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Shortest Noncrossing Paths in Plane Graphs 

Jun-ya Takahashi, t Hitoshi Suzuki, 2 and Takao Nishizeki 2 

Abstract. Let G be an undirected plane graph with nonnegative edge length, and let k terminal pairs lie 
on two specified face boundaries. This paper presents an algorithm for finding k "noncrossing paths" in G, 
each connecting a terminal pair, and whose total length is minimum. Noncrossing paths may share common 
vertices or edges but do not cross each other in the plane. The algorithm runs in time O(n logn) where n is 
the number of vertices in G and k is an arbitrary integer. 
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1. In t roduct ion.  The shortest disjoint path problem, that is, to find k vertex-disjoint 
paths with minimum total length, each connecting a specified terminal pair, in a plane 
graph G has many practical applications such as VLSI layout design. The problem is 
NP-complete [L], [KL], and so it is very unlikely that there exists a polynomial-time 
algorithm for its solution. However, if two or more wires may pass through a single 
routing region [DAK], then the problem can be reduced to the shortest "noncrossing" 
path problem. Here "noncrossing" paths may share common vertices or edges but do 
not cross each other in the plane. The shortest noncrossing path problem is expected to 
be solvable in polynomial time at least for a restricted case, for example, a case where 
either the number k of  paths or the number of  face boundaries on which all the terminals 
are located is bounded. Indeed an O (n log n) algorithm has been obtained for the special 
case of  k = 2, where n is the number of  vertices in G [LSYW]. 

In this paper we present an O (n log n) algorithm to find shortest noncrossing paths in 
a plane graph for the case when all the terminals of  k pairs are located on two specified 
face boundaries. We assume that k is an arbitrary integer. For the same case, Suzuki et al. 
[SAN1 ], [SAN2] obtained an O (n log n) algorithm for finding vertex-disjoint paths, but 
the total length of  the paths found by their algorithm is not minimum. Our algorithm can 
be applied to a single-layer routing problem which appears in the final stage of  VLSI 
layout design, where each wire connects a pad on the boundary of  the chip and a pin on 
the boundary of  a block (see Figure 1). Furthermore, we show that a similar algorithm 
can find noncrossing paths that are optimal with respect to any objective nondecreasing 
function in the length of  each path. 

The rest of  the paper is organized as follows: In Section 2 we give a formal description 
of  the problem and define terms. In Section 3 we present an algorithm to find shortest 
noncrossing paths in a plane graph G for the case where all terminals lie on a single face 

I Department of Computer Science, Faculty of Engineering, Iwate University, Morioka 020, Japan. 
2 Graduate School of Information Sciences, Tohoku University, Sendai 980-77, Japan. 

Received April 12, 1994; revised October 23, 1994. Communicated by K. Melhoru. 



340 Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki 

12 q 

1 2 

10 9 8 7 

93 

)4 
m ) 5  

Fig. 1. Noncrossing paths in a grid graph. 

boundary. A naive algorithm for this case takes time O (kn log n), but our algorithm takes 
time O (n log n). The main idea behind the algorithm is a divide-and-conquer technique 
based on the "genealogy tree" of terminal pairs (see Figure 6). In Section 4 we present an 
O (n log n) algorithm to find shortest noncrossing paths for the case where all terminals 
lie on two face boundaries B1 and B2. There are two main ideas behind the algorithm. 
The first idea is to notice that there exists a solution to the problem which contains one 
of three specified paths connecting a terminal on B1 and a terminal on B2, i.e., either 
a shortest such path or one of two certain induced paths. The second idea is to reduce 
an instance of the problem to three instances of the former problem by "slitting" the 
graph along these three paths such that all terminals lie on a single face boundary in the 
resulting graphs. In Section 5 we present an algorithm to find optimal noncrossing paths. 
Finally, we conclude in Section 6 with some general comments. A preliminary version 
of this paper was presented in [TSN]. 

2. Preliminaries, In this section we give a formal description of the noncrossing path 
problem and define terms. We denote by G = (V, E) a graph consisting of vertex set V 
and edge set E. We denote by V (G) and E (G) the vertex and edge sets of G, respectively. 
Assume that G is an undirected plane graph and that every edge in G has a nonnegative 
edge length. Furthermore we assume that G is embedded in the plane ]~2 The image 
of G in ~2 is denoted by Image(G)" C ]~z A face of G is a connected component of 
~2 _ Image(G). The boundary of a face is the maximal subgraph of G whose image is 
included in the closure of the face. For two subgraphs H1 = ( I,'1, E l) and//2 = (V2, E2 ), 
we define H1 + / / 2  = (V1 t3 V2, E1 U E2). A pair of vertices si and ti which we wish to 
connect by a path is called a terminal pair (si, ti). Let S be the set of terminal pairs, and 
let k be its cardinality. In this paper we assume that k is an arbitrary integer. Let all the 
terminals be located on boundaries BI and B2 of two specified faces f l  and f2. We can 
assume without loss of generality that G is 2-connected, V(Bt)  N V(B2) = 0, and all 
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Fig. 2. Crossing paths (a) and noncrossing paths (b), (c). 

terminals are distinct from each other, because one may replace a vertex in G with its 
two copies and an edge joining them and having length 0 if necessary. 

For paths PI and P2 depicted in Figure 2(a), Image(P1) and Image(P2) cross each 
other on the plane. On the other hand Image(PO and Image(P2) do not cross each other 
in Figures 2(b) and (c). Let/ '1, P2 . . . . .  Pc be paths connecting the k telxninal pairs. Let 
G + be a plane graph obtained from G as follows: add a new vertex v1~ in face f l ,  and 
join vf, to each terminal on B1; similarly, add a new vertex vf~ in face f2, and join vf2 to 
each terminal on B2. Let P/, 1 < i < k, be a path (or a cycle) in G + obtained from Pi 
by adding two new edges: one joins si to vy, ifsi is on B1, otherwise to vA; and the other 
joins ti to vf, if t / is on B1, otherwise to vy z. We define paths P1, P2 . . . . .  Pk in a plane 
graph G to be nonerossing (for faces f l  and f2) if Image(PS), 1 < i < k, do not cross 
each other in the plane. Noncrossing paths P1, t"2 . . . . .  Pc are shortest if the sum of the 
lengths of Pl, P2 . . . . .  Pk is minimum~ In graph G shown in Figure 3(a), paths P1 and P2 
cross each other (for the faces f l  and f2). On the other hand, the four paths P1, P2, P3, 
and/ '4 shown in Figure 3(b) do not cross each other. This definition is appropriate for 
the VLSI single-layer routing problem mentioned in Section 1. If each grid edge is of 
length 1, then the noncrossing paths drawn in thick lines in Figure 1 are shortest. 

This paper presents algorithms which necessarily find the shortest noncrossing paths 
whenever they exist. It is easy to modify the algorithms so that they check the existence 
of noncrossing paths. 
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Fig. 3. Crossing paths (a) and noncrossing paths(b), 
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Fig. 4. Slit graphs, 

Suppose that path P1 connecting sl to tl has been determined. Then paths P1,/~ . . . . .  
Pk are noncrossing (for faces f l  and f2) if and only if paths P2, P3 . . . . .  Pk are noncross- 
ing in a slit graph of G for P1 defined as follows. A slit graph G(Pl) of Gforpath P1 
is generated from G by slitting apart path Pl into two paths P~ and P~', duplicating the 
vertices and edges of P1 as follows. Each vertex v in P1 is replaced by new vertices v' and 
v tl. Each edge (vj, vj+l) in P1 is replaced by two parallel edges (vj, vj+l) and (vj', vj'+l). 
Any edge (v, w) that is not in P1 but is incident with a vertex v in P1 is replaced by 
(v', w) if (v, w) is to the right of a path Pt going from sl to tl through Image(P1), and 
by (v", w) if (v, w) is to the left of the path. The operation above is called slitting G 
along Pb If a vertex v ~ V(Bi), i = 1 or 2, in /)1 is designated as a terminal in G, 
either v' or v", that is incident with vf~ in G +, is designated as a terminal in the slit graph 
G(PI). Figures 4(a) and (b) depict the slit graphs G(P1) for P1 and G(P3) for P3 of G 
in Figure 3, respectively. 

If the slit path P1 connects two terminals, one on B1 and the other on B2, the two faces 
f t  and f2 are merged into a single face in G(P1) as shown in Figure 4(a). On the other 
hand, if the slit path P3 connects two terminals, both on either B1 or Bz, then G(P3) is 
divided into two connected components as shown in Figure 4(b). Furthermore, if there 
exist k noncrossing paths including P3 in G, then each pair of terminals different from 
(s3, t3) are in the same connected component of G(P3). Find noncrossing paths in each 
connected component of G(P3). Combine the paths found with/'3, then k noncrossing 
paths in G can be obtained. 

3. The Case When All the Terminals Lie on a Single Face Boundary. In this section 
we present an algorithm to find the shortest noncrossing paths for the case when all the 
terminals are located on the boundary B of a single face f .  We assume without loss of 
generality that f is the outer face of G. A straightforward algorithm for this case is as 
follows: 
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begin 
1. f o r / =  1 t o k d o  

begin 
2. find a shortest path P/connecting s i and ti in G; 
3. G := G(Pi)  {slit G along Pi} 

end 
end 

Clearly, each path Pi, 1 < i < k, found by the algorithm above, is a shortest 
path connecting si and ti in the original graph G. Therefore P1, P2 . . . . .  Pk are shortest 
noncrossing paths in G. The algorithm runs in time O(kT(n) ) ,  where T(n)  is the time 
required for finding shortest paths from a single vertex to all other vertices in a plane 
graph of n vertices. We improve the time complexity to O (T (n) log k) by separating this 
case into the following two cases: 

Case 1. The terminals sl, h, s2, t2 . . . . .  sk, tk appear on B clockwise in this order when 
we interchange starting terminals si and ending terminals t~ and/or indices of terminal 
pairs if necessary. 

Case 2. Otherwise. 

We first present Algorithm PATH 1 (G, S) for Case 1 and then Algorithm PATH2(G,S) 
for Case 2. PATH1 first decomposes graph G into k subgraphs G1, G2 . . . . .  Gk so that 
each subgraph Gi contains terminals si and ti. It then finds a shortest path Pi between si 
and t~ in each graph Gi, and finally outputs shortest noncrossing paths P1, P2 . . . . .  Pk. 
For a path or tree P we denote by P[v,  w] the path connecting vertices v and w in P. 

procedure PATH 1 (G, S); 
begin 

1. let T be a shortest path tree containing shortest paths from sl to all si, 
2 < i < k ;  

2. for i := l to k do 
begin 

3. let Gi be the maximal subgraph of G whose image is in the cycle 
consisting of two paths, the path T[si, Si+l] from si to Si+l on tree T 
and the path on B counterclockwise going from Si+l to si; {sk+z = s~ } 

4. find a shortest path Pi between si and ti in Gi 
end; 

5. output {P/I1 < i < k} {the shortest noncrossing paths} 
end; 

In Figure 5 tree T is drawn in dotted lines and paths P/in thick lines, and subgraphs 
G1, G2, and G3 are colored in different gray tones. The following lemma guarantees the 
correctness of procedure PATH 1. 

LEMMAI. Let Gi, 1 < i < k, be the subgraphs o f  G found in the procedure PATH1. 
Then graph Gi contains at least one o f  the shortestpaths in G between terminals si and ti. 
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Fig. 5. Illustration for PATH1. 

PROOF. Let P/* be an arbitrary shortest path connecting si and ti in G. It is sufficient 
to show that Gi contains a path Pi which is not longer than Pi*" Let Qi, 2 < i < k, be 
the path on T which connects Sl and si on T, and let QI = Q2. If  Pi* does not intersect 
T, then Gi contains Pi*. Therefore it may be assumed that Pi* intersects T. Let a be the 
vertex on T that appears first on Pi* going from ti to si. There are two cases to consider. 

Case 1. a is on Oi. 

In this case the path T[si, a] going from si to a on T is a shortest path going from 
si to a in G. Therefore Pi = T[si, a] + P~'[a, ti] is not longer than Pi*. Clearly Pi is 
contained in G~. 

Case 2. Otherwise. 

In this case 2 < i < k - 1 and vertex a is on Qi+l. Let b be the vertex on Qi+l that 
appears first on Pi* going from si to ti, and let c be the vertex on Qi that appears first on 
Pi* going back from b to sl. (Thus i fb  is on Qi, then b = c.) Then Gi -k- Qi+l contains 
Pi*[c, b]. Therefore, Gi + Qi+l contains the path Pi = T[si, c] "+" ei*[c, b] -t- T[b, a] + 
19i* [a, ti ], and clearly it is not longer than Pi*. Note that Pi is not necessary a simple 
path. There exists a simple path P/' on Pi, which is not longer than P/ and contained 

in Gi. [] 

We now consider the execution time of  PATH1. All the steps except lines 1 and 4 can 
be done in time O(n). Line 1, which finds shortest paths from sl to all other vertices, 
can be done in time O(T(n)) .  We claim that line 4 can be executed in time O(T(n))  in 
total. At line 4 each of  the k shortestpaths is found in a plane subgraph of G bounded by 
the outer boundary B and tree T. Therefore every edge on T appears in at most two of  
the subgraphs G l, G2 . . . . .  Gk, and any other edge of  G appears in exactly one of  them. 
Thus line 4 can be done in time O(T(n))  in total. Therefore the total running time of  
procedure PATH1 is O(T(n)) .  
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Fig. 6. (a) Terminal pairs. (b) Genealogy tree Tg of height g = 5. 

We next present Algorithm PATH2 for Case 2 using PATH 1. Let vl, v2 . . . . .  Vb be the 
vertices on B, and assume that they appear on B clockwise in this order. We may assume 
without loss of generality that sl = vl and no terminals appear in the subpath of B 
counterclockwise going from Sl (=  v~) to q. We may assume that, for each terminal pair 
(si, ti), vl,  si, and ti appear on B clockwise in this order and that sl, s2 . . . . .  sk appear on 
B clockwise in this order. (See Figure 6(a).) For each vertex v ~ V (B) ,  index(v) denotes 
the index of v, that is, index(v)  = i if v = vi. If index(si) < index(sj)  < index(ty) < 
index(ti),  then (si, ti) is an ancestor of (s j ,  tj) and (s j ,  tj) is a descendant  of (si, ti). Note 
that noncrossing paths do not exist if index(si) < index(sj)  < index(ti) < index(tj).  
The parent  (st, tl) of (si, ti) is an ancestor of (si, ti), none of whose descendants is an 
ancestor of (si, ti). The pair (si, tl) is a child of (sl, tl). Let Tg be a (genealogy) tree 
whose nodes correspond to terminal pairs and whose edges correspond to the relation of 
parent and child. If the terminal pair corresponding to a node p in Tg has a child, then an 
edge in Tg joins p to the node corresponding to the child. The terminal pair (sl, q) does 
not have a parent, and is called the root of Tg. The generation of terminal pair (si, ti) is 
the depth of the node pi in Tg corresponding to (si, ti) plus 1. See Figure 6(b). Let g b e  
the maximum generation of nodes. We define similarly the relation of parent and child 
among paths connecting terminal pairs. 

There are two main ideas behind Algorithm PATH2 for Case 2. The first idea is to 
find shortest noncrossing paths for the terminal pairs of a single generation by using 
PATH1. Note that such terminal pairs satisfy the requirement for Case 1. We divide 
G into several components by slitting G along the paths found. For each terminal pair 
in a component, at least one of the shortest paths connecting the terminal pair in G is 
contained in the component. Thus we can find shortest noncrossing paths by applying 
PATH1 to each generation one by one from the first generation to the last. However such 
a naive implementation of the algorithm above spends time O (g T(n)). The second idea 
is to use the divide-and-conquer method. Our algorithm first finds noncrossing paths 
for the middle generation, slits the graph along the paths found, and recursively finds 
noncrossing paths in each connected component. Figure 7 illustrates the idea; Figure 7(a) 
depicts noncrossing paths for the third generation, that is, the middle generation, in thick 
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Fig. 7. Illustration for PATH2. 

lines; and Figure 7(b) depicts a graph obtained by slitting G along the paths found, 
where all the terminal pairs of older generations are contained in the dark region and the 
younger generations in the light region. This way we can obtain a recursive algorithm 
which runs in time O ( T ( n ) l o g g ) ,  but we need more definitions to present a formal 
description of the algorithm. 

The inside of path Pj connecting terminal pair (si, ti) is the inside of the cycle con- 
sisting of P~ and the subpath of B counterclockwise going from ti to si, and is denoted 
by in(Pi).  The outside of Pi is the inside of the cycle consisting of Pi and the subpath of 
B clockwise going from ti to si, and is denoted by out (Pi), The inside of a set 7 ) of paths 
connecting terminal pairs is the union of the insides of paths in 7), and is denoted by 
in(~'). The outside of 7) is the intersection of the outsides of paths in P,  and is denoted 
by out (7)). 

The output of our algorithms is not a set of k paths but is a set U of trees which contain 
the k terminal pairs. The set of paths connecting si and tl, 1 < i < k, on trees in ~ are 
shortest noncrossing paths in G. Since the total number of edges of trees in U is O (n), 
the total length of the k paths can be computed by solving the nearest common ancestor 
problem [GT] for trees in 9 c total in time O(n) [SAN2]. In Figure 7(c), 5 c contains 12 
trees and each of k (= 16) terminal pairs is contained in one of the trees. 

We are now ready to present PATH2. 
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procedure PATH2(G, S); 
begin 

1. let g be the maximum generation of terminal pairs; 
2. ~" := 0; 
3. REDUCE(G, [1, g], Y) 

end; 

procedure REDUCE(G, If, h], 7-); 
begin 

1. if l = h then {there is only one generation} 
begin 

2. let S l be the set of terminal pairs of generation t; 
3. execute PATHl(G,  Sl) and let 79t be the set of  found paths; 
4. Y := Y U Pl {detail are mentioned later} 

end 
5. else { l < h }  

begin 
6. m :--- [(l + h)/2J ; 
7. let S m be the set of terminal pairs of generation m; 
8. execute PATHI(G, S'~), and let Pm be the set of found paths; 
9. Y := Y U T'm ; {detail are mentioned later} 

10. let Gin and Gout be the maximal subgraphs of G which are in in(79m) 
and in out (79m), respectively; 

11. REDUCE(Gin, [m + 1, h], Y); 
12. REDUCE(Gout, [l, m - 1], Y) 

end 
end; 

The running time of PATH2 is dominated by that of REDUCE. REDUCE uses a 
divide-and-conquer method on generations of terminal pairs. REDUCE first finds shortest 
noncrossing paths connecting the terminal pairs of the middle generation by using PATH 1 
in time O (T (n)). By slitting G along the determined paths, REDUCE divides the problem 
into two subproblems, one for the older generations and one for the younger generations. 
Then these two problems are solved by recursively applying REDUCE. Since the depth 
of recursive calls is at most log g, we show that REDUCE executed for all subgraphs in 
the recursive calls of the same depth can be done total in time O(T(n) ) .  It suffices to 
show that every edge in G appears in a constant number, for example at most three, of 
the subgraphs. We give the detail of the method to divide G and update Y below. (In 
Figure 7 the edges shared by P3 and PH appear in three subgraphs.) 

REDUCE first finds noncrossing paths P1, P2 . . . . .  Pm connecting the terminal pairs 
of the middle generation by using PATH 1. Then REDUCE slits G along the paths found. 
(Figure 8(a) illustrates an example for which S m = {(Sm~, tm~), (S,n2, tin2)}. REDUCE 
finds Qmz and Qm2, and slits G along Om~ and Qm2 to divide G into three subgraphs 
Gt, Gin1, and G,~ 2 as shown in Figure 8(b).) Some of the paths aj, 1 < j < q, which 
have been found so far, may appear on the current outer boundary of G. (Figure 8(c) 
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Fig. 8. Illustration for slitting a graph and construction of trees in U. 

illustrates the case where Qtn~ and Qm2 appear on the outer boundary of G1 .) Note that 
the edges and vertices of each Qj have been duplicated. Suppose that G was divided 
by slitting along the whole path P/, 1 < i < m. Then the edges shared by P /and  Qj 
would be duplicated once more and hence wouldappear in four or more subgraphs of G. 
Furthermore, since the vertices of the slit path Qj have already been included in trees in 
~ ,  the total number of vertices of trees in 5 c could not be bounded by O (n), Therefore 
we divide G and update f as follows. Assume for simplicity that P/intersects exactly 
one of its descendants or ancestors. If=Pi is neither an ancestor nor a descendant of Q/, 
then we slit G along the whole path Pi. On the other hand, if Pi is an ancestor or a 
descendant of Q j,  then we slit G along two subpaths of Pi as follows. 
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Let v be the intersecting vertex of Pi and Qj that appears first on Pi going from si 
to ti, and let w be the intersecting vertex of Pi and Oj that appears last on Pi going 
from si to ti. It may be assumed that P/passes through Qj [v, w]. Construct a slit graph 
G' = G(Pi[si, v] + Pi[to, ti]) by slitting G along Pi[si, v] and P/[w, ti]. Update the tree 
T 6 U containing Qj by concatenating Pi[si, v] and Pi[w, ti] to T c 5 t-. (Figure 8(d) 
illustrates a graph G' l which is obtained by slitting G1 along Pi[si, v] and P/[w, ti]. G'~ 
consists ofthre e connected components Go,,, Gw,,, and Gv,,w,,. It can be observed from the 
location of terminal pairs that Pi is an ancestor of Qmt. Therefore the tree T 6 f"  which 
contains Qm~ is updated to a new tree T by concatenating Pi[si, v] and Pi[w, ti] to it.) 

When G is slit along Pi [si, v] and Pi [w, ti], v and w are replaced by two new vertices 
v', v" and w', w", respectively. Vertices v t and v" are contained in distinct connected 
components of G', and w' and w" are also contained in distinct connected components 
of G'. Let pi be the node of genealogy tree Tg corresponding to Pi, and let pj be the node 
of Tg corresponding to Qj. Let N/j be the set of nodes on the path Tg[pi, pj]. If pal ~ Nij 
corresponds to (Sd, td) ~ S, then Sd and td are separated into distinct components of 
G'. (The terminal pair corresponding to Pd ~ Nij are contained in the same connected 
component of G t.) Since Pd ~ Nij is an ancestor or a descendant of Pi, i tmay be assumed 
that a shortest path Pd connecting sd and ta passes through Pi[v, w] = T[v, w]. In each 
connected component of G t containing such separated terminal pairs, find a shortest path 
tree T'  which is rooted to either #,  v", w', or w" and contains shortest paths from the 
root to all separated terminals Sd, ta. Update T E 5 t" by concatenating T'  to T. Note 
that the updated tree T 6 5 v contains paths connecting Sd and td. (Figure 8(d) illustrates 
two shortest path trees found in Gv,, and Gw,,: one contains shortest paths from v" to sd, 
and Sd2, and the other contains shortest paths from w" and ta~ and td2. We update the tree 
T 6 U which contains Qm~ and Pi by concatenating the two shortest path trees to T. 
The two shortest path trees are drawn in dotted lines.) We then divide G'  into several 
subgraphs by slitting G'  along the shortest path trees found, and find shortest noncrossing 
paths in each subgraph by recursively calling REDUCE. 

As explained above, if Pi is an ancestor or a descendant of path Qj which has already 
been found, then the edges shared by Pi and Qy are not duplicated. On the other hand, 
if Pi is neither an ancestor nor a descendant of Q j, then the edges shared by Pi and Qj 
are duplicated again. In this case a path which passes through the shared edges may be 
found later, but such a path must be an ancestor or a descendant of path Pi or Qj. Thus 
every edge in G appears in at most two of the slit paths, and appears in at most three 
of the subgraphs of the same depth of recursive calls. Moreover, it can be observed that 
every edge of G appears in at most two trees in f .  Thus we can conclude that REDUCE 
executed for all subgraphs in the recursive calls of the same depth can be done in total 
in time O(T(n)). 

Since the depth of recursive calls of REDUCE is O(log g), the total execution time 
of REDUCE is O(T(n) logg). Since g = O(k), PATH2 runs in time O(T(n) logk) in 
total. Note that each path P/found by PATH2 is a shortest path connecting s; and ti in G. 

4. The Case When All the Terminals Lie on Two Face Boundaries.  In this section 
we present an algorithm for the case when all the terminals lie on two face boundaries 
BI and B2. For each pair (si, ti) of one terminal on B1 and the other on B2, it may be 
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Fig. 9. Slit graph G~. 

assumed without loss of generality that s i C V(B1) and ti ~ V(B2).  Let 

S12 : {(Si, ti)Jsi E V(B1) and ti ~ V(B2)}, 

S 1 = {(Si, ti)lsi, ti E V(B1)}, 

and 

82 = {(si, ti)lsi, ti E V(B2)}. 

It may be assumed that $12 r ~: otherwise, shortest noncrossing paths can be easily 
found by executing PATH2 twice, once for G to find paths for $1, and then once for the 
graph obtained by slitting G along the paths found to find paths for $2. 

Let (sl, q) 6 S12, and let Pl* be a shortest path between sl and tl in G. Let G 0 be the 
slit graph of G for P~. Then G 0 has two vertices v' and v" corresponding to sl and two 
vertices w' and w" corresponding to tl. Vertices v', w', w", and v" lie on the same face 
boundary in G 0 and appear on the boundary clockwise in this order. Let P+ and P1 
be the two paths in G corresponding to the shortest paths in G 0 between v' and w" and 
between v/' and w/, respectively. In Figure 9 P+ and P~ are drawn in solid and dotted 
lines, respectively. Then the following theorem holds, a proof of which is given later in 
this section. 

THEOREM 1. Let P~ be a shortest path connecting (sl, tl) ~ S12 in G. Then G contains 
shortest noncrossing paths including either P{ , P+, or P ( .  

Theorem 1 immediately leads to the following algorithm for finding shortest non- 
crossing paths in G. 

procedure PATH(G); 
begin 

1. find a shortest path Pj* between Sl and tt in G; {(Sl, q) ~ S12} 
2. construct the slit graph G 0 = G(PI*), and find paths P+ and Pl-; 
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3. 7~0 :=  {e~*}, 7~ :=  {e+}, 7~2 := {el-}; 
{each ~ ,  0 < i < 2, becomes a set of noncrossing paths} 

4. construct the slit graph G] = G(P +) and the slit graph G~ = G(P1-); 
{all the terminals lie on a single face boundary in G I, 0 _< i _< 2.} 

5. f o r / : = 0 t o 2 d o  
begin 

6. PATH2(G I, S - (sl, q)); {find shortest noncrossing paths in GI} 
7. add the k - 1 paths/2,  P3 . . . . .  Pk found to 79i 

end; 
8. output, as a solution, one of the sets To, 791, and 7~2 whose total length is 

minimum 
end; 

The dominating part of the execution time of Algorithm PATH is one for executing 
PATH2 three times. Therefore the running time of PATH is O (T (n) log k). Thus we have 
the following theorem. 

THEOREM 2. Given a plane graph G with k terminal pairs on its two face boundaries, 
shortest noncrossing paths can be found in time O ( T (n ) log k ), where T (n ) is the time 
required for finding shortest paths from a single vertex to all other vertices in a plane 
graph of n vertices. 

A usual shortest path algorithm, that is, Dijkstra's method with a heap, takes time 
T(n) = O(nlogn) for a plane graph [AHU], IT]. On the other hand Frederickson's 
method takes time T(n) = O(n) with preprocessing time O(n log n) [F]. Therefore our 
algorithm can be implemented to take time O (n (log n + log k)) = O (n log n). 

In the remainder of this section we prove Theorem 1. Let rS121 = I. Furthermore, 
let (si, ti) ~ S12 if 1 < i < l, and (si, ti) E S1 U S 2 otherwise. It may be assumed 
without loss of generality that terminals sl, s2 . . . . .  s~ appear on BI counterclockwise in 
this order and tl, t2 . . . . .  tt appear on B2 counterclockwise in this order. For the sake of 
simplicity, we assume that graph G is embedded in the plane region Z surrounded by 

both having the center at the origin two circles Z1 with radius 1 and Z2 with radius ~, 
O of the x - y  plane. We may assume without loss of generality that, for each terminal 
pair (si, ti), 

Image(si) = (cos (2n" i~ \ - T  ] , sin ( ~ i ) )  

and 

2yg lsio (T/)) 
and thatlmage(G) fq (Z1 U Z2) = {Image(si), Image(ti) f I < i < l}. 

Let P be a path going from point a to point b in Z. Let 0 be the total angle (measured 
counterclockwise) turned through by the line OX when point X moves on P from 
a to b. Possibly 101 > 2zr. We define the (normalized) angle O(P) of path P by 
O(P) = 0/2Jr. Thus angle O(Pi) of path P/ connecting si and ti means the number 



of  rotations of  Pi around Zz. ff  P1, P2 . . . . .  Pk are noncrossing paths in G, then clearly 
O(P1), O(P2) . . . . .  0( /})  are all equal to the same integer. 

Note that shortest noncrossing paths are not always simple for the case of  this section 
even if every edge has a positive length: each of them may traverse the same vertex or 
edge more than once, but is necessarily noncrossing itself. Thus in this section a "path" 
does not always mean a simple one, but is noncrossing itself. The following lemma holds, 
where length(P) denotes the length of path P. 

LEMMA2. Let P~ beashortestpathconnecting s~ andtl in G, andlet Pi, 1 < i < I, be 
an arbitrary path connecting si and ti in G. Then there exists in G a path P/connecting 
si and ~ such that length(P/) < length(Pi) and 

[0(P~) 
O(P/) = ]O(P~) + 1 

[ 0 ( P ~ )  - 1 

8 

if  o(Pi)  = o (P; ) ,  
if  o(P~) > o(P~) + 1, 
if  o(Pi) < o(P~) - t. 

PROOF. Assume for simplicity that Pi is a simple path. Let V(P~) 71 V(PI) = 
{vl, v2 . . . . .  Vq}, and let vl, v2 . . . . .  Vq appear in this order on P~[sl, h]. Denote by 
U(Pi) the set of  vertices vx, 1 < x < q - 1, such that E(P~[vx, vx+l]) N E(Pi) = 0. 
(An example is depicted in Figure 10, where P~ is drawn in a thin straight line, Pi in a 
thick line, O(P~) = 0, 0(P/)  = 2, q = 5, and U(Pi) = {vl, v2}.) 

Suppose for a contradiction that the lemma does not hold for a path Pi and furthermore 
IU(Pi)I is minimum among such paths. IfO(Pi) - O(P~) = 0 or 4- t ,  then clearly path 
P / =  P/satisfies the requirement. Therefore it may be assumed that 0 (Pi) > 0 (P~) + 2; 
the proof  for the case O(Pi) < O(P~) - 2 is similar. Then IU(P~)I >_ 1. Let va be an 
arbitrary vertex in U (Pi), and let vertices si, vg, Vh, and ti appear in this order on Pi where 
{g, h} = {a, a + i } .  Let Qi = Pi[si, Vg]+P~[vg, Uh]-qt-Pi[Uh, ti ], then clearly Qi i sapa th  
connecting sl and ti and length (Qi) <_ length(Pi ). Since Pi [ Vg, Oh ] + P~ [Vh, vg ] is a cycle, 
IO( Pi[vg, Vh]) -- O( P~[vg, Vh])J = 0 or 1, and hence O(Qi) >_ O(Pi) - 1 >_ O(P~) + 1. 
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Fig. 10. Illustration for proof of Lemma 2. 
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Therefore the lemma does not hold for Qi either. However, tU(Qi)[ < ]U(Pi)I, a 
contradiction. []  

In Lemmas 3-5 following let 0 = 0, 4-1, 4-2 . . . . .  and let PI be the shortest one among 
the paths in G which connect sl and t~ and have angle 0. We have the following lemma. 

LEMMA 3. Let u and w be two vertices on PI , and"let Q be a path between u and w in 
G such that O(Q[u, w]) = O(P1 [u, w]). Then length(Q) > length(Pl[u, w]). 

PROOF. Assume for simplicity that path P1 is simple. Let the intersecting vertices 
Vl ( =  u), v2 . . . . .  Vq (=  w) of  Pl and Q appear on Q[u, w] in this order. For each 
x, 1 < x < q, let r~ = O(Q[vl, vx]) - ~9(Pl[vl, v,]). Then the sequence of  integers 
rx, r2 . . . .  rq satisfies 

rl =rq =0 ,  
r x - r x + l = O ,  -t-1 for every x, l < x < q - 1 .  

Denote by U(Q) the set of  vertices vx, 1 < x < q - 1, such that E(Q[vx, Vx+l]) fq 
E(PD = 13. For a cycle C, denote by Z(C) the set of  paths Q[vx, vx+l], 1 < x < q - 1, 
which are properly inside C except for the ends. 

Suppose for a contradiction that the lemma does not hold for a path Q and furthermore 
IU(Q)P is minimum among such paths. Then U(Q) r 0; otherwise Q is a path on P1 
and hence the lemma holds. 

We claim that rx # rx+t for every v~ ~ U(Q). Let rx = r~-~l for a vertex v~ 
U(Q), and let f2(C~)l be minimum among such vertices where Cx = Q[v~, vx+l] + 
Pi[vx+1, v~]. If  there is a path Q[v r, vr+l] in Z(Cx), then clearly r r = ry+l and  
IZ(Cy) t < I2"(C~:)I where Cy = Q[vy, vy+l] + Pl[vy+l, vy], a contradiction. Thus 
Z(C~) = 13. Then path P( = Pl[sl, vg] + Q[vg, Vh] + Pl[t)h, Vq] has angle 0 and 
is noncrossing itself, where {g, h} = {x, x + 1} and sl, vg, vh, and tl appear on P1 
in this order. Since length(P{) > length(PD, Q[og, Vh] > Pl[Vg, Vh]. Therefore path 
Q' = Q[vl, vx] + Pl[vx, v~+~] + Q[V~+l, vq] satisfies length(Q') < length(Q) and 
O(Q') = O(Pl[vl, Vq]). Since [U(Q')[  = tU(Q)t - 1, the lemma holds for Q', that is, 
length(Q') > length(Pl[vl, Vq]), and hence length(Q) ~ length(P~[vl, Vq]), a contra- 
diction. 

Thus ri > 0 for some integer i, 2 < i < q - 1. Considering r~ a maximal positive 
number, we know that there are two integers a and b such that 3 _< a + 2 < b < q 
and ra = rb = ri -- 1 for every i, a < i < b. Since r~ # rx+l for every v~ E U(Q), 
vi f~ U(Q) for every i, a < i < b - 1. Therefore Q[Va+l, vb-1] is apa th  on P1, and 
C~ = Q[v,, vb] + Pl[vb, Va] is a cycle. Choose a and b so that 12-(C~b)l is minimum. 
If  Z(Cao.) = 0, then an argument similar to above leads to a contradiction. Therefore 
it may be assumed that there is a path Q[vc, vc+l] in Z(Cab). Clearly, r~ r r~+l. Let 
r~ < r~+l; the proof for the case rc > r~+l is similar. Then there is an integer d 
such that c + 2 < d _< q and r~ = ra = ri - -  1 for every i, c < i < d. Since cycle 
C~a = Q[v~, vd]+ Pl [va, v~] is inside Cab, tZ(Cca)l < IZ(Cab) t, contrary to the selection 
of  a and b. []  

Using Lemma 3, we can have the following two lemmas. 
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LEMMA 4. Let Pi, 2 < i < l, be a path which connects si and ti and has angle O. Then 
there exists a path Pi' connecting si and ti such that: 

(a) P[ does not cross P1. 
(b) O(P:) = O(P~) = 0 and length(P:) < length(Pi). 

PROOF. It may be assumed that Pi crosses P1. Let the intersecting vertices v~, v2 . . . . .  /3q 

of Pi and P1 appear on Pi[si, ti] in this order. For each x, 1 < x < q, let rx = 
O(Pi[Vl, Vx]) - O( Pl[Vl, Vx]). Then rq = O, :kl. 

Consider first the case rq = 0. In this case by Lemma  3 tength(Pt[vl, vq]) < 
length(Pi[vb Vq]), and hence path P: = Pi[si, vl] + Pl[vl, Vq] + Pi[vq, ti] satisfies 
length(P[) < length(Pi). Clearly, 0(P/') = 0 and P: does not cross P~. 

Consider next the case rq : 1; the proof for the c a s e  rq = - 1  is similar. In this 
c a se r a  ---- 0 a n d r a + l  = 1 for an in tegera ,  1 < a < q - l .  S ince0 (P l [v l ,  va]) = 
O(Pi[Vl, Ua]) and O(Pl[Va+l, Vq]) -~- O(Pi[Va+l, vq]), by Lemma  3 length(el[vl,  v~]) < 
tength(Pi Iv1, v,])  and length(P1 [v~+l, Vq ]) < length(Pi [Va+l, Vq]). Therefore path P / =  
Pi[si, v~] + Pl[vl,  v~] + Pi[v~, Va+l] + Pl[v~+l, Vq] + Pi[vq, ti] satisfies length(P:) 
< length(Pi). Clearly, O(P[) = 0 and P: does not cross Pl. []  

Let (si, ti) ~ S1 U $2, i.e., l + 1 < i < k, and let Pi be a path between si and ti. I f  
(si, ti) e $1, then let st,  si, tl appear on Bt counterclockwise in this order and let A be 
the path on B1 clockwise going from tl to si. I f  (si, ti) E $2, then let q ,  sl, ti appear on 
/32 counterclockwise in this order and let A be the path on B2 clockwise going from ti 
to si. Let Cp~ be the cycle consisting of two paths, Pi[si, ti] and A. Observe that if P/ 
does not cross a path connecting sl and q ,  then cycle Cp, does not contain face f2 inside. 
Conversely the following lemma holds. 

LEMMA 5. I f  cycle Cp~ does not contain f2 inside, then there is a path P[ between si 
and tl which satisfies length(P[) < length( Pi) and does not cross P1. 

PROOF. It may be assumed that Pi crosses PI. Let the intersecting vertices v l, v2 . . . . .  Vq 

of Pi and P1 appear on Pi[si, ti] in this order. For each x, 1 < x < q, let rx = 
O(Pi[vl, Vx]) - O(P~[vl, vx]). Let D = Pi[vq, ti] + A[ti, si] + ei[si, v l ] ,  then Cp~ = 
Pi[vi, vq] + D. Since cycle Cp, does not contain f2 inside, O(Pi[Vl, Vq]) + O(D) = O. 
Since Pl[V~, Vq] + D is a cycle, [0 (P1 [vl, Vq]) + 0 (D)I < 1. Therefore we have Irq I < 1. 

Consider first the case rq = 0. Then by Lemma 3 length(Pl[vl, Vq]) < length(Pi[vt, 
vq]). Therefore path P: = Pi[si, vii + Pl[vl, Vq] + Pi[vq, ti] satisfies length(P:) < 
length(Pi), and clearly P[ does not cross Pl.  

Consider next the case r e = 1; the proof  for the case rq ----- - - 1  is similar. In this 
case there is an integer a such that 1 < a < q - 1, r a = 0,  and ra+l = 1. Since 
length(Pl[vl, Va]) < length(Pi[vl, Va]) and length(Pl[Va+~, Vq]) < length(P~[va+l, 
Vq]), P: = Pi[si, vii  + PI[Vl, Va] + Pi[va, Va+l] + el[va+l, Vq] + Pi[vq, ti] satisfies 
length(P[) < tength(Pi). Furthermore, P: does not cross Pl.  []  

Furthermore, the following lemma clearly holds. 
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LEMMA 6. Let P1 be an arbitrary path in G connecting sl and h.  Then G contains 
paths Pi, 2 < i < k, such that: 

(a) P I , / ' 2 , ' - ' ,  P~ are noncrossing in G. 
(b) Each path Pi, 2 < i < k, is a shortest one among the paths in G which connect si 

and t i and does not cross PI. 

PROOF. Construct G(P1) by slitting G along P1. Then two faces fl  and f2 are merged 
into a same single face f in G(P~) and all terminals lie on the boundary of f (see 
Figure 4(a)). Let Pz, P3, . . . ,  Pk be the shortest noncrossing paths in G(P~) obtained 
by applying procedure PATH2 for G(P1). Then P1, P2 . . . . .  Pk are noncrossing in G. 
Furthermore, each path Pi, 2 < i < k, is shortest among the paths in G(P1) which 
connect s~ and ti, and hence Pi is shortest among the paths in G which connect sg and t~ 
and do not cross P~. [] 

We are now ready to prove Theorem 1. 

PROOF OF THEOREM 1. Let P~, P2 . . . . .  Pk be arbitrary shortest noncrossing paths in 
G. Clearly, O(P1) = O(P2) . . . . .  8(PI). By Lemma 4 applied for PI* and each 
Pi, 1 < i < l, we know that there exists a path P" connecting si and tl such that 
tength( P~) <_ length( Pi) and 

[e(P;) 
o(p/) = | o ( e ; )  + 

/ - 1 

if O(P~) = O(P~), 
if O(P~) > O(P~) + 1, 
if 0(P~) _5< 8(P~) - 1. 

Note that O(P 0 = O(P~) = . . .  = O(Pi) but P(, P~ . . . . .  Pi may cross each other. 
Clearl); O(P +) = O(P{) + 1 and O(P~-) = O(P~) - 1. Similarly as in the proof of 

Lemma 2, it can be proved that path P+ is shortest among the paths in G which connect 
sl and tl and have angle O(P{) + I, and path PI-- is shortest among the paths in G which 
connect sl and tl and have angle O(P{) - 1. 

Let P[' be 

[P~ if O(PI) = O(P~),  
P~'= ~P1 if O(P1)>__O(P~)+I, 

! P~- if O(P1) < O(P:) - 1, 

and let 0 = O(P(') = O(P O. Then by Lemmas 4 and 5 there exist paths P~P, P~' . . . . .  p~1 
such that each ,;,P" 2 < i < k, does not cross P1 '~ and satisfies 

~length(Pi') if 2 < i < l, 
length(P[') < |length(Pi) if I + 1 < i < k. 

By Lemma 6 G contains noncrossing paths P~" = P;', P~", P~", P "  such that 
* ' ' 7  k 

length(P[") < length( Pi" ), 1 < i < k. P(", P~" . . . . .  P{" are shortest noncrossing paths 
in G since length(Pi") < length(Pi) for every i, 1 < i _5< k. [] 
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5. Optimal Nonerossing Paths. In this section we show that, slightly modifying the 
algorithms in the preceding sections, "optimal" noncrossing paths can be found. 

Let P1,/'2 . . . . .  P~ be noncrossing paths in a plane graph G, where Pi connects termi- 
nals si and ti. Denote the length of Pi by I i . Let f ( l l ,  12 . . . . .  Ik) be an arbitrary (objective) 
function which is nondecreasing with respect to each variable l i .  We call noncrossing 
paths P1, P2 . . . . .  Pk minimizing f (ll, 12 . . . . .  Ik) optimal noncrossing paths (with re- 
spect to the objective function f ) .  

EXAMPLE 1. The shortest noncrossing paths are optimal ones minimizing the objective 
function f = ~,ik=l Ii. Clearly, f is nondecreasing with respect to each li. 

EXAMPLE 2. If all the paths (wires) have the same width, then the shortest noncrossing 
paths correspond to a routing minimizing the area required by wires. On the other hand, 
if the paths have various widths, say Pi has width wi, then optimal paths minimizing 
f = ~ i  W i l l  correspond to a routing minimizing the area. This function f is also 
nondecreasing with respect to each l i .  

EXAMPLE 3. Noncrossing paths minimizing f = max{ll, 12 . . . . .  lk} are desirable 
when one wishes to minimize the time delay in wires. Such an f is also nondecreasing 
with respect to each li. 

There are two cases: 

Case 1. All the terminals lie on a single face boundary. 

The algorithm in Section 3 finds noncrossing paths PI,/ '2, " ", Pk such that Pi, 1 < 
i < k, is a truly shortest path between si and ti in G. Since f is nondecreasing with 
respect to each length li, these paths P1, P2 . . . . .  Pt minimize f and hence are optimal 
noncrossing paths. 

Case 2. All the terminals lie on two face boundaries. 

Similarly as the proof of Theorem 1, one can prove the following theorem. 

THEOREM 3. Let P~ be a shortest path connecting (sl, tl ) E $12 in G. Then G contains 
optimal noncrossing paths including either P{, P+, or P~. 

Hence optimal noncrossing paths can be found by procedure PATH if line 8 is replaced 
by: 

8. output, as a solution, one of the sets 79o, 791, and 792 that minimizes the 
objective function f 

Thus, if the function f for given noncrossing paths can be evaluated in O (n log n) 
time, then optimal paths can be found in O(n log n) time. 
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6. Conclusion. In this paper we presented an efficient algorithm for finding shortest 
or optimal noncrossing paths for the case where terminal pairs are located on two spec- 
ified face boundaries of a plane graph, and proved that the running time is O (n log n). 
Furthermore, it is rather straightforward to modify our sequential algorithm to an NC 
parallel algorithm which finds shortest or optimal noncrossing paths in polylog time 
using a polynomial number of processors. Notethat there are NC parallel algorithms for 
the shortest path problem on general or planar graphs [J], [K]. We are now extending the 
algorithm to a more general case where terminals lie on three or more face boundaries 
and a case where terminals lie on the plane with several rectangular obstacles. 
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