
Algorithmica (1996) 15:287-301 Algorithmica 
�9 1996 Springer-Verlag New York Inc. 

Designing Checkers for Programs that Run in Parallel 1 

R. Rubinfeld 2 

Abstract. Program correctness for parallel programs is an even more problematic issue than for serial 
programs. We extend the theory of program result checking to parallel programs, and find general techniques 
for designing such result checkers that work for many basic problems in parallel computation. These result 
checkers are simple to program and are more efficient than the actual computation of the result. For example, 
sorting, multiplication, parity, the all-pairs shortest-path problem and majority all have constant depth result 
checkers, and the result checkers for all but the last problem use a linear number of processors. We show that 
there are P-complete problems (evaluating straight-line programs, linear programming) that have very fast, 
even constant depth, result checkers. 
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1. Int roduct ion.  Verifying a program to see if it is correct is a problem that every pro- 
grammer has encountered. Even the seemingly simplest of programs can be full of  hidden 
bugs, and in the age of  massive software projects, this problem is becoming increasingly 
important. The complexity of  programming parallel computers is even greater. A gen- 
eral theory of  result-checking algorithms was given in [7]. This approach recognizes that 
proving programs correct is very difficult to do, and with this in mind, aims at the easier 
task of  checking that a program is correct on any given input. This easier problem is not 
only feasible, but often yields result checkers that are much simpler than the original 
program and therefore less likely to contain bugs. 

Many result checkers in the sequential model of  computation have been found for 
various types of  problems. However, a user is unlikely to be willing to use a sequential 
result checker to verify the correctness of  a result produced by a fast parallel algorithm. 
In this paper we extend the program result-checking framework to the setting of  parallel 
programs and find general techniques for designing such result checkers. For exam- 
ple, we find techniques for result-checking programs which compute certain types of  
functions that have the propertY that they can be computed "indirectly," by calling the 
program on another, related input. We also present techniques based on quickly recon- 
structing the computation of  a simple sequential algorithm, on duality and on constant 
depth reducibility among problems. We find result checkers for many basic problems 
in parallel computation. The checking process is either faster or more efficient than the 
computation of  the result. Many of  these result checkers are rather straightforward, such 
as the result checkers for parallel prefix and straight-line programming. Others involve a 
more intricate design and more complex proofs, such as the result checkers for majority, 
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unary to binary conversion, parity, and convex hull. In addition, the sequential versions 
of the parallel result checkers given for integer sorting and the all-pairs shortest-path 
problems are the first deterministic sequential result checkers for those problems. All 
of the examples in this paper are written for the arbitrary and priority CRCW PRAM 
models (see pp. 698-700 of [16] for definitions of models). 

The difference in the complexity of solving a problem in parallel with a polynomial 
number of processors, as compared to the depth complexity of result checking a problem 
(again with a polynomial number of processors) is often very dramatic. For example, 
we show that there are P-complete problems (evaluating straight-line programs, linear 
programming) that have very fast, even constant depth, parallel result checkers. Integer 
GCD is not known to be in RNC, yet a logarithmic depth parallel result checker exists 
for it [1]. Maximum matching is not known to be in NC (though it is in RNC), and it 
has a deterministic NC result checker. Multiplication, parity, and majority all have lower 
bounds of f2 (log n~ log log n) depth [6] when computed with a polynomial number of 
processors, yet all have (completely different) constant depth result checkers. 

2. The Parallel Program Result-Checking MOdel. In this section we describe the 
extension of the program result-checking model proposed in [7] to result checking for 
parallel programs. 

DEFINITION 2.1 (Probabilistic Parallel Program Result Checker). A probabilistic pro- 
gram result checker for f is a probabilistic oracle program Rf with oracle P, which is 
used to verify, for any program P that supposedly evaluates f ,  that P outputs the cor- 
rect answer on a given input in the following sense. On a given input x and confidence 
parameter oe, Rf  has the following properties: 

1. If P(x) ~ f (x ) ,  then Rf  outputs "FAIL" (with probability > 1 - c0. 3 

2. If P is a correct program for every input then R) ~ outputs "PASS" (with probability 
> l - a ) .  

Furthermore, the result checker may only use a polynomial number of processors. 
The parallel result checker is allowed to call the program as many times as desired at 

each parallel step but is only allowed to access P as a black-box oracle. 

Note that if P(x) = f (x )  but P is faulty on other inputs, then R} ~ may output either 
"FAIU' or "PASS." 

We refer to the parallel running time of the checker, not including the running time of 
the calls to the program, as the checking time (note that the running time of the checker 
may be an expected run time, even when the program being checked is deterministic). 
We refer to the parallel running time of the checker including the running time of the 
calls to the program as the total time. We make the same conventions with respect to 
the number of processors. When describing the total running time of a result checker, 

3 The probabilities are with respect to a source of truly random independent bits available to the result checker. 
and not with respect to any assumptions about the input distribution. 
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we use D(n) to refer to the total time of the program running on an input of size n, and 
N(n) to refer to the total number of processors used by the program when running on 
an input of size n. In both cases we ignore the dependence on the confidence parameter 
or. In all of the examples, the result Checker first calls the program on the input which is 
being checked. 

The problem remains of determining the correctness of the result checker. In the 
sequential setting, [7] suggests that instead, the result checker should be forced to be 
quantifiably "different" than any program for f by limiting the checking time to be less 
than that of the fastest correct program known for computing the function. In fact, the 
result checker can be forced to be "different" by restricting any computational resource. 
We consider analogous notions of "different" for parallel result checkers. Suppose that 
any parallel program which computes the function f using a polynomial number of 
processors requires at least d(n) depth on inputs of size n. Suppose the number of pro- 
cessors required when computing f in depth d(n) is p(n). We say that Rf is quantifiably 
different if (i) the checking time is o(d(n)) depth or (ii) if the checking time is O (d(n)) 
and simultaneously the checking number of processors is o(p (n)) on the same model of 
parallel computation. The latter option is motivated from a more practical perspective, 
since checking algorithms satisfying (ii) do not require the existence of extra processors 
in order to run. The result checkers described in this work are all quantifiably different. 
So far, most of the result checkers found which are quantifiably different seem to be 
simpler than any program for the function as well. 

Another possible variant for the notion of quantifiably different is as follows: Let 
d'(n) > d(n). Suppose that no program can be adapted to run in time d'(n) using 
O(pf(n)) processors (by Brent's theorem, programs running in d(n) time and p(n) 
processors can be adapted to run in time d'(n) using p'(n) processors when p'(n) is 
>_p(n)(d'(n)/d(n))). A checker is quantifiably different if its running time is O(d'(n)) 
using O (p~(n)) processors. This particular notion has not yet been used to construct a 
checker, but may be of practical interest. 

In the most straightforward applications of checking, whenever the program is ex- 
ecuted the result checker is also executed. Thus, it is critical that the overhead cost of 
running the result checker does not neutralize the benefit of knowing that the output is 
correct (or the knowledge that the program is faulty). All of the result checkers in this 
paper call the program at most once on any computation path, so the total depth is big 
oh of the depth of the program being checked. Many of the result checkers have the 
property that the total number of processors used is big oh of the number of processors 
used by the program (e.g., sorting, parity, convex hull). 

3. Computabil i ty by Random Inputs. In [8] it is shown that result checkers can 
be designed for many functions that have the property of random self-reducibility-- 
that the function can be computed by computing the function on one or more "random" 
instances. We show that often the property that a function can be computed by computing 
the function on one or more "almost-random" instances can also be utilized in designing 
a result checker. 

We concentrate on symmetric functions--functions on n bits whose output depends 
only on the number of ones in the input. Thus, the value of the function can be computed 
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indirectly by computing the function on a "shuffle" (random permutation) of the input 
bits. However, the techniques in this section are applicable to other functions as well. For 
example, the running time of the sequential checker for the matrix rank function given 
in [8] can be dramatically improved using the technique given in Section 3.2. 

The techniques in this section are based on testing the program on random inputs for 
which the answer is known, and then verifying that the program's answer on the particular 
input being checked is consistent with the program's answer on most other inputs. All 
techniques require only a log* n additive factor overhead in the depth. (This can be made 
constant by using an extra log n multiplicative factor of processors). The first technique 
works for any symmetric function, but uses a multiplicative factor of n extra processors. 
The technique described in the second section works for a certain class of symmetric 
functions, and does not use any extra processors. It is an open question to determine 
whether there is a general technique to check any symmetric function without using 
extra processors. The third technique works for certain types of random self-reducible 
functions, and does not require extra processors. 

3.1. Any Symmetric Function on n Bits. We give a result checker for any symmetric 
function, where the function is specified by a table of values to . . . . .  t,, such that ti is the 
output of the symmetric function when exactly i of the input bits are ones: 

Input: A list of input bits fi = al, a2 . . . . .  a, ,  a table of values to . . . . .  t,. 
Output: b = tt where l = ~l_<j<, aj. 

The majority, exactly l, and parity functions are all examples of symmetric functions. 
As mentioned before, [6] show that f2(log n/log log n) depth is required to compute 
these functions. For these and other examples, no table is needed as input becaUse each 
ti can be computed in constant depth by the result checker. 

Let P be the program that supposedly computes the symmetric function. P is checked 
by partitioning the inputs of size n into n + 1 equivalence classes, where all inputs in 
a particular equivalence class contain the same number of ones. Intuitively, the result 
checker verifies that P is correct on more than half of the members of each equivalence 
class, and that the answer of P on the input in question is consistent with more than half 
of the members within its own equivalence class. Therefore, even if the result checker 
cannot determine which equivalence class the input is in, it can verify that the answer of 
P on the input is correct. In the result-checking algorithm, several random permutations 
of the input bits are made; [23] provides a way of doing this in O(log* n) depth with 
linear processors (and O (log* n log log* n) depth with an optimal number of processors). 
They also show how to do it in O(1) depth and O(n logn) processors. 

Result- Checking Algorithm 

k +-- log(l/c0 
b ~ P(h) 
In parallel, compute k random permutations ~r~ . . . .  , rrk of {1 . . . . .  n} 
Phase 1: (Consistency with our input) 

In parallel, for i -- 1 . . . .  k 
If P (rri (~)) # b, then output "FAIU' and halt 

Phase 2: (Testing Correctness of most inputs) 
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In parallel, for j = 0 . . . . .  n 
In parallel, for i = 1 . . . . .  k 

I f  P (:ri ( l )0n-J ) )  r tj, then output "FAIU'  and halt. 
Output "PASS." 

PROOF OF CORRECTNESS.  Clearly, if P is correct on all inputs, the result checker will 
output "PASS." Assume that P is incorrect on input ~, we show that the result checker 
outputs "FAIL" with probability > 1 - or. Let l be the number of  ones in ft. Suppose that 
P is correct (and consequently differs from the output on h) on _> 1/2 the inputs with 
l ones. Then, with probability _> 1 - or, an input that is inconsistent with fi is found in 
Phase 1. Suppose that the program errs on > 1/2 the inputs of  size n with l ones. Then, 
with probability > 1 - oe, the lth group of processors in Phase 2 finds that the program 
is buggy. Notice that by this argument the same k permutations can be used in Phase 1, 
and by every group of processors in Phase 2. 

Running Time. The checking time is O(log* n) and checking number of  processors 
is O(n2). The total time is O(log*n + D(n)) and the total number of  processors is 
O(nN(n)) .  [] 

3.2. Special Symmetric Functions. A factor of  n in the number of  processors can be 
saved when the symmetric function' f is of  a special type: Let to . . . . .  tn be the input 
table for problems of  size n and let t6 . . . . .  t~_ n be the input table for problems of size 2n. 
We say that f is of  this special type if there is an easily computable function g(b, j )  
such that if t/' = b, then ti-j = g(b, j) .  

Examples of  such functions are parity, where g(b, j )  = b ~ (j  rood 2), and the unary 
to binary conversion function, where g(b, j )  = b - j.  

Result-Checking Algorithm 

k ~ log(I/or) 
b +-- P(h) 
In parallel, compute k random permutations Jr~ . . . . .  Irk of  { 1 . . . . .  2n} 
Phase 1: (Consistency with our input) 

In parallel, for i = 1 . . . . .  k: 
Uniformly and randomly pick j e [0 . . . . .  n] 
Let s be the string al . . . . .  an, lJo n-j 
s' ~ Jri(s) 
I f  b ~ g(P(s') ,  j ) ,  output "FAIL" and halt. 

Phase 2: (Testing Correctness of  most inputs) 
In parallel, for i = 1 . . . . .  k / log (4/3): 

Uniformly and randomly pick j ~ [0 . . . . .  2n] 
Create the string s = lJO 2n-j 
S t +.- y'Ci(S) 

I f  P(s')  ~ tj, output "FAIL" and halt. 
Output "PASS." 
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PROOF OF CORRECTNESS. If P is correct on all inputs, then clearly the result checker 
outputs "PASS." Let 1 he the number of ones in fi and suppose b = P(fi) # h. Let 79 be 
the probability distribution defined by (j, r), where j is chosen uniformly at random in 
[0 . . . . .  2n] and r is a random string of length 2n with j ones. Let 79' be the probability 
distribution defined by (j,  r), where j is chosen uniformly at random in [0 . . . . .  n] and 
r is a random string of length 2n with j + l ones. Let p be the probability that P(r)  # tj 
when (j, r) is chosen according to D. 

If p > 1/4, then each execution of the loop in Phase 2 outputs "FAIU' and halts with 
probability at least 1/4. Thus, the output is "FAIL" with probability at least l - u. 

Now consider the case where p < 1/4. Let s' be a string of length 2n with (l + j )  
ones. Each string (j, r) that is generated by 79 with probability q, is generated by D' 
with probability 0 or 2q. Therefore, if p < 1/4, then Pr[P(s') # t[+j] <_ 1/2 when (j ,  s') 
is chosen according to 79'. By the properties of g, if P(s')  = t[+j, then g(P(s ' ) ,  j )  = tt. 
These two facts imply that Pr[g(P(s'),  j )  = tt] >_ 1/2 in each execution of the loop in 
Phase 1, and thus, since b # O, Pr[g(P(s'),  j )  # b] >_ 1/2 in each execution of the 
loop in Phase 1, in which case the output is "FAIL." Thus, the output is "FAIL" with 
probability at least 1 - a. 

Running Time. The checking time is O (log* n) parallel steps and the checking number 
of processors is O(n). The total time is O(log*n + D(n))  and the total number of 
processors is O(n + N(n)) .  [] 

3.3. Randomly Self-Reducible, Linear, and Smaller Self-Reducible Problems. If the 
program computes a function which is randomly self-reducible and either has the lin- 
earity property or is self-reducible to smaller inputs (see [8] for a definition), the general 
techniques described in [8] can be paratlelized. This gives constant depth efficient re- 
sult checkers for checking numerical problems such as integer multiplication, integer 
division, mod, modular multiplication, modular exponentiation, polynomial multipli- 
cation, squaring, and matrix multiplication. The technique can also be used to give a 
result checker for parity that uses O (l) checking time and O (n) checking number of 
processors. 

4. Consistency. Many problems have linear time sequential algorithms that are ex- 
tremely simple and even possible to prove correct with formal verification methods. 
However, it is often the case that any parallel algorithm P for the same problem is neces- 
sarily radically different and more complex: Intuitively, a typical parallel result checker 
developed in this section calls P to reconstruct the computation steps of the extremely 
simple sequential algorithm, and then verifies the consistency between adjacent steps 
of the computation. This can be done very quickly, and independently of the algorithm 
actually used by P. This simple idea gives deterministic parallel result checkers for a 
number of problems. Many problems have result checkers that do not need any additional 
calls to P. Others require several calls to P. An important future direction of research is 
to reduce the overhead for these problems. 

The prefix sums problem takes as input a list of elements al, a2 . . . . .  an, and outputs 
(bl, b2 . . . . .  bn), where bi  = al o a2 o a3 o �9 .. o ai for an associative binary operator o. 
We assume that o can be computed correctly by one processor in constant time. In order 
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to verify that P computes the correct result, in parallel for 1 < i < n - 1, processor i 
checks that bi o ai+l = bi+l. The checking time is O(1) and the checking number of 
processors is n. The total depth is O(D(n) )  with O ( N ( n )  + n )  total processors. Note that 
the result checker makes no additional calls to P .  A small variant of this result checker 
works for the list-ranking problem as well in the same time and with the same number 
of processors. 

The sum problem is similar to prefix sums, except that only bn is output, and thus it is 
harder to check. The intermediate prefix answers bl . . . . .  bn-I can be reconstructed as 
follows: In parallel for 1 < i < n, group i of processors calls the program to compute 
bi = P (a ~, a2 . . . . .  a i). Then processor i verifies that bi o ai+ 1 = bi+ i. The checking time 
is O (1) and the checking number of processors is O (n2). The total depth is O (1) + D (n) 
with O(n • N(n) )  total processors. 

The ideas in this result checker can be used for various problems, including parity, 
addition ofn  numbers, and can be modified to work for straight-lineprogramming (when 
the variables are each set only once) and the expression evaluation problem. When the 
variables can be set more than once, the checking time of straight-line programming is 
O (log n) using sorting. 

A result checker for integer multiplication can also be constructed using this idea, 
where the input is two n-bit numbers a, b and the output is a • b. The result checker 
algorithm is as follows: In parallel for 1 < i < n, the ith group o fn  processors asks the 
program to multiply a by the last i bits of b to get ri. If the ith least-significant bit of 
b is a zero, then the result checker verifies that r i = ri_l, otherwise the result checker 
verifies that ri - ri-i = a • 2 i. The checking time is O(1), and the checking number of 
processors is n • A(n),  where A (n) is the number of processors required to do addition in 
constant depth. The best algorithm for multiplication takes O (log n~ log log n) time and 
O(n l+e) (e > 0) operations, by combining [27] with [10]. The total time is O(D(n) )  
with O(n x A(n)  + n x N(n ) )  total processors. 

Because of the following known results, all the Checkers presented in this section 
are quantifiably different. When the input consists of integers, the best known algorithm 
for prefix sums uses O(n / logn )  processors and O (log n/ log log n ) depth [11]. Any 
algorithm using only a polynomial number of processors for prefix sums, sum, parity, 
and integer multiplication provably requires f2 (log n~ log log n) depth [6]. Straight-line 
programming is P-complete. 

4.1. Problems that Can Be Solved Using Dynamic Programming. Dick Karp has 
pointed out that the basic technique described in this section can be used to check 
any problem that can be solved sequentially using dynamic programming, regardless of 
the algorithm used by the program. By dynamic programming, we mean that there is 
some polynomial algorithm that computes the function on the whole set of inputs by 
evaluating the same function on smaller sets of inputs and somehow combining the re- 
sults. This usually involves writing out the function on smaller sets of inputs in the form 
of a table. The idea behind the result checker is to call the program on each subproblem 
in parallel to fill in the table, and then verify that the entries of the table are consistent 
with each other. In most cases this combination of results involves finding the minimum 
or maximum of a set of numbers. Since the minimum and maximum function can be 
computed in constant time, the checking time is constant. 
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The following is an example: 

LONGEST COMMON SUBSEQUENCE 

Input: Two strings x = XlX2X3 . . .  Xn and y = yly2y3 . . . y n .  
Output: The length of the longest common subsequence of x and y. 

Let lcs(l, k) denote the length of the longest common subsequence of x t x t + l . . ,  x ,  

and YkYk+l �9 �9 �9 Yn. Then the sequential dynamic programming algorithm used to solve 
the longest common subsequence problem builds up the table as follows: i fx t  = Yk, then 
lcs(l, k) = 1 + lcs(l + 1, k + 1), otherwise lcs(l, k) = max{lcs(l, k + 1), lcs(l + 1, k)}. 

Do for all 1 < l < n 
Do for a l l l < k < n  

sl~ ~-- P(x l  . . . xn, Yk " " " Yn) 
Verify consistency: 

Ifxt  = Yk verify that s/k = 1 + St+l,k+l 
else verify that slk = max{st,k+1, st+l,k} 

If any of these verifications fail, then output "FAIL" else output "PASS" 

The checking time is O(1) and the checking number of processors is O(n3). The total 
running time is O(1 + D(n))  with O(n 3 --}- n 2 x N(n ) )  total processors. 

4.2. All-Pairs Shortest Path and Depth-First~Breadth-First Search Trees 

Input: n x n adjacency matrix A, with a nonegative weight for each edge. 
Output: Matrix Dist specifying length of shortest path between every pair of nodes. 

Result- Checking Algorithm 

Do in parallel for each entry D(u,  v) 
(1) check that Dist(u,  v) <_ A(u,  v) 

(2) check that for all w that are neighbors of v, Dist(u,  w) +A(w,  v) >_Dist(u, v) 
(3) check that 3w neighbor of v such that Dist(u, w)  + A(w ,  v) = Dist(u,  v) 

If any of these checks fail, then output "FAIL" else output "PASS" 

PROOF OF CORRECTNESS. It is clear that if the program is correct, the result checker 
will output "PASS." Suppose that the result checker outputs "PASS." Let d (u, v) denote 
the correct shortest distance between u and v. We want to show that for all pairs (u, v), 
Dist(u,  v) = d(u,  v). 

Suppose for contradiction that there are nodes u, v such that Dist(u,  v) < d(u,  v). 
Let u, v be nodes with Dist(u,  v) < d(u,  v) such that o has the smallest possible index. 
Then, because of step 3, there must be a w such that Dist(u, w) < d(u,  w) and w has 
smaller index that v. Therefore, for all u, v we have that Dist(u, v) >_ d(u,  v). 

We will show by induction on the number of intermediate nodes along a shortest path 
between a pair of nodes that Dist(u,  v) = d(u,  v). 

Basis. The number of intermediate nodes visited when taking the shortest path from u 
to v is zero (edge uv is the shortest path). Step l guarantees thatDist(u,  v) < A(u,  v) = 

d(u,  v). 
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Induction Step. Suppose that Dist(u, v) = d(u, v) for all pairs (u, v) where there is 
a shortest path from u to v that visits i intermediate nodes. Consider pair (u, v) where 
there is a shortest path from u to v with i + 1 intermediate nodes, and let w be the 
last node along this path. Then, step 2 verifies that Dist(u, w) + A(w, v) > Dist(u, v). 
We know d(u, w) + A(w, v) = d(u, u). By the induction hypothesis, since there is a 
shortest path between u and w of length i, Dist(u, w) = d(u, w). Thus Dist(u, v) < 
a(w,  v) + d(u, w) = d(u, v) and so Dist(u, v) = d(u, v). 

Running Time. The checking time is O (l) and the checking number of processors is 
O(n3). The total time is D(n) + O(1) with O(n 3) + N(n) total processors. Note that 
the result checker makes no extra calls. [] 

Yossi Matias has shown that this idea can also be applied to checking programs that 
solve the problems of constructing depth-first and breadth-first search trees: 

In the former problem the input is an undirected graph G (with n nodes and m 
edges) and some node r in G. The output is a rooted tree T which can be obtained by 
performing a depth-first search on G, starting from r. No "efficient" parallel algorithm 
for this problem is known. It was shown to be in RNC by Aggarwal and Anderson [2]. 
The checker first confirms that T is a tree, by checking that T is connected and has n - 1 
edges. Then the checker confirms that all nontree edges (v, u) are backedges; i.e., that 
either v is an ancestor of u or u is an ancestor of v. Connectivity can be determined 
in O(log n) expected time and O((m + n)/log n) processors using the techniques of 
[ 13]. Finding lowest common ancestors for all edges can be done in O (log n) time using 
0 (n/log n) processors [26]. 

In the problem of constructing a breadth-first search tree, the input is an undirected 
graph G and some node r in G. The output is a rooted (directed) tree T which can be 
obtained by performing a breadth-first search on G, starting from r. This is equivalent to 
the single source (unweighted) shortest-path problem. While in sequential computation 
this problem is easier than the all-pairs shortest-path problem, it is not known to be the 
case in parallel. The output may or may not include the distances of these shortest paths. 
In fact we discuss three different problems: 

(1) Both the BFS tree and the distances are computed: The checker verifies that d(r)  = 0. 
For each edge (v, u) in T the checker verifies that d(v) = d(u) + 1. For each node 
v # r in T, the checker verifies that there is exactly one edge directed into v. 

(2) Only distances are computed: The checker verifies that d(r) = 0. For each node 
v, the checker verifies that, for exactly one neighbor u, d(v) = d(u) + 1 (unless 
v = r), and that there is no neighbor w for which d(w) > d(v) + 1. 

(3) Only a BFS tree is computed: The checker verifies that T is a tree. For each node v, 
the checker computes the level of v in T. For each edge (v, u), the checker confirms 
that Ilevel(v) - level(u)l < 1. 

The checking/total depth and checking/total number of processors in each case are: 

(1) O(1) time and O(n) processors. 
(2) O(1) time and O(m) processors. 
(3) O (log n) time and O (n) operations. 
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5. Sorting and Computational Geometry 

5.1. Sorting. Consider the problem of sorting integers with the following specifica- 
tions: 

Input: A set of integers X = {Xl, X2 . . . . .  Xn} (not necessarily distinct). 
Output: The elements of X in sorted order: i.e., a list Yl < Y2 < " '"  < Y~ such that 
Y = {Yl . . . . .  y,} is equal to X. 

In the algebraic decision-tree model and on the comparison-tree model, sorting re- 
quires f2 (n log n) time. Although there are faster sequential algorithms for sorting small 
integers, there are no linear-time integer-sorting algorithms. 

The result checker must verify that the output is in sorted order, and that the set of  
elements in the input list is the same as the set of  elements in the output list. The first task 
is quite easy, but the second task is nontrivial, and, on the algebraic decision-tree model, 
is as difficult a task as sorting. In [7] there are randomized algorithms for verifying that 
X = Y which use hashing and run in O (n) time. We present a deterministic algorithm 
which checks sorting in O (1) parallel time and O (n) processors. This algorithm is the 
first deterministic sequential result checker for sorting that runs in O (n) time. 

Checker Algorithm. (For simplicity, assume that n is a power of  2.) 

Y ~ P(X)  
Do in parallel for 1 < i < n 

Append log n bits to the binary representation of the ith input indicating 
its location in the input list, i.e., x~ +- (xi) • n + i. (Note that this 
does not affect the ordering of the elements.) 

Let X'  = {x' 1 . . . . .  x'n}. 
Y' ~-- P(X')  
Do in parallel for 1 < i < n 

Let j be the last logn bits of y~: j +-  y~ mod n. 
Verify that xj = y;. 
A[j] <-- i 
Verify that A[j] = i 

Let Y" = {y/1 divn . . . . .  yt n divn}. 
Verify that Y is in sorted order, ]YI = n, and that Y = Y' .  
If  any verification fails, output "FAIL," else output "PASS." 

5.2. Planar Convex Hull 

Input: A list of points with their coordinates in R 2, labeled by their location in the input 
list: ( l ,  Xl, yl) ,  (2, x2, y2) . . . . .  (n, xn, yn). 
Output: A description of the boundary of the convex hull. This description will be a list 
of vertices of the convex hull in counterclockwise order around the hull. 
Model of Computation: CRCW PRAM in which arithmetic operations ( + , - , - , / )  on 
real numbers can be performed in one step. 
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The best algorithm for this problem in [3] runs in O(logn) depth and uses O(n) 
processors. 

The following algorithm result checks planar convex hull using a constant checking 
time, but uses many processors: 

Result-Checking Algorithm. For each edge on the convex hull, n processors will be 
assigned to verify that all of the input points are on the same (correct) side of the edge. 
This can be done in constant parallel time with O(n 2) processors. 

The following algorithm result checks planar convex hull in a way that is is more 
efficient with processors. 

Result-Checking Algorithm. This result checker is a parallel implementation of the se- 
quential result checker of [ 15]. The result checker must verify that the polygon described 
in the output is simple and convex. This is done by assigning a processor to each vertex 
of the hull in order to verify that a left turn is made by the two edges adjacent to this 
vertex. Each processor determines whether a change in the x-direction of the walk is 
made. The processors then verify that a change in the x-direction of the walk is made 
at only two vertices. Next, the result checker must verify that all of the points not said 
to be on the hull are really inside the boundary. For each point not on the hull, it finds 
a "proof" that it is indeed inside the boundary. This proof will consist of three points in 
the input set whose convex combination contains the nonhull point. Suppose the convex 
hull were triangulated by drawing a line from the leftmost vertex to every other vertex 
on the convex hull. For each point not on the hull, the three points found that contain 
it will be the points on the triangle surrounding the nonhull point. To find these points, 
the result checker uses the program to sort the input points by angle around the leftmost 
point q (by transforming the input points by (i, xi, Yi) ~ (i, Oi, 02)). The hull points in 
the sorted list are then marked. An easy modification of the parallel-prefix algorithm can 
be used twice in order to find, for each point p inside the hull, the closest convex-hull 
point such that its angle is smaller/bigger than that of p. Call these two points a and b. 
Then the checker verifies that triangle (q, a, b) contains p. 

Running Time. The checking time is O (log n) and the Checking number of processors is 
0 (n/log n). The total time is O (log n + D (n)) with O (n/log n + P (n)) total processors. 

5.3. Three-Dimensional Convex Hull 

Input: A list of points with their coordinates in R 3 (in general position). 
Output: A description of the boundary of the convex hull (vertices, edges, and faces). 
Without loss of generality, assume that the boundary is triangulated. For each vertex, the 
faces adjacent to it will be given in an order such that consecutive faces are adjacent. 
This will also induce an ordering on the edges, and the description will output the edges 
around each vertex in this order. Note that the number of edges and faces on a convex 
polyhedron is linear in the number of vertices of the polyhedron. 
Model of Computation: CRCW PRAM in which arithmetic operations on real numbers 
can be performed in one step. 

The best known parallel algorithm from the three-dimensional convex hull mentioned 
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in [5] requires O(log n) time with O(n t+~) processors. The following result-checking 
algorithm uses a constant checking time, but uses many processors. 

Result-Checking Algorithm. For each face on the convex hull, n processors will be 
assigned to verify that all of the input points are on the same (correct) side of the face. 
Since there are only O(n) faces on a convex hull, this can be done in constant parallel 
time with O (n ~) processors. 

The following result-checking algorithm uses only O(n) processors: 

Efficient Checker. The result checker must verify that the polyhedron described in the 
output is simple and convex. This is done by checking that the polyhedron is locally 
convex at each point on the polyhedron. Though not enough in two dimensions, in 
three dimensions this is enough to show that the polyhedron is convex since any three- 
dimensional polyhedron which is locally convex at each point on the surface must also 
be globally convex (see [28]). 

We describe how to check that the polyhedron is locally convex: Since the points 
on the interior of the faces are locally convex, the only points that must be checked 
are the points along the edges and the vertices of the polyhedron. Since the faces are 
ordered such that consecutive faces are adjacent, a processor can be assigned to each 
pair of consecutive faces (or three consecutive edges) in order to make sure that they are 
making convex turns. This can be done in O (1) time and O (n) processors. Checking that 
the vertices are locally convex reduces to several two-dimensional convex-hull problems 
with total size O(n): For each hull vertex v, consider a plane that separates v from its 
neighbors on the polyhedron (if the polyhedron is truly convex, then this plane should 
separate v from all other vertices onthe hull). It must be verified that the intersection of 
the plane with faces adjacent to v is a convex polygon. This can be done in O(1) time 
with a number of processors that is equal to the degree of v. The total time to check that 
vertices are locally convex is O(1) with O(n) processors. 

Next the result checker must verify that all of the points not said to be on the hull 
are really inside the boundary. For each point not on the hull, it finds a "proof" that it is 
indeed inside the boundary. This proof will consist of four points in the input set whose 
convex combination contains the nonhull point. The idea is to reduce the search for a 
proof to a planar point-location problem as follows: Choose the point p in the input set 
with minimum x-coordinate. Imagine a wall perpendicular to the x-axis at the maximum 
x-coordinate. Suppose that someone standing at p aimed and shot a blue paint gun at 
every point on the convex hull and along every edge. This would paint a triangulated 
planar graph on the wall. If the person standing at p then shot a red paint gun at every 
other point in the input set, there would be several red dots on the wall. If one is told 
which face of the planar graph on the wall a particular red dot landed in, then one would 
have the proof that is being sought, i.e., points reaching face (a, b, c)are  exactly those 
points in the tetrahedron (p, a, b, c) (if any dot lands outside of the triangulation, then the 
point shot at must be outside Of the convex hull). One must then just test that the point is 
really in the tetrahedron defined by (p, a, b, c). Determining (a, b, c) is simply a planar 
point-location problem. In [29] it is shown how to create the planar point-location data 
structure in O (log n) time with n~ log n processors that supports point-location queries 
in O(logn) time. 

Running Time. The checking and total time is O(logn) and the checking and total 
number of processors is O(n). 
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6. Duality. When result checking an optimization problem, it is necessary to check 
that the solution is as good as is claimed, and that it is the best solution. Duality can 
sometimes be used to show the latter. 

For example, to result check a program that does linear programming, the result 
checker need only check that the optimal solution is feasible, and to call the program 
again on the dual problem (again making sure that it is feasible) to check that the solution 
to the original problem is the same (and therefore optimal). If  the program claims that 
there is no solution or that the solution is unbounded, this can be verified symbolically. 
This problem is P-complete, so no fast parallel algorithm is known for it. However, it 
can be result checked in logarithmic time with only two calls to the program using an 
obvious parallelization of the techniques in [ 18]. 

Another example is the following: 

MAXIMUM MATCHING 

Input: Graph G = (V, E), where E is represented by an adjacency matrix. 
Output: k = the size of a maximum matching, and the edges in a maximum matching 
in G. 

No deterministic NC algorithm is known for this problem, but it is known to be in RNC 
[21 ], [24]. 

Result-Checking Algorithm. The result checker first checks in parallel that no vertex 
is matched more than once and that the maximum matching is of size k. Then the 
algorithm in [ 19] is used to find a proof that there is no matching of size >k. This proof 
will be an odd set cover of size k. Karloff's algorithm calls a matching oracle on other 
problem instances. The result checker calls the matching program on these instances, 
and proceeds as if all of the answers are correct. If  the output of his algorithm is an odd 
set cover of size ~:k, the result checker outputs "FAIL." Otherwise, the odd set cover 
of size k is verification that the maximum matching is of size k, and the result checker 
outputs "PASS." 

Running Time. The result checking time is O(dMIS(n)) parallel steps and O(pMtS(n)) 
processors, where d Mls (n) is the parallel depth and pMIS (n) is the number of processors 
required to find a maximal independent set in an n node graph. The total running time is 
O(dMIS(n) + D(n)) with O(n 3 x N(n) + pMIS(n)) processors. 

7. Constant-Depth Reducible Functions. We can say something about the relation- 
ship among result-checking problems that are AC ~ equivalent. 

PROPOSITION. Let zrl, re2 be two A C O equivalent computational problems. Then from 
any fast program result checker C~r~ for rcj, it is possible to construct a fast program 
result checker Czr2 for ~r2. 

PROOF. Similar to Beigel's trick described in [7]. We outline the proof for decision 
problems, but the general proof is similar. The idea is to construct a program result 
checker for re2 by transforming it to an instance of zr~ and result checking that instance. 
Since the oracle program still only solves ~r2, in order to get an oracle for rq on x, we 
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use the reverse transformation on x into an instance of zr2, and call the oracle for rr2 
on it. Since the transformation and the reverse transformation Can be computed in AC ~ 
the depth of the result checker for rr2 will be at most a constant times the depth of the 
result checker for zq. Since rq and 7r2 are AC ~ equivalent, the fastest parallel program 
for each is related by a constant factor. Therefore, if C~r, is a fast program result checker, 
so is C~2. [] 
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