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Pure States as a Dual Object for C*-Algebras 
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Abstract. We consider the set of pure states of a C*-algebra as a uniform space 
equipped with transition probabilities and orientation, and show that the 
pure states with this structure determine the C*-algebra up to *-isomorphism. 

Introduction 

For commutative unital C*-algebras, it is well known that the set of pure states 
(as a topological space) determines the algebra. In fact, any two such algebras are 
isomorphic to C(X) and C(Y) for compact Hausdorff spaces X and Y. The pure 
states of C(X) are just evaluation at each x in X, and every homeomorphism of 
Y onto X is induced by a *-isomorphism of C(X) onto C(Y). The Stone-Weierstrass 
theorem is a special case of this. 

For general C*-algebras it is clear that this result fails, e.g. not every homeo- 
morphism of the pure states P(B) onto P(A) is induced by a *-isomorphism; P(A) 
(as a topological space) does not determine A. The purpose of this paper is to show 
that P(A) does determine A if given a suitable structure. 

The roots of our investigation go back to the work of Kadison [12-14] and 
Wigner [19]. Kadison studied the representation of a C*-algebra as continuous 
functions on P(A) (or P(A)- ). He showed [13] that a homeomorphism of P(B)- onto 
P(A)- which carries A onto B is induced by a Jordan isomorphism. Wigner focused 
on transition probabilities between pure states. He showed that a bijection of the 
pure normal states of B(H2) onto those of B(H1) which preserves transition pro- 
babilities is induced by a Jordan isomorphism (in this case, a *-isomorphism or *- 
anti-isomorphism) of B(HI) onto B(H2). There have also been investigations of 
Stone-Weierstrass theorems for C*-algebras, e.g. Kaplansky [16], Glimm [11], 
Sakai [17]; Akemann [1, 2], Giles and Kummer [9], and Effros [8]. 

The recent work from which this paper springs is joint work with Alfsen and 
Hanche-Olsen [5], in which the notion of orientation of a state space was intro- 
duced. It was shown there that an affine homeomorphism of state spaces is induced 
by a *-isomorphism iff the map preserves orientation. 

Our work combines the structures of topology (or uniformity), transition 
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probability and orientation. We show that a bijective map fi'om P(B)u {0} onto 
P(A)w {0} taking 0 to 0 is induced by a *-isomorphism of A onto B iff the map 
(and its inverse) are uniformly continuous, preserve transition probabilities, 
and preserve orientation. We give an example to show that uniform continuity 
cannot be replaced by continuity. 

Along the way we characterize (for separable C*-algebras) those algebras for 
which the w*-closure of the primary states contains only multiples of primary 
states. This corresponds to a result of Glimm [10] on pure states. 

We remark finally that the results described above can be interpreted in terms 
of a Riemannian structure on the pure states. Recall that each unitary equivalence 
class of pure states can be identifieA in a natural way with complex projective 
space, at least if the dimension of the corresponding GNS representation is finite. 
Thus each such class can be made into a complex Riemannian manifold via the 
structure carried over from projective space. The condition that a bijective map 
of P(B) onto P(A) preserve transition probabilities and orientation (as used herein) 
is equivalent to the requirement that the map preserves equivalence and is a 
Riemannian isomorphism (i.e., biholomorphic isometry) on each equivalence 
class. 

The Main Theorem 

Throughout this paper A will be a C*-atgebra with state space K, P(A) will denote 
the set of pure states, and P(A)- will denote the w*-closure of P(A) in the dual 
space A*. We recall that the bidual A** can be identified with the enveloping von 
Neumann algebra of A, and K can be identified with the normal state space of 
A**. 

Let A and B be C*-algebras, and let X ~_ P(A) and Y~_ P(B) be arbitrary subsets. 
A map ~:  Y--> X is said to be induced by a continuous linear map ~:A -~ B if the 
dual map ~* restricted to Y agrees with ~. Our goal in this paper is to characterize 
the maps from P(B) to P(A) which are induced by *-isomorphisms from A onto B. 

A key requirement will be that ~/' must preserve transition probabilities. 
Recall that if x and y are unit vectors in a Hilbert space, the transition probability 
between the vector states co x and c,y on B(H) is defined to be (toxic%) = I(x, y)[2. 
More generally, if zc:A--, B(H) is an irreducible representation, then the transition 
probability between the pure states e~xO rc and c~yo 7r is again defined to be t(x, y)] 2. 
If a and z are arbitrary pure states on A, let u, and u be their support projections 
in A**; we then define (al ,)  = (u , , -c )  = (u, ,  a ) .  Note that this agrees with the 
definition above if cr and ~ are (unitarily) equivalent, and gives (c~] ~) = 0 otherwise. 

We can also define this notion in purely geometric terms. If a and ~ are equiva- 
lent, then the face of K they generate is a 3-dimensional ball, cf. [5]. (If they are 
inequivalent, the ball degenerates to the line segment Icy, z].) Now u restricted 
to this ball is the unique positive affine function with value 1 and a and zero at 
the antipodal pure state; (a I z) is the value of this functional at ,. Note that every 
*-isomorphism (or *-anti-isomorphism) of C*-algebras induces an affine isomor- 
phism of their state spaces, which then preserves transition probabilities for pure 
states. The following result of Wigner [19] is a partial converse. 
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Theorem 1 (Wigner). A bijective map from the vector states on B(Hz) onto those 
orB(Hi) which preserves transition probabilities extends to a unique affine isomor- 
phism of the normal state spaces and is induced by a unique *-isomorphism or *-anti- 
isomorphism from B(H 1) onto B(H2). 

Proof. Let ~ be such a map of vector states. Extend ~ to all normal states on 
B(H2)  by defining ~(,r_,~,icri)= ~,,~i~l(O'i) for o- i vector states and 0 < 2i, $2 i = 1. 
(Recall that every normal state on B(H2) is such a a-convex combination.) To see 
that 7 ~ is well defined, suppose two o-convex combinations of vector states on 
B(H2) agree, say S2ia i = SVjz j. Then for each vector state a on B(H2) , using the 
fact that 7 ~ preserves transition probabilities gives 

$ 2  i  e(ai) - 

= ( u , Z 2 ~ a  i -  ZVS~) =0. 
As o- varies over the vector stages on B(Hz) , u~,(~) varies through all minimal 
projections in B ( H 2 )  , and thus S2iY'(o-i)= STjq~(zj), i.e. 7 ~ is well defined. It is 
then evident that 7 j is an a n n e  isomorphism. We now identify B(Hi) for i = 1, 2 
with the space of bounded a n n e  functions on its normal state space. We then 
define q~: B(H1)~  B(H2) by (~b(a), a ) = ( a ,  kC(a)) for a ~ B(H1) and a a normal 
state on B(H2). Note that • preserve self-adjointness, and q~ is a unital order 
isomorphism of the self adjoint (s.a.) part of B(Ha) onto B(H2)~.~. By [13, Corollary 
5] q~ is a Jordan isomorphism, and by [15, Cor. 11] ~b is either a *-isomorphism or a 
• -anti-isomorphism and ~ induces ~. []  

To distinguish *-isomorphisms from *-anti-isomorphisms, we will introduce 
a notion of orientation (based on that in [5]). Let S 2 denote the boundary of the 
unit ball E a in ~3, equipped with transition probabilities (i.e. for a, zE S 2, (alz) is 
the value at z of the unique positive a n n e  functional u, on E 3 such that u~ is 1 
at a and zero at the antipodal point of E3). Let A be a C*-algebra, and a, z equiva- 
lent pure states. Recall that face (a, T) is affinely isomorphic to E3; we will denote 
the set of pure states (i.e. the boundary) of face (a, z) by S 2 (a, z). Let Ti: $2 ~ $2( a, z) 
be a bijective map which preserves transition probabilities for i =  1, 2. Then 
7~2 t ° 7J~: S 2 ~ S 2 preserves transition probabilities. As we will see below, S 2 can 
be identified with the set of pure states o fM 2 (C), and so by Theorem 1, 7/2 a o 7J t can 
be extended to an affine automorphism of E 3, and then to an orthogonal trans- 
formation of ~3. We say ~ and ~u 2 are equivalent if this orthogonal transformation 
has determinant + 1, and we refer to an equivalence class of such maps as an 
orientation of S2(a, r). 

We now single out a canonical orientation for S2(a, ~), still following [5]. 
Let q~A** be the projection such that face (a, z) = q-  ~ (1); thus SZ(a, z) can be 
identified with the pure states ofqA**q. Let ~: qA** A ~ M 2 (C) be any *-isomor- 
phism, and let 7 ~ be the a n n e  isomorphism from E 3 onto the state space of M2(C ) 
given by 

(~(1 + a) ~(b + ic)'] 
~P(a, b, c) = \~(b - ic) 12-(1 - a) ] '  
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where we've identified the state space of M2(C ) with the positive matrices of unit 
trace. Now ~* ° T is an affine isomorphism of E 3 onto face (o-, z), and we define 
the canonical orientation of S2(a, ~) to be that given by the restriction of ~*° T to 
S 2. (The equivalence class of q~*° T does not depend on the choice of ~.) We will 
refer to this collection of orientations of all 2-spheres S 2 (a, z) as the canonical 
orientation of P(A). 

For X c_ P(A)we  write X 1 for {a~P(A)[(a[ ~)= 0 for all ~X} .  Note that for 
any a, zEP(A), the set of pure states in the face generated by a and z is just {a, z}±l, 
and a and z are equivalent iff {a, z} ~± properly contains {a, z}. Now let A 1 and A 2 
be C*-algebras, and T: P(A2)~P(A1)  a bijection which preserves transition 
probabilities. Then T will preserve equivalence of pure states, and will map 
Sa(a, "c) onto S2(T(a), T(z)).We say T preserves orientation if T carries the canonical 
orientation of S2(a, z) onto that of S2(T(o-), T(T)) for all pairs a, z of equivalent 
pure states. In [5] it is shown that an affine homeomorphism between state spaces 
of (unital) C*-algebras is induced by a *-isomorphism iff it preserves orientation. 
If we ignore topology and consider maps defined only on the pure states, we have 
following result. 

Proposition 2. Let A 1 and A 2 be C*-algebras. A bijective map T :P(A2) --~ P(A1) 
is induced by a *-isomorphism of the atomic part of Ai** onto the atomic part of 
A i ** iff T preserves transition probabilities and orientation. 

Proof. The atomic part of Ai** is a direct sum of type I factors qAi** ~ B(Hi). 
For each i, the pure states in c T ~(1) are a maximal set of mutually equivalent pure 
states, and all such maximal sets occur in this way. It follows that T carries the 
pure normal states of qAa** onto those of some type I factor diA2**, a direct 
summand of A2**. By Theorem t, there is a *-isomorphism or *-anti-isomorphism 
~i :qAi** ~ diA2** which induces T: d/- i(1) ~ c/- 1(1). By [5, Proposition 6.2] 
~i is a *-isomorphism since T preserves orientation. Now the direct sum q~ = <~ q~i 
will map the atomic part ofAi** *-isomorphically onto that of A2**, and induces 
T. The converse is clear. [] 

If we combine this with results of Akemann [1] and Giles and Kummer [93, 
we obtain one kind of structure on P(A) which determines A up to isomorphism. 
If A is unital, define X c_ P(A) to be q-closed if X consists of all pure states of some 
w*-ctosed face of K. 

Corollary 3. Let A 1 and A 2 be unital C*-algebras. A bijective map T : P ( A 2 ) ~  
P(A~) is induced by a *-isomorphism of A t onto A 2 iff T preserves transition pro- 
babilities and orientation, and T and T -  1 preserve q-closed sets. [] 

The rest of this paper will be devoted to showing that the last condition of 
Corollary 3 can be replaced by the requirement that T and T-~ be uniformly 
continuous. We begin with a lemma relating convergence in P(A) to pointwise 
convergence of representations. The lemma is a modification of a result of Fell's 
[7] relating convergence in A to convergence of representations. 

Lemma 4. Let A be a unital C*-algebra, and let H be a Hilbert space whose dimen- 
sion is 9rearer than the cardinality of A. Let rc be a cyclic representation of A on a 
closed subspace H o of H, with cyclic vector x, and define a = c% ° re. Let {ai}i~x be a net 
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of  pure states on A which converges (weak*) to ~. Then there exists a subnet {ai}j~ J 
and representations nj on closed subspaces H j o f  H containing x, such that for  each 
j e J ,  rcj is unitarily equivalent to the GNS representation associated with aj, and such 
that 

(ii) for  each y e l l  and for all sufficiently targe j e J ,  Hj contains y and It %(b)y - 
n(b)y t[ -~ Ofor all b in A. 

Proof  (Modelled after the proof in [6, Lemma 3.5.7].) Fix ~ > 0, and elements 
a~ . . . .  a, in A of norm at most one, with a~ = 1, and vectors y~ . . . .  Ym in H o with 
Yl = x. Choose b~, ... b in A with b~ = 1 and 11 y lj < for I _~ k < m. 
Let M = max {II bk II , I ~_ k ~- m}. 

Now observe that with minor changes the proofs of [6, Lemma 3.5.7 and Pro- 
position 3.5.9] show that for each integer n ~ dim/-/o there exists ioeI  such that 
i ~ i o implies the dimension of the GNS representation for a~ is at least n. In 
particular, we can choose i o so that i _~ i 0 implies the dimension of the GNS 
representation for a i is at least as much as the dimension of the linear span of 
{Tc(ajbk) x, 1 ~ j  ~ n,1 ~_ k ~_ m}. We may also arrange that for i ~ i 0 

t ( b*a* atb , a i )  - ( b*a~ a,b , cr )l  < ~ ~ (1) 

for all j, k, l, r with q as specified below. Now for any fixed i > i 0 let ~'~ be a repre- 
sentation of A on a closed subspace H i of H containing {~z(a~bk)x, 1 <=j <__ n, 1 <_ k <- 
m, such that x is a cyclic vector for 7r'~ and e)on'~ = ac (Note that ~'~ is unitarily 
equivalent to the GNS representation for (r i [6, Prop. 2.4.1].) Now by (1), for 
all j, k 

l (~'i(a~bk)x, ~'i(ajbk)x) -- (~(ajbk)X , r~(ajbk)X) [ < e 1. 

If e~ is suitably chosen, then by [6, Lemma 3.5.6] there is a unitary operator U 
on H i such that 

It UTz'~(ajbk)X - n(ajbk)X II < e/4(1 + M) (2) 

for all j, k. In particular, since x e H  i then 

II V x  - x II < e/4(1 + M). (3) 

Now define rq:A ~ B(Hi) by ~i(b) = UTr'i(b)U-1. 
Then for be A with ]] b II =< 1 

8 
t (Th(b)x, x) - (rci(b)x, x) t = [ (rc~(b) U - ~ x, U -  ~x) - (rc'i(b)x, x) I < 

= 2 ( I  + M)" 

Thus I1 co o ~ -  a~l I < e/2(1 + M) < e. Also, from (2) and (3) we have 

tl 7z~(ajbk)x -- rc(a~bk)X II = tt Urc'(apk)U- ~x - rc(ajbk)X N 

< tl U~'(a~bk)X - ~(a~bk)X [I + tl bk l] e/4(1 + M) 

__< e/4(1 + M) + 11 bk II e/4(1 + M) < e/4. (4) 

F o r j  = 1 we get [I 7h(bk)X -- zc(b~)x !1 <= Now was chosen to satisfy tt ~Z(bk)X -- 
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Yk [[ < e/4, and so [I ni(bk)~ -- Yk H <= el2. Combining this with (4) gives 

II zr~(a~)Yk- ~(a~)Y~ II --< 11 zr~(aj)Yk - ~,(ajbk)X II 
+ ]]~i(ajb&- r~(ajbg)xtt + Ilrc(ajbg)x- ~(aj)ykl] 

Now if we choose a subnet {~} indexed by members of I, finite subsets of A and 
H, and by e, we can satisfy (i) and (ii). I~ 

Lemma 5. Let A be a C*-algebra. Then the set B of elements beA** such that 
b, b'b, and bb* are continuous on P(A )- Jorms a C*-subalgebra of A**. 

Proof We may assume A is unital. Let {ai}i~ I be a net in P(A) converging to 
a~P(A)- .  Choose representations {nj}, ~z in accordance with Lemma 4; we will 
use the notation of that Lemma. We will also denote by {~j}, rc the g-weakly 
continuous extensions to A**. 

Note that by Lemma 4, for a ~ A** (a ,  ~ ) ~ ( a, a ) iff (r~(a)x, x) ~ (rc(a)x, x). 
Let C consist of those elements ceA** such that 

(zcj(c)y, y) ~ (~(c)y, y) and (~j(c*c)y, y) ~ (z~(c*c)y, y) for all y e l l  o. (5) 

Polarization of (5) gives 

(rcj(c)Yl, Y2) ~ (zr(c)Yl, Y2) and (~j(c*c)y t , Y2) ~ (zc(c*c)Yl, Y2) for all Yl, Y2 e H o  
(6) 

Now since 

II r@c)y - ~(c)y tl 2 = (~j(c* c)y, y) - (r@c)y, n(c)y)-  (zc(c)y, r@c)y) + (~(c* c)y, y), 

by (6) we conclude that for c e C 

Ii ~(c)y -- ~(c)y II ~ 0 for all y ~ H  o. (7) 

Conversely, for ceA** (7) implies (5). Now if a and b are in B, then (5) holds with 
c -- a or b, and so (7) holds for each. But then ab satisfies (7), so ab satisfies (5). 
It follows that (ab, a ~ ) ~  (ab, a) .  This argument applies to show that every 
subnet of {a~} has a subnet on which ab converges to (ab, a ) ;  it follows that 
( ab, ~i ) ---' ( ab, a ). Thus ab is continuous on P(A)-, showing that B is a subalgebra 
of A**. It is clear that B is norm closed and closed under the *-operation, and so 
the proof is complete. [] 

In the rest of this paper, z will denote the central projection in A** such that 
zA** is the atomic part of A**. (By definition zA** is the direct sum of those 
direct summands of A** which are type ! factors.) The atomic part of the state 
space K of A is z- 1 (1), and can be identified with the normal state space of zA**. 
It is the a-convex hull of the pure states of A, cf. e.g. [4]. 

Proposition 6. Let A be a C*-algebra, and define B as in Lemma 5. Then zA = zB. 

Proof. We identify each state on A with its normal extension to A**. Since the 
a-convex hull of P(A) can be identified with the normal state space of zA** ~ zB, 
then the set of states {a[zB, a t  P(A)} determines the ordering on (zB)~.,. Therefore 
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the w*-closure of this set of states o f z B  contains P(zB) , cf. [6, Lemma 3.4.1]. Now 
let a and z be functionals in P(zB)-  which agree on zA ~_ zB; we will show a = z. 
Choose nets {o-~}~, and {z~}~z in P(A) such that a~ ~ o- on zB and z~ ~ z on zB. 
Let ~ ( a ) =  za for aEA. Then {aiozc} and {z~OZCz} converge on A to aozr  = ro~z. 
Since each pure state of A annihilates (1 - z)A**, then o-~o 7z = a~ and zio rc = z~, 
and so {a~} and {z~} converge on A to the same state a orc = z ore. By the definition 
orB, for each be B the nets { ( b, a~) } and { ( b, ~ )  } have the same limit, and thus so 
do { (zb, a~ ) } and { ( zb, vi ) }. By our choice of  {ai} and {zi}, we conclude a = z, 
and thus zA separates P(zB)- .  By Glimm's version of the Stone-Weierstrass 
theorem [11], zA = zB. [] 

If A is any C*-algebra, we denote by A, the set of elements aezA** such that 
a, a 'a,  and aa* are uniformly continuous on P(A) ~ {0}. We say A is weakly perfect 
if zA  = A .  For future use, we observe that if A does not have an identity, A is 
weakly perfect iff A with an identity adjoined is weakly perfect. 

Lemma 7. Let  A be a C*-algebra. Let  {ai} be a net of  pure states converging to a, 
a multiple of an atomic state. Then for each a e A ,  (a,  a i ) ~ ( a, a ) .  

Proof We may assume A is unitat and so lI a II = 1. Let {rcj}, lr be as in Lemma 4. 
We claim there exists a sequence {Xk} in H o such that x = S x  k and such that (~k ° zc 
is a multiple of a pure state for each k. For  suppose a = Z2kZ k with 0 < 2 k, $2 k = 
1, rkeP(A), and (zj l Zk) = 6 jk. Let (zr k , H k, Yk) be the GNS representation associated 
with z k for each k, and let ~? = ® rc k :A ~ B(@ Hk). Note that for all b e A  

(Sg(b)(2\/)~kYk), SW/~k)'k)= Z2k(rck(b)Yk, Yk) = (b,  a ).  

Thus (7 j, 7J(A)(SX/~kyk)-, Z , ~ k Y k )  is unitarily equivalent to the GNS representa- 
tion of A associated with a, [6, 2.4.1]. Now let {Xk} c H o be the sequence of 

vectors corresponding to {',//~Jk}" (To see each y~ is in ~(A)(2,,/-~kyk)-, given 

> 0 choose n so that ~ 2 i < e/2, and choose b e A  so that IIb II < 2 and rq(b)y i = 
n + l  

~jyj for i n n .  Then I[ T(b)(ZX/~kYk)--X/-~iYj][ < e). NOW for each k and each 
a e A  u, ~(a)x~ lies in Ho, and so for all beA,~all 2eC, a s j ~  ~ 

(rcj(b) (x k + 2rc(a)xk), x k + 2rc(a)xk)-~ (rc(b)(x k + £rc(a)xk), x k + 2n(a)xk). (8) 

Each representation re2 is irreducible, so the map sending b to the left side of (8) 
is a multiple of a pure state. Since e)x~ o n is a multiple of a pure state for each k, 
that re(A):is irreducible on (n(A)Xk)-, which includes x k + 2n(a)x k, so the map 
sending b to the right side of (8) is also a multiple of a pure state. Since A is unital, 
these functionals when normalized also converge (evaluate at the identity). 
Thus by the definition of A,, (8) holds with a e A  replacing b. If the resulting equa- 
tion for suitable values of 2 is polarized, the result is 

(Tzj(a)x k, Xk) ~ (rc(a)x k, Xk), (9) 

and 

(r~(a)xk, ~(a)Xk)~ (rc(a)xk, ~(a)Xk). (10) 
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Applying (9) and (10), and (9) with a*a replacing a gives 

11 (rcj(a) - rc(a) )x k It 2 : (zrj(a*a)xk, x~) - (r@a)x k, rc(a)xJ 

- (z~(a)Xk, ~j(a)xk) + (zc(a*a)x k , x k) 

which approaches zero as j  --, oD. 
n 

N o w  given e > 0 c h o o s e  n so that I1 x - I /< N o w  given a e A  choose  
1 

n n 

Jo so t ha t j  >Jo implies 11 n~(a)Zx k - 7c(a)2x k 11 < e/2 Then for [[ a [[ < 1 
1 1 

t t  n 

o 9  o 9  

(Note we cannot use n3(a)~x  k = ~zci(a)x k because for fixed j not all x k may tie 
1 1 

in Hi.) Now (n.(a)x, x) --, (z(a)x, x) = < a, a > and II C°x° re. - (r II --' 0, so < a, a > --, 1 j j 

<a, a>. Thus every subnet of {(ri} has a subnet on whiJa a converges to <a, a>;  
it follows that < a, a i > ~ < a, a >. [] 

Lemma 8. Let  A be a C*-algebra. I f  every element of  P(A) -  is a multiple of  an ato- 
mic state, then A is weakly perfect. 

Proof  We may assume A is unital. Then under the hypotheses P(A) -  consists 
entirely of atomic states. Now by Iemma 7, for each a e A  u the elements a, a 'a ,  aa* 
are continuous on P(A)-, and so by Proposition 6, A ,  c_ zA. Clearly zA ~ A u, 
so zA : A . [] 

We now digress momentarily to discuss the geometry of primary states. 
Recall that a split face of a convex set K is a direct summand, i.e., one of a pair 
F, F' of faces of K such that every element a of K can be written uniquely as a 
convex combination (r : ,b  1 + (1 - 2)0" 2 with (rx 6F  and (rzeU. If (r is a state on 
the C*-algebra A, and if rc is the corresponding GNS representation, then the 
(r-weakly continuous extension of r% to A** maps c A * *  *-isomorphically onto 
TC " ~(A), where c~ is the central support of(r in A**. For any yon Neumann algebra 
the map c ~ c-1(1) gives a I-1 correspondence of central projections and split 
faces of the normal state space. Thus F((r) = c2 1(1) is a split face of K which can 
be identified with the normal state space c A * * ,  and F((r) will be the smallest split 
face containing (r. Clearly ~(A)" ~ c~A** is a factor iff F((r) contains no proper 
split faces. Thus (r is primary iff the split face F((r) generated by (r is a minimal split 

face of K.  
The following result gives a criterion for the closure of primary states to 

consist of multiples of primary states. (A corresponding result for pure states was 
gives by Glimm [10]). 

Proposition 9. Let  A be a C*-atgebra which is either separable or type I. Then these 
are equivalent: 

(i) every limit point of  primary states is a multiple of  a primary state, 
(ii) A is hausdorff 
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Proof Assume (i) holds. Let--~ be the relat ion of uni tary  equivalence on P(A); 
to s h o w / ]  is Hausdor f f  it suffices to show ~ is closed. Suppose  a t --, a and  zi ~ z 
in P(A), with a i ~ zi for all i. Then  ( t /2)  (a t + z~) is a net of  p r ima ry  states converging 
to ( i /2)(a  + z), so the lat ter  m u s t  be  pr imary.  Therefore  a ~ z, which establishes (ii). 

N o w  assume (ii). No te  tha t  by [6, 9.5.3] A is CCR. Let  {at} be a net of  p r imary  
states on A c o n v e r g i n g t o  a, and  let F(a) denote  the smallest  spli t face of  K con- 
taining a i. Similarly let F(a) be the smallest  split face of  K 0 = co(K u {0}) con- 
taining a. Let  F = F (a ) -  _. K o. T o  establish (i) we will show F c~ K = F(z) for 
some z ~ P(A). 

Fix z and  z' in P(A)c~F;  we c la im z and  z' are equivalent.  T o  verify this, note  
that  F = F ( a ) -  _c ~ w {F(ai) , i > io} for each index io, since the closed convex 
hull of  split faces of K is again a split face, e.g., cf. [3]. Since A is of  type I, each 
F(ai) is affinely i somorphic  to the n o r m a l  s t a t e space  of a type I factor, and  so is the 
a -convex  hull of  its ext reme points.  I t  follows f rom Mi lman ' s  t heo rem that  -c 
and  z' are limits of  nets {z.} and {z'.} with z. and ~' in F(a )c~ P(A) for each j and 

J ^ J J J J . 
{a~}~, a subnet  of  {ai}. Since A is Hausdo r f f  then the relat ion --~ is closed, and so 
zj ~ z'. for a l l j  implies z --~ z'. Thus  all pure  states in F are equivalent.  

J 
W e  can identify F c~ K with the state space of AIJ, where J is the annihi la tor  of  

F in A. (Note  F is w*-compact ,  so F is the annihi la tor  of  J in K0. ) Since all pure  
states of  AIJ have  been shown to be equivalent,  then all i rreducible representa t ions  
of  AIJ are equivalent,  and so A]J is simple. Since A is CCR, so is AIJ, so AIJ = 
c o m p a c t  opera to r s  on some Hi lber t  space H. N o w  F c~ K can be identified with 
the state space of  A I J, and  thus with the n o r m a l  state space of  B(H). I t  follows tha t  
F ~ K has  no  p rope r  split faces, which shows that  every m e m b e r  of  F is a mul t ip le  
of  a p r ima ry  state. [ ]  

Corol lary  I0. Let A be a C*-algebra. I f  A is C C R  and A is Hausdorff, then A is 
weakly perfect. 

Proof By Propos i t ion  9, every e lement  in P(A)- is a mul t ip le  of  a p r i m a r y  state. 
Since A is CCR,  every p r i m a r y  state is atomic.  The  corol lary now follows f rom 
L e m m a  8. [Z 

Fo r  the next  lemma,  we say tha t  X _c P(A) is sa turated if any pure  state equiva-  
lent to a m e m b e r  of  X is in X. 

I . emma 11. Let A be a C*-algebra, and X a saturated subset of P(A). I f  a ~ X - ,  
then the w*-closed face of K o = co ( / (  w {0} ) generated by a is contained in X . 

Proof We m a y  assume A is unital. Let  {a~}~ be a net in X converging to a, 
and let ~ face (a). Choose  a subnet  {~}j~j and  representa t ions  {~}, ~c as in L e m m a  
4. Since r ~  face(a), then ~ is domina t ed  by a mul t ip le  of  a. By [6, 2.5.1] there 
exists c~c(A)' such tha t  ~c = c0 ore, where a = co o7c. By L e m m a  4, co orc. con- 

cx 1 j  
verges to z = co o7c. Evaluat ing  a t t h e  identity, the states zj = I[ co orcj II- 
converge  to z. Fur thermore ,  each zj is a pure  state equivalent  to a:, and so is in 
X. Thus  face (a) ~_ X -.  

N o w  let Y be a subset  of  X -  max ima l  a m o n g  the convex subsets of  X -  con-  
ta ining a. Since face ( Y ) =  w{face colin@Y}, face (r) is conta ined  in X -  by  the 
first paragraph .  By max imal i ty  Y = face (Y) is a closed face of K conta ining a 
and  conta ined in X - .  [ ]  
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Lemma 12. Let .4 be a C*-algebra, and let F be a closed face of K o = c o ( K u  {0) ) 
contained in P(A)-.  Then for each a~A the unique continuous function a' on P(A) 
which agrees with a on P(A) is affine on F. 

Proof We may  assume A is unital. By Lemma 7, a' agrees with a on the atomic 
states in P(A)-,  and thus in particular on the convex hull of the pure states in F; 
thus a '  is affine on co(c~eF ). By the Kre in -Mi lman  theoreln, this set is dense in 
F, and so by continuity a '  is affine on F. [] 

Lemma 13. Let A be a C*-algebra, and J a norm closed ideal of A such that J is 
weakly perfect. I f  a e A  u annihilates every pure state that annihilates J, then a~zJ. 

Proof Let F be the split face of K 0 , which is the annihilator of  J in K 0 . Note that 
the state space of J can be identified with the split face F"= {o-eKllio-JJJj = 
]1 a ]1 = 1}. Let a '  denote the continuous extension to P(A)- of a I P(A), and extend 
a'  to [0, 1] x P(A)- by ( a', 2a ) = 2{ a', a ). We will show a is uniformly continuous 
on P(J)w {0} by showing that  a '  is continuous on P(J) (for the uniformity and 
topology induced by J). 

Let {ai}id be a net in P(J) which converges on J to 2z, where z is a state on J 
and 0-< 2_< 1. By compactness of K o there is a subnet {aj}~ s which converges 
on A to a E K  0, where a = 2z + (1 - 2)co, with o)~F. By construction, a~(P(A)r~ 
F' ) - ,  and so by Lemma 11, ~ and co are in (P(A)c~ F')- .  

Let G be the closed face of K o generated by co. Then G ___ F, and so ~eG ~ 0 F .  
Now by Lemmas  11 and 12, a '  is continuous and affine on G. By assumption a '  = 
a = 0 on F c~ P(A), and so by Kre in -Mi lman  a '  = 0 on G. 

Now by continuity of a '  on P(A)- 

( a ' ,  ~ j )  - ,  ( a ' ,  2~ + (1 - 2~)co) = ;da', "c), 

where we've used Lemma 12 to know that a' is affine on face (a) ~_ {z, co}. Thus 
as o- i converges on J to )oz, { a', c~ ) converges to (a ' , ) .~ ). Thus every subnet of 
{@ has a subnet on which a' converges to (a', 2"c); it follows that (a', cry) con- 
verges to (a ' ,  2~ }. Thus a' is continuous on P(J)-,  and so a is uniformly continuous 
on P(J)w {0}. Since J is weakly perfect, there ex i s t s j~J  such that  a a n d j  agree on 
P(J). Both a and j are zero on the remaining pure states, and so a = j  on P(A). 
Since a~zA**, then a = zj. [] 

Lemma 14. Let A be a C*-aIgebra and J a norm closed ideal of A. I f  J and A/J 
are perfect, then A is weakly perfect. 

Proof We may assume A is unital. Let a ~ A ;  we'l t  show aezA.  By Lemma 13, 
it suffices to reduce to the case where a is zero on the annihilator F of J in K. 
We can identify P(A I J) with P(A) c~ F. Since P(A I J) is closed (in the relative topo- 
logy) in P(A), then a is uniformly continuous on P(A j J), as are a*a and aa*. Since 
A IJ is weakly perfect, a agrees on P(AIJ) with an element of A JJ. Thus there exists 
b ~ A such that a and b agree on P(A) c~ F. Now a - zb is in A~, is zero on P(A) c~ F, 
and so by Lemma 13 is in zA. Thus A ~_ zA. [] 
Corollary 15. I f  a C*-algebra A is GCR,  then A is weakly perfect. 

Proof Let {J~} be a composition series for A such that the quotients Ji+ a/Ji are 



Pure States as a Dual Object for C*-Algebras 507 

CCR with Housdorff spectrum, cf. [6, Theorem 4.5.5]. We proceed by transfinite 
induction. Assume Ji is weakly perfect. By Corollary 10, Ji + a/Ji is weakly perfect, 
and so by Lemma 14, J~+ 1 is weakly perfect. 

Now let/~ be a limit ordinal such that Ji is weakly perfect for i < /L  For simplicity 
of notation we assume A = Jp. Note that each algebra zJ~ for i </~ is an ideal in 
A .  (If a s z J  i and b s Au, then ab s A and ab is zero on those pure states annihilating 
Jg. By Lemma 13, ab agrees on P(A) with an element of Ji, and thus abszJi) .  

Thus zA = ( u  zJ~)- is an ideal in A u. I f z A  were properly contained in A ,  then 
there would exist a pure state a of A u which annihilates zA. Since P(A) determines 
the order on A ___ zA**, there would exist a net {at} _~ P(A) converging on A to a. 
By hypothesis a annihilates A, so {a~} converges to zero on A. By the definition 
of Au, this implies that each element of A converges to zero on {o-z}, and thus 
a = 0 on A u, a contradiction. Thus zA = A u . [] 

Lemma 16. Let  A be a C*-algebra with state space K. Let  {Fz}~d be a collection 
of  split faces qfK,  and assume for each i s I  there is given an affine fimction a i on F i 
such that II ai II <-- 1 and a~ = c~ on F I~  Fj. Then there exists a t  A** such that II a II < 1 
and a = a i on Fi for  all i s I .  

Proof  We may assume all az are positive. For each finite subset X of I let F x = co 
{F~, i s X }  and let a x be the unique affine function on K which agrees with a i on 
each F i for i s X ,  and is zero on the split face complementary to F x.  Note that if 
X _c y, then a x < a r and a r restricted to F x agrees with a x.  Furthermore, it ax II < 1 
for all X. Thus {ax}x~ x is an increasing net bounded above, and so converges 
a-weakly to its least upper bound. This 1.u.b. is the desired element a. [] 

Theorem 17. Every C*-algebra A is weakly perfect. 

Proof  We may assume A is unitat. By [6, Proposition 4.3.3] there is an ideal J of A 
such that J is GCR and A t J  is NGCR. By Corollary 15 and Lemma 14, it suffices 
to show A [J is weakly perfect; thus without loss we may assume A is NGCR. By 
[6, Lemma 11.2.3], if ~rsP(A)- and rc is the associated GNS representation, then 
the annihilator (ker z~) 1 of ker r t  in K is contained in P(A) - .  The annihilator of 
ker ~z is a split face of K, and so P(A) -  is a union Of split faces. 

Let a s A , ,  and let a' be the continuous extension to P(A)- ofa  IP(A). By Lemma 
12, a' is affine on each split face (ker re) ± for asP(A)- .  Let a" be a bounded affine 
extension of a' to all of K;  such an extension exists by Lemma 16. Then a" is 
continuous on P(A)', as is (a")*a" and (a")(aH) *, so by Proposition 6, zaHszA. It 
follows that a agrees with an element o f z A  on P(A), and thus a s z A .  [] 

Theorem 18. Let A and B be C*-aIgebras and ~ : P(B) u {0} ---, P(A) u {0} a bijec- 
tion with 7J(O) = O. Then 7" is induced by a *-isomorphism of  A onto B iff  ~ and 7 s-  1 
are uniformly continuous and ~P preserves orientation and transition probabilities. 

Proof  This follows at once from Proposition 2 and Theorem 17. [] 

A Counterexample. It can be shown that uniform continuity in Theorem 18 can 
be replaced by ordinary continuity if A and B are CCR with Hausdorff spectrum. 
However, this does not hold for all C*-atgebras, even those of type I. 

To see this, let A be the sum of the algebra of compact operators on H = L 2 [0, 1 ] 



508 F.W. Shultz 

with the a lgebra  of mult ipl icat ion opera tors  for cont inuous  functions on [0, 1]. 
The  a tomic  par t  of  A** can be identified with B(H) • f® [0, 1]. Let q eB(H) be the 
project ion on the closed linear span of  {sin 2k~x, cos 2k:rx, k = 1, 2 . . . .  }. Then  q is 
cont inuous  on  P(A), but  is not  uni formly cont inuous.  The  m a p  b - ~  ( 2 q -  1) 
b(2q - i) is a * - au tomorph i sm  of the a tomic  par t  of A** (it fixes foo [0, 1] ), and 
thus induces a bijective m a p  of P(A) onto  P(A) which preserves orientat ion,  
preserves t ransi t ion probabil i t ies ,  is a h o m e o m o r p h i s m ,  but  is not  induced by a 
• - a u t o m o r p h i s m  of  A. 

A Final Remark: Connections with the Stone-Weierstrass Conjecture 

Let A be a C*-algebra,  and let A c denote  the set of  elements  b in the a tomic  par t  
zA** of  A** such that  b, b'b, and bb* are cont inuous  on P(A)w {0}. The  p r o o f  
of  L e m m a  5 applies wi thout  change to show that  A c is a C*-subalgebra  of  zA**. 
The m a p  a -~ az imbeds  A into A c ; let us say A is perfect if zA = A c 

Perfect  algebras are of  interest because of  their  connect ion  with the S tone -  
Weierstrass conjecture for C*-algebras.  Let  us say tha t  A has the S tone-Weie rs t rass  
p rope r ty  if whenever  A is a C*-subalgebra  of  B and separates P(B) w {0}, then 
A = B. If  A is a C*-subalgebra  of  B and separates  P(B) w {0}, then the restr ict ion 
m a p  is a h o m e o m o r p h i s m  of P(B) w {0} on to  P(A)w {0}, and so there  is a na tura l  
imbedding  of B into the set C(P(A) w {0} ) of  con t inuous  funct ions on P(A) u {0}. 
The  image  of B will contain that  of  A (or zA), and will be conta ined in the image  
of A in C(P(A) w {0} ). Thus,  if A is perfect then A = B will follow, i.e., perfect 
C*-algebras  have  the S tone -Weie r s t r a s s  proper ty .  

The  counte rexample  described previously shows that  not all type ! C*-algebras  
are perfect. However ,  every C*-algebra  A can be imbedded  in a perfect C*-algebra  
(At), and if A is simple, then so is A c. I f  A is perfect and  q is a project ion in A, then  
qAq is perfect. In  the coun te rexample  described above,  it can be seen tha t  qAq  
is i somorphic  to B(qH). Thus  the C*-algebra  of  all bounded  opera tors  on a Hi lber t  
space is an example  of  a non-nuclear  C*-algebra  which is perfect and thus has the 
S tone-Weie r s t r ass  property .  
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