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Communication Complexity in a 3-Computer Model 1 

A. Ambainis 2 

Abstract. It is proved that the probabilistic communication complexity of the identity function in a 3- 
computer model is O(~Cff). 
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1. In t roduct ion .  One of  the problems in distributed computing is performing some 
computations by several processors if part of the input data is known to only one processor 
and another part to another processor. One trivial solution to this problem is sending all 
data to one processor and performing all computations by this processor. If  the size of  
the input data is large, sending all data may be difficult and time-consuming. Very often 
better solutions exist. 

For example, we consider the following problem: one processor has one array, another 
processor another array. We wish to know whether these arrays are equal. I f  we consider 
deterministic algorithms, it is known that for each algorithm there are always bad cases 
when it is necessary to send the whole array from one processor to another. In fact, for 
any algorithm, there are always cases when two arrays are equal for which it takes f2 (n) 
bits of  exchange between the two processors. 

If  we allow probabilistic algorithms with an arbitrary small probability of error, the 
situation changes. It becomes possible to compute whether arrays are equal just with 
one message of length O (log n) from one processor to another [3]. This result cannot be 
improved, O (log n) is also the lower bound. 

We can consider another model, rather similar to the one mentioned above. We have 
three processors, one array is given to the first processor, another to the second. These two 
processors can send messages to the third. (Exchange of information between the first 
and second processor is impossible. Also, the third processor cannot send any messages 
to. the first and second.) This is the 3-computer model introduced by Yao [3] together 
with other models of communication complexity. 

In this model it appears to be more difficult to compute whether two arrays are equal. 
We prove that it is possible to compute it by sending O (~/-~) bits only. Thus we give 
a partial answer to an open problem posed by Yao in 1979 [3]. The best-known lower 
bound is f2 (log n). 
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More formally speaking, we consider the Boolean function 

f ( x l ,  x2 . . . . .  x,,, Yl, Y2 . . . . .  yn) = (Xl = Yl) & (x2 = Y2) & " "  & (x,, = y,,). 

We call it the identity function. 
We consider the following 3-computer model: There are three computers A, B, and 

C. A has variables Xl, x2 . . . . .  Xn, and B has variables Yl, Y2 . . . . .  Yn. A analyzes his 
variables, sends a message to C, B analyzes his variables and sends a message to C, too. 
Then C analyzes the two messages received from A and B and announces the result of  
the computation. 

The communication complexity of function f is a worst-case number of  bits sent from 
A and B to C when f is computed. Communication complexity was introduced by Yao 
in [3]. For a survey on communication complexity, see [1]. 

We prove that the identity function in a 3-computer model has communication com- 
plexity O (~fff). 

2. Combinator ics .  In this section we present a result from the theory of  error-correcting 
codes which will be used further. 

DEFINITION 1. I f x ,  y ~ {0, 1}n,x = ( x l , x  2 . . . . .  x~), a n d y  = (Yl,Y2 . . . . .  yn), then 
the Hamming distance between x and y is the number of  i such that xi r Yi. It is denoted 
by d(x, y). 

DEFINITION 2. M C {0, 1} n is called the [n, k, d]-code if it contains 2 k elements and 
d(x, y) > d for every two distinct x, y c M. 

We denote H2(x) = - x  -log 2 x - (1 - x) �9 log2(1 - x). 

LEMMA 1 [2, Theorem 17.30]. I f  O < ~ < �89 then for each n there is a [n, k, d]-code 
such that d /n  >_ 3 a n d k / n  > 1 - H 2 ( d / n ) .  

We use following particular case of  this lemma. 

LEMMA 2. For each m there is a [3m, m, m /2 ]-code. 

1 PROOF. In Lemma 1 replace n by 3m and ~ by g. [] 

3. Complexity of the Identity Function. We prove: 

THEOREM 1. It is possible to compute the identity function in the 3-processor model so 
that A and B transmit v / ~  + o(~/-n) bits each to C and the probabil#y of  the correct 
answer is at least 6/11. 
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PROOF. We denote by m the smallest integer satisfying (6m) 2 > 3n. From Lemma 2 
we know that there is a [(6m) 2, (6m)2/3, (6m)Z/6]-code. We choose 2 n elements of  
this code to obtain a [(6m)2, n, (6m)2/6]-code. We fix some such code and establish a 
one-to-one correspondence between the elements of the code and words x 6 {0, 1 }n. 

Our algorithm is as follows: 

For A. Find the codeword s = (sl . . . . .  S(6m)2) corresponding to input data x = 
(xl . . . . .  xn). Take a 6m x 6m table with (6m) 2 squares (i.e., positions) and write the num- 
bers s l . . . . .  s(6m~2 in the squares of  the table. Choose a random row i, where i is uniformly 
distributed over {1 . . . . .  6m}, and transmit (i, a l ,  a2 . . . . .  a6rn), where (al,  a2 . . . .  , a6m) 
is the content of  row i, to C. 

For B. Find the codeword s = (Sl . . . . .  s(6m)2) corresponding to the input data y = 
(yl . . . . .  y~) and write sl . . . . .  S(6m)2 in the squares in a 6m x 6m table as in the case 
for A. Choose some column of the table equiprobably and transmit ( j ,  bl, b2 . . . . .  b6m), 
where j is the column number and (bl, b2 . . . . .  b6m) is the content of  column j ,  to C. 

For C. C compares aj and bi. If  they are different, C announces that g ----- 0 (x 7~ y). 
If  they are equal, C announces that g = 1 (x = y) with probability 6/11 and that g = 0 
with probability 5/11. 

The number of bits transmitted from A (or B) to C is 6m + Flog2(6m) 7 = ~ / ~  + 
o(,/~). 

Now, we prove that the algorithm really computes g with the probability of  a correct 
answer being at least 6/11. Note that aj is the (i, j ) th  entry of A's table and bi is the 
(i, j ) th  entry of  B ' s  table. If  g = 1 (x = y), then the tables constructed by A and B 
are equal. Hence aj = bi. So, with probability 6/11 C will give the answer g = 1. If  
g = 0 (x 7~ y), then A and B construct two different tables. As we have chosen, for 
writing into these tables, the codewords from a [(6m) 2, n, (6m)2/6]-code, these tables 
are different in at least (6m)2/6 squares (one-sixth of all the squares). 

Each possible value for the pair (i, j )  is chosen by A and B with equal probability. 
So, each square becomes the square contents of  which C receives from both A and B 
with equal probability. With probability P0 >__ -~ the square in which the numbers in two 
tables are different is chosen. It means that with probability P0 C receives two different 
values and with probability 1 - P0 two equal values. So, C will announce the correct 

1 __ 6 answer g = 0wi th  probability Po + ~ ( 1  - Po) = ~ + 6 p o  >__ 5 + 6 . g  _ 1-7" 
This proves thetheorem. [] 

By repeating this algorithm several times and taking the majority of  the outcomes as 
the final result by C, the probability of error can be made arbitrarily small. The amount 
of  transmitted bits will still remain O (4~ff). 
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