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Abstract .  

We study the application of Runge-Kutta schemes to Hamiltonian systems of ordinary 
differential equations. We investigate which schemes possess the canonical property of the 
Hamiltonian flow. We also consider the issue of exact conservation in the time-discretization of the 
continuous invariants of motion. 
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1. Introduction.  

Physical systems from mechanics, optics, etc. are often described th rough  a set 
of  Hamil ton equat ions with y degrees of  freedom 

(1.1) dp /d t  = f ( p ,  q), dq /d t  = g (p .  q).  

Here p and q are y-dimensional  real vectors and the componen ts  j'~"~,y("~ of the 
vector-valued functions f and g satisfy 

(1.2) f(") = D g + , H ( p , q ) ,  g(") = - D n H ( p , q ) ,  1 < n <_ 9,  

where H is a real function of 2y real variables (the Hamil tonian function) and 

D, denotes partial differentiation with respect to the n-th argument,  1 <_ n < 29. 
The system (1.1) may  arise either directly in the modelling of  a physical system 
with a finite number  of  degrees of  freedom or as a spatial discretization of  an 
infinite-dimensional Hamil tonian  system. T h r o u g h o u t  this note  we assume that  

the vector of  coordinates  q takes values in an open subset f2 of R ~, that  the 
vector of momenta  p takes values in the whole of R 9 and that H is a 
C z function defined in the phase space R ° x O. 
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A fundamentalproperty of (1.1) is that, for each fixed value of t, the 
corresponding t-flow Ft is a canonical mappiny (see e.g. [1]). Recall that, by 
definition, Ft(Po, qo) = (P, q) if (p, q) is the value at time t of the solution of 
(1.1) which at time 0 takes the value (Po, qo)- A mapping is said to be canonical 
[1] if it preserves the differential form 

co = dp ^ dq = dp ~l~ /x dq~l) +dp  ~2) ^ dq~2~ + ...  +dp  ~g~ /x dq °, 

which defines the symplectic structure of the phase space. In plain terms, the 
canonical character of the flow means that if we choose an open subset W of 
the phase space, project it onto the 9 two-dimensional planes of the variables 
(p~"~,qt"}), 1_ < n _<# and sum the two-dimensional areas of the resulting 
projections, then such a sum remains invariant as W evolves in time within the 
phase space according to the dynamics of (1.1). The conservation of ~o clearly 
entails the conservation of its exterior powers co 2 ..... 690, which can be interpreted 
as conservation of higher-dimensional volumes. In particular the conservation of 
co ° is the conservation of the 2#-dimensional volume in the phase space, a fact 
which implies the existence of the important phenomenon of the Poincar6 
recurrence [1]. More generally, many interesting qualitative properties of (1.1) 
derive from the canonical character of its flow [1]. 

When the system (1.1) is numerically integrated by means of a standard one- 
step method, the mapping which advances in time the solution by an amount 
At is not, in general, canonical. Thus, generally speaking, numerical approxima- 
tions to the solutions of (1.1) obtained by a standard method will typically not 
have many of the relevant qualitative properties of their exact counterparts. It is 
then natural to look for canonical numerical discretizations of Hamiltonian 
systems, as suggested by Feng [5]. Feng [7] says that a one-step numerical 
scheme for (1.t) is symplectic if, except for roundoff errors, the mapping that 
advances the discrete solution is canonical. The implicit midpoint rule is easily 
seen to be symplectic [5]. For linear Hamiltonian systems the approximations 
based on diagonal Pad4 approximations to the exponential function are also 
symplectic [6]. For the nonlinear case, Feng and his coworkers [6] have used the 
theory of generating functions to construct symplectic schemes of arbitrarily high 
orders; these schemes are implicit and use high order partial derivatives of the 
Hamiltonian function H. In the linear case they generate diagonal Pad6 
approximations. 

In [12] and [13] F. VadiUo and the present author have proved that the 
standard leap-frog (explicit midpoint rule) for (1.1), when rewritten as a one-step 
recursion, is symplectic. Furthermore the papers [12] and [13] show how the 
canonical character of the discretization can be used, in conjuntion with the 
Kolmogorov-Arnold-Moser (KAM) theory [1], to derive useful stability results. 

The main purpose of this note is to study which Runge-Kutta schemes are 
symplectic. We show that all Gauss-Legendre methods are indeed canonical. 
Therefore there exist symplectic Runge-Kutta (RK) schemes of arbitrarily high 
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order. Note that RK schemes, unlike those constructed by applying the theory 
of generating functions, only require the evaluation of the right hand side 
func t ions f  and g in (1.1). 

We also include a section on energy-conserving RK schemes. It turns out that, 
for linear problems, the condition for an RK scheme to be symplectic also 
guarantees exact conservation of energy. 

2. Symplectic Runge-Kutta schemes. 

With each s-stage RK method with Butcher's tableau 

c A  
(2.1) br 

we associated the s x s matrix M with entries 

(2.2) m o = b~alj+bjajl-bibj, i,j = 1,2 . . . . .  s. 

The matrix M is of course well known from the definition of algebraic stability 
of RK methods introduced by Burrage and Butcher [2] (see [4] for more 
references). 

Our main result is as follows. 

TItEOREM 1. /.1' the condition M = 0 holds, where M is the matrix de tined in 
{2.2), then the RK method {2.1) is symplectic. 

PROOF. The RK method, as applied to the system (1.1 t, results in the equations 

(2.3) Y,-= p + z  ~, aiif(Yj, Zfl, Zi = q + z  ~ aijg(Yj, Zj), 1 <_ i ~ s, 
j = l  j = l  

(2.4) P = p + z  ~ b,f(Yj, Z,), Q = q + z  b~q(~,Z,). 
i = 1  i = 1  

Here P, Q, Y~, Zi, 1 < i ~ s, are functions of p, q and z, defined at least for 
sufficiently small. (How small r must be may depend on p,q.) We use the 
notation 

ki = f (Yi ,  Zi), li = g(Yi, Zi), 1 < i < s, 

for the "slopes" at the interval vectors. 
Differentiate (2.4) and take external products to arrive at 

(2.5) dP A d e = d p  ^ d q + ~  ~ b l d k i ^ d q + z  ~ hjdp ^ d i j +  
i = l  j = l  

+~2 ~ blbflki ^ dlj. 
i , j=  1 
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Now differentiate (2.3) and take the exterior product of the result with dkl, dlj 
to obtain a set of relations for dki ^ dq, dp  ^ dl~, 1 < i , j  < s. Next, eliminate 
dki ^ dq, dp  ^ dlj between the obtained relations and (2.5). These manipulations 
yield, on taking (2.2) into account: 

(2.6) dP  ^ d q - d p  A dq = z ~, bi[dk , A d Z i + d Y i  A d l i ] - z  2 ~ modk i A dl,. 
i=1  i , j = l  

So far the Hamiltonian character of (1.1), as given by (1.2), has not been resorted 
to. We now use (1.2) to show that the expression in brackets in (2.6) vanishes 
for each i, 1 < i < s. In fact, omitting the subscript i, we can write (with super- 
indices denoting component) 

g 

dk ^ d Z + d Y  ^ di = ~ [dk (m) A dZ(m)+dY tin) A dl (m)] 
m = l  

0 

= Z 
m~n = 1 

[D. f t")d  Y(") ^ d Z  (") + D o + ,f(m)dZ('O A d Z  (m) + 

+ D,~qt")dY tin) A dY(") + Dg+,,y"t")dY ('') A dZ(")]. 

To see that the last expression vanishes, it is enough to notice the antisymmetry 
of the exterior product and that (1.2) and the assumed smoothness of H imply 

= -Dg+, . v  , Dg+nf (m) = Dg+,,f  ('), D,g  (") = Drag ("), 1 < m,n < g. Thus 
(2.6) leads to 

dP  ^ d Q - d p  ^ dq = _~.2 ~ miflki  ^ dlj, 
i , j =  1 

a relation valid for all s-stage RK schemes which shows that the condition M = 0 
implies the conservation of the s~mptectic structure. • 

Since it is well known that for Gauss-Legendre methods M = 0 (see e.g. 
Theorem 4.6 of [4]), the following result holds true. 

COROLLARY. The Gauss-Legendre R K  methods are symplectic. 

On the other hand, Cooper [3] points out that no explicit RK method has 
M = 0. This author also investigates the existence of singly-implicit methods with 
M = 0 .  

The (consistent) method with a given set of positive weights b j, 1 < i < s, 
can easily be generated. Denote by B the diagonal s x s matrix whose diagonal 
elements are the weights, let W be an s x s matrix with W r B W  = I (the identity 
matrix), and set X = W - l A W .  Then a simple computation (see [4], page 123) 
shows that W r M W  = x + x r - e x e  r, where ex represents the first coordinate 
vector. Therefore M = 0 is equivalent to X = ½ e l e r + N ,  with N a skew- 
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symmetric matrix, or 

A = W(ele~+N)W -1. 

Each choice of a skew-symmetric matrix N yields, via the previous formula, a 
consistent method with M = 0. The theory of the W-transformation of Hairer 
and Wanner (see e.g. [4], Theorem 4.6.16) can be applied to characterize the 
choices for N which lead to high-order RK schemes. 

3. Conservation of  energy and other invariants of  motion. 

It is well known that H is a first integral for the system (1.1)-(1.2), i.e. if 
(p(t), q(t)) is a solution of (1.1)-(1.2) then H(p(t),q(t)) does not depend on t, 
a fact which in physical terms often corresponds to conservation of energy. In 
this section we investigate whether the RK scheme (2.1) also conserves H, i.e. 
whether, with the notations in (2.4), H(P, Q) =- H(p, q). More generally, we are 
interested in knowing which first integrals or invariants of motion of (1.1) are 
also conserved by the RK scheme. It is convenient to consider, instead of (1.1), 
a general system of ODEs 

(3.1) dy/dt = G(y), 

where y takes values in R d and G is a C1 function defined in an open subset 
of R a. We first study the conservation of quadratic functions, i.e. functions of the 
form y'rpy, with P a symmetric constant d × d matrix. 

THEOREM 2. /f, .for the matrix M defined in (2.2), M = 0, then the RK method 
(2.1) conserves all quadratic first integrals q[ (3.1). 

P~oov. The result is given by Cooper [3] for P non-singular, and his proof is 
valid in the general case. When P is the identity matrix, the same proof had 
essentially been given in [4], Example 10.3,8. See also the Appendix 
of [14]. I I  

COROLLAaY. The Gauss-Legendre RK methods conserve all quadratic first 
integrals of (3.1) 

REMARK 1. It is clear that all (continuous) functions K(F) conserved by a 
convergent numerical scheme for (3.1) must also be conserved by (3.1) itself. 

REMARK 2. Along with quadratic invariants of (3.1, we could have considered 
bilinear invariants, i.e. functions wTpy of tWO vector variables (P a constant, not 
necessarily symmetric d x d matrix) such that, if w(t), y(t) are any two solutions 
of (3.1), then w(t)rPy(t) does not vary in time. With a proof almost identical 
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to that  of  Theorem 2, it is possible to show that  the condi t ion M = 0, guarantees  
that  the R K  me thod  conserves all bilinear invariants  of  (3.1). 

We now leave the general system (3.1) and re turn to the Hami l ton  
equat ions (1.1). F r o m  the previous theorem it is clear that  if the Hami l ton ian  
function H is quadra t ic  (which entails that  (1.1) is linear), then R K  schemes with 
M : - 0  lead to exact conservat ion of the Hamil tonian .  Therefore,  linear 

Hami l ton ian  systems can be integrated numerical ly by means  of R K  methods  in 
such a way that  both the energy and  the symplectic s tructure can be conserved 
exactly. Fo r  the nonlinear case we have seen that  it is still possible to conserve 
the symplectic structure. However ,  the energy is not conserved,  even if M = 0. 

It has often been argued in the literature that  exact  conservat ion  of the 
energy is a desirable feature for numerical  schemes to possess. Claims in that  
direction by the present  au thor  were made  in [8], [9], [11]. When the energy 
is not quadratic,  s tandard  numerical  methods  usually fail to conserve energy, 
and it is then possible to suggest ad hoc modif icat ions of  the schemes to m a k e  
them energy-conserving [8], [9], [11] (see also [7]). However ,  numerical  experi-  
menta t ion  [10], [14] has now convinced the au thor  that  energy-conserving 
schemes do not  necessarily capture  all relevant  quali tat ive features of the 
cont inuous  model.  In a similar vein, ad hoc modif icat ions in t roduced to conserve 
energy exactly m a y  easily lead to a degrada t ion  of  the practical  per formance  of a 
numerical  scheme [10]. In the context  of  the present  note, it is perhaps  useful 
to point  out  that  such modif icat ions often dest roy the symplectic p roper ty  of  the 
scheme. 
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