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SUM OF MOMENTS OF CONVEX POLYGONS 

By 

G. FEJES TOTH (Budapest) 

In a plane of constant curvature, let D be a domain and O a point. Let f (x )  
be a function defined for x=>0. The integral 

M r (D, O) = f f ( o x )  dX 
D 

is called the moment of D with respect to O, where dX is the area-element at the 
variable point X. 

The following known theorem ([2], [3] pp. 80--84, 137--141, [5] pp. 219--224, 
[9], [11]) has various applications in the theory of circle-packing and circle-covering 
([3] p. 80, 140, [7], [ll]), in the theory of convex polyhedra ([1], [2], [3] pp. 139--140, 
[4], [5] pp. 308--312, [6]) in the location theory [13], and has points of contact with 
information theory [12] and biology ([5] p. 233). 

THEOREM. In a plane of  constant curvature let 0 be a point and P~ ....  , P, 
convex polygons of total number of sides N and total area A. I f  f (x) is a decreasing 
function defined for x > 0 ,  then 

M r (P~, O) <= NM I (3, 0), 
i=1 

where A=AOB is a triangle of area A/N such that OA=OB and <~AOB=2~zn/N. 
Equality is attained whenever the Pi's are congruent regular polygons centred at O. 
I f  f satisfies the additional condition 

f(r--O)>f(R+O), r=O_M, R=OA,  

where M is the midpoint of the side AB, then equality holds only in the regular case. 

In what follows we shall give a simple new proof of this theorem. 
We shall restrict ourselves to functions defined by 

{10 f~ 0 < x ~ a ,  
f (x)  = for x > a ,  

where a is a positive constant. In this case Mf(D, O) is equal to the area of the part 
of  D covered by the circle of radius a centred at O. Having proved the theorem in 
this case, the general case can easily be settled by approximating a monotonous 
function by step-functions ([8], [9], [10]). 

First we consider the case when 
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In the remaining cases the theorem is either void, or, as it will be seen later, can 
easily be proved. To prove the theorem in the above mentioned main case we shall 
need the following 

LEMMA. Let U and V be two circles of  radii a and b (b>a)  with the common 
centre O, respectively. Let u(x) and v(x) be the areas of  the segments cut off from 
U and V by a straight line of distance x (O<=x <a) from O. Then u'(x)/v'(x) is a strictly 
decreasing, positive function of  x, less than 1. 

Let L be a point such that OL=x.  Let one of the hairlines, erected perpendi- 
cularly to OL in L, cut U and V in M and N. Then - �89 and 1 , - ~ v (x)dx 
are the areas swept over by the segment L M  and L N  while L is moving on the line 
OL through the infinitesimal distance dx. 

Observe that - �89 = sin L M  or L M  or sh L M  according to the three 
geometries. In the same way, we have --�89 L N  or L N  or sh LN. Using 
these relations, we obtain by a simple computation 

u'(x) 
v'(x) 

• / C O S  
2 X - -  COS 2 a 

c o s  2 x - -  c o s  2 b 

f a 2 _ X 2 

f ch a -  ch 2 x 

Ch ~ b - ch 2 x 

which is, in fact, in all three cases a positive, decreasing function of x, less than 1. 
In what follows we shall denote a domain and its area with the same symbol. 

In agreement with the above notations, let U be a cii'cle of radius a centred at O. 
Let A =AOB be an arbitrary triangle, S the sector cut out from U by the angular 
region spanned by A at O and, finally, F=A ~ U the part of A covered by U. In 
the proof  of  the theorem a central part will be played by the quantity 

w = F - p S - - q A ,  

where p and q are fixed real numbers such that p + q <  1, 0 < q <  1. We are looking 
for the triangle with the maximum value of w. 

Obviously, we may suppose that non of A and B lies in the interior of U. For, 
supposing that OA<a and OB<a we obtaiia a better triangle by replacing A and 
B by their central projection onto the boundary of U. Assuming now that OB<a 
and OA>=a, we obtain a better triangle by replacing B by its central projection 
B" onto the boundary of  U and A by the point A' of the side OA such that AB and 
A'B" intersect each other on the boundary of U. 

Furthermore, if OB=a, then we may suppose that r OBA<=90 ~ Otherwise 
we replace A by the point cut out from OA by the tangent of U at B. 

Let V be a circle of  radius b concentric to U such that 

(1--p)U = qV. 
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We claim that if not both A and B lie on the boundary of V, we can construct 
a triangle with a greater value of w with vertices A and B such that O A = O B = b .  
Let A', B', A' ,  B" be the points cut out from the boundary of V by the line AB 
and the ha!f-lines OJt, OB, choosing the notations so that the cyclic order of the 
points on V should be of type AABB (see the figure). Comparing the triangles 

AOB and A'OB',  we see that w is greater for the latter, the increment being q times 
the total area of  the "triangles" AA'A" and BB'B' ,  where the sides A'A" and B'B" 
are the corresponding circular arcs of V. 

For a triangle AOB with O A = O B = b  the value of  w depends only on the 
distance x of AB from O. For  this triangle we write w=w(x). Let T be the inter- 
section of  V and the angular region AOB. Using the notations of the lemma and 
extending the definition of u(x) for x ~ a  by u (x)=0 ,  we have 

w(x) = S -  u(x) - p  S -  q ( T -  v(x)) = (1 - p )  S -  qT+ qv(x) - u(x) = qv(x) - u(x). 

This shows that w(x) attains its maximum in the closed interval [0, a]. 
In view of the lemma the equation w' (x)=0 has at most one root in [0, a] 

and if w'(xo)=0, then w(x) has a maximum at x0. In this case we have for any triangle 
AOB w<=W(Xo) with equality only for an isosceles triangle with OA=-OB=b and 
altitude Xo. 

Keeping in mind the assumption that r < a < R < ~ ,  we choose p and q so 
that the radius b of the circle V defined by ( 1 - p ) U  = qV should be equal to R. 

u'(r) In view of the lemma we have 0 < q <  1. Furthermore, we choose q so that q =  v'(r) " 

On the other hand, we have, by a < R < ~ ,  p + q < l .  Thus, with this choise of p 
and q, we have for an arbitrary triangle 

w = F - p S - q A  ~ F - p ' 3 - q 2 1  = ~, 

where the bars refer to the respective values in A. 
After these preliminaries the proof  of the theorem will be very easy. We obviously 

may suppose that OCPz ( i=1,  ..., n). Let A1, ..., AN be the triangles based on the 
sides of the polygons P1, -.-, P,, and having O as common apex. (Some of these 
triangles may degenerate into segments.) Denoting the values of  F, S and w in 
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Ai by Fi, Si and wi, we have 
N N N N 

Z F, = p Z S~ + q Z A~ + Z (El - p S i -  qAi)  = 
i=1  i=1  i=1  i=1  

N 

i=l  

Equality holds only if all A~'s are congruent to A. 
This completes the proof  of the theorem in the case when r < a < R <  ~. 
If  a < r or a > R  the statement of the theorem is void, Furthermore, it Js obvious 

N 
that the inequality ~ Fi<=NF holds also if  a = r  or a=R.  Now equality holds 

i=1  
only if each P contains the circle of radius r with centre O, and is contained in the 
circle of radius R centred at O, respectively. In the first case we have 

where A is, in accordance with the notations of the theorem, the total area of the 
polygons, and a(~o) is the area of a triangle OMA such that <~ OMA = zc/2, ~ MO A =q~ 
and OM=r.  This follows immediately [7] from the convexity of a(~o) and Jensen's 
inequality. Equality holds only if.all of  the P~'s are congruent regular polygons. 
Since, on the other hand, equality must hold, the case of equality is settled if a= r .  
The case of equality when a = R  can be settled in a similar way [7] referring to the 
concavity of the function b(~o), where b(~o) denotes the a r e a  of a triangle OMA 
such that <~ OMA = re~2, ~ MOA = ~p and OA = R. 

The only case left is the case when R =  ~. Now, necessarily, all P~'s are completely 
asymptotic polygons. 

Let A = A O B  be a triangle such that O A = O B = ~  and ~AOB=2~o. Using 
the above notations, we have 

F = S - u ( x ) ,  

where the relation between x and cp is given by ch x sin cp = 1. We claim that F 
is a concave function of q~. Since S is a linear function of ~p, all we need to show 
is that u(x(qO) is a convex function of ~o (0< cp < ~z). Let the value of ~p belonging to 

1 
x = a  be q~0 =arcs in  c--ff~ a �9 Obviously, u(x(~o))is a continuous function equal to 0 for 

0 < ~0 <= q~o and positive for q~o < q~ < ~r/2. On the other hand, we have for ~o o < q~ < 7r/2, 
by a simple computation, 

~ = a- sin2 q .  

This being an increasing function of ~o, u is convex in the whole interval (0, ~/2). 
In view of the concavity of  F =  F(~0), the validity of the theorem in the case when 
R = ~  follows immediately by Jensen's inequality. 
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