
Algorithmica (1996) 15:287-301 Algorithmica
�9 1996 Springer-Verlag New York Inc.

Designing Checkers for Programs that Run in Parallel 1

R. Rubinfeld 2

Abstract. Program correctness for parallel programs is an even more problematic issue than for serial
programs. We extend the theory of program result checking to parallel programs, and find general techniques
for designing such result checkers that work for many basic problems in parallel computation. These result
checkers are simple to program and are more efficient than the actual computation of the result. For example,
sorting, multiplication, parity, the all-pairs shortest-path problem and majority all have constant depth result
checkers, and the result checkers for all but the last problem use a linear number of processors. We show that
there are P-complete problems (evaluating straight-line programs, linear programming) that have very fast,
even constant depth, result checkers.

Key Words. Parallel algorithms, Program result checking.

1. Int roduct ion. Verifying a program to see if it is correct is a problem that every pro-
grammer has encountered. Even the seemingly simplest of programs can be full of hidden
bugs, and in the age of massive software projects, this problem is becoming increasingly
important. The complexity of programming parallel computers is even greater. A gen-
eral theory of result-checking algorithms was given in [7]. This approach recognizes that
proving programs correct is very difficult to do, and with this in mind, aims at the easier
task of checking that a program is correct on any given input. This easier problem is not
only feasible, but often yields result checkers that are much simpler than the original
program and therefore less likely to contain bugs.

Many result checkers in the sequential model of computation have been found for
various types of problems. However, a user is unlikely to be willing to use a sequential
result checker to verify the correctness of a result produced by a fast parallel algorithm.
In this paper we extend the program result-checking framework to the setting of parallel
programs and find general techniques for designing such result checkers. For exam-
ple, we find techniques for result-checking programs which compute certain types of
functions that have the propertY that they can be computed "indirectly," by calling the
program on another, related input. We also present techniques based on quickly recon-
structing the computation of a simple sequential algorithm, on duality and on constant
depth reducibility among problems. We find result checkers for many basic problems
in parallel computation. The checking process is either faster or more efficient than the
computation of the result. Many of these result checkers are rather straightforward, such
as the result checkers for parallel prefix and straight-line programming. Others involve a
more intricate design and more complex proofs, such as the result checkers for majority,

J This research was done while at the Computer Science Division, University of California, Berkeley, and
the International Computer Science Institute, Berkeley, California. Supported in part by an IBM Graduate
Fellowship and NSF Grant No. CCR 88-13632.
a Department of Computer Science, Cornell University, Ithaca, NY 14853, USA.

Received October 1, 1993; revised September 22, 1994. Communicated by A. Borodin.

288 R. Rubinfeld

unary to binary conversion, parity, and convex hull. In addition, the sequential versions
of the parallel result checkers given for integer sorting and the all-pairs shortest-path
problems are the first deterministic sequential result checkers for those problems. All
of the examples in this paper are written for the arbitrary and priority CRCW PRAM
models (see pp. 698-700 of [16] for definitions of models).

The difference in the complexity of solving a problem in parallel with a polynomial
number of processors, as compared to the depth complexity of result checking a problem
(again with a polynomial number of processors) is often very dramatic. For example,
we show that there are P-complete problems (evaluating straight-line programs, linear
programming) that have very fast, even constant depth, parallel result checkers. Integer
GCD is not known to be in RNC, yet a logarithmic depth parallel result checker exists
for it [1]. Maximum matching is not known to be in NC (though it is in RNC), and it
has a deterministic NC result checker. Multiplication, parity, and majority all have lower
bounds of f2 (log n~ log log n) depth [6] when computed with a polynomial number of
processors, yet all have (completely different) constant depth result checkers.

2. The Parallel Program Result-Checking MOdel. In this section we describe the
extension of the program result-checking model proposed in [7] to result checking for
parallel programs.

DEFINITION 2.1 (Probabilistic Parallel Program Result Checker). A probabilistic pro-
gram result checker for f is a probabilistic oracle program Rf with oracle P, which is
used to verify, for any program P that supposedly evaluates f , that P outputs the cor-
rect answer on a given input in the following sense. On a given input x and confidence
parameter oe, Rf has the following properties:

1. If P(x) ~ f (x) , then Rf outputs "FAIL" (with probability > 1 - c0. 3

2. If P is a correct program for every input then R) ~ outputs "PASS" (with probability
> l - a) .

Furthermore, the result checker may only use a polynomial number of processors.
The parallel result checker is allowed to call the program as many times as desired at

each parallel step but is only allowed to access P as a black-box oracle.

Note that if P(x) = f (x) but P is faulty on other inputs, then R} ~ may output either
"FAIU' or "PASS."

We refer to the parallel running time of the checker, not including the running time of
the calls to the program, as the checking time (note that the running time of the checker
may be an expected run time, even when the program being checked is deterministic).
We refer to the parallel running time of the checker including the running time of the
calls to the program as the total time. We make the same conventions with respect to
the number of processors. When describing the total running time of a result checker,

3 The probabilities are with respect to a source of truly random independent bits available to the result checker.
and not with respect to any assumptions about the input distribution.

Designing Checkers for Programs that Run in Parallel 289

we use D(n) to refer to the total time of the program running on an input of size n, and
N(n) to refer to the total number of processors used by the program when running on
an input of size n. In both cases we ignore the dependence on the confidence parameter
or. In all of the examples, the result Checker first calls the program on the input which is
being checked.

The problem remains of determining the correctness of the result checker. In the
sequential setting, [7] suggests that instead, the result checker should be forced to be
quantifiably "different" than any program for f by limiting the checking time to be less
than that of the fastest correct program known for computing the function. In fact, the
result checker can be forced to be "different" by restricting any computational resource.
We consider analogous notions of "different" for parallel result checkers. Suppose that
any parallel program which computes the function f using a polynomial number of
processors requires at least d(n) depth on inputs of size n. Suppose the number of pro-
cessors required when computing f in depth d(n) is p(n). We say that Rf is quantifiably
different if (i) the checking time is o(d(n)) depth or (ii) if the checking time is O (d(n))
and simultaneously the checking number of processors is o(p (n)) on the same model of
parallel computation. The latter option is motivated from a more practical perspective,
since checking algorithms satisfying (ii) do not require the existence of extra processors
in order to run. The result checkers described in this work are all quantifiably different.
So far, most of the result checkers found which are quantifiably different seem to be
simpler than any program for the function as well.

Another possible variant for the notion of quantifiably different is as follows: Let
d'(n) > d(n). Suppose that no program can be adapted to run in time d'(n) using
O(pf(n)) processors (by Brent's theorem, programs running in d(n) time and p(n)
processors can be adapted to run in time d'(n) using p'(n) processors when p'(n) is
>_p(n)(d'(n)/d(n))). A checker is quantifiably different if its running time is O(d'(n))
using O (p~(n)) processors. This particular notion has not yet been used to construct a
checker, but may be of practical interest.

In the most straightforward applications of checking, whenever the program is ex-
ecuted the result checker is also executed. Thus, it is critical that the overhead cost of
running the result checker does not neutralize the benefit of knowing that the output is
correct (or the knowledge that the program is faulty). All of the result checkers in this
paper call the program at most once on any computation path, so the total depth is big
oh of the depth of the program being checked. Many of the result checkers have the
property that the total number of processors used is big oh of the number of processors
used by the program (e.g., sorting, parity, convex hull).

3. Computabil i ty by Random Inputs. In [8] it is shown that result checkers can
be designed for many functions that have the property of random self-reducibility--
that the function can be computed by computing the function on one or more "random"
instances. We show that often the property that a function can be computed by computing
the function on one or more "almost-random" instances can also be utilized in designing
a result checker.

We concentrate on symmetric functions--functions on n bits whose output depends
only on the number of ones in the input. Thus, the value of the function can be computed

290 R. Rubinfeld

indirectly by computing the function on a "shuffle" (random permutation) of the input
bits. However, the techniques in this section are applicable to other functions as well. For
example, the running time of the sequential checker for the matrix rank function given
in [8] can be dramatically improved using the technique given in Section 3.2.

The techniques in this section are based on testing the program on random inputs for
which the answer is known, and then verifying that the program's answer on the particular
input being checked is consistent with the program's answer on most other inputs. All
techniques require only a log* n additive factor overhead in the depth. (This can be made
constant by using an extra log n multiplicative factor of processors). The first technique
works for any symmetric function, but uses a multiplicative factor of n extra processors.
The technique described in the second section works for a certain class of symmetric
functions, and does not use any extra processors. It is an open question to determine
whether there is a general technique to check any symmetric function without using
extra processors. The third technique works for certain types of random self-reducible
functions, and does not require extra processors.

3.1. Any Symmetric Function on n Bits. We give a result checker for any symmetric
function, where the function is specified by a table of values to t,, such that ti is the
output of the symmetric function when exactly i of the input bits are ones:

Input: A list of input bits fi = al, a2 a, , a table of values to t,.
Output: b = tt where l = ~l_<j<, aj.

The majority, exactly l, and parity functions are all examples of symmetric functions.
As mentioned before, [6] show that f2(log n/log log n) depth is required to compute
these functions. For these and other examples, no table is needed as input becaUse each
ti can be computed in constant depth by the result checker.

Let P be the program that supposedly computes the symmetric function. P is checked
by partitioning the inputs of size n into n + 1 equivalence classes, where all inputs in
a particular equivalence class contain the same number of ones. Intuitively, the result
checker verifies that P is correct on more than half of the members of each equivalence
class, and that the answer of P on the input in question is consistent with more than half
of the members within its own equivalence class. Therefore, even if the result checker
cannot determine which equivalence class the input is in, it can verify that the answer of
P on the input is correct. In the result-checking algorithm, several random permutations
of the input bits are made; [23] provides a way of doing this in O(log* n) depth with
linear processors (and O (log* n log log* n) depth with an optimal number of processors).
They also show how to do it in O(1) depth and O(n logn) processors.

Result- Checking Algorithm

k +-- log(l/c0
b ~ P(h)
In parallel, compute k random permutations ~r~ , rrk of {1 n}
Phase 1: (Consistency with our input)

In parallel, for i -- 1 k
If P (rri (~)) # b, then output "FAIU' and halt

Phase 2: (Testing Correctness of most inputs)

Designing Checkers for Programs that Run in Parallel 291

In parallel, for j = 0 n
In parallel, for i = 1 k

I f P (:ri (l)0n-J)) r tj, then output "FAIU' and halt.
Output "PASS."

PROOF OF CORRECTNESS. Clearly, if P is correct on all inputs, the result checker will
output "PASS." Assume that P is incorrect on input ~, we show that the result checker
outputs "FAIL" with probability > 1 - or. Let l be the number of ones in ft. Suppose that
P is correct (and consequently differs from the output on h) on _> 1/2 the inputs with
l ones. Then, with probability _> 1 - or, an input that is inconsistent with fi is found in
Phase 1. Suppose that the program errs on > 1/2 the inputs of size n with l ones. Then,
with probability > 1 - oe, the lth group of processors in Phase 2 finds that the program
is buggy. Notice that by this argument the same k permutations can be used in Phase 1,
and by every group of processors in Phase 2.

Running Time. The checking time is O(log* n) and checking number of processors
is O(n2). The total time is O(log*n + D(n)) and the total number of processors is
O(nN(n)) . []

3.2. Special Symmetric Functions. A factor of n in the number of processors can be
saved when the symmetric function' f is of a special type: Let to tn be the input
table for problems of size n and let t6 t~_ n be the input table for problems of size 2n.
We say that f is of this special type if there is an easily computable function g(b, j)
such that if t/' = b, then ti-j = g(b, j) .

Examples of such functions are parity, where g(b, j) = b ~ (j rood 2), and the unary
to binary conversion function, where g(b, j) = b - j.

Result-Checking Algorithm

k ~ log(I/or)
b +-- P(h)
In parallel, compute k random permutations Jr~ Irk of { 1 2n}
Phase 1: (Consistency with our input)

In parallel, for i = 1 k:
Uniformly and randomly pick j e [0 n]
Let s be the string al an, lJo n-j
s' ~ Jri(s)
I f b ~ g(P(s') , j) , output "FAIL" and halt.

Phase 2: (Testing Correctness of most inputs)
In parallel, for i = 1 k / log (4/3):

Uniformly and randomly pick j ~ [0 2n]
Create the string s = lJO 2n-j
S t +.- y'Ci(S)

I f P(s') ~ tj, output "FAIL" and halt.
Output "PASS."

292 R. Rubinfeld

PROOF OF CORRECTNESS. If P is correct on all inputs, then clearly the result checker
outputs "PASS." Let 1 he the number of ones in fi and suppose b = P(fi) # h. Let 79 be
the probability distribution defined by (j, r), where j is chosen uniformly at random in
[0 2n] and r is a random string of length 2n with j ones. Let 79' be the probability
distribution defined by (j, r), where j is chosen uniformly at random in [0 n] and
r is a random string of length 2n with j + l ones. Let p be the probability that P(r) # tj
when (j, r) is chosen according to D.

If p > 1/4, then each execution of the loop in Phase 2 outputs "FAIU' and halts with
probability at least 1/4. Thus, the output is "FAIL" with probability at least l - u.

Now consider the case where p < 1/4. Let s' be a string of length 2n with (l + j)
ones. Each string (j, r) that is generated by 79 with probability q, is generated by D'
with probability 0 or 2q. Therefore, if p < 1/4, then Pr[P(s') # t[+j] <_ 1/2 when (j , s')
is chosen according to 79'. By the properties of g, if P(s') = t[+j, then g(P(s ') , j) = tt.
These two facts imply that Pr[g(P(s'), j) = tt] >_ 1/2 in each execution of the loop in
Phase 1, and thus, since b # O, Pr[g(P(s'), j) # b] >_ 1/2 in each execution of the
loop in Phase 1, in which case the output is "FAIL." Thus, the output is "FAIL" with
probability at least 1 - a.

Running Time. The checking time is O (log* n) parallel steps and the checking number
of processors is O(n). The total time is O(log*n + D(n)) and the total number of
processors is O(n + N(n)) . []

3.3. Randomly Self-Reducible, Linear, and Smaller Self-Reducible Problems. If the
program computes a function which is randomly self-reducible and either has the lin-
earity property or is self-reducible to smaller inputs (see [8] for a definition), the general
techniques described in [8] can be paratlelized. This gives constant depth efficient re-
sult checkers for checking numerical problems such as integer multiplication, integer
division, mod, modular multiplication, modular exponentiation, polynomial multipli-
cation, squaring, and matrix multiplication. The technique can also be used to give a
result checker for parity that uses O (l) checking time and O (n) checking number of
processors.

4. Consistency. Many problems have linear time sequential algorithms that are ex-
tremely simple and even possible to prove correct with formal verification methods.
However, it is often the case that any parallel algorithm P for the same problem is neces-
sarily radically different and more complex: Intuitively, a typical parallel result checker
developed in this section calls P to reconstruct the computation steps of the extremely
simple sequential algorithm, and then verifies the consistency between adjacent steps
of the computation. This can be done very quickly, and independently of the algorithm
actually used by P. This simple idea gives deterministic parallel result checkers for a
number of problems. Many problems have result checkers that do not need any additional
calls to P. Others require several calls to P. An important future direction of research is
to reduce the overhead for these problems.

The prefix sums problem takes as input a list of elements al, a2 an, and outputs
(bl, b2 bn), where bi = al o a2 o a3 o �9 .. o ai for an associative binary operator o.
We assume that o can be computed correctly by one processor in constant time. In order

Designing Checkers for Programs that Run in Parallel 293

to verify that P computes the correct result, in parallel for 1 < i < n - 1, processor i
checks that bi o ai+l = bi+l. The checking time is O(1) and the checking number of
processors is n. The total depth is O(D(n)) with O (N (n) + n) total processors. Note that
the result checker makes no additional calls to P . A small variant of this result checker
works for the list-ranking problem as well in the same time and with the same number
of processors.

The sum problem is similar to prefix sums, except that only bn is output, and thus it is
harder to check. The intermediate prefix answers bl bn-I can be reconstructed as
follows: In parallel for 1 < i < n, group i of processors calls the program to compute
bi = P (a ~, a2 a i). Then processor i verifies that bi o ai+ 1 = bi+ i. The checking time
is O (1) and the checking number of processors is O (n2). The total depth is O (1) + D (n)
with O(n • N(n)) total processors.

The ideas in this result checker can be used for various problems, including parity,
addition ofn numbers, and can be modified to work for straight-lineprogramming (when
the variables are each set only once) and the expression evaluation problem. When the
variables can be set more than once, the checking time of straight-line programming is
O (log n) using sorting.

A result checker for integer multiplication can also be constructed using this idea,
where the input is two n-bit numbers a, b and the output is a • b. The result checker
algorithm is as follows: In parallel for 1 < i < n, the ith group o fn processors asks the
program to multiply a by the last i bits of b to get ri. If the ith least-significant bit of
b is a zero, then the result checker verifies that r i = ri_l, otherwise the result checker
verifies that ri - ri-i = a • 2 i. The checking time is O(1), and the checking number of
processors is n • A(n), where A (n) is the number of processors required to do addition in
constant depth. The best algorithm for multiplication takes O (log n~ log log n) time and
O(n l+e) (e > 0) operations, by combining [27] with [10]. The total time is O(D(n))
with O(n x A(n) + n x N(n)) total processors.

Because of the following known results, all the Checkers presented in this section
are quantifiably different. When the input consists of integers, the best known algorithm
for prefix sums uses O(n / logn) processors and O (log n/ log log n) depth [11]. Any
algorithm using only a polynomial number of processors for prefix sums, sum, parity,
and integer multiplication provably requires f2 (log n~ log log n) depth [6]. Straight-line
programming is P-complete.

4.1. Problems that Can Be Solved Using Dynamic Programming. Dick Karp has
pointed out that the basic technique described in this section can be used to check
any problem that can be solved sequentially using dynamic programming, regardless of
the algorithm used by the program. By dynamic programming, we mean that there is
some polynomial algorithm that computes the function on the whole set of inputs by
evaluating the same function on smaller sets of inputs and somehow combining the re-
sults. This usually involves writing out the function on smaller sets of inputs in the form
of a table. The idea behind the result checker is to call the program on each subproblem
in parallel to fill in the table, and then verify that the entries of the table are consistent
with each other. In most cases this combination of results involves finding the minimum
or maximum of a set of numbers. Since the minimum and maximum function can be
computed in constant time, the checking time is constant.

294 R. Rubinfeld

The following is an example:

LONGEST COMMON SUBSEQUENCE

Input: Two strings x = XlX2X3 . . . Xn and y = yly2y3 . . . y n .
Output: The length of the longest common subsequence of x and y.

Let lcs(l, k) denote the length of the longest common subsequence of x t x t + l . . , x ,

and YkYk+l �9 �9 �9 Yn. Then the sequential dynamic programming algorithm used to solve
the longest common subsequence problem builds up the table as follows: i fx t = Yk, then
lcs(l, k) = 1 + lcs(l + 1, k + 1), otherwise lcs(l, k) = max{lcs(l, k + 1), lcs(l + 1, k)}.

Do for all 1 < l < n
Do for a l l l < k < n

sl~ ~-- P(x l . . . xn, Yk " " " Yn)
Verify consistency:

Ifxt = Yk verify that s/k = 1 + St+l,k+l
else verify that slk = max{st,k+1, st+l,k}

If any of these verifications fail, then output "FAIL" else output "PASS"

The checking time is O(1) and the checking number of processors is O(n3). The total
running time is O(1 + D(n)) with O(n 3 --}- n 2 x N(n)) total processors.

4.2. All-Pairs Shortest Path and Depth-First~Breadth-First Search Trees

Input: n x n adjacency matrix A, with a nonegative weight for each edge.
Output: Matrix Dist specifying length of shortest path between every pair of nodes.

Result- Checking Algorithm

Do in parallel for each entry D(u, v)
(1) check that Dist(u, v) <_ A(u, v)

(2) check that for all w that are neighbors of v, Dist(u, w) +A(w, v) >_Dist(u, v)
(3) check that 3w neighbor of v such that Dist(u, w) + A(w , v) = Dist(u, v)

If any of these checks fail, then output "FAIL" else output "PASS"

PROOF OF CORRECTNESS. It is clear that if the program is correct, the result checker
will output "PASS." Suppose that the result checker outputs "PASS." Let d (u, v) denote
the correct shortest distance between u and v. We want to show that for all pairs (u, v),
Dist(u, v) = d(u, v).

Suppose for contradiction that there are nodes u, v such that Dist(u, v) < d(u, v).
Let u, v be nodes with Dist(u, v) < d(u, v) such that o has the smallest possible index.
Then, because of step 3, there must be a w such that Dist(u, w) < d(u, w) and w has
smaller index that v. Therefore, for all u, v we have that Dist(u, v) >_ d(u, v).

We will show by induction on the number of intermediate nodes along a shortest path
between a pair of nodes that Dist(u, v) = d(u, v).

Basis. The number of intermediate nodes visited when taking the shortest path from u
to v is zero (edge uv is the shortest path). Step l guarantees thatDist(u, v) < A(u, v) =

d(u, v).

Designing Checkers for Programs that Run in Parallel 295

Induction Step. Suppose that Dist(u, v) = d(u, v) for all pairs (u, v) where there is
a shortest path from u to v that visits i intermediate nodes. Consider pair (u, v) where
there is a shortest path from u to v with i + 1 intermediate nodes, and let w be the
last node along this path. Then, step 2 verifies that Dist(u, w) + A(w, v) > Dist(u, v).
We know d(u, w) + A(w, v) = d(u, u). By the induction hypothesis, since there is a
shortest path between u and w of length i, Dist(u, w) = d(u, w). Thus Dist(u, v) <
a(w, v) + d(u, w) = d(u, v) and so Dist(u, v) = d(u, v).

Running Time. The checking time is O (l) and the checking number of processors is
O(n3). The total time is D(n) + O(1) with O(n 3) + N(n) total processors. Note that
the result checker makes no extra calls. []

Yossi Matias has shown that this idea can also be applied to checking programs that
solve the problems of constructing depth-first and breadth-first search trees:

In the former problem the input is an undirected graph G (with n nodes and m
edges) and some node r in G. The output is a rooted tree T which can be obtained by
performing a depth-first search on G, starting from r. No "efficient" parallel algorithm
for this problem is known. It was shown to be in RNC by Aggarwal and Anderson [2].
The checker first confirms that T is a tree, by checking that T is connected and has n - 1
edges. Then the checker confirms that all nontree edges (v, u) are backedges; i.e., that
either v is an ancestor of u or u is an ancestor of v. Connectivity can be determined
in O(log n) expected time and O((m + n)/log n) processors using the techniques of
[13]. Finding lowest common ancestors for all edges can be done in O (log n) time using
0 (n/log n) processors [26].

In the problem of constructing a breadth-first search tree, the input is an undirected
graph G and some node r in G. The output is a rooted (directed) tree T which can be
obtained by performing a breadth-first search on G, starting from r. This is equivalent to
the single source (unweighted) shortest-path problem. While in sequential computation
this problem is easier than the all-pairs shortest-path problem, it is not known to be the
case in parallel. The output may or may not include the distances of these shortest paths.
In fact we discuss three different problems:

(1) Both the BFS tree and the distances are computed: The checker verifies that d(r) = 0.
For each edge (v, u) in T the checker verifies that d(v) = d(u) + 1. For each node
v # r in T, the checker verifies that there is exactly one edge directed into v.

(2) Only distances are computed: The checker verifies that d(r) = 0. For each node
v, the checker verifies that, for exactly one neighbor u, d(v) = d(u) + 1 (unless
v = r), and that there is no neighbor w for which d(w) > d(v) + 1.

(3) Only a BFS tree is computed: The checker verifies that T is a tree. For each node v,
the checker computes the level of v in T. For each edge (v, u), the checker confirms
that Ilevel(v) - level(u)l < 1.

The checking/total depth and checking/total number of processors in each case are:

(1) O(1) time and O(n) processors.
(2) O(1) time and O(m) processors.
(3) O (log n) time and O (n) operations.

296 R. Rubinfeld

5. Sorting and Computational Geometry

5.1. Sorting. Consider the problem of sorting integers with the following specifica-
tions:

Input: A set of integers X = {Xl, X2 Xn} (not necessarily distinct).
Output: The elements of X in sorted order: i.e., a list Yl < Y2 < " '" < Y~ such that
Y = {Yl y,} is equal to X.

In the algebraic decision-tree model and on the comparison-tree model, sorting re-
quires f2 (n log n) time. Although there are faster sequential algorithms for sorting small
integers, there are no linear-time integer-sorting algorithms.

The result checker must verify that the output is in sorted order, and that the set of
elements in the input list is the same as the set of elements in the output list. The first task
is quite easy, but the second task is nontrivial, and, on the algebraic decision-tree model,
is as difficult a task as sorting. In [7] there are randomized algorithms for verifying that
X = Y which use hashing and run in O (n) time. We present a deterministic algorithm
which checks sorting in O (1) parallel time and O (n) processors. This algorithm is the
first deterministic sequential result checker for sorting that runs in O (n) time.

Checker Algorithm. (For simplicity, assume that n is a power of 2.)

Y ~ P(X)
Do in parallel for 1 < i < n

Append log n bits to the binary representation of the ith input indicating
its location in the input list, i.e., x~ +- (xi) • n + i. (Note that this
does not affect the ordering of the elements.)

Let X' = {x' 1 x'n}.
Y' ~-- P(X')
Do in parallel for 1 < i < n

Let j be the last logn bits of y~: j +- y~ mod n.
Verify that xj = y;.
A[j] <-- i
Verify that A[j] = i

Let Y" = {y/1 divn yt n divn}.
Verify that Y is in sorted order,]YI = n, and that Y = Y' .
If any verification fails, output "FAIL," else output "PASS."

5.2. Planar Convex Hull

Input: A list of points with their coordinates in R 2, labeled by their location in the input
list: (l , Xl, yl) , (2, x2, y2) (n, xn, yn).
Output: A description of the boundary of the convex hull. This description will be a list
of vertices of the convex hull in counterclockwise order around the hull.
Model of Computation: CRCW PRAM in which arithmetic operations (+ , - , - , /) on
real numbers can be performed in one step.

Designing Checkers for Programs that Run in Parallel 297

The best algorithm for this problem in [3] runs in O(logn) depth and uses O(n)
processors.

The following algorithm result checks planar convex hull using a constant checking
time, but uses many processors:

Result-Checking Algorithm. For each edge on the convex hull, n processors will be
assigned to verify that all of the input points are on the same (correct) side of the edge.
This can be done in constant parallel time with O(n 2) processors.

The following algorithm result checks planar convex hull in a way that is is more
efficient with processors.

Result-Checking Algorithm. This result checker is a parallel implementation of the se-
quential result checker of [15]. The result checker must verify that the polygon described
in the output is simple and convex. This is done by assigning a processor to each vertex
of the hull in order to verify that a left turn is made by the two edges adjacent to this
vertex. Each processor determines whether a change in the x-direction of the walk is
made. The processors then verify that a change in the x-direction of the walk is made
at only two vertices. Next, the result checker must verify that all of the points not said
to be on the hull are really inside the boundary. For each point not on the hull, it finds
a "proof" that it is indeed inside the boundary. This proof will consist of three points in
the input set whose convex combination contains the nonhull point. Suppose the convex
hull were triangulated by drawing a line from the leftmost vertex to every other vertex
on the convex hull. For each point not on the hull, the three points found that contain
it will be the points on the triangle surrounding the nonhull point. To find these points,
the result checker uses the program to sort the input points by angle around the leftmost
point q (by transforming the input points by (i, xi, Yi) ~ (i, Oi, 02)). The hull points in
the sorted list are then marked. An easy modification of the parallel-prefix algorithm can
be used twice in order to find, for each point p inside the hull, the closest convex-hull
point such that its angle is smaller/bigger than that of p. Call these two points a and b.
Then the checker verifies that triangle (q, a, b) contains p.

Running Time. The checking time is O (log n) and the Checking number of processors is
0 (n/log n). The total time is O (log n + D (n)) with O (n/log n + P (n)) total processors.

5.3. Three-Dimensional Convex Hull

Input: A list of points with their coordinates in R 3 (in general position).
Output: A description of the boundary of the convex hull (vertices, edges, and faces).
Without loss of generality, assume that the boundary is triangulated. For each vertex, the
faces adjacent to it will be given in an order such that consecutive faces are adjacent.
This will also induce an ordering on the edges, and the description will output the edges
around each vertex in this order. Note that the number of edges and faces on a convex
polyhedron is linear in the number of vertices of the polyhedron.
Model of Computation: CRCW PRAM in which arithmetic operations on real numbers
can be performed in one step.

The best known parallel algorithm from the three-dimensional convex hull mentioned

298 R. Rubinfeld

in [5] requires O(log n) time with O(n t+~) processors. The following result-checking
algorithm uses a constant checking time, but uses many processors.

Result-Checking Algorithm. For each face on the convex hull, n processors will be
assigned to verify that all of the input points are on the same (correct) side of the face.
Since there are only O(n) faces on a convex hull, this can be done in constant parallel
time with O (n ~) processors.

The following result-checking algorithm uses only O(n) processors:

Efficient Checker. The result checker must verify that the polyhedron described in the
output is simple and convex. This is done by checking that the polyhedron is locally
convex at each point on the polyhedron. Though not enough in two dimensions, in
three dimensions this is enough to show that the polyhedron is convex since any three-
dimensional polyhedron which is locally convex at each point on the surface must also
be globally convex (see [28]).

We describe how to check that the polyhedron is locally convex: Since the points
on the interior of the faces are locally convex, the only points that must be checked
are the points along the edges and the vertices of the polyhedron. Since the faces are
ordered such that consecutive faces are adjacent, a processor can be assigned to each
pair of consecutive faces (or three consecutive edges) in order to make sure that they are
making convex turns. This can be done in O (1) time and O (n) processors. Checking that
the vertices are locally convex reduces to several two-dimensional convex-hull problems
with total size O(n): For each hull vertex v, consider a plane that separates v from its
neighbors on the polyhedron (if the polyhedron is truly convex, then this plane should
separate v from all other vertices onthe hull). It must be verified that the intersection of
the plane with faces adjacent to v is a convex polygon. This can be done in O(1) time
with a number of processors that is equal to the degree of v. The total time to check that
vertices are locally convex is O(1) with O(n) processors.

Next the result checker must verify that all of the points not said to be on the hull
are really inside the boundary. For each point not on the hull, it finds a "proof" that it is
indeed inside the boundary. This proof will consist of four points in the input set whose
convex combination contains the nonhull point. The idea is to reduce the search for a
proof to a planar point-location problem as follows: Choose the point p in the input set
with minimum x-coordinate. Imagine a wall perpendicular to the x-axis at the maximum
x-coordinate. Suppose that someone standing at p aimed and shot a blue paint gun at
every point on the convex hull and along every edge. This would paint a triangulated
planar graph on the wall. If the person standing at p then shot a red paint gun at every
other point in the input set, there would be several red dots on the wall. If one is told
which face of the planar graph on the wall a particular red dot landed in, then one would
have the proof that is being sought, i.e., points reaching face (a, b, c)are exactly those
points in the tetrahedron (p, a, b, c) (if any dot lands outside of the triangulation, then the
point shot at must be outside Of the convex hull). One must then just test that the point is
really in the tetrahedron defined by (p, a, b, c). Determining (a, b, c) is simply a planar
point-location problem. In [29] it is shown how to create the planar point-location data
structure in O (log n) time with n~ log n processors that supports point-location queries
in O(logn) time.

Running Time. The checking and total time is O(logn) and the checking and total
number of processors is O(n).

Designing Checkers for Programs that Run in Parallel 299

6. Duality. When result checking an optimization problem, it is necessary to check
that the solution is as good as is claimed, and that it is the best solution. Duality can
sometimes be used to show the latter.

For example, to result check a program that does linear programming, the result
checker need only check that the optimal solution is feasible, and to call the program
again on the dual problem (again making sure that it is feasible) to check that the solution
to the original problem is the same (and therefore optimal). If the program claims that
there is no solution or that the solution is unbounded, this can be verified symbolically.
This problem is P-complete, so no fast parallel algorithm is known for it. However, it
can be result checked in logarithmic time with only two calls to the program using an
obvious parallelization of the techniques in [18].

Another example is the following:

MAXIMUM MATCHING

Input: Graph G = (V, E), where E is represented by an adjacency matrix.
Output: k = the size of a maximum matching, and the edges in a maximum matching
in G.

No deterministic NC algorithm is known for this problem, but it is known to be in RNC
[21], [24].

Result-Checking Algorithm. The result checker first checks in parallel that no vertex
is matched more than once and that the maximum matching is of size k. Then the
algorithm in [19] is used to find a proof that there is no matching of size >k. This proof
will be an odd set cover of size k. Karloff's algorithm calls a matching oracle on other
problem instances. The result checker calls the matching program on these instances,
and proceeds as if all of the answers are correct. If the output of his algorithm is an odd
set cover of size ~:k, the result checker outputs "FAIL." Otherwise, the odd set cover
of size k is verification that the maximum matching is of size k, and the result checker
outputs "PASS."

Running Time. The result checking time is O(dMIS(n)) parallel steps and O(pMtS(n))
processors, where d Mls (n) is the parallel depth and pMIS (n) is the number of processors
required to find a maximal independent set in an n node graph. The total running time is
O(dMIS(n) + D(n)) with O(n 3 x N(n) + pMIS(n)) processors.

7. Constant-Depth Reducible Functions. We can say something about the relation-
ship among result-checking problems that are AC ~ equivalent.

PROPOSITION. Let zrl, re2 be two A C O equivalent computational problems. Then from
any fast program result checker C~r~ for rcj, it is possible to construct a fast program
result checker Czr2 for ~r2.

PROOF. Similar to Beigel's trick described in [7]. We outline the proof for decision
problems, but the general proof is similar. The idea is to construct a program result
checker for re2 by transforming it to an instance of zr~ and result checking that instance.
Since the oracle program still only solves ~r2, in order to get an oracle for rq on x, we

300 R. Rubinfeld

use the reverse transformation on x into an instance of zr2, and call the oracle for rr2
on it. Since the transformation and the reverse transformation Can be computed in AC ~
the depth of the result checker for rr2 will be at most a constant times the depth of the
result checker for zq. Since rq and 7r2 are AC ~ equivalent, the fastest parallel program
for each is related by a constant factor. Therefore, if C~r, is a fast program result checker,
so is C~2. []

Acknowledgments. We are especially grateful to Mike Luby for his many extremely
helpful suggestions on this work and this manuscript, and to Dick Karp for pointing
out that one can quickly check algorithms that can be solved by dynamic programming.
We are grateful to Yossi Matias for his valuable comments and suggestions, as well
as for pointing out the applications of the techniques to the problems of constructing
breadth-first and depth-first search trees. We thank Mark Gross for pointing us to the
result of [28] and we thank Klara Kedem and Raimund Seidel for helpful discussions
about checking three-dimensional convex-hull programs. We are grateful to the referee
for suggesting the third variant on the definition of quantifiablly different. We are also
very grateful to Manuel Blum, Sampath Kannan, Russell Impagliazzo, Yishai Mansour,
and Moni Naor for very helpful and interesting discussions.

References

[1] Adleman, L., Huang, M., and Kompella, K., Efficient Checkers for Number-Theoretic Computations,
Inform. and Comput., to appear.

[2] Aggarwal, A., and Anderson, R., A Random NC Algorithm for Depth First Search, Combinatorica, 8
(1988), 1-12.

[3] Aggarwal, A., Chazelle, B., Guibas, L., O'Dunlaing, C., and Yap, C., Parallel Computational Geometry,
Algorithmica, 3 (1988), 293-327.

[4] Alon, N., Babai, L., and Itai, A Fast and Simple Randomized Parallel Algorithm for the Maximal
Independent Set Problem, J. Algorithms, 7 (1986), 567-583.

[5] Amato, N., and Preparata, E, An NC t Parallel 3D Convex Hull Algorithm, Proc. on Computational
Geometry, 1993, pp. 289-297.

[6] Beame, P., and Hastad, J., Optimal Bounds for Decision Problems on the CRCW PRAM, J. Assoc.
Comput. Mach., 36 (1989), 643-670.

[7] Blum, M, and Kannan, S., Program Correctness Checking... and the Design of Programs that Check
Their Work, Proc. 22nd Symp. on Theory of Computing, 1989, pp. 86-97.

[8] Blum, M., Luby, M., and Rubinfeld, R., Self-Testing/Correcting with Applications to Numerical Prob-
lems, d. Comput. System Sci., 47(3) (1993).

[9] Chandra, A., Fortune, S., and Lipton, R., Unbounded Fan-In Circuits and Associative Functions, J. Corn-
put. System Sci., 30 (1985), 222-234.

[10] Chandra, A., Stockmeyer, L., and Vishkin, U., Constant Depth Reducibility, SlAM J. Comput., 13 (1984),
423--439.

[11] C••e• R.• and Vishkin• U.• Faster •ptima• Para••e• Pre•x Sums and List Ranking• •nf•rm. and C•mput.•
70 (1986), 32-53.

[12] Furst, M., Saxe, J., and Sipser, M., Parity, Circuits and the Polynomial Time Hierarchy, Math. Systems
Theory, 17 (1984), 13-28.

[13] Gazit, H, An Optimal Randomized Parallel Algorithm for Finding Connected Components in a Graph,
Proc. Symp. on Foundations of Computer Science, 1986, pp. 492-501.

[14] Goldberg, M., and Spencer, T., A New Parallel Algorithm for the Maximal Independent Set Problem,
Proc. Syrup. on Foundations of Computer Science, 1987.

Designing Checkers for Programs that Run in Parallel 301

[15] Gross, M., Irani, S., Rubinfeld, R., and Seidel, R., Personal communication.
[16] Leighton, E T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,

Morgan Kaufmann, San Mateo, CA, 1992.
[17] Luby, M., A Simple Parallel Algorithm for the Maximal Independent Set Problem, SIAM J. Comput.,

15 (1986), 1036-1053.
[18] Kannan, S., Program Result Checking with Applications, Ph.D. thesis, University of California,

Berkeley, CA, 1990.
[19] Karloff, H., ALas Vegas RNC Algorithm for Maximum Matching, Combinatorica, 6 (1986), 387-392.
[20] Karp, R., and Ramaehandran, V., A Survey of Parallel Algorithms for Shared-Memory Machines,

Technical Report No. UCB/CSD 88/408, University of California, Berkeley, CA.
[21] Karp, R., Upfal, E., and Wigderson, A., Constructing a Perfect Matching is in Random NC, Combina-

torica, 6 (1986), 35-48.
[22] Karp, R., Upfal, E., and Wigderson, A., The Complexity of Parallel Search, J. Comput. System. Sci., 36

(1988)~ 225-253.
[23] Matias, Y., and Vishkin, U., Converting High Probability into Nearly-Constant Time--with Applications

to Parallel Hashing, Proc. Symp. on Theory of Computing, 1991, pp. 307-316.
[24] Mulmuley, K., Vazirani, U., and Vazirani, V., Matching is as Easy as Matrix Inversion, Combinatorica,

7 (1987), 105-113.
[25] Preparata, E, and Shamos, M., Computational Geometry: An Introduction, Springer-Verlag, New York,

1985.
[26] Schieber, B., and Vishkin, U., On Finding Lowest Common Ancestors: Simplification and Paralleliza-

tion, SlAM J. Comput., 17(6) (1988).
[27] Sch6nhage, A., and Strassen; V., Schnelle Multiplikation grosser Zahlen, Computing, 7, 281-292.
[28] Spivak, M., Differential Geometry, Vol. 3.
[29] Tamassia, R., and Vitter, J. S., Optimal Parallel Algorithms for Transitive Closure and Point Location

in Planar Structures, Proc, ACM Syrup. on Parallel Algorithms and Architectures, 1989.

