0 s in  ~ )  . [15] 

Since v and  V reduce  to v ~ and  V ~ for a 
spherical  drop,  t hey  can be wr i t ten  

v = v o + D v  ~ + o ( D s )  , V =  v o + D V ~  + o ( l > )  . 

In  the  eva lua t ion  of v and V on S ,  since 
[ v l ] s  = [vl]~ + 0 (D), we find 

[~]s = [~~ + 1)[~G + 0 (Ds), 
[ V ] s  = I V ~  + D[V~]b + 0 ( / ) s ) ,  [16] 

where bracke t ing  wi th  subscript  S or b 
denotes  eva lua t ion  on S with [8] or on the  
sphere r = b. T h a t  the  unknown fields v ~, V I 
are required  to  sat isfy b o u n d a r y  condit ions 
on a sphere and  no t  S simplifies the  problem 
considerably.  

The  first r equ i remen t  is t h a t  the  t angen t ia l  
ve loc i ty  is cont inuous  at  S. Since bo th  outer  
and  inner  normal  velocities vanish  at  S, the  
ent ire  ve loc i ty  vec tor  will be cont inuous 
the re ;  this condi t ion is easily fo rmula ted  
f rom [16] : 

[v - -  V]s  = [v ~ 1 7 6  ~ + Vqb = O . 

Subs t i tu t ion  of  [6] into this gives 

Iv  - -  V ] s  = / v [ ~  { ( 1 - -  b 5 r -5  C_a) - -  Cs} r 2 s i n 0  cos O]s 

+ D Iv ~ -  V~Jb = O. 

Using [15], we obta in  f rom this a f te r  collect- 
ing te rms  and  subs t i tu t ing  for C~: 

5 
IV 1 - -  V1]b = - -  -~- i v ]C b s C a (1 - -  cos  4 0) s i n  qS.  [17] 

Vanishing of  bo th  normal  velocities will now 
be  assured b y  making  one of  t hem zero;  
thus  we shall require  [ v - n ] s  = 0, where n 
is a un i t  vec to r  normal  to S. Since the  vec to r  
17F is normal  to the  surface F - - 0 ,  as shown 
by  G i b b s  and  W i l s o n  (12), we form 17F using 
F given by  [8] : 

V F ~ i r - -  2 b -1  D {i  r (2 r s in  0 cos 0 s in  ~ )  

+ i  O r ( c o s  s 0 - s i n  s0 )  s i n q ) +  i v r c o s 0  c o s r  

The  un i t  vec to r  in the  same direct ion is 
found  b y  dividing this b y  its magni tude .  To 
first order  in D we have  

n = V F / ( V F "  V F ) ~ t  ~ = i~. - -  2 D (io cos 2 0 s in  (/) 

+ i v cos 0 cos r  [18] 

IV. his = [ V~ i~]s 

- -  2 D IV ~ �9 (i o cos 2 0 s in  q~ + i v cos 0 cos ~b)] b 

-{- D IV 1" ir]b : 0 . 

After  subs t i tu t ion  of [6] and [15] this yields 
the  b o u n d a r y  condi t ion 

[V  s" is] b = 2 ]c b 2 C2 sin 0 cos s 0 cos ~ .  [19] 

To express the  th i rd  condit ion to  be 
satisfied at  S, t h a t  the  tangent ia l  stress is 
continuous,  we must  find the normal-stress  
vec tor  ~ r . n  and take  its t angent ia l  compo- 
nent .  This is accomplished b y  operat ing on 

�9 n wi th  the  dyadic  I -  n n : as described 
b y  G i b b s  and  W i l s o n  (12), I - n  n annihi lates  
all vectors  parallel  to n, leaving those 
perpendicular  to  n unchanged;  thus  
( I -  n n ) ' ~ r ' n  is s ' n  wi th  its normal  
component  removed,  t h a t  is, the  required  
tangent ia l  stress vector�9 I -  n n is a gene- 
ral izat ion of  the  dyadic  I -  ir ir used b y  
B r e n n e r  in the  Appendix  of  (10) to  find t, he 
tangent ia l  stress on a sphere. The b o u n d a r y  
condi t ion of  con t inu i ty  of  tangent ia l  stress 
a t  S t h en  becomes 

[ (I  - n n ) .  ( ~  - 1 1 ) .  h i s  = [ ( I -  n ~ ) .  ( ~ o  _ H o ) .  ~ ] s  

+ D [ ( I  - -  i r  i t )  �9 (zr~ - -  r1~)  �9 i,.]b + 0 (1)  ~-) = O ,  

f rom which we find 

D [io 1 , ( ~ r 0 - ~ / 0 )  + i v ( ~ r  ~ : ~ ) ] b  

= [~ n" (so - H~ his -- [(~0 _ H~ - , ] .  [20] 

To obta in  the  stress tensors  7t ~ and H ~ we 
apply  equat ions  for  finding zt f rom v, p in 
spherical polar  coordinates,  given, for 
example,  b y  M i l n e - T h o m s o n  (13), using [6] 
and  not ing t h a t  the  pressures p0, p0 are 
constant .  The  r r- ,  0 0-, cO q)- and  r 0- 
components  vanish, leaving 

z ~ v = - - ~ k ( 1 - - C - a b  5 r  -5) r s i n  s 0 ,  

~~162 = v lc (1 + 4 C_3 bS r-~)  r s in  O c o s 0 ,  

/ / ~  v = - -  )~ V k C~ r s in  ~ 0 ,  

H 2 r  = ~ ~1 k C=r  s in  0 cos 0 �9 

Then,  f rom [18] we get  

0 / ~ 0  \ 
( 7 ~ ~ 1 7 6  " n  = i ~ ( n r V - -  r V )  

- 2 ~oD ( 4 r  - - r i G )  oo~ o oo~ r 
0 o - -  2 i r D  ( n r r  - - / / , ~ v )  cos 0 cos r  

and 

�9 = - -  ( ~ 0 - / / ~ 0 )  oo~0  c o ~ .  n n " (xt  ~  I 1  ~ n 2 i r D  o o 

Subs t i tu t ion  of these expressions into [20] 
yields the  last  b o u n d a r y  condi t ion:  

[~ - n ~ ]  b = - lO i~ ~ k b c_~ ~ i ~  o oo~ 0 oo~ 

+ 10 i v ~ k b C_a s in  s 0 (6 cos s 0 - -  1) s in  ~b. [21] 
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6. H a r m o n i c s  in  L a mb's  So lut ion  

We now must  find v ~, p~ and  V ~, P~ to 
sat isfy [17], [19] and  [21]. Again using [5], 
we select the P(n), r Z(n) for v 1, p~ by  
assuming, subject to a posteriori  verification, 
t h a t  t h e y  will be the same functions of 
r, O, q~ as the  P(n), ~(n), Z(n) t h a t  appear  in 
the  solution of the  problem of an infinitely 
viscous deformed drop, 2 = o0. For  this 
l imiting case the  bounda ry  conditions are 
the  same as if  the  drop was a rigid body,  
being completely specified by  the  limiting 
form of [19]. Since when 2=  c~ there is no 
internal  motion,  we obta in  this form by  
sett ing V = 0  and  inserting the l imiting 
value C_a= 1 into [19]: 

[V~]b : - -  10 ir  k b ~ sin s 0 cos ~ 0 sin e .  [22] 

A boundary-value problem expressed in this 
way can be solved using a general method 
given by  Brenner  in his invest igat ion of the  
Stokes resistance of a sl ightly deformed 
sphere (10). Thus, the p(n), q~(n) and Z(n) t ha t  
mus t  be inserted in [5] to yield v I are found 
to be : 

: 5A(1) V k b~ r-~ p~l) cos e ,  P~-4) 3 -4 

6 -4  

~1 B(1) k b 5 r -~ p~l) ( / )~ -~ ) :  2 -~  c o s e ,  

Z ~ 1C(1)  kbTr-~ O) sin e ' (-~) - -  7 - a  P~  

Z1 __ __ 5 C(1) k b  s r -  ~ (1) s i n e  
(-a) - -  63 -~  P~ " [23] 

The coefficients A(~ ), B(~ ~) and C(~ ~), intro- 
duced for generali ty,  are equal to un i ty  
when 2 = c~. By  inserting p(~), (~), Z(',0 in 
[5] and sett ing r - b, one can verify t h a t  
these yield v ~ sat isfying [22]. To obtain the 
complete solution v, [5] is used with  the 

P~n) , ~ r Z(~) listed above multiplied by  D, 
together  wi th  ~(~) and 0 ~(2) X(-3)  �9 

To solve the problem when 2 is finite, we 
shall use the ~ q)~) P(n) ,  , Z(n) given by  [23] 
to find v ~, p l  bu t  the coefficients A(~ ~), B ~  ), 
C(f ~ are at  present unknown.  For  V ~, P~, we 
select p(n), qi(n), Z(n) analogous to those of 
[23], bu t  regular at  the origin, and  also wi th  
coefficients to be determined,  namely,  

p l  5 A(1) ~. ~ 2 r a p~l) cos e (a) = ~- 3 'lkb- 

P~I) = All)  )" ~] k r P i  1) cos (~5, 

1 B 0  ) k r  a (1) c o s e  e~a) = 6 a Pa  , 

e(1)1 = 2-1 B~I) k b ~ r p~l) cos e ,  

1 r 4 p(1) s in �9 

Z1 _ 5 1 .(2) - -  - -  - ~ -  C(e) k r 2 p~l) s in e .  [24] 

When 2 -- oo, B (1)a , B~ 1), C (1) and C~ 1) 
vanish, bu t  the  behavior of A(31) and  #~)  
cannot  be predicted. We then  insert  [23] 
and  [24] into [5] and  [7] using spherical 
polar coordinates, to evaluate  the lef t -hand 
sides of [17], [19] and [21]. As an example, 
we give the  result  for [v~-  V~]b: 

1 A 4(1) + 1 B~I) ) 
g 

5 
+ - c ? )  (oo  2 0 + 7 4 o) 

This is compared with  the ~-component  of 
the r ight -hand side of [17] and the coefficients 
of sin ~,  cos 2 0 sin ~,  and  cos 4 0 sin ~,  
which are l inearly independent ,  are equated.  
In  this way  twelve independent  equations 
for the A(~ 1, B ~  ), C(~ ~) are obtained;  the 
solution is : 

A(_i~ = (7 Z~ + 34 ~ + 22)/7 (Z + 1) (). + 4), 

A ~ = ( 3 2 .  3 +  1 4 2 - - 2 ) / 3 ( Z +  ] ) ( ) ~ +  4 ) ,  

B(~ = (7 ~ + 20 Z + 8)/7 (~ + ~) (Z + 4), 

B ~ = ( 3 ) 3 +  8 2 - - 8 ) / 3 ( X +  1 ) ( Z +  4)~ 

C(_~ = (2 - -  1)/(~ + 2 ) ,  

C(J2 = (X - -  1)(~ - -  16)/(~ + 4) ~, 

A~ 1 ) = - 1 2 ( 3 ) , +  4)/7 ( 2 + 1 ) ( Z + 4 ) ,  

A~ 1) = 10 (5,~ - -  8)/3 ()~ + 1) (Z + 4 ) ,  

B~ ~) = 4 ( 2 9 ) .  + 34)/21 (~ + 1)(,% + 4 ) ,  

B~ ~) = 2 (2 + 14)/3 ()~ + 1) (). + 4 ) ,  

(J~) = 2 (2 - -  1)/(~ + 2) (X + 4 ) ,  

c~ ~) = 20 (~ - ~)/(~ + 4)~. [25] 
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7 .  M i g r a t i o n  V e l o c i t y  

Brenner  (10) shows t h a t  the force and 
torque acting on a particle can be expressed 
respectively in terms of the harmonics P(-2) 
and Z(-m appearing in [5], the force being 
F = - 4 z  V(r ap(_s)). Here the torque 
vanishes since Z(-~)-- 0; however, we find 

ks b r 0) ~ 
F :  --4:~klcba D =  k - -  

u(3Z ~+ 142--2)(19Z+ 16) 
x [26] 12 (z + 1) 3 (z + r 

An independent  check of [26] for the limiting 
case 2 = co was made from Brenner ' s  theory  (1) 
for a rigid particle in an a rb i t ra ry  flow. 

Thus,  a s t a t ionary  drop must  be held in 
place by  an external  force equal and opposite 
to the hydrodynamic  force F, which tends  
to impel i t  in the z-direction, towards or away 
from the axis of revolut ion of the discs. 
Conversely, a free drop will migrate  along 
the z-axis; to find its velocity,  one should in 
principle superpose on the system a uniform 
streaming veloci ty - w ,  to be determined by  
making F vanish. Because of the l ineari ty of 
the  bounda ry  conditions and the equations 
of mot ion [1], w will be the same as the 
velocity impar ted  to a drop b y  F in a 
quiescent fluid. Moreover, the difference 
between the velocity of the deformed drop 
and t h a t  of a spherical drop will be pro- 
portionM to D s, because F contains D -  

indeed, the neglected te rm in the velocity 
m a y  even be of order D a, this being certainly 
the case for a rigid body  whose shape is given 
by  [8] moving along the  z-axis, as can be 
seen from Brenner ' s  equat ion 4.15 (10) for 
the t ransla t ion of a sl ightly deformed sphere. 
We are therefore justified in applying the  
result of H a d a m a r d  and Rybczynslci,  given 
by  L a m b  (8), for the velocity of a fluid sphere 
whose mot ion is restrained by  a hydro-  
dynamic  force F. This is then  used with  [26]. 

F = - - 6 z b f l w ( 3 2 ~ +  2)(3Z+ 3), 
19 

w = -- 2 ~  k/c  2 b 3 o) fi y - 1 K ( Z ) ,  [27] 

where the  viscosity-ratio factor  K (2) is 
K(;t) = (3Z 2 + 14Z-- 2) (19Z + 16)/19 (32 + 2) 

x (;t + 1) (.~ + 4). 

Now w is s imply k dco/dt. I f  the deformat ion 
of the drop changes with co according to [8], 
then  the t ra jec tory  of the  droplet can be 
found by  integrat ion;  i t  is 

In (0)/0)0) = - k S b 3 ~ y-1K(2) t,  

where t is the t ime and  coo is the value of co 
at  t = 0 .  

The direction of migrat ion depends on the 
algebraic sign of K(Z) and on Z; K(~) is 
plot ted in fig. 2. For  large ~, inward migration,  
towards the  axis of rota t ion of the discs, is 
indicated;  however, a t  2 =  0.139 K vanishes 
and the drop should not  migrate,  and  for 
0 < 2 < 0.139, ou tward  migrat ion is predicted. 

1,0 

0.5 

0,0 

I 

/ 

Fig. 3. Plots against Dxy of 
(a) bx/b, (b) by~b, (c) bz/b. 
The points are experimen- 
tal; the full lines calculated 
from [13] with Dxy = D; 
the dashed lines, from [11] 

with Dzy = 2/3 D 
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8. Experimental 
Experiments to measure the three axes of deformed 

drops in hyperbolic flow were performed as described 
by Bumscheidt and Mason (6), with the four-roller 
apparatus used by them, to produce the flow (12). 
Photographs were taken viewing along the z- and x- 
(or y-) axes, windows having been put in the sides of 
the apparatus to allow this. Drops of silicone fluid 
(Dow Coming, 200 series, 5000 centistoke grade) or 
water, suspended in Pale 4 oxidized castor oil (Baker 
Castor Oil Co., Bayonne, N. J.), and water drops 
suspended in silicone fluid were used. Measurement of 
the projected photographs of the drops yielded the 
three principal axes. The results of all the experiments 
were similar; we present in detail observations of a 
silicone drop, b = 0.128 cm, suspended in castor oil 
and subjected to hyberbolie flow [12] with velocity 
gradients G varying from 0.0088 sec -1 to 0.136 sec -1. 
The room temperature was 24.6 ~ In  fig. 3, the 
observed bx/b, by/b and bz/b are plotted against Dxy 
obtained from [14]. The full lines are theoretical, 
calculated from [13] with D = Dxy; the dashed lines 
are calculated from [11] with D =.Dxy. The experi- 
mental bx/b and by/b plots are insufficiently sensitive to 
distinguish whether [11] or [13] is obeyed; however, 
the bz/b plot shows definitely that  bz/b is nearly equal 
to unity, in good agreement with the theory. Some 
observations made of highly deformed drops show that  
when D is not small bx/b > 1 + Dxy , by/b -- 1 -- Dxy 
and bz/b < 1 ; however, even with drops deformed into 
threads, bz < by. 

The experiments on drop migration between counter- 
rotating discs gave no conclusive results. They were 
done in the apparatus described by Anczurowski and 
Mason (14), which was fitted with two horizontal 
transparent discs 1 cm apart, of radius 15 cm; the disc 
surfaces deviated from flatness by 0.001 cm. The space 
between the discs was filled with a mixture of silicone 
fluid (Dow Coming, 200 series, 10000 centistoke 
grade) and tetrachlorodifluoroethane made up to have 
the same density as the particles used in each experi- 
ment. Rigid spheres and water, glycerol and corn 
syrup drops were used; the rigid particles migrated in 
an erratic way (presumably because of imperfections 
in flow) and the drops migrated inwards at all ). at 
comparable velocities to those of the rigid spheres. 
Since no conclusive results were being obtained, the 
experiments were stopped. The principal difficulty was 
finding a suitable pair of liquids with equal densities. 
From [25], i t  is seen that  high interfaciM tension is 
desirable so that  the velocity gradient k ~o can be 
increased without the drop deforming excessively. No 
system was found in which the migration velocity, 
calculated from [27], is greater than the erratic drift 
velocities observed with rigid particles. 
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d e f o r m a t i o n  e x p e r i m e n t s  a n d  t o  M r .  E .  
A n c z u r o w s k i  f o r  a s s i s t a n c e  i n  t h e  c o u n t e r -  
r o t a t i n g  d i s c  e x p e r i m e n t s .  

Summary 
When a liquid drop is suspended in a viscous fluid 

undergoing shear flow, it deforms; if the deformation 
is small, the drop becomes an ellipsoid with its prin- 
cipal axes directed along the principal directions of 
strain of the fluid. In  general, the lengths of the axes 
are all different; this is the ease for hyperbolic flow, 
for which explicit theoretical formulas are given. 

Experimental  observations of all three axes of deformed 
drops in hyperbolic flow agree with the theory. 

The migration of a liquid drop in the non-uniform 
shear field between counter-rotating discs is calculated 
by finding in detail velocity fields that  satisfy the 
creeping motion equations. I f  the drop shape is only 
slightly different from spherical, it is possible to find 
the velocity and pressure fields by a perturbation scheme 
in the small parameter characterizing the deformation, 
using Lamb's general solution in spherical harmonies (8). 
The harmonics required in the solution are found by 
first solving the problem of an infinitely viscous de- 
formed drop, which is the same as a rigid body; the 
solution for drops of any viscosity is then determined 
by using the same harmonies but  with different coeffi- 
cients. A force is found to act on a fixed drop along the 
line joining the drop center to the axis of rotation of 
the discs. The velocity at which a free drop migrates 
along this line is then found by using the solution of 
Hadamard and Rybczinski for a sedimenting liquid 
sphere. Experiments in a counter-rotating disc appara- 
tus gave inconclusive results. 

Zusammen/assung 
Dieser Beitrag enth~lt eine Theorie des Verhaltens 

eines Fliissigkeitstropfens, der in einer viskosen Flfissig- 
keit suspendiert ist, die einer ungleichfSrmigen Scher- 
strSmung unterworfen wird und sich zwisehen zwei 
parMlelen Scheiben, die langsam um eine gemeinsame 
Achse gegeneinander rotieren, befindet. Es wird voraus- 
gesagt, dab der Tropfen auf die Aehse zuwandert, wenn 
seine Viskosit&t 13,9% der Viskosit&t der suspendieren- 
den Flfissigkeit fiberschreitet; andernfMls entfernt er 
sich yon der Achse mit  einer Gesehwindigkeit proportio- 
nal seinem Verformungsparameter. 

Eine Vera]lgemeinerung der Theorie der Verfor- 
mung eines Tropfens zu einem Ellipsoid, die ffir will- 
kiirliche Scherfelder gilt, zeigt, dab seine drei Haupt- 
achsen alle verschicden sein kTnnen. Dieses Ergebnis 
wird best&tigt dutch Experimente beim hyperbolischen 
Fliegen. 
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