
Algorithmica (1996) 15:397--412 Algorithmica
�9 1996 Springer-Verlag New York Inc.

Weighted and Unweighted Maximum Clique Algorithms
with Upper Bounds from Fractional Coloring 1

E. Balas 2 and Jue Xue 3

Abstract. The linear programming relaxation of the minimum vertex coloring problem, called the fractional
coloring problem, is NP-hard. We describe efficient approximation procedures for both the weighted and
unweighted versions of the problem. These fractional coloring procedures are then used for generating upper
bounds for the (weighted or unweighted) maximum clique problem in the framework of a branch-and-bound
procedure. Extensive computational testing shows that replacing the standard upper bounding procedures based
on various integer coloring heuristics with the somewhat more expensive fractional coloring procedure results
in improvements of the bound by up to one-fourth in the unweighted andup to one-fifth in the weighted case,
accompanied by a decrease in the size of the search tree by a factor of almost two.

Key Words. Maximum clique, Minimum coloring, Fractional coloring.

1. Introduction. Consider an undirected graph G ----- (V, E) and its complement G =
(V,/~), where/~ := {(i, j) : (i, j) ~ E}. For any S c V, G(S) denotes the subgraph
of G induced by S. A clique of G is a set of pairwise adjacent vertices, whereas a
stable set (independent set, vertex packing) is a set of pairwise nonadjacent vertices.
From the definitions, S is a clique of G if and only if it is a stable set of (~. The
maximum clique/maximum stable set problem asks for a clique/stable set of maximum
size. Obviously, the former problem on G is the latter problem on G and vice versa.

A (vertex) coloring of G is a partition of the vertex set into stable subsets, each of
which is called a color class. A clique covering of G is a partition of the vertex set into
cliques. Obviously, {$1 Sp} is a (vertex) coloring of G if and only if it i s a clique
covering of G. The minimum coloring~minimum clique covering problem asks for a
coloring/clique covering of minimum cardinality. Again, the former problem on G is the
latter problem on G.

We address the above pair of problems in the formulation

(1) z0 = max{lx: Ax < 1, xj c {0, 1}, j E V},

for the maximum clique problem, and

(2) to = min{yl: yA > 1, ys E {0, 1}, S ~ S},

for the minimum coloring problem; where A is the incidence matrix of stable sets versus
vertices, and S is the family of all stable sets of G. Clearly, to > z0, and the minimum

I This research was supported by the National Science Foundation under Grant No. DDM-9201340 and the
Office of Naval Research through Contract N00014-85-K-0198.
2 Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA.
3 Graduate School of Management, Clark University, 950 Main Street, Worcester, MA 01610, USA.

Received May 20, 1994; revised September 15, 1994. Communicated by N, Megiddo.

398 E. Balas and Jue Xue

coloring problem has been frequently used as an upper bounding device for the maximum
clique problem.

If the 0-1 conditions in both problems are relaxed, then (1) and (2) become a pair of
dual linear programs; hence the fractional coloring problem

(3) tl = min{yl: yA > 1, Ys > 0, S 6 S}

also provides a valid upper bound t~ on the value of z0, and in fact a tighter one than to.
Therefore we wish to use (3) to obtain a stronger upper bound on the value of z0. The
linear program (3) should be easier to solve than the integer program (2); but (3) has
exponentially many variables and there is no known algorithm bounded by a polynomial
in I VI for solving it. In fact (3) is known to be NP-complete [11]. Therefore, rather than
solving it exactly, we use a fractional coloring heuristic to find an approximate solution
to (3).

The above problems have their weighted counterparts, where the weight of a clique
is the sum of weights of its vertices. Thus the maximum weight clique problem is

(4) zo = max{wx: Ax < 1, xj ~ {0, 1}, j ~ V},

while the minimum weighted coloring problem and its fractional counterpart are

(5) t'0 = min{yl: yA > w, Ys > 0 integer, S 6 S}

and

(6) il = min{yl: yA >__ w, Ys > O, S E S},

respectively. Unlike in the unweighted case, a color class S appears in the solution to (5)
with a weight Ys possibly different from 1 (or 0).

For any C ___ S, we denote y(C) := ~(y s : S ~ C).
In this paper we present approximate procedures for solving the fractional coloring

problem (3) and its weighted version (6). We then embed these procedures as upper
bounding devices into a branch-and-bound algorithm for solving the maximum clique
problem in its weighted and unweighted versions. Finally, we present extensive com-
putational experience with the resulting algorithms, both on randomly generated graphs
and on the DIMACS Challenge benchmark problems.

The fractional coloring procedure for unweighted graphs and the corresponding
branch-and-bound procedure were presented, along with computational results, in [4]
and [16]. Further details can be found in [17]. Essentially the same procedure for the
unweighted case has been rediscovered independently in the context of vertex packing
by Mannino and Sassano [13].

2. A Fractional Coloring Heuristic. The basic idea of our approach is this. Suppose
we have an (integer) coloring C1 := (S~ Sq) of G, where each Si is a stable set (color
class). Since C1 is a partition of V, typically some of the color classes Si are not maximal.
Suppose we now augment these color classes by coloring as many vertices as we can
with a second color from among the q color classes. Let V2 be the set of these vertices

Weighted and Unweighted Maximum Clique Algorithms with Upper Bounds 399

that now belong to two color classes. The coloring C1 thus becomes a collection of
overlapping rather than disjoint subsets, but its weight (cardinality) remains unchanged.
If we now find a new coloring 6"2 of the vertices in V\V2, then every vertex will.have
been colored twice, and thus using one-half times the first and one-half times the second
coloring, we obtain a full fractional coloring of total weight (IC1)I + IC21)/2. However,
since C2 is a coloring of fewer than IV[vertices, typically 1(721 < ICll and therefore
(ICt I + IC21)/2 < I Cll, i.e., our fractional coloring is better than C1. This process can be
repeated by using a third, fourth, etc., coloring as long as improvements can be obtained.

The (integer) colorings needed at each iteration will be generated by an Integer Col-
oring Heuristic (ICH). We denote by C := Ct U C2 U . . . U Ck the collection of color
classes generated during the procedure. Notice that the color classes Si of each coloring
Cj are generated at iteration j and augmented at subsequent iterations. At iteration k,
we denote by Uk the set of vertices not yet colored (during that iteration), and by tl k the
current value of the fractional coloring at hand.

Fractional Coloring Procedure (FCP)

0. Initialize: t o := c~, C := 0, y := 0, k = 1.

At iteration k:

1. Set Uk := V.
2. For each v ~ Uk, choose a color class Si ~ C, if one exists, such that

Si U {v} is stable, and set

& := & u Iv}, Uk := uk\lv}.

3. Apply ICH to G (Uk); let Ck be the coloring found. If (ICl+lfkl)/k < t~- 1,
set

t~ := (ICI + Ifkl)/k, C := C U Ck, k := k + 1

and go to 1.
Otherwise let C* := C, t? = t~ - l ,

[; ~ (k - l) for SEC* ,

Y~= for Sr

and stop.

Note that the color classes generated by FCP need not be distinct, i.e., repetition is
allowed.

THEOREM 2.1. y* is a feasible fractional coloring, with t~ = y*(C*); hence Lt~J is an
upper bound on the cardinality of a clique in G.

PROOE Each S 6 C* is stable by construction; hence y* with support C* satisfies all

400 E. Balas and Jue Xue

constraints (3) if and only if

y~.(y~: S ~ C * a n d v r S) _ > 1 for all v 6 V.

During each iteration except for the last one, every v c V is included in exactly one
color class either in step 2 or in step 3. If the number of iterations is p, each v c V is
included in p or p - 1 color classes S c C*; and since y~ = 1/(p - 1) for all S 6 C*,

E (y ~ : S ~ C * a n d v ~ S) > (p - l) / (p - 1) = 1 for all v e V. []

It is desirable to have the stopping rule amended to the effect that the maximum
number of color classes allowed is 0(1V[).

THEOREM 2.2. If the number of color classes generated is O([VI)andthelCHusedhas
complexity 0 (h), then FCP can be executed in 0 (min{I EI �9 IV I, ~ (G). I Vl 2} + h. IV L)
time, where or(G) is the size of a maximum stable set in G.

PROOF. At every iteration, step 2 requires checking for every pair v, S whether N (v) A
S = 0, where N(v) := {w 6 V: (v, w) c E}. This can be done either by checking for
each u ~ N(v) whether it has the color S, which takes O(deg(v)) time, or by checking
for each u ~ S whether it belongs to N(v), which requires O(ot(G)) time. Thus the
complexity of executing step 2 throughout the procedure (i.e. at most O (1V I) times) is
O(IVl . min{lE], a (G) . IVI}).

On the other hand, the effort involved in step 3 depends on the complexity of the ICH
used. If the latter is O(h), then the complexity of step 3 throughout the procedure is
O (h. IV I). Thus the complexity of FCH is as claimed. []

For dense graphs a(G) is small and the complexity of the procedure is only slightly
worse than O([V[2 + hIVI).

We have tested two heuristics in the role of ICH. One is DSATUR (for Degree
of Saturation), a procedure due to Brelaz [8]; which consists of applying n times the
following step:

�9 Choose an uncolored vertex v such that the vertices in N(v) represent a maximum
number of color classes, and put v in the first color class where it fits. To break ties,
give preference to vertices with higher degree.

The other one is the simple coloring heuristic SCH, which can be stated this way:

�9 Open a color class and put in it as many vertices as possible, in order of nonincreasing
degree. Repeat this as long as possible.

DSATUR typically finds a better coloring than SCH. In [8] it was found the most
efficient among five heuristics tested (see [12], [14], and [15] for other coloring heuris-
tics). However, the complexity of DSATUR is O([V21), whereas that of our SCH is
O (min{iE[, IV 12 - I EI}). For very sparse and very dense graphs, DSATUR is an order
of magnitude more expensive than SCH.

Before continuing, we illustrate FCP on a graph with nine yertices.

Weighted and Unweighted Maximum Clique Algorithms with Upper Bounds 401

Fig. L Graph for Example 1.

EXAMPLE 1. Consider the graph of Figure 1.

k = 1. U1 = V and the first coloring generated is C1 = {$1 , $5 }, with $1 = { 1, 9},
$2 = {2, 5}, $3 = {3, 4}, $4 = {6, 8}, $5 = {7}. This gives a starting bound of t~ =
IcI = ICll = 5 .

k = 2. Vertex 2 can be added to $5 and vertex 4 to Sa, i.e. $4 := {4, 6, 8}, $5 := {2, 7}.
U2 = { 1 , 3 , 5 , 6 , 7 , 8 , 9 } . ICH yields 6'2 := {$6,$7,$8,$9}, with $6 = {1,8}, $7 =
{3, 5, 9}, 58 = {6}, 59 = {7}. (ICI + 1C21)/2 = 4.5 < 5, so t 2 := 4.5, C = C U C2.

k = 3. Vertex 2 can be added to $8, vertices 4 and 8 to $9; i.e., $8 := {2, 6}, $9 :=
{4, 7, 8}. U3 := {1, 3, 5, 6, 7, 9}. C3 : : {SI0, SI1,512, S13}, with $10 := {1, 9}, all : :
{3, 5}, S12 := {6}, 513 := {7}. (I f l + 1C31)/3 = 4.33 < 4.5, so tl 3 := 4.33, C := Ct-JC3.

At this point the number of color classes generated exceeds our limit, so we stop:

C* := {$1 $13}, Y~i = �89 i = 1 ,13, and [t~J = 4.

The fractional coloring procedure can be generalized so as to apply to the weighted
case, i.e., to finding an approximate solution to problem (6). However, this generalization
is not trivial. The reason for this is that in the weighted case every vertex v has to be colored
with enough colors of enough weight so that their total weight adds up to the weight of v.
Therefore the integer coloring heuristic used in FCP needs to be replaced by a weighted
integer coloring heuristic (WICH), where each vertex may belong to several (weighted)
color classes. For v E V, we call the residual weight of v, and denote by r(v) , the weight
that needs to be "covered" by weighted color classes during the current iteration. Like
in the unweighted case, a full integer coloring is generated at every iteration; but the
weight r(v) to be covered (absorbed) by weighted color classes for each v ~ V may be
less than the initial weight w(v). This is so because, unlike in the unweighted case, the
integer (weighted) coloring at a given iteration may "overcover" (i.e., color with excess

402 E. Balas and Jue Xue

weight) some of the vertices. In particular, this may happen if in step 2 we fit a vertex v
into a color class Si whose weight Ys~ exceeds w(v). In such a case the residual weight
of vertex v at the next iteration will be r(v) := w(v) - (Ys~ - w(v)) < w(v).

By analogy with the unweighted case, at iteration k we denote by Uk the set of vertices
not yet fully colored (i.e., having positive residual weight) during that iteration, and by
t'l k the current value of the fractional coloring at hand. Unlike in the unweighted case,
however, we have to keep track explicitly of the weights ys, generated during successive
iterations. These weights are kept integer until the last iteration, when the appropriate
fractional values are calculated.

Weighted Fractional Coloring Procedure (WFCP)

O. Initialize: ~ := cx~, C := 0, yO := O, r(v) := O, v ~ V, U1 = V, k := 1.

At iteration k:

1. Let

r (v) : = r (v) + w (v) , v ~ V ; U k : = { v c V: r(v) >0}.

2. For every v ~ U~, choose a color class Si ~ C, if one exists, such that
Si tA {v} is stable. Set Si := Si tA {v}, r(v) := r(v) - yw and, i fr(v) < 0,
set Uk := U~\{v}.

3. Apply WICH to G(Uk); let yk be the weighted coloring found, with Ck
the corresponding set of color classes.

If (yk-i (C) + yk(Ck))lk < ~'~-1, set

?f := (yk-l(C) + yk(Ck))/k,

Ys for S E C,

:= for S ~ Ck,

for S q~ C U C~,

c := CrACk, k : = k + l ,

and go to 1.
Otherwise let c* := c , ?~, := ?f-J,

{~k-I , s / (k - l) for S ~ C * ,
Ys :=

for S ([C*,

and stop.

THEOREM 2.3. y* is a feasible weighted fractional coloring, with {~ = y*(C*); hence
L~J is an uppdr bound on the weight of a clique in G.

Weighted and Unweighted Maximum Clique Algorithms with Upper Bounds

[]

[]

[]

Fig. 2. Graph for Example 2.

)D

403

PROOF. Parallels that of Theorem 1. []

The complexity of the weighted fractional coloring procedure is the same as that of
its unweighted analog.

The integer coloring heuristic that we use in the role of WICH is a generalization to
the weighted case of SCH, which can be stated as follows:

�9 Open a color class S and put in S as many vertices v 6 Vk as possible, in order of
decreasing residual weight. Then reduce the residual weight r(v) of each v 6 S by
r(vo) := min{r(v): v ~ S} and remove from Uk all vertices v such that r(v) = O.
Repeat this procedure until Uk = 0.

Next we illustrate WFCP on the graph with six vertices in Figure 2, where the numbers
in the boxes are the weights.

EXAMPLE 2.

k = 1. r = w = (3 , 3 , 2 , 2 , 2 , 1), Ul = {1 6}. WICH yields the integer coloring
defined by C1 = {SI Ss},wi thS1 = {1,4}, ys 1, = 2; Sz = {1,3}, ysI2 = 1;

$3 = {2, 5}, y l 3 = 2; $4 = {2, 6}, ysl4 = 1; $5 = {3}, ysl5 = 1.

We have t 7 = ~(ys~ : i = 1 5) = 7, Y~i as defined above for i = 1 5,

ys 1 = 0 for all other S, and C := C1.

k = 2. r = (3, 3, 2, 2, 2 ,1) ,U2 = {1 6}. We can add v e r t e x 5 t o S s , soS5 :=
{3, 5}, r(5) = 2 - 1 = 1. U2 remains unchanged, but r = (3, 3, 2, 2, 1, 1).

WICH yields the coloring C2 = {$6 $9}, with $6 = {1, 3}, y2 6 = 2; $7 = {1,6},

y27 = 1; $8 = {2, 5}, Ys28 = 1; S 9 = {2, 4}, y 2 9 = 2.

404 E. Balas and Jue Xue

We have (y l (C) + y2(C2))/2 = (7 + 6)/2 = 6.5 < 7, so we set ~ := 6.5,

{ y~ for S 6 C ,
y 2 : = ys 2 for S E C 2 ,

0 for S r

andC : = C U C 2 .

k = 3. r = (3, 3, 2, 2, 2, l) ,U3 = {1 6}. The color classes in C are all maximal.
Applying WlCH to G(U3) yields C3 which is the same as Ct, i.e., $10 = $1 $14 =
Ss, withy3 = 1 , YSi-9 i = 10 14. Further,

(y2(C) + y3(C3))/3 = (13 + 7)/3 = 6.67 > 6.5,

hence we stop with C* := C, y~ --- ys 2 for S 6 C*, y~ = 0 otherwise, and Lt'~J = 6.

It is shown in the last section on computational results, that the fractional coloring
procedure provides a substantially tighter bound, sometimes by as much as one-fourth,
on the maximum clique size or clique weight, than the best integer coloring heuristics.
The ratio between the two bounds seems to improve with the size of the graph in favor
of the fractional coloring bound.

3. Using FCP and WFCP in a Branch and Bound Algorithm. In this section we
embed FCP and WFCP into a branch and bound algorithm for finding a maximum clique,
or a maximum-weight clique, in an arbitrary graph G = (V, E). The branch-and-bound
algorithm has the same structure as that of Balas and Yu [6] for the unweighted case and
Balas and Xue [5] for the weighted case. FCP in the unweighted case, and WFCP in the
weighted case, are used as upper bounding devices. Because of the important differences
between these two procedures, as well as between the weighted and unweighted lower
bounding devices, we have actually developed two distinct algorithms, MAXCLQ1 for
the unweighted and MAXCLQ2 for the weighted case. We discuss the weighted case
only; the corresponding steps of the algorithm for the unweighted case can easily be
substituted on the basis of our discussion in Section 2.

At the root node of the search tree, we start by finding an edge-maximal triangulated
Subgraph G ' of G (see [3] and [18]) and a maximum-weight clique K ~ of G' . Then
LB := w(K*) is a lower bound on the weight of a maximum-weight clique in G. Next
we apply WFCP to G in order to obtain an upper bound, UBc, on the weight of any
clique in G. If UB~ <_ LB, we are done; otherwise we branch, based on the following
branching scheme (see [6] and [5] for a proof of validity and discussion):

THEOREM 3.1. Let G' := G(V') be an induced subgraph of G, let UBG, be an upper
bound on the weight of a clique in G', and let vt Vrn be an arbitrary ordering of the
vertices in V \V ' . If G has a clique K such that w(K) > UB~,, then K is contained in

one of the m sets

(7) Vi : = {Vi} LI N(I~ i) \{Vl 1)i--1}, i = 1 m,

where,fori ---- 1, we define {Vl Vi-l} = 0.

Weighted and Unweighted Maximum Clique Algorithms with Upper Bounds 405

At an arbitrary node of the search tree other than the root, we have a subproblem
P ' := (G', I', UB6,), where G' is a subgraph of G induced by some vertex set V/of the
form (7), I ' is a subset of the vertices in V\ V~ to be added to any clique of G' (to yield
a larger clique of G), and UBG, is an upper bound on w(K) for any clique K of G'.

The statement of the algorithm follows, with L denoting the list of active subproblems
(nodes of the search tree).

Maximum-Weight Clique Algorithm (MAXCLQ2)

O. Initialize. Find an edge-maximal triangulated subgraph G* of G, and a
maximum-weight clique K* of G*. Set LB : : w(K*). Put into L the
problem P := (G, 0, c~) and go to 1.

1. Subproblem selection. If L = 0, stop: K* is a maximum-weight clique
of G. Otherwise, choose a subproblem P' := (G', I', UBa,) in L and
remove P ' from L.

If UB~, + w(I') <_ LB, discard P~ and go to 1.
2. Lower bounding. Use a heuristic to find a maximal clique K ' in G'. If

w(K') + w(I') > LB, set K* := K ' U I ' and LB := w(K*).
3. Upper bounding. Apply WFCP to G' to get an upper bound UBc, on the

weight of a clique in G'. If UBc, + w(I') <_ LB, discard P ' and go to 1.
4. Branching. Let CI be the integer coloring generated in the first iteration

of WFCP, and let C' 1 be a maximal subset of C1 such that y(C'l) <
LB - w(I'). Further, let Vl Vm be an arbitrary ordering of the vertices
in V\{v: y(C'l) > w(v)}. For i = 1 , . . . , m, put into L the subproblem
P/ := (G I, 17, UBG,i), where G I := Gl(N(vi)\{Vl lJi_l}), I ; : :
I ~ U {vi}, and UBr; := UBr, - w(vi). Then go to 1.

Our current implementation uses a subproblem selection rule (step 1) based on a
depth-first search strategy, and a lower bounding heuristic (step 2) that constructs a
clique at every node of the search tree by the same procedure as in [5]. In the unweighted
case the lower bounding heuristic constructs a clique as a by-product of DSATUR. The
main feature that distinguishes this algorithm from those of [6] and [5] is its upper
bounding technique. The fractional coloring procedure provides a stronger upper bound
than the integer coloring used in [6] and [5], but is of course computationally more
expensive.

4. Computational Results. The procedures FCP and WFCP were implemented in C
and tested both as stand-alone procedures for finding an approximate solution to the
(unweighted and weighted) fractional coloring problem, and as bounding devices in the
framework of a branch and bound procedure. For the purposes of testing, random graphs
were generated, having between 100 and 500 vertices, and densities of 0.4 to 0.95. Here
density means the probability that a certain edge is present. The tests were run on a
NeXTstation. In addition, the collection of DIMACS Challenge benchmark problems
was solved on a DEC alpha 300-400 AXP.

406 E. Balas and Jue Xue

Several currently available branch and bound codes for finding maximum cliques
(see [1], [2], [6], and [9]) can solve without difficulty problems on sparse random graphs
even for sizes well above 1000 vertices. Dense graphs are an altogether different matter.

The expected size of a minimum (integer) coloring of a random graph is O (n / l o g an) ,
and the corresponding number for a maximum clique is O(log b n) (see [7]), where the
bases of the two logarithms are a = 1/(1 - d) and b = 1/d, respectively, with d the
density of the random graph, i.e. the probabili ty that a particular edge is present. It
follows that the ratio between the expected size of a minimum coloring and a maximum
clique is O (n / (l o g a n �9 log b n)). This shows that the degree of difficulty in solving the
problem increases rapidly with n. Now, for fixed n, the above ratio attains its maximum
for a = b = 1/(�89 = 2. This suggests that the hardest problems are those on graphs
whose density is 0.5. Th is conclusion, however, is not corroborated by computational
experience with any of the above listed algorithms, which are all branch and bound
procedures, differing only in their branching rules and bounding devices. The general
experience with all these algorithms has been that the size of the search tree, and therefore
the computational effort needed to solve the problem, grows with density not just up to
0.5 but even faster beyond that, and that this trend continues well beyond the density of
0.9. (This might be different for an approach based primari ly on cutting planes.) Actually,
for densities of 0.8-0.9, problems on graphs with 200-300 vertices are already very hard.

First we examine the performance of the fractional coloring procedures by themselves.
Tables 1 and 2 summarize our findings in this respect, for the unweighted and weighted
cases, respectively. We have examined a larger number of variants and carried out more
extensive testing for the unweighted case. The first two columns of Table 1 describe the

Table 1. Fractional versus integer coloring procedures

Graphs Upper bounds Computational effort

Iterations

IV[Density(%) tSCH tDSAT tFCPI tFCp2 FCP1 FCP2

CPU (seconds)

FCP1 FCP2

100

500

10 6.0 6.0 6.0 5.0 2.0 3.5
20 9.5 9.0 8.0 8.0 5.0 3.5
30 13.0 12.0 11.0 10.0 4.0 6.0
40 15.0 15.0 13.0 13.0 7.5 4.0
50 19.5 18.5 16.5 15.5 5.5 9.0
60 23.5 23 .0 20 .0 19.5 7.5 7.0
70 27.5 27.5 25 .0 25.0 5.5 5.0
80 35.0 34.5 31.5 30.0 5.0 7.5
90 43.0 44.5 41 .0 39.5 4.5 6.5

10 18.0 16.5 14.5 13.5 8.5 7.0
20 30.0 27 .0 24 .0 23.0 13.0 8.5
30 42.5 40 .5 35 .0 34.0 7.5 8.0
40 57.0 51 .0 46.5 45.0 8.0 9.5
50 69.0 66 .0 58.5 57.5 11.5 12.5
60 86.0 81.0 74 .0 72.5 9.0 10.0
70 105.5 99.5 91.5 90.8 11.5 10.0
80 130.5 126.0 114.5 113.5 14.5 12.0
90 166.0 166.5 151.0 151.5 11.0 6.5

0.031 0.047
0.055 0.069
0.039 0.102
0.063 0.070
0.055 0.164
0.077 0.148
0.062 0.124
0.071 0.195
0.061 0.212

1.024 2.336
1.429 3.343
0.984 3.577
1.171 4.691
1.742 6.686
1.570 6.119
2.138 6.823
3.880 8.899
2.928 5.694

Weighted and Unweighted Maximum Clique Algorithms with Upper Bounds 407

random graphs in terms of their size and density. Columns 3-6 show the upper bounds
(cardinality of colorings) obtained by SCH (tscn), by DSATUR (tDSAT), by FCP 1 (tFcp1),
and by FCP2 (tFCP2), respectively, with each entry representing the average of two runs.
The first two procedures are the two integer coloring heuristics discussed in Section 2.
FCP1 is the version of the fractional coloring procedure that uses SCH as its integer
coloring heuristic, whereas FCP2 is the version that uses DSATUR in the same role.

As the numbers show, the integer coloring obtained by DSATUR is typically better
than the one obtained by SCH, though not without exceptions. The improvements in the

1 bound obtained by FCP1 over SCH range from 0 to 7, and FCP2 sometimes goes even
1 beyond ~. The number of iterations for FCP1 increases somewhat with problem size, but

remains below 15. Computing times increase both with problem size and density. There
is a large discrepancy between the computing times of the two versions of FCP. This is
partly due to the fact that DSATUR is more time Consuming than SCH, but mainly to
the fact that in the experiment reported here we let FCP2 run for 50 iterations in each
case, to make sure we got the lowest value obtainable by our approach.

Table 2 reports, in a more summary fashion, the corresponding results for the weighted
case. Here ?wicP and/WFCP stand for the weights of the (weighted) integer and fractional
colorings, respectively, obtained by the procedures WICP and WFCP discussed in Sec-
tion 2. The last column shows the number of iterations of WFCP. Again, each entry
represents the average of two runs. As in the unweighted case, the improvement in the
bound obtained by the fractional coloring procedure over the integer one varies between
0 and 1

5"
Next we turn to the tables describing the performance of the fractional coloring

procedure as an upper bounding device in the framework of a branch and bound algorithm.
For the unweighted case, we tested various ways of using this upper bounding device,

Table 2. Weighted fractional coloring procedure

Graphs Upper bounds

Density
I V l (%) hvic~ ?wFcp Iterations

100 10 35.0 29.5
20 52.5 46.5
50 106.0 92.5
80 195.0 176.5
90 255.5 237.5

200 10 57.0 45.5
20 84.5 78.5
50 180.5 159.0
80 347.5 306.5
90 454.5 407.5

300 10 69.5 55.0
20 111.0 92.0
50 249.0 218.0
60 306.0 267.0
70 382.0 343.0

14.0
7.0
7.0

11.0
16.0

9.0
3.5
7.0

18.0
11.0

15.5
12.0
13.0
12.5
12.0

408 E. Balas and Jue Xue

and the one that gave the best results (summarized in Table 3) has step 3 modified as
follows:

3. Upper bounding. Apply ICH to G' to get a first upper bound UB' a, on the
size of a clique in G'.

If UB'~, + II'[< LB, discard P ' and go to 1.
If (UB' a, + I1'1) �9 y > LB, go to 4.
Otherwise apply FCP to G' to get a second upper bound UB6,.
If UBG, + II'l < LB, discard P ' and go to 1."

The code with this modified step 3 is MAXCLQ1, and its results are reported in
Table 3. The value used for the multiplier g in these runs was 0.85.

Every entry represents the average of ten runs. The column "LB at the root node" shows
the lower bound obtained by finding an edge maximal triangulated (EMT) subgraph of
G and a maximum clique in that subgraph. Comparing the entries of this column with
those of the column showing the actual maximum clique sizes, we find that the EMT
subgraph yields a very strong lower bound: for a total of 220 problems run, the difference
between this lower bound and the actual maximum clique size is as follows:

0 in 61 cases,
1 in 92 cases,

2 in 62 cases,
3 in 5 cases.

The fourth column, "UB at the root node," shows the upper bound obtained by the
fractional coloring procedure FCP2, which uses DSATUR as its integer coloring heuris-
tic. Although this procedure, as shown in Table 1, improves the upper bound sometimes
by more than one-fifth, nevertheless the gap between it and the lower bound is very
significant, the ratio between the two being in the range 1.13--4.89. As a result of this
situation, the number of search tree nodes that need to be explored is very large and
grows fast with the graph density.

The last two columns of Table 3 compare the results of MAXCLQ 1 with those of the
branch-and-bound procedure of Babel [1], which seems to be the most efficient code
in the literature. We see that in all cases but one MAXCLQ1 generates smaller search
trees than Babel's code, sometimes by a factor of 2. This is due primarily to the stronger
upper bounds obtained by the fractional coloring procedure. A second explanation lies
in the strong lower bound generated at the root node by solving the EMT problem. The
computing times are shown only for completeness; they are hard to compare, because
the runs were performed on radically different computers. It should also be mentioned
that the computational results of Babel are taken from [1], and the random problems
solved with the two procedures, although of the same size and density, are not the same.

Table 4 reports on our computational experience with the DIMACS benchmark prob-
lems, which were contributed by various participants of the DIMACS Challenge. Unlike
the randomly generated problems drawn from a uniform distribution, these problems
have strong structure. Some come from coding theory, some are Steiner triple problems,
some use graphs with carefully hidden large cliques. These problems are available from
DIMACS on FTP.

Weighted and Unweighted Maximum Clique Algorithms with Upper Bounds 409

~4

r

r~

o o o ,.~

410 E. Balas and Jue Xue

Tab le 4. Unweigh ted m a x i m u m clique a l g o r i t h m - - D I M A C S benchmarks

LB UB Maximum Search DIMACS
Density at root at root clique tree CPU problem

EVI (%) node node size nodes (seconds) ID

200 75 19 48 21 113,244 172.19 brock200_ 1
200 60 9 27 12 2,965 1.90 brock200_2
200 65 12 35 15 8,155 7.96 brock200-3
200 66 15 38 17 25,705 26.00 brock200_4
400 75 22 85 33 4,825,525 17,558.39 brock400_4

125 90 34 47 34 8,186 22.33 C125.9

200 8 12 12 12 1 0.03 c-fat200-1
200 16 24 24 1 0.02 c-fat200-2
200 43 58 67 58 29 0.13 c-fat200-5
500 4 14 14 1 0.08 c-fat500-1
500 7 26 26 1 0.11 c-fat500-2
500 19 64 64 1 0.24 c-fat500-5
500 37 126 126 1 0.64 c-fat500-10

500 50 12 59 13 505,355 338.06 DSJC500.5

200 90 38 56 44 140,966 719.67 gen200_p0.9_44
200 90 55 65 55 467 5.96 gen200_p0.9_55

64 90 32 32 32 1 0.01 hamming6-2
64 35 4 7 4 48 0.01 hamming6-4

256 97 128 128 128 1 0.34 hamming8-2
256 64 16 20 16 373 1.74 hamming8-4

1024 99 512 512 512 1 30.89 hamming 10-2

28 56 4 4 4 1 0.00 johnson8-2-4
70 77 14 14 14 1 0.01 johnson8-4-4

120 76 8 8 8 1 0.01 johnsonl6-2-4
496 88 16 16 16 1 0.47 johnson32-2-4

171 65 11 18 11 4,164 3.39 keller4

45 93 16 19 16 23 0.02 MANN_a9
378 99 125 141 126 14,145 1,362.82 MANN_a27

300 24 8 19 8 832 0.80 p_hat300-1
300 49 25 41 25 1,613 5.83 p_hat300-2
300 74 34 66 36 171,229 826.27 p_hat300-3
500 25 9 29 9 6,105 4.83 p_hat500-1
500 50 35 63 36 31,746 228.11 p_hat500-2
700 25 9 37 11 14,040 16.08 p_hat700-1
700 50 43 82 44 252,892 2,848.49 p_hat700-2

1000 24 9 48 10 93,004 97.38 p.hat 1000-1
1500 25 11 72 12 738,370 946.70 p_hatl500q

200 70 16 33 30 635 1.69 san200..0.7_ 1
200 70 14 23 18 852 4.91 san200_0.7_2
200 90 46 73 70 10 0.26 san200_0.9_ 1
200 90 41 67 60 1,825 12.27 san200_0.9_2
200 90 36 56 44 353,617 1,678.79 san200_0.9_3
400 50 7 18 13 1,194 5.83 san400_0.5_l
400 70 21 51 40 20,913 190.59 san400_0.7_ 1
400 70 17 44 30 75,773 347.19 san400_0.7_2
400 70 16 31 22 161,585 585.28 san400.0.7_3
400 90 54 116 100 1,434,607 31,282.62 san400_0.9_ 1"

1000 50 8 22 15 21,897 365.26 sanl000

200 70 17 42 18 40,496 52.91 sanr200_0.7
200 90 39 69 42 2,067,336 10,451.38 sanr200_0.9
400 50 11 48 13 112,932 105.43 sanr400_0.5
400 70 19 75 21 19,385,778 36,656.41 sanr400_0.7*

Weighted and Unweighted Maximum Clique Algorithms with Upper Bounds

Table 5. Weighted maximum clique algorithm.

411

Graph MAXCLQ2 BX92

LB UB Maximum Search Search
Density at root at root clique tree CPU tree CPU

I V I (%) node node weight nodes (seconds) 1 nodes (seconds) 2

100 10 28.5 29.5 28.5 9 1.28 13 0.06
20 35.5 46.5 37.0 29 0.69 32 0.09
50 62.0 87.5 69.5 76 1.87 99 0.27
80 135.0 176.5 137.0 146 10.84 387 1.71
90 209.9 237 .5 213.5 148 21.42 269 1.84

200 10 34.5 46.0 34.5 67 1.87 68 0.26
20 43.0 78.5 49.0 104 1.99 113 0.47
50 77.0 159.0 77.5 1,254 36.52 1,726 5.76
70 123.5 240.0 129.5 7,477 443.97 18,011 87.96
80 184.5 306.5 186.5 2 7 , 6 0 5 2,789.75 60,038 536.52

300 10 34.5 55.0 36.5 152 5.84 152 0.75
20 45.0 92.0 46.5 207 8.53 258 1.29
50 80.5 218.0 86.5 7,859 282.66 13,611 48.73
60 103.5 267.0 117.5 2 4 , 0 5 2 1,364.69 42,078 208.66
70 141.0 343.0 150.0 175,996 14,246.57 427,806 2,590.35

400 10 35.5 67.0 35.5 238 9.67 250 1.48
20 49.0 115.5 50.0 367 18,07 539 2.94
40 76.0 222.5 78.5 8,197 324.64 11,379 43.08
50 86.0 272.5 96.0 3 1 , 5 5 8 1,735.71 58,286 232.41
60 110.0 336.0 117.5 178,089 12,636.95 345,979 1,880.25

500 10 40.0 86.5 42.5 305 13.16 316 2.32
20 47.5 133.5 53.0 695 51.67 1,510 6.19
30 59.0 194.0 68.5 4,815 216.29 6,419 25.52
40 75.0 261.5 83.5 17,395 872.58 25,902 120.25
50 89.5 325.0 101.5 9 7 , 3 1 8 6,223.33 179,050 842.21

I NeXTstation.
2 HP 9000/835.

In running the DIMACS problems on the DEC alpha 300-400 AXP, we set a time
limit of 18,000 seconds (5 hours), except for two cases: sanr400_0.7 and san400_0.9_l.
An asterisk (,) marks the cases where this time limit was exceeded.

As Table 4 shows, our general-purpose maximum clique algorithm solves most of the
DIMACS benchmark problems with a reasonable computational effort.

Finally, Table 5 describes the performance of MAXCLQ2, our branch-and-bound
code for the weighted maximum clique problem. Again we find that the lower bound
obtained by generating a triangulated subgraph of G and finding a maximum-weight
clique in it, is pretty strong, though not to the same degree as in the unweighted case:
in a couple of instances the ratio between LB and the maximum clique weight is less
than 0.9. The gap between the upper and lower bounds remains large in the weighted
case, too, with the ratio of the two bounds exceeding 3.0 in some cases. The last two
columns compare the performance of MAXCLQ2 with the branch and bound code Of
Balas and Xue [5] (BX92), whose structure is similar to that of MAXCLQ2, except for

412 E. Balas and Jue Xue

the fact that it does not use the fractional coloring procedure. We see that use of this

improved upper bound ing procedure substant ial ly reduces the size of the search tree,
somet imes by a factor of more than 2. Again, the comput ing t imes are not comparable

because of differences in the computers. However, the comput ing t imes of M A X C L Q 2

can be compared with those of M A X C L Q 1 , and the compar ison shows that the t ime

spent per search tree node is about five t imes higher in the weighted case than in the
unweighted one. This is part ly due to the fact that the weighted fractional coloring

problem is inherent ly more difficult than the unweighted one, and partly to differences

in the intensi ty of the implementa t ion effort in the two cases.
To conclude; the fractional coloring procedure is undoubtedly a powerful device

for s t rengthening the upper bound obtained by integer coloring. Its incorporat ion into

a b ranch-and-bound framework has produced algori thms that compare favorably with
other state-of-the-art procedures.

References

[1] L. Babel, Finding maximum cliques in arbitrary and special graphs, Computing, 46:321-341, 1991.
[2] L. Babel and G. Tinhofer, A branch and bound algorithm for the maximum clique problem, ZOR-

Methods and Models of Operations Research, 34:207-217, 1990.
[3] E. Balas, A fast algorithm for finding an edge-maximal subgraph with a TR-formative coloring, Discrete

Applied Mathematics, 15:123-134, 1986.
[4] E. Balas and J. Xue, Fast Maximum Clique Algorithms, TBI7.4, TIMS/ORSA, Las Vegas, May 7-9,

1990.
[5] E. Balas and J. Xue, Minimum weighted coloring of triangulated graphs, with application to maximum

weight vertex packing and clique finding in arbitrary graphs, SIAM Journal of Computing, 20:209-221,
1991. Addendum, SIAM Journal on Computing, 21:1000, 1992.

[6] E. Balas and C. S. Yu, Finding a maximum clique in an arbitrary graph, SIAM Journal on Computing,
14:1054-1068, 1986.

[7] B. Bollob~is, Random Graphs, Academic Press, New York, 1985.
[8] D. Brelaz, New methods to color the vertices of a graph, Communications of the ACM, 22:251-256,

1979,
[9] R. Carraghan and P. M. Pardalos, A Parallel Algorithm for the Maximum Weight Clique Problem,

Technical Report CS-90-40, Department of Computer Science, Pennsylvania State University, 1990.
[10] E D. J. Dunstan, Sequential Colorings of Graphs, Proceedings of the 5th British Combinatorial Con-

ference, Vol. 19, 1975, pp. 456-463~
[11] M. Gr6tschel, L. Lov~.sz, and A. Schrijver, Polynomial algorithms for perfect graphs, Annals of Discrete

Mathematics, 21:325-356, 1989.
[12] E T. Leighton, A graph coloring algorithm for large scheduling problems, Journal of Research of the

National Bureau of Standards, 84:489-506, 1979.
[13l C. Mannino and A. Sassan0, An Exact Algorithm for the Stable Set Problem, IASI-CNR Report No. 334,

Rome, t992.
[14] D.W. Matula, G. Marble, and J. D. Isaacson, Graph coloring algorithms, in R. C. Read (ed.), Graph

Theory and Computing, Academic Press, London, 1972, pp. 109-122.
[15] D.J.A. Welsh and M. B. Powell, An upper bound for the chromatic number of a graph and its application

to timetabling problems, The Computer Journal, 10:85-86, 1967.
[16] J. Xue, Fractional Coloring Heuristic with Application to the Maximum Clique Problem, ARIDAM V,

Abstracts, RUTCOR Report No.2-90, May-June 1990, p. 67.
[17] J. Xue, Fast algorithms for vertex packing and related problems, Ph.D. thesis, GSIA, Carnegie Mellon

University, Pittsburgh, PA, 1991.
[18] J. Xue, Edge-maximal triangulated subgraphs and heuristics for the maximum clique problem, Networks,

to appear.

