
Algorithmica (1996) 16:339-357 Algorithmica
�9 1996 Springer-Verlag New York Inc.

Shortest Noncrossing Paths in Plane Graphs

Jun-ya Takahashi, t Hitoshi Suzuki, 2 and Takao Nishizeki 2

Abstract. Let G be an undirected plane graph with nonnegative edge length, and let k terminal pairs lie
on two specified face boundaries. This paper presents an algorithm for finding k "noncrossing paths" in G,
each connecting a terminal pair, and whose total length is minimum. Noncrossing paths may share common
vertices or edges but do not cross each other in the plane. The algorithm runs in time O(n logn) where n is
the number of vertices in G and k is an arbitrary integer.

Key Words. Noncrossing paths, Shortest path, Plane graphs, Single-layer routing, VLSI.

1. In t roduct ion. The shortest disjoint path problem, that is, to find k vertex-disjoint
paths with minimum total length, each connecting a specified terminal pair, in a plane
graph G has many practical applications such as VLSI layout design. The problem is
NP-complete [L], [KL], and so it is very unlikely that there exists a polynomial-time
algorithm for its solution. However, if two or more wires may pass through a single
routing region [DAK], then the problem can be reduced to the shortest "noncrossing"
path problem. Here "noncrossing" paths may share common vertices or edges but do
not cross each other in the plane. The shortest noncrossing path problem is expected to
be solvable in polynomial time at least for a restricted case, for example, a case where
either the number k of paths or the number of face boundaries on which all the terminals
are located is bounded. Indeed an O (n log n) algorithm has been obtained for the special
case of k = 2, where n is the number of vertices in G [LSYW].

In this paper we present an O (n log n) algorithm to find shortest noncrossing paths in
a plane graph for the case when all the terminals of k pairs are located on two specified
face boundaries. We assume that k is an arbitrary integer. For the same case, Suzuki et al.
[SAN1], [SAN2] obtained an O (n log n) algorithm for finding vertex-disjoint paths, but
the total length of the paths found by their algorithm is not minimum. Our algorithm can
be applied to a single-layer routing problem which appears in the final stage of VLSI
layout design, where each wire connects a pad on the boundary of the chip and a pin on
the boundary of a block (see Figure 1). Furthermore, we show that a similar algorithm
can find noncrossing paths that are optimal with respect to any objective nondecreasing
function in the length of each path.

The rest of the paper is organized as follows: In Section 2 we give a formal description
of the problem and define terms. In Section 3 we present an algorithm to find shortest
noncrossing paths in a plane graph G for the case where all terminals lie on a single face

I Department of Computer Science, Faculty of Engineering, Iwate University, Morioka 020, Japan.
2 Graduate School of Information Sciences, Tohoku University, Sendai 980-77, Japan.

Received April 12, 1994; revised October 23, 1994. Communicated by K. Melhoru.

340 Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki

12 q

1 2

10 9 8 7

93

)4
m) 5

Fig. 1. Noncrossing paths in a grid graph.

boundary. A naive algorithm for this case takes time O (kn log n), but our algorithm takes
time O (n log n). The main idea behind the algorithm is a divide-and-conquer technique
based on the "genealogy tree" of terminal pairs (see Figure 6). In Section 4 we present an
O (n log n) algorithm to find shortest noncrossing paths for the case where all terminals
lie on two face boundaries B1 and B2. There are two main ideas behind the algorithm.
The first idea is to notice that there exists a solution to the problem which contains one
of three specified paths connecting a terminal on B1 and a terminal on B2, i.e., either
a shortest such path or one of two certain induced paths. The second idea is to reduce
an instance of the problem to three instances of the former problem by "slitting" the
graph along these three paths such that all terminals lie on a single face boundary in the
resulting graphs. In Section 5 we present an algorithm to find optimal noncrossing paths.
Finally, we conclude in Section 6 with some general comments. A preliminary version
of this paper was presented in [TSN].

2. Preliminaries, In this section we give a formal description of the noncrossing path
problem and define terms. We denote by G = (V, E) a graph consisting of vertex set V
and edge set E. We denote by V (G) and E (G) the vertex and edge sets of G, respectively.
Assume that G is an undirected plane graph and that every edge in G has a nonnegative
edge length. Furthermore we assume that G is embedded in the plane]~2 The image
of G in ~2 is denoted by Image(G)" C]~z A face of G is a connected component of
~2 _ Image(G). The boundary of a face is the maximal subgraph of G whose image is
included in the closure of the face. For two subgraphs H1 = (I,'1, E l) and//2 = (V2, E2),
we define H1 + / / 2 = (V1 t3 V2, E1 U E2). A pair of vertices si and ti which we wish to
connect by a path is called a terminal pair (si, ti). Let S be the set of terminal pairs, and
let k be its cardinality. In this paper we assume that k is an arbitrary integer. Let all the
terminals be located on boundaries BI and B2 of two specified faces f l and f2. We can
assume without loss of generality that G is 2-connected, V(Bt) N V(B2) = 0, and all

Shortest Noncrossing Paths in Plane Graphs 341

e P1 P1

(a)

or\

l
P1

(b) (c)

Fig. 2. Crossing paths (a) and noncrossing paths (b), (c).

terminals are distinct from each other, because one may replace a vertex in G with its
two copies and an edge joining them and having length 0 if necessary.

For paths PI and P2 depicted in Figure 2(a), Image(P1) and Image(P2) cross each
other on the plane. On the other hand Image(PO and Image(P2) do not cross each other
in Figures 2(b) and (c). Let/ '1, P2 Pc be paths connecting the k telxninal pairs. Let
G + be a plane graph obtained from G as follows: add a new vertex v1~ in face f l , and
join vf, to each terminal on B1; similarly, add a new vertex vf~ in face f2, and join vf2 to
each terminal on B2. Let P/, 1 < i < k, be a path (or a cycle) in G + obtained from Pi
by adding two new edges: one joins si to vy, ifsi is on B1, otherwise to vA; and the other
joins ti to vf, if t / is on B1, otherwise to vy z. We define paths P1, P2 Pk in a plane
graph G to be nonerossing (for faces f l and f2) if Image(PS), 1 < i < k, do not cross
each other in the plane. Noncrossing paths P1, t"2 Pc are shortest if the sum of the
lengths of Pl, P2 Pk is minimum~ In graph G shown in Figure 3(a), paths P1 and P2
cross each other (for the faces f l and f2). On the other hand, the four paths P1, P2, P3,
and/ '4 shown in Figure 3(b) do not cross each other. This definition is appropriate for
the VLSI single-layer routing problem mentioned in Section 1. If each grid edge is of
length 1, then the noncrossing paths drawn in thick lines in Figure 1 are shortest.

This paper presents algorithms which necessarily find the shortest noncrossing paths
whenever they exist. It is easy to modify the algorithms so that they check the existence
of noncrossing paths.

11

I i

|

(a) (b)

Fig. 3. Crossing paths (a) and noncrossing paths(b),

342 Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki

!

(a) G(p I) (b) G(P 3)

Fig. 4. Slit graphs,

Suppose that path P1 connecting sl to tl has been determined. Then paths P1,/~
Pk are noncrossing (for faces f l and f2) if and only if paths P2, P3 Pk are noncross-
ing in a slit graph of G for P1 defined as follows. A slit graph G(Pl) of Gforpath P1
is generated from G by slitting apart path Pl into two paths P~ and P~', duplicating the
vertices and edges of P1 as follows. Each vertex v in P1 is replaced by new vertices v' and
v tl. Each edge (vj, vj+l) in P1 is replaced by two parallel edges (vj, vj+l) and (vj', vj'+l).
Any edge (v, w) that is not in P1 but is incident with a vertex v in P1 is replaced by
(v', w) if (v, w) is to the right of a path Pt going from sl to tl through Image(P1), and
by (v", w) if (v, w) is to the left of the path. The operation above is called slitting G
along Pb If a vertex v ~ V(Bi), i = 1 or 2, in /)1 is designated as a terminal in G,
either v' or v", that is incident with vf~ in G +, is designated as a terminal in the slit graph
G(PI). Figures 4(a) and (b) depict the slit graphs G(P1) for P1 and G(P3) for P3 of G
in Figure 3, respectively.

If the slit path P1 connects two terminals, one on B1 and the other on B2, the two faces
f t and f2 are merged into a single face in G(P1) as shown in Figure 4(a). On the other
hand, if the slit path P3 connects two terminals, both on either B1 or Bz, then G(P3) is
divided into two connected components as shown in Figure 4(b). Furthermore, if there
exist k noncrossing paths including P3 in G, then each pair of terminals different from
(s3, t3) are in the same connected component of G(P3). Find noncrossing paths in each
connected component of G(P3). Combine the paths found with/'3, then k noncrossing
paths in G can be obtained.

3. The Case When All the Terminals Lie on a Single Face Boundary. In this section
we present an algorithm to find the shortest noncrossing paths for the case when all the
terminals are located on the boundary B of a single face f . We assume without loss of
generality that f is the outer face of G. A straightforward algorithm for this case is as
follows:

Shortest Noncrossing Paths in Plane Graphs 343

begin
1. f o r / = 1 t o k d o

begin
2. find a shortest path P/connecting s i and ti in G;
3. G := G(Pi) {slit G along Pi}

end
end

Clearly, each path Pi, 1 < i < k, found by the algorithm above, is a shortest
path connecting si and ti in the original graph G. Therefore P1, P2 Pk are shortest
noncrossing paths in G. The algorithm runs in time O(kT(n)) , where T(n) is the time
required for finding shortest paths from a single vertex to all other vertices in a plane
graph of n vertices. We improve the time complexity to O (T (n) log k) by separating this
case into the following two cases:

Case 1. The terminals sl, h, s2, t2 sk, tk appear on B clockwise in this order when
we interchange starting terminals si and ending terminals t~ and/or indices of terminal
pairs if necessary.

Case 2. Otherwise.

We first present Algorithm PATH 1 (G, S) for Case 1 and then Algorithm PATH2(G,S)
for Case 2. PATH1 first decomposes graph G into k subgraphs G1, G2 Gk so that
each subgraph Gi contains terminals si and ti. It then finds a shortest path Pi between si
and t~ in each graph Gi, and finally outputs shortest noncrossing paths P1, P2 Pk.
For a path or tree P we denote by P[v, w] the path connecting vertices v and w in P.

procedure PATH 1 (G, S);
begin

1. let T be a shortest path tree containing shortest paths from sl to all si,
2 < i < k ;

2. for i := l to k do
begin

3. let Gi be the maximal subgraph of G whose image is in the cycle
consisting of two paths, the path T[si, Si+l] from si to Si+l on tree T
and the path on B counterclockwise going from Si+l to si; {sk+z = s~ }

4. find a shortest path Pi between si and ti in Gi
end;

5. output {P/I1 < i < k} {the shortest noncrossing paths}
end;

In Figure 5 tree T is drawn in dotted lines and paths P/in thick lines, and subgraphs
G1, G2, and G3 are colored in different gray tones. The following lemma guarantees the
correctness of procedure PATH 1.

LEMMAI. Let Gi, 1 < i < k, be the subgraphs o f G found in the procedure PATH1.
Then graph Gi contains at least one o f the shortestpaths in G between terminals si and ti.

344 Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki

tl

8

3

Fig. 5. Illustration for PATH1.

PROOF. Let P/* be an arbitrary shortest path connecting si and ti in G. It is sufficient
to show that Gi contains a path Pi which is not longer than Pi*" Let Qi, 2 < i < k, be
the path on T which connects Sl and si on T, and let QI = Q2. If Pi* does not intersect
T, then Gi contains Pi*. Therefore it may be assumed that Pi* intersects T. Let a be the
vertex on T that appears first on Pi* going from ti to si. There are two cases to consider.

Case 1. a is on Oi.

In this case the path T[si, a] going from si to a on T is a shortest path going from
si to a in G. Therefore Pi = T[si, a] + P~'[a, ti] is not longer than Pi*. Clearly Pi is
contained in G~.

Case 2. Otherwise.

In this case 2 < i < k - 1 and vertex a is on Qi+l. Let b be the vertex on Qi+l that
appears first on Pi* going from si to ti, and let c be the vertex on Qi that appears first on
Pi* going back from b to sl. (Thus i fb is on Qi, then b = c.) Then Gi -k- Qi+l contains
Pi*[c, b]. Therefore, Gi + Qi+l contains the path Pi = T[si, c] "+" ei*[c, b] -t- T[b, a] +
19i* [a, ti], and clearly it is not longer than Pi*. Note that Pi is not necessary a simple
path. There exists a simple path P/' on Pi, which is not longer than P/ and contained

in Gi. []

We now consider the execution time of PATH1. All the steps except lines 1 and 4 can
be done in time O(n). Line 1, which finds shortest paths from sl to all other vertices,
can be done in time O(T(n)) . We claim that line 4 can be executed in time O(T(n)) in
total. At line 4 each of the k shortestpaths is found in a plane subgraph of G bounded by
the outer boundary B and tree T. Therefore every edge on T appears in at most two of
the subgraphs G l, G2 Gk, and any other edge of G appears in exactly one of them.
Thus line 4 can be done in time O(T(n)) in total. Therefore the total running time of
procedure PATH1 is O(T(n)) .

Shortest Noncrossing Paths in Plane Graphs 345

t,~ t,~ t t s s~ s~ root generation

(a) (b)

Fig. 6. (a) Terminal pairs. (b) Genealogy tree Tg of height g = 5.

We next present Algorithm PATH2 for Case 2 using PATH 1. Let vl, v2 Vb be the
vertices on B, and assume that they appear on B clockwise in this order. We may assume
without loss of generality that sl = vl and no terminals appear in the subpath of B
counterclockwise going from Sl (= v~) to q. We may assume that, for each terminal pair
(si, ti), vl, si, and ti appear on B clockwise in this order and that sl, s2 sk appear on
B clockwise in this order. (See Figure 6(a).) For each vertex v ~ V (B) , index(v) denotes
the index of v, that is, index(v) = i if v = vi. If index(si) < index(sj) < index(ty) <
index(ti), then (si, ti) is an ancestor of (s j , tj) and (s j , tj) is a descendant of (si, ti). Note
that noncrossing paths do not exist if index(si) < index(sj) < index(ti) < index(tj).
The parent (st, tl) of (si, ti) is an ancestor of (si, ti), none of whose descendants is an
ancestor of (si, ti). The pair (si, tl) is a child of (sl, tl). Let Tg be a (genealogy) tree
whose nodes correspond to terminal pairs and whose edges correspond to the relation of
parent and child. If the terminal pair corresponding to a node p in Tg has a child, then an
edge in Tg joins p to the node corresponding to the child. The terminal pair (sl, q) does
not have a parent, and is called the root of Tg. The generation of terminal pair (si, ti) is
the depth of the node pi in Tg corresponding to (si, ti) plus 1. See Figure 6(b). Let g b e
the maximum generation of nodes. We define similarly the relation of parent and child
among paths connecting terminal pairs.

There are two main ideas behind Algorithm PATH2 for Case 2. The first idea is to
find shortest noncrossing paths for the terminal pairs of a single generation by using
PATH1. Note that such terminal pairs satisfy the requirement for Case 1. We divide
G into several components by slitting G along the paths found. For each terminal pair
in a component, at least one of the shortest paths connecting the terminal pair in G is
contained in the component. Thus we can find shortest noncrossing paths by applying
PATH1 to each generation one by one from the first generation to the last. However such
a naive implementation of the algorithm above spends time O (g T(n)). The second idea
is to use the divide-and-conquer method. Our algorithm first finds noncrossing paths
for the middle generation, slits the graph along the paths found, and recursively finds
noncrossing paths in each connected component. Figure 7 illustrates the idea; Figure 7(a)
depicts noncrossing paths for the third generation, that is, the middle generation, in thick

346 Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki

§

(a)

t t~ t, s o ~,~ ~ .x ; ~. -~..~ ~ s,

s '5~'%)J t ~

W.I. .g . .?-8o s t~ t ,o

(c)

(b)

Fig. 7. Illustration for PATH2.

lines; and Figure 7(b) depicts a graph obtained by slitting G along the paths found,
where all the terminal pairs of older generations are contained in the dark region and the
younger generations in the light region. This way we can obtain a recursive algorithm
which runs in time O (T (n) l o g g) , but we need more definitions to present a formal
description of the algorithm.

The inside of path Pj connecting terminal pair (si, ti) is the inside of the cycle con-
sisting of P~ and the subpath of B counterclockwise going from ti to si, and is denoted
by in(Pi). The outside of Pi is the inside of the cycle consisting of Pi and the subpath of
B clockwise going from ti to si, and is denoted by out (Pi), The inside of a set 7) of paths
connecting terminal pairs is the union of the insides of paths in 7), and is denoted by
in(~'). The outside of 7) is the intersection of the outsides of paths in P, and is denoted
by out (7)).

The output of our algorithms is not a set of k paths but is a set U of trees which contain
the k terminal pairs. The set of paths connecting si and tl, 1 < i < k, on trees in ~ are
shortest noncrossing paths in G. Since the total number of edges of trees in U is O (n),
the total length of the k paths can be computed by solving the nearest common ancestor
problem [GT] for trees in 9 c total in time O(n) [SAN2]. In Figure 7(c), 5 c contains 12
trees and each of k (= 16) terminal pairs is contained in one of the trees.

We are now ready to present PATH2.

Slmrtest Noncrossing Paths in Plane Graphs 347

procedure PATH2(G, S);
begin

1. let g be the maximum generation of terminal pairs;
2. ~" := 0;
3. REDUCE(G, [1, g], Y)

end;

procedure REDUCE(G, If, h], 7-);
begin

1. if l = h then {there is only one generation}
begin

2. let S l be the set of terminal pairs of generation t;
3. execute PATHl(G, Sl) and let 79t be the set of found paths;
4. Y := Y U Pl {detail are mentioned later}

end
5. else { l < h }

begin
6. m :--- [(l + h)/2J ;
7. let S m be the set of terminal pairs of generation m;
8. execute PATHI(G, S'~), and let Pm be the set of found paths;
9. Y := Y U T'm ; {detail are mentioned later}

10. let Gin and Gout be the maximal subgraphs of G which are in in(79m)
and in out (79m), respectively;

11. REDUCE(Gin, [m + 1, h], Y);
12. REDUCE(Gout, [l, m - 1], Y)

end
end;

The running time of PATH2 is dominated by that of REDUCE. REDUCE uses a
divide-and-conquer method on generations of terminal pairs. REDUCE first finds shortest
noncrossing paths connecting the terminal pairs of the middle generation by using PATH 1
in time O (T (n)). By slitting G along the determined paths, REDUCE divides the problem
into two subproblems, one for the older generations and one for the younger generations.
Then these two problems are solved by recursively applying REDUCE. Since the depth
of recursive calls is at most log g, we show that REDUCE executed for all subgraphs in
the recursive calls of the same depth can be done total in time O(T(n)) . It suffices to
show that every edge in G appears in a constant number, for example at most three, of
the subgraphs. We give the detail of the method to divide G and update Y below. (In
Figure 7 the edges shared by P3 and PH appear in three subgraphs.)

REDUCE first finds noncrossing paths P1, P2 Pm connecting the terminal pairs
of the middle generation by using PATH 1. Then REDUCE slits G along the paths found.
(Figure 8(a) illustrates an example for which S m = {(Sm~, tm~), (S,n2, tin2)}. REDUCE
finds Qmz and Qm2, and slits G along Om~ and Qm2 to divide G into three subgraphs
Gt, Gin1, and G,~ 2 as shown in Figure 8(b).) Some of the paths aj, 1 < j < q, which
have been found so far, may appear on the current outer boundary of G. (Figure 8(c)

Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki 348

t i tdl

(a)
(b) G ~, G.,~, G,. 2

t 1 81 ~
-sel s 2 sd2

t~ ta~
(c) G~ (d) G' 1

Fig. 8. Illustration for slitting a graph and construction of trees in U.

illustrates the case where Qtn~ and Qm2 appear on the outer boundary of G1 .) Note that
the edges and vertices of each Qj have been duplicated. Suppose that G was divided
by slitting along the whole path P/, 1 < i < m. Then the edges shared by P /and Qj
would be duplicated once more and hence wouldappear in four or more subgraphs of G.
Furthermore, since the vertices of the slit path Qj have already been included in trees in
~ , the total number of vertices of trees in 5 c could not be bounded by O (n), Therefore
we divide G and update f as follows. Assume for simplicity that P/intersects exactly
one of its descendants or ancestors. If=Pi is neither an ancestor nor a descendant of Q/,
then we slit G along the whole path Pi. On the other hand, if Pi is an ancestor or a
descendant of Q j, then we slit G along two subpaths of Pi as follows.

Shortest Noncrossing Paths in Plane Graphs 349

Let v be the intersecting vertex of Pi and Qj that appears first on Pi going from si
to ti, and let w be the intersecting vertex of Pi and Oj that appears last on Pi going
from si to ti. It may be assumed that P/passes through Qj [v, w]. Construct a slit graph
G' = G(Pi[si, v] + Pi[to, ti]) by slitting G along Pi[si, v] and P/[w, ti]. Update the tree
T 6 U containing Qj by concatenating Pi[si, v] and Pi[w, ti] to T c 5 t-. (Figure 8(d)
illustrates a graph G' l which is obtained by slitting G1 along Pi[si, v] and P/[w, ti]. G'~
consists ofthre e connected components Go,,, Gw,,, and Gv,,w,,. It can be observed from the
location of terminal pairs that Pi is an ancestor of Qmt. Therefore the tree T 6 f" which
contains Qm~ is updated to a new tree T by concatenating Pi[si, v] and Pi[w, ti] to it.)

When G is slit along Pi [si, v] and Pi [w, ti], v and w are replaced by two new vertices
v', v" and w', w", respectively. Vertices v t and v" are contained in distinct connected
components of G', and w' and w" are also contained in distinct connected components
of G'. Let pi be the node of genealogy tree Tg corresponding to Pi, and let pj be the node
of Tg corresponding to Qj. Let N/j be the set of nodes on the path Tg[pi, pj]. If pal ~ Nij
corresponds to (Sd, td) ~ S, then Sd and td are separated into distinct components of
G'. (The terminal pair corresponding to Pd ~ Nij are contained in the same connected
component of G t.) Since Pd ~ Nij is an ancestor or a descendant of Pi, i tmay be assumed
that a shortest path Pd connecting sd and ta passes through Pi[v, w] = T[v, w]. In each
connected component of G t containing such separated terminal pairs, find a shortest path
tree T' which is rooted to either #, v", w', or w" and contains shortest paths from the
root to all separated terminals Sd, ta. Update T E 5 t" by concatenating T' to T. Note
that the updated tree T 6 5 v contains paths connecting Sd and td. (Figure 8(d) illustrates
two shortest path trees found in Gv,, and Gw,,: one contains shortest paths from v" to sd,
and Sd2, and the other contains shortest paths from w" and ta~ and td2. We update the tree
T 6 U which contains Qm~ and Pi by concatenating the two shortest path trees to T.
The two shortest path trees are drawn in dotted lines.) We then divide G' into several
subgraphs by slitting G' along the shortest path trees found, and find shortest noncrossing
paths in each subgraph by recursively calling REDUCE.

As explained above, if Pi is an ancestor or a descendant of path Qj which has already
been found, then the edges shared by Pi and Qy are not duplicated. On the other hand,
if Pi is neither an ancestor nor a descendant of Q j, then the edges shared by Pi and Qj
are duplicated again. In this case a path which passes through the shared edges may be
found later, but such a path must be an ancestor or a descendant of path Pi or Qj. Thus
every edge in G appears in at most two of the slit paths, and appears in at most three
of the subgraphs of the same depth of recursive calls. Moreover, it can be observed that
every edge of G appears in at most two trees in f . Thus we can conclude that REDUCE
executed for all subgraphs in the recursive calls of the same depth can be done in total
in time O(T(n)).

Since the depth of recursive calls of REDUCE is O(log g), the total execution time
of REDUCE is O(T(n) logg). Since g = O(k), PATH2 runs in time O(T(n) logk) in
total. Note that each path P/found by PATH2 is a shortest path connecting s; and ti in G.

4. The Case When All the Terminals Lie on Two Face Boundaries. In this section
we present an algorithm for the case when all the terminals lie on two face boundaries
BI and B2. For each pair (si, ti) of one terminal on B1 and the other on B2, it may be

350 Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki

~ ,, $1

Fig. 9. Slit graph G~.

assumed without loss of generality that s i C V(B1) and ti ~ V(B2). Let

S12 : {(Si, ti)Jsi E V(B1) and ti ~ V(B2)},

S 1 = {(Si, ti)lsi, ti E V(B1)},

and

82 = {(si, ti)lsi, ti E V(B2)}.

It may be assumed that $12 r ~: otherwise, shortest noncrossing paths can be easily
found by executing PATH2 twice, once for G to find paths for $1, and then once for the
graph obtained by slitting G along the paths found to find paths for $2.

Let (sl, q) 6 S12, and let Pl* be a shortest path between sl and tl in G. Let G 0 be the
slit graph of G for P~. Then G 0 has two vertices v' and v" corresponding to sl and two
vertices w' and w" corresponding to tl. Vertices v', w', w", and v" lie on the same face
boundary in G 0 and appear on the boundary clockwise in this order. Let P+ and P1
be the two paths in G corresponding to the shortest paths in G 0 between v' and w" and
between v/' and w/, respectively. In Figure 9 P+ and P~ are drawn in solid and dotted
lines, respectively. Then the following theorem holds, a proof of which is given later in
this section.

THEOREM 1. Let P~ be a shortest path connecting (sl, tl) ~ S12 in G. Then G contains
shortest noncrossing paths including either P{ , P+, or P (.

Theorem 1 immediately leads to the following algorithm for finding shortest non-
crossing paths in G.

procedure PATH(G);
begin

1. find a shortest path Pj* between Sl and tt in G; {(Sl, q) ~ S12}
2. construct the slit graph G 0 = G(PI*), and find paths P+ and Pl-;

Shortest Noncrossing Paths in Plane Graphs 351

3. 7~0 := {e~*}, 7~ := {e+}, 7~2 := {el-};
{each ~ , 0 < i < 2, becomes a set of noncrossing paths}

4. construct the slit graph G] = G(P +) and the slit graph G~ = G(P1-);
{all the terminals lie on a single face boundary in G I, 0 _< i _< 2.}

5. f o r / : = 0 t o 2 d o
begin

6. PATH2(G I, S - (sl, q)); {find shortest noncrossing paths in GI}
7. add the k - 1 paths/2, P3 Pk found to 79i

end;
8. output, as a solution, one of the sets To, 791, and 7~2 whose total length is

minimum
end;

The dominating part of the execution time of Algorithm PATH is one for executing
PATH2 three times. Therefore the running time of PATH is O (T (n) log k). Thus we have
the following theorem.

THEOREM 2. Given a plane graph G with k terminal pairs on its two face boundaries,
shortest noncrossing paths can be found in time O (T (n) log k), where T (n) is the time
required for finding shortest paths from a single vertex to all other vertices in a plane
graph of n vertices.

A usual shortest path algorithm, that is, Dijkstra's method with a heap, takes time
T(n) = O(nlogn) for a plane graph [AHU], IT]. On the other hand Frederickson's
method takes time T(n) = O(n) with preprocessing time O(n log n) [F]. Therefore our
algorithm can be implemented to take time O (n (log n + log k)) = O (n log n).

In the remainder of this section we prove Theorem 1. Let rS121 = I. Furthermore,
let (si, ti) ~ S12 if 1 < i < l, and (si, ti) E S1 U S 2 otherwise. It may be assumed
without loss of generality that terminals sl, s2 s~ appear on BI counterclockwise in
this order and tl, t2 tt appear on B2 counterclockwise in this order. For the sake of
simplicity, we assume that graph G is embedded in the plane region Z surrounded by

both having the center at the origin two circles Z1 with radius 1 and Z2 with radius ~,
O of the x - y plane. We may assume without loss of generality that, for each terminal
pair (si, ti),

Image(si) = (cos (2n" i~ \ - T] , sin (~ i))

and

2yg lsio (T/))
and thatlmage(G) fq (Z1 U Z2) = {Image(si), Image(ti) f I < i < l}.

Let P be a path going from point a to point b in Z. Let 0 be the total angle (measured
counterclockwise) turned through by the line OX when point X moves on P from
a to b. Possibly 101 > 2zr. We define the (normalized) angle O(P) of path P by
O(P) = 0/2Jr. Thus angle O(Pi) of path P/ connecting si and ti means the number

of rotations of Pi around Zz. ff P1, P2 Pk are noncrossing paths in G, then clearly
O(P1), O(P2) 0(/}) are all equal to the same integer.

Note that shortest noncrossing paths are not always simple for the case of this section
even if every edge has a positive length: each of them may traverse the same vertex or
edge more than once, but is necessarily noncrossing itself. Thus in this section a "path"
does not always mean a simple one, but is noncrossing itself. The following lemma holds,
where length(P) denotes the length of path P.

LEMMA2. Let P~ beashortestpathconnecting s~ andtl in G, andlet Pi, 1 < i < I, be
an arbitrary path connecting si and ti in G. Then there exists in G a path P/connecting
si and ~ such that length(P/) < length(Pi) and

[0(P~)
O(P/) =]O(P~) + 1

[0 (P ~) - 1

8

if o(Pi) = o (P;) ,
if o(P~) > o(P~) + 1,
if o(Pi) < o(P~) - t.

PROOF. Assume for simplicity that Pi is a simple path. Let V(P~) 71 V(PI) =
{vl, v2 Vq}, and let vl, v2 Vq appear in this order on P~[sl, h]. Denote by
U(Pi) the set of vertices vx, 1 < x < q - 1, such that E(P~[vx, vx+l]) N E(Pi) = 0.
(An example is depicted in Figure 10, where P~ is drawn in a thin straight line, Pi in a
thick line, O(P~) = 0, 0(P/) = 2, q = 5, and U(Pi) = {vl, v2}.)

Suppose for a contradiction that the lemma does not hold for a path Pi and furthermore
IU(Pi)I is minimum among such paths. IfO(Pi) - O(P~) = 0 or 4- t , then clearly path
P / = P/satisfies the requirement. Therefore it may be assumed that 0 (Pi) > 0 (P~) + 2;
the proof for the case O(Pi) < O(P~) - 2 is similar. Then IU(P~)I >_ 1. Let va be an
arbitrary vertex in U (Pi), and let vertices si, vg, Vh, and ti appear in this order on Pi where
{g, h} = {a, a + i } . Let Qi = Pi[si, Vg]+P~[vg, Uh]-qt-Pi[Uh, ti], then clearly Qi i sapa th
connecting sl and ti and length (Qi) <_ length(Pi). Since Pi [Vg, Oh] + P~ [Vh, vg] is a cycle,
IO(Pi[vg, Vh]) -- O(P~[vg, Vh])J = 0 or 1, and hence O(Qi) >_ O(Pi) - 1 >_ O(P~) + 1.

,81

352 Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki

Fig. 10. Illustration for proof of Lemma 2.

Shortest Noncrossing Paths in Plane Graphs 353

Therefore the lemma does not hold for Qi either. However, tU(Qi)[<]U(Pi)I, a
contradiction. []

In Lemmas 3-5 following let 0 = 0, 4-1, 4-2 and let PI be the shortest one among
the paths in G which connect sl and t~ and have angle 0. We have the following lemma.

LEMMA 3. Let u and w be two vertices on PI , and"let Q be a path between u and w in
G such that O(Q[u, w]) = O(P1 [u, w]). Then length(Q) > length(Pl[u, w]).

PROOF. Assume for simplicity that path P1 is simple. Let the intersecting vertices
Vl (= u), v2 Vq (= w) of Pl and Q appear on Q[u, w] in this order. For each
x, 1 < x < q, let r~ = O(Q[vl, vx]) - ~9(Pl[vl, v,]). Then the sequence of integers
rx, r2 rq satisfies

rl =rq =0 ,
r x - r x + l = O , -t-1 for every x, l < x < q - 1 .

Denote by U(Q) the set of vertices vx, 1 < x < q - 1, such that E(Q[vx, Vx+l]) fq
E(PD = 13. For a cycle C, denote by Z(C) the set of paths Q[vx, vx+l], 1 < x < q - 1,
which are properly inside C except for the ends.

Suppose for a contradiction that the lemma does not hold for a path Q and furthermore
IU(Q)P is minimum among such paths. Then U(Q) r 0; otherwise Q is a path on P1
and hence the lemma holds.

We claim that rx # rx+t for every v~ ~ U(Q). Let rx = r~-~l for a vertex v~
U(Q), and let f2(C~)l be minimum among such vertices where Cx = Q[v~, vx+l] +
Pi[vx+1, v~]. If there is a path Q[v r, vr+l] in Z(Cx), then clearly r r = ry+l and
IZ(Cy) t < I2"(C~:)I where Cy = Q[vy, vy+l] + Pl[vy+l, vy], a contradiction. Thus
Z(C~) = 13. Then path P(= Pl[sl, vg] + Q[vg, Vh] + Pl[t)h, Vq] has angle 0 and
is noncrossing itself, where {g, h} = {x, x + 1} and sl, vg, vh, and tl appear on P1
in this order. Since length(P{) > length(PD, Q[og, Vh] > Pl[Vg, Vh]. Therefore path
Q' = Q[vl, vx] + Pl[vx, v~+~] + Q[V~+l, vq] satisfies length(Q') < length(Q) and
O(Q') = O(Pl[vl, Vq]). Since [U(Q')[= tU(Q)t - 1, the lemma holds for Q', that is,
length(Q') > length(Pl[vl, Vq]), and hence length(Q) ~ length(P~[vl, Vq]), a contra-
diction.

Thus ri > 0 for some integer i, 2 < i < q - 1. Considering r~ a maximal positive
number, we know that there are two integers a and b such that 3 _< a + 2 < b < q
and ra = rb = ri -- 1 for every i, a < i < b. Since r~ # rx+l for every v~ E U(Q),
vi f~ U(Q) for every i, a < i < b - 1. Therefore Q[Va+l, vb-1] is apa th on P1, and
C~ = Q[v,, vb] + Pl[vb, Va] is a cycle. Choose a and b so that 12-(C~b)l is minimum.
If Z(Cao.) = 0, then an argument similar to above leads to a contradiction. Therefore
it may be assumed that there is a path Q[vc, vc+l] in Z(Cab). Clearly, r~ r r~+l. Let
r~ < r~+l; the proof for the case rc > r~+l is similar. Then there is an integer d
such that c + 2 < d _< q and r~ = ra = ri - - 1 for every i, c < i < d. Since cycle
C~a = Q[v~, vd]+ Pl [va, v~] is inside Cab, tZ(Cca)l < IZ(Cab) t, contrary to the selection
of a and b. []

Using Lemma 3, we can have the following two lemmas.

354 Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki

LEMMA 4. Let Pi, 2 < i < l, be a path which connects si and ti and has angle O. Then
there exists a path Pi' connecting si and ti such that:

(a) P[does not cross P1.
(b) O(P:) = O(P~) = 0 and length(P:) < length(Pi).

PROOF. It may be assumed that Pi crosses P1. Let the intersecting vertices v~, v2 /3q

of Pi and P1 appear on Pi[si, ti] in this order. For each x, 1 < x < q, let rx =
O(Pi[Vl, Vx]) - O(Pl[Vl, Vx]). Then rq = O, :kl.

Consider first the case rq = 0. In this case by Lemma 3 tength(Pt[vl, vq]) <
length(Pi[vb Vq]), and hence path P: = Pi[si, vl] + Pl[vl, Vq] + Pi[vq, ti] satisfies
length(P[) < length(Pi). Clearly, 0(P/') = 0 and P: does not cross P~.

Consider next the case rq : 1; the proof for the c a s e rq = - 1 is similar. In this
c a se r a ---- 0 a n d r a + l = 1 for an in tegera , 1 < a < q - l . S ince0 (P l [v l , va]) =
O(Pi[Vl, Ua]) and O(Pl[Va+l, Vq]) -~- O(Pi[Va+l, vq]), by Lemma 3 length(el[vl, v~]) <
tength(Pi Iv1, v,]) and length(P1 [v~+l, Vq]) < length(Pi [Va+l, Vq]). Therefore path P / =
Pi[si, v~] + Pl[vl, v~] + Pi[v~, Va+l] + Pl[v~+l, Vq] + Pi[vq, ti] satisfies length(P:)
< length(Pi). Clearly, O(P[) = 0 and P: does not cross Pl. []

Let (si, ti) ~ S1 U $2, i.e., l + 1 < i < k, and let Pi be a path between si and ti. I f
(si, ti) e $1, then let st, si, tl appear on Bt counterclockwise in this order and let A be
the path on B1 clockwise going from tl to si. I f (si, ti) E $2, then let q , sl, ti appear on
/32 counterclockwise in this order and let A be the path on B2 clockwise going from ti
to si. Let Cp~ be the cycle consisting of two paths, Pi[si, ti] and A. Observe that if P/
does not cross a path connecting sl and q , then cycle Cp, does not contain face f2 inside.
Conversely the following lemma holds.

LEMMA 5. I f cycle Cp~ does not contain f2 inside, then there is a path P[between si
and tl which satisfies length(P[) < length(Pi) and does not cross P1.

PROOF. It may be assumed that Pi crosses PI. Let the intersecting vertices v l, v2 Vq

of Pi and P1 appear on Pi[si, ti] in this order. For each x, 1 < x < q, let rx =
O(Pi[vl, Vx]) - O(P~[vl, vx]). Let D = Pi[vq, ti] + A[ti, si] + ei[si, v l] , then Cp~ =
Pi[vi, vq] + D. Since cycle Cp, does not contain f2 inside, O(Pi[Vl, Vq]) + O(D) = O.
Since Pl[V~, Vq] + D is a cycle, [0 (P1 [vl, Vq]) + 0 (D)I < 1. Therefore we have Irq I < 1.

Consider first the case rq = 0. Then by Lemma 3 length(Pl[vl, Vq]) < length(Pi[vt,
vq]). Therefore path P: = Pi[si, vii + Pl[vl, Vq] + Pi[vq, ti] satisfies length(P:) <
length(Pi), and clearly P[does not cross Pl.

Consider next the case r e = 1; the proof for the case rq ----- - - 1 is similar. In this
case there is an integer a such that 1 < a < q - 1, r a = 0, and ra+l = 1. Since
length(Pl[vl, Va]) < length(Pi[vl, Va]) and length(Pl[Va+~, Vq]) < length(P~[va+l,
Vq]), P: = Pi[si, vii + PI[Vl, Va] + Pi[va, Va+l] + el[va+l, Vq] + Pi[vq, ti] satisfies
length(P[) < tength(Pi). Furthermore, P: does not cross Pl. []

Furthermore, the following lemma clearly holds.

Shortest Noncrossing Paths in Plane Graphs 355

LEMMA 6. Let P1 be an arbitrary path in G connecting sl and h. Then G contains
paths Pi, 2 < i < k, such that:

(a) P I , / ' 2 , ' - ' , P~ are noncrossing in G.
(b) Each path Pi, 2 < i < k, is a shortest one among the paths in G which connect si

and t i and does not cross PI.

PROOF. Construct G(P1) by slitting G along P1. Then two faces fl and f2 are merged
into a same single face f in G(P~) and all terminals lie on the boundary of f (see
Figure 4(a)). Let Pz, P3, . . . , Pk be the shortest noncrossing paths in G(P~) obtained
by applying procedure PATH2 for G(P1). Then P1, P2 Pk are noncrossing in G.
Furthermore, each path Pi, 2 < i < k, is shortest among the paths in G(P1) which
connect s~ and ti, and hence Pi is shortest among the paths in G which connect sg and t~
and do not cross P~. []

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. Let P~, P2 Pk be arbitrary shortest noncrossing paths in
G. Clearly, O(P1) = O(P2) 8(PI). By Lemma 4 applied for PI* and each
Pi, 1 < i < l, we know that there exists a path P" connecting si and tl such that
tength(P~) <_ length(Pi) and

[e(P;)
o(p/) = | o (e ;) +

/ - 1

if O(P~) = O(P~),
if O(P~) > O(P~) + 1,
if 0(P~) _5< 8(P~) - 1.

Note that O(P 0 = O(P~) = . . . = O(Pi) but P(, P~ Pi may cross each other.
Clearl); O(P +) = O(P{) + 1 and O(P~-) = O(P~) - 1. Similarly as in the proof of

Lemma 2, it can be proved that path P+ is shortest among the paths in G which connect
sl and tl and have angle O(P{) + I, and path PI-- is shortest among the paths in G which
connect sl and tl and have angle O(P{) - 1.

Let P[' be

[P~ if O(PI) = O(P~),
P~'= ~P1 if O(P1)>__O(P~)+I,

! P~- if O(P1) < O(P:) - 1,

and let 0 = O(P(') = O(P O. Then by Lemmas 4 and 5 there exist paths P~P, P~' p~1
such that each ,;,P" 2 < i < k, does not cross P1 '~ and satisfies

~length(Pi') if 2 < i < l,
length(P[') < |length(Pi) if I + 1 < i < k.

By Lemma 6 G contains noncrossing paths P~" = P;', P~", P~", P " such that
* ' ' 7 k

length(P[") < length(Pi"), 1 < i < k. P(", P~" P{" are shortest noncrossing paths
in G since length(Pi") < length(Pi) for every i, 1 < i _5< k. []

356 Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki

5. Optimal Nonerossing Paths. In this section we show that, slightly modifying the
algorithms in the preceding sections, "optimal" noncrossing paths can be found.

Let P1,/'2 P~ be noncrossing paths in a plane graph G, where Pi connects termi-
nals si and ti. Denote the length of Pi by I i . Let f (l l , 12 Ik) be an arbitrary (objective)
function which is nondecreasing with respect to each variable l i . We call noncrossing
paths P1, P2 Pk minimizing f (ll, 12 Ik) optimal noncrossing paths (with re-
spect to the objective function f) .

EXAMPLE 1. The shortest noncrossing paths are optimal ones minimizing the objective
function f = ~,ik=l Ii. Clearly, f is nondecreasing with respect to each li.

EXAMPLE 2. If all the paths (wires) have the same width, then the shortest noncrossing
paths correspond to a routing minimizing the area required by wires. On the other hand,
if the paths have various widths, say Pi has width wi, then optimal paths minimizing
f = ~ i W i l l correspond to a routing minimizing the area. This function f is also
nondecreasing with respect to each l i .

EXAMPLE 3. Noncrossing paths minimizing f = max{ll, 12 lk} are desirable
when one wishes to minimize the time delay in wires. Such an f is also nondecreasing
with respect to each li.

There are two cases:

Case 1. All the terminals lie on a single face boundary.

The algorithm in Section 3 finds noncrossing paths PI,/ '2, " ", Pk such that Pi, 1 <
i < k, is a truly shortest path between si and ti in G. Since f is nondecreasing with
respect to each length li, these paths P1, P2 Pt minimize f and hence are optimal
noncrossing paths.

Case 2. All the terminals lie on two face boundaries.

Similarly as the proof of Theorem 1, one can prove the following theorem.

THEOREM 3. Let P~ be a shortest path connecting (sl, tl) E $12 in G. Then G contains
optimal noncrossing paths including either P{, P+, or P~.

Hence optimal noncrossing paths can be found by procedure PATH if line 8 is replaced
by:

8. output, as a solution, one of the sets 79o, 791, and 792 that minimizes the
objective function f

Thus, if the function f for given noncrossing paths can be evaluated in O (n log n)
time, then optimal paths can be found in O(n log n) time.

Shortest Noncrossing Paths in Plane Graphs 357

6. Conclusion. In this paper we presented an efficient algorithm for finding shortest
or optimal noncrossing paths for the case where terminal pairs are located on two spec-
ified face boundaries of a plane graph, and proved that the running time is O (n log n).
Furthermore, it is rather straightforward to modify our sequential algorithm to an NC
parallel algorithm which finds shortest or optimal noncrossing paths in polylog time
using a polynomial number of processors. Notethat there are NC parallel algorithms for
the shortest path problem on general or planar graphs [J], [K]. We are now extending the
algorithm to a more general case where terminals lie on three or more face boundaries
and a case where terminals lie on the plane with several rectangular obstacles.

Acknowledgments. We wish to thank Professor Tetsuo Asano of Osaka Electro-
Communication University and Professor D. T. Lee of Northwestern University for
suggesting the noncrossing path problem. We also wish to thank the reviewers for their
very useful suggestion to improve the presentation of the paper.

References

[AHU]

[DAKI

[F]

[GT]

[J]
[K]

[KL]

[LSYW]

[L]

[SAN1]

[SAN2]

IT]
[TSN]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.
W. Dai, T. Asano, and E. S. Kuh, Routing region definition and ordering scheme for building-block
layout, IEEE Trans. Computer-Aided Design, 4(3) (1985), 189-197.
G. N. Frederickson, Fast algorithms for shortest paths in planar graphs, with applications, SIAM
J. Comput., 16 (1987), 1004-1022.
H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union,
J. Cornput. System Sci., 30 (1985), 209-221.
J. J~J~, An Introduction to Parallel Algorithms, Addison Wesley, Reading, MA, 1992.
E N. Klein, A linear processor polylog-time algorithm for shortest path in planar graphs, Proc.
34th Symp. on Foundations of Computer Science, pp. 259-270, 1993.
M. R. Kramer and J. van Leewen, Wire-routing is NP-complete, Report No. RUU-CS-82-4,
Department of Computer Science, University of Utrecht, Utrecht, 1982.
D. T. Lee, C. E Shen, C. D. Yang, and C. K. Wong, Non-crossing path problems, Manuscript,
Dept. of EECS, Northwestern University, 1991.
J. E Lynch, The equivalence of theorem proving and the interconnection problem, ACM SIGDA
Newsletter, 5(3) (1975), 31-36.
H. Suzuki, T. Akama, and T. Nishizeki, Algorithms for finding internally-disjoint paths in a planar
graph, Trans. IECE, J71-A(10) (1988), 1906-1916 (in Japanese).
H. Suzuki, T. Akama, and T. Nishizeki, Finding Steiner forests in planar graphs, Proc. First
S1AM-ACM Syrup. on Discrete Algorithms, pp. 444-453, 1990.
R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.
J. Takahashi, H. Suzuki, and T. Nishizeki, Algorithms for finding noncrossing paths with minimum
total length in plane graphs, Proc. ISAAC '92, Lecture Notes in Computer Science, vol. 650,
Springer-Verlag, Berlin, pp. 400--409, 1992.

