Sialic acid binding lectins

C. Mandal and C. Mandal

Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta 700 032 (India)

Summary. The literature contains several reviews on lectins in general, covering mainly those from plants and invertebrates. However, the sialic acid binding lectins have not been reviewed so far. Considering the importance of sialic acids in cell sociology, lectins which specifically recognize terminal sialic acid residues are potentially useful as analytical tools in studying the biological functions of sialoglycoconjugates. These lectins, along with monoclonal antibodies raised against sialoglycoconjugates, have been used in the detection, affinity purification, cytochemical localization and quantitation of such glycoconjugates. In this review the main emphasis has been placed on the occurrence, general purification procedures, macromolecular properties, sugar specificities and applications of these lectins.

Key words. Sialic acid; lectin; sialoglycoconjugate; cell surface; antibody; invertebrate lectin.

Introduction

Sialic acids are a family of about 30 derivatives of Nacetyl or N-glycolyl neuraminic acids⁷⁴. Neuraminic acid does not exist as such in nature; the amino group is acylated by an acetyl or a glycolyl group, and one (or more) of the hydroxyl groups is methylated or esterified with an acetyl, lactyl, sulfate or phosphate group. Neuraminic acid is the most diversely substituted natural sugar. Sialic acid residues occur in the membranes of almost all members of the animal kingdom phylogenically above the echinoderms⁷⁵. Various sialic acid derivatives exhibit interesting species and tissue specific distribution^{15, 83}.

Sialic acids play a pivotal role in receptors for viruses, peptide hormones and toxins^{15,72}, and also in the social behaviour of cells⁴⁹. Extensive studies on influenza viruses established that the agglutinin responsible for their attachment to the cell surface binds to the sialic acid moieties of the receptors 15, 103, 105. In contrast to their receptor functions, sialic acids act as masking agents on antigens, receptors and other recognition sites of the cell surface^{75,76,109}. O-acetylation of sialic acid residues changes with transformation or other alterations in the cellular environment. O-acetylation influences enzymatic reactions in the catabolism of glycoconjugates by slowing down or inhibiting bacterial and viral sialidases and thus altering their immunopotency 77. Sialoglycoproteins and sialoglycolipids play very important roles in the physiology of normal and transformed cells. The extent of acetylation is also known to change during differentiation 78. The lectins which specifically bind to sialic acids are potentially useful in the detection, quantitation, localization, purification and characterization of many biomolecules containing sialic acids, e.g. glycoconjugates, gangliosides and polysaccharides. These lectins can be used as specific probes for certain derivatives of sialic acid which serve as molecular markers in some physiological and pathological developments.

Of the more than 100 lectins purified from plant and animal sources, many of which are commercially available, only a few bind to sialic acids. These lectins have been detected in a variety of invertebrates ^{9, 19, 29, 108, 109} mainly in the hemolymph, but only a few have been purified and characterized. Among the plant lectins, wheat germ agglutinin is known to bind sialic acids²⁸ although it binds preferentially to N-acetyl-D-glucosamine and its (β 1–4) linked oligomers. Recently two plant lectins with high specificity for complex oligosaccharides have been reported ^{79, 80, 104}. Sialic acid specific lectins have been detected in mammals^{18, 64} and exceptionally in an abnormal human serum ⁸⁹. Some hybridoma cell lines produce monoclonal antibodies against specific sialoglycoconjugates ^{17, 31, 86}.

Several reviews on plant^{7, 26, 29, 48} and invertebrate^{9, 19, 29, 108, 109} lectins are available, but there is none which specifically deals with sialic acid binding lectins. This review is an up-to-date summary of the known lectins which bind sialic acids including a systematic presentation of their occurrence, methods of purification, macromolecular properties, sugar specificity and scope of application. Such information may be useful in providing a basis for understanding the mechanism of cell-cell recognition. The use of various purified lectins with defined narrow specificity may provide new tools for the study of cell surface architecture. Analysis of the binding specificity may pave the way for the understanding of the origin of the diversity of invertebrate lectins, which are popularly believed to function as the immune system of these organisms.

Occurrence

Invertebrate lectins

Sialic acid binding lectins are ubiquitous among invertebrates. Arthropoda, Mollusca and Urocordata, a group of lower vertebrates, are abundant sources of these

434

Experientia 46 (1990), Birkhäuser Verlag, CH-4010 Basel/Switzerland

Table 1. A summary of sialic acid binding invertebrate lectins

Signam ip ip Specie (common name) tettin) Athropoda Instruction (name) tettin) Athropoda Instruction (name) tettin) Athropoda Instruction (name) tettin) Athropoda Instruction (name) h (1) Charaction (name) h (1) NeuNAc, GalNAc, GleA, PC, KDO 1, 9, 20–23, 27, 54 Instruction (name) h (4) NeuNAc GalA, Company (name) 79 (Garcino exprime) h (4) NeuNAc, GalNAc, GleA, PC, KDO 19, 21, 27, 254 (Instruction (name) h (4) NeuNAc GalA, Company (name) 79 (Garcino exprime) h (2) NeuNAc GalA, Company (name) 70 (Common date scaparation h (2) NeuNAc, Cole Nac 97 71 (Garcino expription) h NeuNAc, Cole Nac 92 71 (Garcino expription) h NeuNAc 93 71 (Garcino expription) h NeuNAc 94 71 (Garcino expription) h NeuNAc 72 71	Phylum	Sample	Sugar specificity	References
Species (common name) kettus) Attrinepola Marcatonatic Marcatonatic Lineitz polyphena h (3) NeuNAc, GulNAc, OleA, PC 19, 51, 57, 58, 61, 66–68 Camerata humeshow rubb h (1) NeuNAc, GulNAc, OleA, PC, KDO 1, 9, 20–23, 27, 54 Galarian horeshow rubb h (1) NeuNAc, GulNAc, GleNAc 76, 79 Galarian horeshow rubb h (2) NeuNAc Galarian Galarian horeshow rubb h (2) NeuNAc, Haxwonic acid 18, 93 Concurration subscription - NeuNAc, KDO 92 Arachnida h (2) NeuNAc, GulNAc, GleNAc 97 Concurration subscription h NeuNAc, GulNAc, GleNAc 97 Maniferences generation h NeuNAc, GulNAc 98 Maniferences generation h NeuNAc 98 Mariation subscription h NeuNAc 98 Mariationa subscription h NeuNAc 98 Mariationa subscription h NeuNAc 94 Manationand anda h NeuNAc	Class	of		
Victorpola Cablerata Mathematical Solution Mathematical Solut	Species (common name)	lectins)		
Mercianal Linebia polyphenes b (3) NeuNAc, GalNAc, GleA, PC 19, 51, 57, 58, 61, 66–68 Linebia polyphenes b (1) NeuNAc, GalNAc, GleA, PC, KDO 1, 9, 20–23, 27, 54 Endergia montalia b (1) NeuNAc, GalNAc, GleA, PC, KDO 1, 9, 20–23, 27, 54 Endergia montalia b (1) NeuNAc, GalNAc, GleNAc 78, 79 Concerner entromatic a NeuNAc 63, 64 Immine entropia a NeuNAc, GleNAc 78, 79 Concerner entropia a NeuNAc, GleNAc 78, 79 Concerner entropia b NeuNAc, GleNAc 70 Arachnide b NeuNAc, KDO 92 Concerner entropia b NeuNAc, GleNAc 91 Concerner entropia b NeuNAc, GleNAc 92 Concerner entropia b NeuNAc, GleNAc 94 Marcitograce stegeneras b NeuNAc 94 (Attriction a scription) b NeuNAc 94 (Marcitograce stegeneras b NeuNAc 94 (Marcioporenotio	Arthropoda Chelicerata			
Limitia polythemis h (3) NeuNAc, GalNAc, OleA, PC 19, 57, 58, 61, 66 - 68 Charcical horselbo crabb h (1) NeuNAc, GalNAc, GalA, C, KDO 1, 9, 20 - 23, 27, 54 Concombination of the interview h (4) NeuNAc, GalNAc, GalA, C, KDO 19, 20 - 23, 27, 54 Concombination h (4) NeuNAc, GalNAc, GalA, C, KDO 19, 20 - 23, 27, 54 Concombination h (4) NeuNAc, GalNAc, GalA, G, KAAc 70 Concombination - NeuNAc, GalNAc, GalA, G, GalA 64 Concombination - NeuNAc, GalNAc, GalAAc 19 Concombination h (2) NeuNAc, GalAAc, GleA 91 Amchindia - NeuNAc, GalAAc, GleA 92 Contraorded sculpturatus h NeuNAc, GalNAc 93 Contraorded sculpturatus h NeuNAc, GalAAc 93 Indian scorption h NeuNAc, GalA 34 Indian scorption h NeuNAc, GalA 94 Manifordiat - NeuNAc, GalA 94 Indian scorption h NeuNAc, GalA 95 Manifordiat - NeuNAc, GalA 95 Indiance angldst h NeuNAc, GalA 95 Manifordiat - NeuNAc, GalA, ManNAc, GalA 95 Indianglobation <	Merostomata			
Chronical notasiane trading h(1) NeuNAc, GalNAc, Giel, PC, KDO 1, 9, 20–23, 27, 54 Chronical relation trading h(4) NeuNAc, GalNAc, GielAAc 78, 79 (Laparase increation crash) n NeuNAc, GalNAc, GielAAc 78, 79 (Daries outernation crash) n NeuNAc 9 (Cocount crash) - NeuNAc 19 Amdrotous castralit h(2) NeuNAc, GalNAc, GleNAc 18, 93 (Shaharan scorpion) - NeuNAc, GalNAc, OleNAc 9 (Cocount crash) - NeuNAc, GalNAc, OleNAc 91 (Cocount crash) - NeuNAc, GalNAc, OleNAc 92 (Arizona scorpion) - NeuNAc, GalNAc, OleNAc 91 (Maternation scorpion) - NeuNAc, GalNAc 93 (Maternation scorpion) - NeuNAc, GalNAc 94 (Maternation scorpion) - NeuNAc 94 (Maternation state) - NeuNAc 94 (Maternation state) - NeuNAc 94 (Maternation state) - NeuNAc 95 (Maternation state) - NeuNAc 95 (Maternation state) - NeuNAc 95 (Maternation state) <td< td=""><td>Limulus polyphemus</td><td>h (3)</td><td>NeuNAc, GalNAc, GlcA, PC</td><td>19, 51, 57, 58, 61, 66–68</td></td<>	Limulus polyphemus	h (3)	NeuNAc, GalNAc, GlcA, PC	19, 51, 57, 58, 61, 66–68
Indian non-seade errory h (4) NeuNAc, GalNAc, GleNAc 78, 79 Individual non-seade errory h NeuNAc 63, 64 (marine crish) h NeuNAc 99 Arachnida - NeuNAc 99 (Coconsult crish) h NeuNAc, KDO 92 Arachnida h (2) NeuNAc, GalNAc, GleNAc 3 (Markorsing starting) h NeuNAc, GalA 3 (Markorsing starting) h NeuNAc, Gal 3 (Markorsing starting) h NeuNAc 3 <td>(American horseshoe crab) Carcinoscorpius rotunda</td> <td>h(1)</td> <td>NeuNAc, GalNAc, GlcA, PC, KDO</td> <td>1, 9, 20–23, 27, 54</td>	(American horseshoe crab) Carcinoscorpius rotunda	h(1)	NeuNAc, GalNAc, GlcA, PC, KDO	1, 9, 20–23, 27, 54
Concer momenta h NeuNAc 63, 64 Concer momenta h NeuNAc 19 Arachnicia h NeuNAc 18, 93 Arachnicia h NeuNAc, Hexuronic acid 18, 93 Concer models sculpturature h NeuNAc, GulNAc, GulNAc 92 (Arizona scorpton) h NeuNAc, GulNAc, GulNAc 91 (Arizona scorpton) h NeuNAc, GulNAc, GulNAc 31 (Arizona scorpton) h NeuNAc, GulNAc 31 (Indian scorpton) h NeuNAc 92 (Arizona scorpton) h NeuNAc 31 (Indian scorpton) h NeuNAc 93 (Indian scorpton) h NeuNAc 94 (Marcian scorpton) h NeuNAc 32 (Arizona scorpton) h NeuNAc 32 (Arizona scorpton) h NeuNAc 34 (Ar	(Indian horseshoe crab) Tachypleus tridentatus	h (4)	NeuNAc, GalNAc, GlcNAc	78, 79
marine crab - NeuNAc 19 Arschnida - NeuNAc, Hexurouic acid 18, 93 Arschnida - NeuNAc, KDO 92 Contrare data scalaritatis h NeuNAc, KDO 92 Contrare data scalaritatis h NeuNAc, GulNAc 97 Masticoprocetar signationnama h NeuNAc 97 Masticoprocetar signationnama h NeuNAc 98 (hariy as atoonorits) h NeuNAc 98 (hariy as atoonorits) h NeuNAc 96 (bariy asoriton) - 94 - Hadreus ationensis h NeuNAc 94 (atooriton) - NeuNAc 94 Mastibulini - NeuNAc 12 Insecta - NeuNAc 13 (waiker insect) h NeuNAc 13 Hydiophara coronita h NeuNAc 14 (barta) - NeuNAc 14 (feat	(Japanese horseshoe crab) Cancer antennarius	h	NeuNAc	63, 64
Arachinda h.C.O. Arachinda h.(2) Arachinda h.(3) Arachinda h.(2) NeuNAc GalNAc Arachinda h.(2)	(marine crab) Birgus latro	_	NeuNAc	19
Arachnida Androteneroscipui) Commodes scoppurstie (Antrona scorpion)h (2)NeuNAc, Haxurouic acid18, 93Contronotes scoppurstie (Antrona scorpion)hNeuNAc, GalNAc, GleNAc92(Antrona scorpion) (Mateioprotis granuments (Indian scorpion)hNeuNAc, GalNAc97(Indian scorpion) (Indian scorpion)hNeuNAc, GalNAc98(Indian scorpion) (Matrice scorpion)hNeuNAc96(Indian scorpion) (Marrier spider)hNeuNAc96(Indian scorpion) (Marrier spider)hNeuNAc94(Indian scorpion) (Marrier spider)hNeuNAc94(Indian scorpion) (Marrier spider)hNeuNAc94(Indian scorpion) (Marrier spider)hNeuNAc94(Indian scorpion) (Intersect)hNeuNAc94(Indian scorpion) (Intersect)hNeuNAc94(Indian scorpion) (Intersect)hNeuNAc94(Indian scorpion) (Intersect)hNeuNAc94(Indian scorpion) (Intersect)hNeuNAc94(Indian scorpion) 	(Coconut crab)			**
And-occiones superiority h (2) NeuNAc, Hexuronic acid 18, 93 (Saltaria scorpion) h NeuNAc, KDO 92 (Arizon Scorpion) h NeuNAc, GalNAc, GleNAc 97 (Maiteoproctus granulomanite h NeuNAc, GalNAc 3 (India scorpion) h NeuNAc, GalNAc 3 (India scorpion) h NeuNAc 98 (Maity scorpion) h NeuNAc 98 (Balty scorpion) h NeuNAc 96 (Sorpion) Aphonopelina copacitoriensis h NeuNAc 94 Mandibulata Insects 1 1 1 1 Insects Thelographilis commodas h NeuNAc, Gal 32 1 (Walter insect) h NeuNAc, Gal 32 1 30, 31, 36, 89 1 (India scorpola - NeuNAc, GalNac, ManNAc, Gal 4, 5, 39, 48–50 1 (Marcheila dichorana - NeuNAc, GalNac, GlaNac, GlaNac 10 1 (Indisain)	Arachnida			
(Saharan scorpion) Centrarodis scipturatur h h NeuNAc, KDO 92 (Arizona scorpion) Masticoprotis sgipantanana h NeuNAc, GalNAc, GleNAc 3 (Mini scorpion) Haterometra granulamana h NeuNAc 3 (Main scorpion) Haterometra granulamana h NeuNAc 98 (Main scorpion) Haterometra granulamana h NeuNAc 98 (Main scorpion) Haterometra granulamana h NeuNAc 98 (Main's scorpion) Haterometra granulamana h NeuNAc 94 (Mancian scorpion) Haterometra granulamana h NeuNAc 94 Mancibulita - NeuNAc 94 Insecta - NeuNAc 32 (distrylikar) defaultist - NeuNAc 32 (distrylikar) defaultist - NeuNAc 30, 31, 36, 89 (bestle) - NeuNAc, Gal 95 Crustaceit Homaris americamus h (2) NeuNAc, Gal 4, 5, 39, 48–50 (Mascipata) - NeuNAc, GalNAc, GleNAc 10 11	Androctonus australis	h (2)	NeuNAc, Hexuronic acid	18, 93
Christows scaping in NeuNAc, GulNAc, GleNAc 97 Maxicoprocins gganteur h NeuNAc, GulNAc, GleNAc 3 Hadas scaping h NeuNAc, GalNAc 3 Hadas scaping h NeuNAc 98 Hadas scaping h NeuNAc 98 Hadas scaping h NeuNAc 96 Pararezone 96 96 Gorpion h NeuNAc 94 Admerican spider) h NeuNAc 94 Mancibulata - NeuNAc 94 Insecta - NeuNAc 7 Idadas compandus h NeuNAc 88 (wilker insect) h NeuNAc 88 (bette) - NeuNAc 88 (bette) - NeuNAc 95 Crustacen h(2) NeuNAc 95 Modilusca - NeuNAc 96 Gastropoda - NeuNAc 96 Achantra dickoroma - NeuNAc 96 (olusca - NeuNAc 96 Macrobrachian rosenbergii h NeuNAc 97 Modilusca - NeuNAc 96<	(Saharan scorpion)	h	NeuNAC KDO	97
Maricoprotes ginetas.hNeuNAc, GulNAc, GleNAe97Heterometrie granulomanshNeuNAc, GulNAc3Hadrurus artsonestishNeuNAc98(hairy scorpion)hNeuNAc96Pararectomus mesaensishNeuNAc94(American spider)hNeuNAc94MandibulataIInsecta32InsectaneuNAcGal32(walker insect)hNeuNAc7(relative insect)hNeuNAc88(valker insect)hNeuNAc88(relative insect)hNeuNAc88(boster)-NeuNAc89(boster)(hetriker insect)9595(relative insect)hNeuNAc95(boster)-NeuNAc9595(durating fulceh(2)NeuNAc, GalNAc, ManNAc, GalAc, Stata95(fresh water prawn)hNeuNAc95Molhusca-NeuNAc96(durating fulce-NeuNAc97(durating fulce-NeuNAc97(duration fulce-NeuNAc96(fresh water prawn)-NeuNAc96Molhusca-NeuNAc11(fresh water smail)-NeuNAc97(duration fulce-NeuNAc11(fresh water smail)-NeuNAc22(eas smail)-NeuNAc22(fresh water sma	(Arizona scorpion)	11	NeuWAC, KDO)2
(whip scorpion) hetcometric syranulomanus h NeuNAc, GalNAc 3 Hetcometric syranulomanus h NeuNAc 98 (Indian scorpion) h NeuNAc 96 (Scorpion) paravec/outsmessensis h NeuNAc 96 (Marrican spider) h NeuNAc 94 (Mandibulata - - 94 Insecta releographic connotatus h NeuNAc 94 (walker insect) h NeuNAc 94 (Marrican spider) h NeuNAc 94 Mandibulata - - NeuNAc 94 (walker insect) h NeuNAc, Gal 32 - (walker insect) h NeuNAc, Gal 32 - (walker insect) h NeuNAc, Gal 7 - (etate) Crustace 8 - - Crustace h(2) NeuNAc, Gal 4, 5, 39, 48-50 - Mollusca - NeuNAc, GalNAc, GalNAc, GicNAc 10 - Mollusca - NeuNAc 37 - (Instan and snail) - NeuNAc 37 - (Instan and snail) -	Masticoproctus giganteus	h	NeuNAc, GalNAc, GlcNAc	97
India scripton) In NeuNAc 98 (India scripton) h NeuNAc 98 (hairy scripton) h NeuNAc 96 (scorpton) h NeuNAc 96 (water scripton) h NeuNAc 96 (water scripton) h NeuNAc 94 Mandibulata Insecta 12 94 Insecta Insecta 7 12 (daterpillar) h NeuNAc 7 (daterpillar) h NeuNAc 7 (daterpillar) a - NeuNAc 88 (boster) (boster) Giastropoda 95 95 (fresh water prawn) fillowsci 95 95 Mollosca - NeuNAc 96 (and snail) - NeuNAc 96 (data snail) - NeuNAc 95 (fresh water scriptor) - NeuNAc 96 (data snail) - NeuNAc 96 (data snail) - NeuNAc 11 (fresh water snail) - NeuNAc 11 (fresh water snail) - NeuNAc 12 (data snail)	(whip scorpion)	Ь	NeuNAC GalNAC	3
Inderway arizonexishNeuNAc98(hairy scorpion) Aphonopelma espacahoriensishNeuNAc96(American spider)hNeuNAc94MandibulataIIIInsectaTeleogryfius commodushNeuNAc, Gal32(walker insect)hNeuNAc, Gal32(walker insect)hNeuNAc, Gal32(walker insect)hNeuNAc, Gal32(walker insect)hNeuNAc7(caterpillar)hNeuNAc88(beetle)GielNAc, Giel30, 31, 36, 89(lobster)nozenbergiihNeuNAc, GalNAc, ManNAc, GielNAc, Gie30, 31, 36, 89(lobster)hNeuNAc, GalNAc, GalNAc, GalNAc, GalNAc, GielNAc, GielNAc, Giel4, 5, 39, 48–50(dotter)h(2)NeuNAc, GalNAc, GielNAc10(dotter)nozenbergiihNeuNAc37(dotter)-NeuNAc, GalNAc, GielNAc10(dotter)-NeuNAc37(dotter)-NeuNAc37(dati snail)-NeuNAc11(fresh water prawn)-NeuNAc52(dotter)-NeuNAc2233, 35, 91(hind snail)-NeuNAc23(dotter)-NeuNAc23(fresh water prawn)-NeuNAc37(dotter)-NeuNAc37(dotter)-NeuNAc22(es snail)- <td< td=""><td>(Indian scorpion)</td><td>11</td><td>Neurine, Gannie</td><td>0</td></td<>	(Indian scorpion)	11	Neurine, Gannie	0
Initiary scorption) Paravectorins measures is (scorption) Aphonopelina capaediotrensis hNeuNAc96Mandibulata Insecta Teleogryfus commodus (Mariker insect)NeuNAc94Mandibulata Insecta (valker insect)NeuNAc, Gal32Insecta (valker insect)hNeuNAc, Gal32(carerpliar) (darerpliar) Allowyrthan dicholoma (beetle)-NeuNAc7(carerpliar) (darerpliar) Allowyrthan dicholoma (beetle)-NeuNAc88Crustacea (beetle)h(2)NeuNAc, GalNAc, ManNAc, GieNAc, Gle30, 31, 36, 89(beetle)(beetle)-NeuNAc95Monorae americanus 	Hadrurus arizonensis	h	NeuNAc	98
I al articlonas metalensis n NeuNAc P4 (scorpt) Aphonopeina expacahoritensis h NeuNAc 94 Mandibulata Insecta 32 Insecta Teleogryfilus commodus h NeuNAc, Gail 32 (walker insect) h NeuNAc, Gail 32 (walker insect) h NeuNAc 7 (casterpillar) h NeuNAc 88 (boster) h NeuNAc 30, 31, 36, 89 (costacea h(2) NeuNAc, Gall Ac, ManNAc, Gal 4, 5, 39, 48-50 (doster) h NeuNAc 95 Macrobrachian rosenbergit h NeuNAc 00 Macrobrachian rosenbergit h NeuNAc 30, 31, 36, 89 (doster) Giestropoda 4, 5, 39, 48-50 30 Mollusca Gastropoda h(2) NeuNAc, GallAc, GieNAc 10 (Articia Iand snail) - NeuNAc 37 37 (dand snail) - NeuNAc 40 32 (ea snail) - NeuNAc 40 32 (rest water snail) - NeuNAc 32 (ea snail) - NeuNAc 32 (eas	(hairy scorpion)	h	NeuNAc	96
Aphonopelma copacahortensishNeuNAc94Mandibulata <td< td=""><td>(scorpion)</td><td>11</td><td>i vour a lo</td><td></td></td<>	(scorpion)	11	i vour a lo	
Mandibulata Insecta Teleogryllas commodus h NeuNAc, Gal 32 Insecta Teleogryllas commodus h NeuNAc, Gal 32 (walker insect) H NeuNAc 7 (walker insect) H NeuNAc 7 (attribution of the end	Aphonopelma cepaeahortensis (American spider)	h	NeuNAc	94
Insection Insection 32 Insection Insection 32 Valley insection h NeuNAc 7 (caterpillar) h NeuNAc 88 (caterpillar) - NeuNAc 88 (beetle) - NeuNAc 88 Crustacea h NeuNAc 90, 31, 36, 89 (lobster) Macrobrachium rosenbergii h NeuNAc 95 Moliusca - NeuNAc 95 95 Moliusca - NeuNAc 10 10 (lobster) h (2) NeuNAc, Gal 4, 5, 39, 48–50 (dard snail) - NeuNAc 10 Achatina fulica h (2) NeuNAc, Gal 10 (land snail) - NeuNAc 37 (land snail) - NeuNAc 11 (fresh water snail) - NeuNAc 40 (sea snail) - NeuNAc 52 (sea snail) - NeuNAc 52 (sea snail) - NeuNAc 52 (sea snail) - NeuNAc 2, 33, 35, 91 (Pacific oyster) - NeuNAc 2, 33, 35, 91 <	Mandibulata			
Initial Teleogryllus commodus h NeuNAc, Gal 32 Initial Teleogryllus commodus h NeuNAc 7 (walker insect) h NeuNAc 7 (caterpillar) - NeuNAc 88 (bettle) - NeuNAc, GalNAc, ManNAc, GalNAc, ManNAc, Gitenar, MannAc, Gitenar, MannAc, Gitenar, Macrobrachium rosenbergit 30, 31, 36, 89 (bettle) - NeuNAc, Gal 4, 5, 39, 48-50 (Instance - NeuNAc, Gal 4, 5, 39, 48-50 (African land snail) - NeuNAc, GalNAc, GicNAc 10 (Iand snail) - NeuNAc, GalNAc, GicNAc 10 (Iand snail) - NeuNAc 37 (Iand snail) - NeuNAc 11 (Cresh water snail) - NeuNAc 40 (ea snail) - NeuNAc 52 (ifresh water snail) - NeuNAc 52 (ifresh water snail) - NeuNAc 52 (ea snail) - NeuNAc 52 (ifresh water snail) - NeuNAc 52 (ifresh water snail) - NeuNAc 52 (ifresh water snail) - NeuNAc 52 (isea snail)	Insecta			
(walker insect) Hyalophora cecropia (caterpillar) Allomyrina dichotoma 	Teleogryllus commodus	h	NeuNAc, Gal	32
(caterpillar) Allomyrina dichoroma (beetle)-NeuNAc88Crustacea Homarus americanus (lobstr) Macrobrachium rosenbergii (lresh water prawn)h (2)NeuNAc, GalNAc, ManNAc, GioNAc, Gle30, 31, 36, 89Mollusca-NeuNAc95Mollusca-NeuNAc, Gal4, 5, 39, 48–50(African land snail) Achatina granulata (African land snail)-NeuNAc, GalNAc, GicNAc10(fersh water prawn)-NeuNAc, GalNAc, GicNAc10(frican land snail) Achatina granulata (African land snail)-NeuNAc37(Iand snail) Dolabella (fresh water snail) Dolabella-NeuNAc11Cepace hortensis (sea snail) Dolabella-NeuNAc22Pelecypoda (sea snail) (rash sdulis (rass dulis (sea snail) (fresh water snail) Dolabella-NeuNAc12, 34Pelecypoda (fresh water snail) (fresh water snail) Dolabella-NeuNAc12, 34Limax flaws (sea snail) (rassostrea gigas (Pacific oyster)-NeuNAc2, 33, 35, 91Echinoxea Echinoxea Echinoxea Echinoxea EchinoxeahNeuNAc86	(walker insect) Hyalophora cecropia	h	NeuNAc	7
Altomyrrid actionomia - NeuNAc So (beetle) Crustacea - NeuNAc, GalNAc, ManNAc, Glo ManNAc, Glo Macrobrachium rosenbergii 30, 31, 36, 89 (lobster) NeuNAc GleNAc, Gle Macrobrachium rosenbergii h 95 Macrobrachium rosenbergii h NeuNAc 95 Mollusca - NeuNAc, Gal 4, 5, 39, 48–50 (friesh water prawn) - NeuNAc, GalNAc, GleNAc 10 Mollusca - NeuNAc, GalNAc, GleNAc 10 (Africian land snail) - NeuNAc, GalNAc, GleNAc 10 (Iand snail) - NeuNAc 37 (Iand snail) - NeuNAc 11 Diomphalaria glabarata - NeuNAc 40 (sea snail) - NeuNAc 52 (sea snail) - NeuNAc 52 (sea slug) - NeuNAc 52 Pelecypoda - NeuNAc 12, 34 (sea mussel) - NeuNAc 2, 33, 35, 91 Crassotree gigas h(2) NeuNAc 2, 33, 35, 91	(caterpillar)		NeuNAC	88
Crustacea Homarus americanus (lobster) Macrobrachium rosenbergii 	(beetle)	-	INCUINAC	00
Homarus americanush (2)NeuNAc, GalNAc, ManNAc, GleNAc, Gle50, 51, 36, 89Macrobrachium rosenbergiihNeuNAc, GalNAc, Gle95Mollusca95Mollusca95MolluscaAchatina fulicah (2)NeuNAc, Gal4, 5, 39, 48–50(African land snail)-NeuNAc, GalNAc, GleNAc10(land snail)-NeuNAc, GalNAc, GleNAc10(land snail)-NeuNAc37(land snail)-NeuNAc11(fresh water snail)-NeuNAc40(sea snail)-NeuNAc52(sea snail)-NeuNAc52(sea snail)-NeuNAc12, 34(gea snail)-NeuNAc2, 33, 35, 91Pelecypoda (fraific oyster)h(2)NeuNAc2, 33, 35, 91Echinozoa Echinoidea Pseumechinus miliarishNeuNAc86	Crustacea			20.21.26.00
Macrobrachium rosenbergii Macrobrachium rosenbergii (fresh water prawn)NeuNAc95MolluscaGastropoda Achatina fulicah (2)NeuNAc, Gal4, 5, 39, 48–50(African land snail) Achatina granulata (land snail)–NeuNAc, GalNAc, GlcNAc10(land snail) Cepaea hortenstis Biomphalaria glabarata (fresh water snail) Limax flavus (sea snail)–NeuNAc37Pelecypoda Mytilus edulis (sea snusel) Crassostrea gigas Echinozoa Echinozoa Echinozoa Echinozoa–NeuNAc12, 34Echinozoa Echinozoa Echinozoa–NeuNAc86	Homarus americanus	h (2)	NeuNAc, GalNAc, ManNAc, GloNAc, Glo	30, 31, 36, 89
(fresh water prawn) Mollusca Gastropoda h (2) NeuNAc, Gal 4, 5, 39, 48–50 (African land snail) - NeuNAc, GalNAc, GlcNAc 10 (African land snail) - NeuNAc, GalNAc, GlcNAc 10 (Iand snail) - NeuNAc 37 (Iand snail) - NeuNAc 11 <i>Cepaea hortensis</i> - NeuNAc 40 (kar snail) - NeuNAc 40 (gea snail) - NeuNAc 52 (gea snail) - NeuNAc 52 (gea snail) - NeuNAc 12, 34 (gea snail) - NeuNAc 2, 33, 35, 91 Pelecypoda - NeuNAc 2, 33, 35, 91 Echinodermata - NeuNAc 86	(100ster) Macrobrachium rosenbergii	h	NeuNAc	95
Mollusca Gastropoda Achatina fulica h(2) NeuNAc, Gal 4, 5, 39, 48–50 (African land snail) Achatina granulata - NeuNAc, GalNAc, GleNAc 10 (Iand snail) Cepaea hortensis - NeuNAc 37 (Iand snail) Dolabella - NeuNAc 11 (resh water snail) Dolabella - NeuNAc 40 (sea snail) Limax flavus - NeuNAc 52 (sea snail) Crassostrea gigas (reasinges) - NeuNAc 12, 34 Mytilus edulis - NeuNAc 2, 33, 35, 91 Echinoozoa Echinoozoa - NeuNAc 86	(fresh water prawn)			
Gastropoda Achatina fulicah(2)NeuNAc, Gal4, 5, 39, 48–50(African land snail) Achatina granulata-NeuNAc, GalNAc, GlcNAc10(land snail) Cepaea hortensis-NeuNAc37(land snail) Biomphalaria glabarata-NeuNAc11(fresh water snail) Dolabella-NeuNAc40(sea snail) Limax flavus-NeuNAc40(sea snail) Crassostrea gigas (sea mussel)-NeuNAc52Pelecypoda (sea mussel) Crassostrea gigas (Pacific oyster)-NeuNAc12, 34Echinoder Paammechinus miliarishNeuNAc86	Mollusca			
Achatina fulicah (2)NeuNAc, Gal4, 5, 39, 48-50(African land snail)-NeuNAc, GalNAc, GicNAc10(land snail)-NeuNAc37(land snail)-NeuNAc11 <i>Biomphalaria glabarata</i> -NeuNAc40(sea snail)-NeuNAc40(sea snail)-NeuNAc52 <i>Limax flavus</i> -NeuNAc52(sea snail)-NeuNAc12, 34 <i>Limax flavus</i> -NeuNAc2, 33, 35, 91(sea mussel)-NeuNAc2, 33, 35, 91(Pacific oyster)h (2)NeuNAc86	Gastronoda			
(African land snail) Achatina granulata-NeuNAc, GalNAc, GlcNAc10(land snail) Cepaea hortensis-NeuNAc37(land snail) Biomphalaria glabarata-NeuNAc11(fresh water snail) Dolabella (sea snail) Limax flavus (sea slug)-NeuNAc40Pelecypoda Mytilus edulis (sea mussel) Crassostrea gigas (Pacific oyster)-NeuNAc52Echinodermata Echinoidea P sammechinus miliaris-NeuNAc12, 34Kethinodermata P sammechinus miliaris-NeuNAc2, 33, 35, 91	Achatina fulica	h (2)	NeuNAc, Gal	4, 5, 39, 48–50
Actuality granulatiImage: ConstructionActuality granulationImage: Construction(land snail)-NeuNAc37(land snail)-NeuNAc11Biomphalaria glabarata-NeuNAc40(fresh water snail)-NeuNAc40Dolabella-NeuNAc52(sea snail)-NeuNAc52Limax flavus-NeuNAc52(sea slug)-NeuNAc12, 34Pelecypoda-NeuNAc2, 33, 35, 91(sea mussel)-NeuNAc2, 33, 35, 91(Pacific oyster)-NeuNAc86	(African land snail)		NeuNAc GalNAc GloNAc	10
Cepaea hortensis-NeuNAc37(land snail)-NeuNAc11Biomphalaria glabarata-NeuNAc11(fresh water snail)-NeuNAc40(sea snail)-NeuNAc52Limax flavus-NeuNAc52(sea snaig)-NeuNAc52Pelecypoda-NeuNAc12, 34(sea mussel)-NeuNAc2, 33, 35, 91Crassostrea gigash (2)NeuNAc2, 33, 35, 91Echinodermata Echinoidea Psammechinus miliarishNeuNAc86	(land snail)	_	Tour the, Gui the, Gler the	
(land snail)-NeuNAc11Biomphalaria glabarata-NeuNAc40(fresh water snail)-NeuNAc52(sea snail)-NeuNAc52Limax flavus-NeuNAc52(sea slug)-NeuNAc12, 34Pelecypoda-NeuNAc12, 34(sea mussel)-NeuNAc2, 33, 35, 91Crassostrea gigas (Pacific oyster)h (2)NeuNAc2, 33, 35, 91Echinodermata Echinoidea Psammechinus miliarishNeuNAc86	Cepaea hortensis	-	NeuNAc	37
Distributing globaling (fresh water snail) Dolabella–NeuNAc40(sea snail) Limax flavus (sea slug)–NeuNAc52Pelecypoda Mytilus edulis (sea mussel) Crassostrea gigas (Pacific oyster)–NeuNAc12, 34Echinodermata Echinoidea Psammechinus miliaris–NeuNAc2, 33, 35, 91	(land snail) Biomphalaria alabarata	_	NeuNAc	11
Dolabella (sea snail) Limax flavus (sea slug)-NeuNAc40Pelecypoda 	(fresh water snail)			
(sea snail) Limax flavus (sea slug)–NeuNAc52Pelecypoda Mytilus edulis (sea mussel) Crassostrea gigas (Pacific oyster)–NeuNAc12, 34Echinodermata Echinoidea Psammechinus miliarishNeuNAc2, 33, 35, 91	Dolabella	_	NeuNAc	40
(sea slug) Pelecypoda Mytilus edulis (sea mussel) Crassostrea gigas h (2) NeuNAc 2, 33, 35, 91 Echinodermata Echinoidea Psammechinus miliaris h NeuNAc	(sea snall) Limax flavus	_	NeuNAc	52
Pelecypoda Mytilus edulis-NeuNAc12, 34(sea mussel) Crassostrea gigas (Pacific oyster)h (2)NeuNAc2, 33, 35, 91Echinodermata 	(sea slug)			
Mytilus edulis - NeuNAc 12, 34 (sea mussel) Crassostrea gigas h (2) NeuNAc 2, 33, 35, 91 (Pacific oyster) Echinodermata Echinozoa Echinoidea Echinoidea Psammechinus miliaris h NeuNAc 86	Pelecypoda			10.04
(sea mussel) Crassostrea gigas (Pacific oyster) Echinodermata Echinozoa Echinoidea Psammechinus miliaris h NeuNAc 86	Mytilus edulis	_	NeuNAc	12, 34
(Pacific oyster) Echinodermata Echinozoa Echinoidea <i>Psammechinus miliaris</i> h NeuNAc 86	(sea mussel) Crassostrea gigas	h(2)	NeuNAc	2, 33, 35, 91
Echinodermata Echinozoa Echinoidea <i>Psammechinus miliaris</i> h NeuNAc 86	(Pacific oyster)			
Echinozoa Echinoidea <i>Psammechinus miliaris</i> h NeuNAc 86	Echinodermata			
Psammechinus miliaris h NeuNAc 86	Echinozoa			
	Psammechinus miliaris	h	NeuNAc	86

Abbreviations: h = hemolymph; NeuNAc = N-acetylnuraminic acid; Gal = D-galactose; GalNAc = N-acetyl-D-galactosamine; Glc = D-glucose; GlcN = D-glucosamine; GlcA = N-acetyl-D-glucosamine; ManNAc = N-acetyl-D-mannosamine; GlcA = Glucuronic acid; KDO = 2-keto-3-deoxyoctonate; PC = phosphorylcholine.

Reviews

lectins¹⁰⁸ (table 1). Many species in these phyla contain sialic acid specific lectins, more than one in some species, of which only a few have been purified and characterized. Extensive studies have been carried out in Chelicerata, a subphylum of Arthropoda. Though the study of lectins from these species was pioneered by Noguchi⁶⁰ at the beginning of this century, the characterization of limulin, the hemagglutinin from Limulus polyphemus (American horseshoe crab) and the demonstration of its specificity for sialic acids were completed by later workers^{21, 53, 70, 71}. Limulin is one of the few commercially available lectins specific for sialic acids. Limulus polyphemus belongs to the class of Merostomata, and in this class, sialic acid binding lectins are found in the hemolymph of Indian¹⁰ and Japanese^{81,82} horseshoe crabs, a marine crab^{65,66} and the coconut crab²¹ (table 1). Within the class of Arachnida lectins specific for sialic acids have been found in the hemolymph of the Saharan scorpion^{20,97}, the Arizona scorpion⁹⁶, the whip scorpion¹⁰¹, the Indian scorpion³, an American spider⁹⁸ and in some other species of scorpion 100, 102.

Other Arthropods of the subphylum Mandibulata contain sialic acid specific lectins e.g. in the class Insecta, the walker insect ³⁴, caterpillars ⁸ and beetles ⁹² are known to contain these lectins. In this subphylum of Mandibulata many sialic acid specific lectins have also been found in the crustaceans prawn ⁹⁹ and lobster ^{32, 33, 38, 93}. The sugar specificities of lectins in the hemolymph of most invertebrates and lower cordata groups do not bear any relationship to taxonomy, differing even within a particular genus ⁹⁸. However, the Chelicerata form a relatively homogeneous group; all the members studied contain sialic acid binding lectins in their hemolymph.

Sialic acid binding lectins have been reported in many species of Mollusca, e.g. snails ^{5,6,11,12,39,41-43,50-52} and sea slug ⁵⁴ of the class Gastropoda, and sea mussel ^{14,36} and Pacific oyster ^{2,35,37,95} of the class Pelecypoda. *Psammechinus miliaris*, an echinordean of the phylum Echinodermata, also contains a sialic acid binding lectin ⁹⁰.

Plant lectins

Only a few plant lectins bind sialic acids. It is not clear whether this is because plants do not contain sialic acids. For many years wheat germ agglutinin was the only plant lectin known to have specificity for sialic acids ^{28, 45, 57, 87, 106}. This specificity is due to the structural similarity of sialic acid to D-GlcNAc which is the preferred ligand of this lectin. Recently, a lectin isolated from elderberry (*Sambucus nigra* L.) bark has been shown to bind the sequence NeuNAc ($\alpha 2-6$)-D-Gal/D-GalNAc with high specificity ^{79, 80}. This lectin has a weak affinity for D-galactose or D-GalNAc but does not bind to either NeuNAc or NeuNGc. Another important characteristic of this lectin is that it has a very high affinity for terminal sialic acid linked ($\alpha 2-6$) to D-galactose compared to the $(\alpha 2-3)$ linked isomer. On the other hand a leukoagglutinin from the seeds of the leguminous plant *Maackia amurensis* binds preferentially to terminal sialic acid linked $(\alpha 2-3)$ to penultimate D-galactose residues but neither to the corresponding $(\alpha 2-6)$ linked oligosaccharide nor to the component sugars (NeuNAc or lactose)¹⁰⁴. A lectin isolated from prickly lettuce (*Lactanea seariale*) was also reported to bind sialic acids¹¹⁰.

Other lectins

The virus family Orthomyxoviridae, comprising the influenza viruses, and others such as the Paramyxoviridae, Piconaviridae, Papoviridae, Reoviridae and Adenoviridae, contain agglutinins that bind to the sialic acid residues of the receptors situated on their host cells¹⁵. Several lectins have been found on the cell surfaces of bacteria, e.g. *Escherichia coli*⁸⁴, *Streptococcus sanguis*⁶² and *Pseudomonas aeruginosa*⁶⁷. Mammalian sialic acid specific lectins have been found in the uterus¹⁸ and brain⁶⁴ of rat. Frog egg lectin is a rare example from an amphibian source⁸⁶. Tunicates are the lower vertebrates in which sialic acid specific lectins have been found^{94,107}.

Monoclonal antibodies

Monoclonal antibodies raised against sialic acids can supplement the analytical, preparative and diagnostic uses of these lectins. Hybridoma cell lines have been identified which produce monoclonal antibodies specific for sialic acids which have ($\alpha 2-3$)D-Gal⁸⁶ and ($\alpha 2-6$)D-Gal³¹ linkages. Based on the autoimmune NZB mouse strain²⁷, a system has been developed for the production of monoclonal antibodies specific for weakly immunogenic sialoconjugates of *Escherichia coli* KI and group B *Meningococci*.

Purification

As these lectins exhibit high binding affinity for sialic acids most of the reported lectins were purified using sialoglycoproteins as affinity absorbents; namely, bovine, sheep or equine submaxillary mucin or fetuin coupled to cyanogen bromide-activated sepharose (table 2). For absorption and elution advantage is taken of the divalent cation (Ca²⁺) requirement for lectin binding. The affinity columns are usually equilibrated with a buffer containing Ca²⁺ at their optimum pH. After washing of the unbound proteins, lectins are eluted with a buffer devoid of Ca^{2+3,5,10,18,29,65}. In addition, in certain cases the temperature is raised and/or the pH is shifted from the range of optimum binding. Besides the withdrawal of Ca²⁺ or shifting the pH a few lectins have been eluted with sialic acids ⁵⁴. Even D-GlcNAc has been used for eluting Japanese horseshoe crab agglutinin⁸².

Recently, a lectin from a lobster was purified with colominic acid-sepharose as an affinity matrix and eluted with D-ManNAc⁹³. The sialic acid binding lectins from 436

plant sources have also been purified by affinity chromatography^{79,104}. Of the lectins listed in table 1 only a few have been purified and the rest have been detected in crude hemolymph.

Macromolecular property

Most of the sialic acid specific lectins are of high molecular weight and contain more than one subunit of molecular mass from 15 to 24 kDa (table 2). An interesting feature is that in their native state some of these lectins are composed of between 10 and 20 subunits. Very little is known about the nature of these subunits and their mutual interactions in forming the native protein. A high content of acidic amino acids seems to be a general characteristic of these lectins. Aspartic and glutamic acids together with their amides account for about 20% of the amino acids (table 2). Therefore the acidic pI values of $\lim_{H \to 0} (4.8)^{29}$ and $\operatorname{achatinin}_{H}(6.2)^{6}$ are to be expected. However, the lectins from the sea $slug(9-9.5)^{54}$, the Indian scorpion $(9-9.5)^3$, wheat germ $(8.7)^{68}$ and frog eggs(12.2)⁸⁸ show alkaline pI values probably because of extensive amidation of the acidic residues. The optimum pH for stability and biological activity of most of these lectins lies between 7 and 9. All are stable at room temperature and can be stored for 6-12 months at 4 °C. No enzymatic activity has been detected.

Almost all the sialic acid binding lectins characterized so far are glycoproteins except those from frog egg⁸⁶ and wheat germ⁴. Indian horseshoe crab lectin, carcinoscorpin, contains 5.8% neutral sugar mainly as mannose²², whereas limulin contains 4% neutral sugar mainly as

GlcNAc^{61,70}. Indian scorpion lectin contains mannose and GlcNAc as neutral sugars $(2.8\%)^3$. The snail lectin, achatinin_H, contains a large amount of carbohydrate (21%), with xylose (6%) as the most abundant sugar⁵. Xylose, as a constituent of N-glycosidic carbohydrate chains, has been found in the α -hemocyanin of *Helix pomatia*⁴⁶ and in trace amounts (0.6%) in the cold agglutinin of *Achatina fulica*⁵⁵. Xylose may possibly be a common constituent of molluscan glycoproteins. In some lectins the hemagglutination activity is completely lost when the carbohydrate groups are removed by β elimination⁵, which indicates their importance in the biological activity.

Some of these lectins have been found to be mitogenic. The lobster lectin stimulates B lymphocytes but not T lymphocytes¹⁶ whereas wheat germ agglutinin stimulates both⁹¹. Limulin stimulates mouse and human lymphocytes²⁹ and achatinin_H stimulates human and rat lymphocytes⁵².

The secondary structures of only a few of these lectins have been examined by circular dichroism measurements $^{51, 69, 87}$. Three-dimensional structural studies on wheat germ agglutinin 106 and influenza virus agglutinin 105 as well as on their complexes with sialic acids by X-ray crystallography at atomic resolution have revealed interesting features of such binding. Three-dimensional structural studies on the invertebrate lectins have not been reported so far.

Sugar specificity

These lectins bind to a variety of sialic acid derivatives as well as to some other sugars (table 1). The affinity for

Table 2. A summary of macromolecular properties and methods of purification of a few lectins which bind sialic acids

Source	Molecular weight (in kDalton) Native Subunit		Amino acid content	Carbohydrate content (%)	pI	Optimum pH	Methods of purification	
American horseshoe crab	335	18	22% Glu & Asp	4	4.8	8.5	Starch gel electrophoresis & BSM-sepharose	
Japanese horseshoe crab	420	42	High content of Glu & Asp	nd	nd	8.0-8.5	BSM-sepharose, Fractogel H.W. 75 & Cellulofine GC 700	
Indian horseshoe crab	420	27 & 28	21% Glu & Asp	5.8	nd	7.5-8.5	BSM-agarose and BSM- sepharose	
Marine crab	70	36	nd	nd	nd	7.5	BSM-agarose & BSM- sepharose	
Lobster 1	19S	55	nd	nd	nd	7.8	Ammonium sulphate, gel filtration & electrophoresis	
Lobster 2	70	70	nd	nd	nd	nd	Fetuin-sepharose & colominic acid	
Sea slug	44	22	20% Glu & Asp	nd	9.0-9.5	7.5	Ammonium sulphate & BSM-sepharose	
African land snail	242	15	22% Glu & Asp	21	6.2	8.0-9.0	SSM-sepharose	
Indian scornion	500	15	nd	2.8	9.0-9.5	6.5 - 7.5	ESGG-sepharose	
Rat uterus	28 & 30	28 & 30	nd	nd	4.0 & 4.1	8.0	Fetuin-sepharose	
Wheat germ agglutinin	35-48	17-24	high Gly & Cys, 18% Glu & Asp	0	8.7	-	Fetuin-sepharose	
Escherichia coli lectin	nd	16.5	22% Glu & Asp	nd	nd	7.4 - 8.0	Sepharose-4B	
Frog egg lectin	12.5	12.5	18% Glu & Asp	0	12.2	7.0-8.0	Sephadex G75, DEAE- cellulose hydroxyapatite and carboxymethyl cellulose	

Abbreviations: nd = not done, BSM = bovine submaxillary mucin, SSM = sheep submaxillary mucin, ESGG = equine submandibular gland glyco-protein.

sugars is usually measured by determining the ability of a sugar to inhibit the hemagglutination caused by a lectin or to inhibit the precipitation of the lectin by polysaccharides or glycoproteins. The higher the affinity for the sugar the less is needed for inhibition. Precise values of binding affinities are obtained from measurement of the association constants by physico-chemical techniques. The association constants of sugar binding of only a few lectins, e.g. carcinoscorpin²⁹, achatinin_H⁵¹, wheat germ agglutinin⁴⁵ and elderberry bark lectin⁷⁹ have been determined. Nonetheless, the relative binding affinities of many lectins for a number of sialic acid derivatives have been worked out from inhibition studies.

The affinity of carcinoscorpin does not change with the extent of O-acetylation of sialic acids but it decreases when the N-acetyl group is replaced by the N-glycolyl group ²⁹. Some lectins show higher affinities for O-acetyl derivatives, e.g. the marine crab lectin shows higher affinities for 9-O-(33-fold) and 4-O-acetyl(11-fold) derivatives compared to free sialic acid ⁶⁵. Achatinin_H does not bind to 4-OAcNeuNAc, but binds very strongly to the 9-O-acetyl derivative compared to free sialic acid ⁵¹. The orders of binding strength of a number of mono- and oligosaccharides with some lectins are presented in table 3.

Several bacterial surface lectins show interesting sugar specificity. A lectin from Escherichia coli shows higher affinity for 4-OAcNeuNAc but this is markedly reduced with 7-O- or 9-O-acetylation⁴⁷. This kind of specificity may play a role in the choice of the host and tissue in infection and colonization. Similarly the frog egg lectin has been postulated to be involved in fertilization and in the development of the embryo⁸⁸. It has recently been found that some plant lectins are highly specific for oligosaccharides which have a certain type of linkage of the sialic acid moiety with other sugars; e.g. the elderberry bark lectin is highly specific for oligosaccharides with a terminal NeuNAc($\alpha 2-6$)Gal sequence which is a 1,600-10,000-fold stronger inhibitor than D-galactose alone⁷⁹. On the other hand, oligosaccharides containing a terminal NeuNAc ($\alpha 2$ -3) linkage are only 30-80 times more inhibitory than D-galactose. Monosaccharides of various sialic acid derivatives are also non-inhibitors. On the basis of inhibition with simple sugars the elderberry

bark lectin was demonstrated to be specific for D-galactose¹³. The lectin from the seeds of *Maackia amurensis* shows a very high affinity for NeuNAc($\alpha 2-3$)Gal-($\beta 1-4$)Glc but is not inhibited by either NeuNAc-($\alpha 2-6$)Gal($\beta 1-4$)Glc, Gal($\beta 1-4$)Glc or NeuNAc¹⁰⁴ (table 3). These findings indicate that the specificity of a lectin for a monosaccharide may not reflect its specificity for a natural oligomer; the type of linkage and the position of the sugar may greatly influence the strength of such binding.

Sialoglycoconjugates like glycoproteins and glycolipids are better inhibitors than simple mono- or disaccharides. Submaxillary mucins from different sources contain various sialic acid derivatives and were found to be better inhibitors of many lectins. Bovine submaxillary mucin containing 9-OAc- and 8,9-diOAcNeuNAc has been found to be the best inhibitor of the marine crab⁶⁵, the American²⁹ and Japanese⁷⁸ horseshoe crabs, lobster³² and slug²⁹ lectins and achatinin_H⁵⁰ but not of the Indian scorpion³ lectin. Equine submaxillary mucin containing predominantly 4-OAcNeuNAc is also a good inhibitor of limulin²⁹, carcinoscorpin²⁹ and marine crab lectin⁶⁵. Sheep submaxillary mucin contains only NeuNAc and is an inhibitor of achatinin_H⁶ and horseshoe crab lectins^{29,78} but not of marine crab lectin⁶⁵. Fetuin, human chorionic gonadotropin, α_1 -acid glycoprotein, serotransferrin, lactotransferrin, etc. are sialic acid containing glycoproteins which inhibit the hemagglutination of sialic acid binding lectins. Besides these sialoglycoproteins, several glycosphingolipids have been found to be good inhibitors^{3, 29, 50}.

Erythrocytes from different species contain different kinds of sialic acid derivatives in varying amounts. Hence their agglutination by sialic acid specific lectins exhibit different hemagglutination patterns. The involvement of sialic acid in such agglutination has been proved by treatment of the erythrocytes with a sialidase, which completely inhibits agglutination. Achatinin_H agglutinates only rabbit, guinea pig, hamster and rat erythrocytes which contain mainly 9-O-AcNeuNAc but not human and horse erythrocytes which lack 9-O-acetyl derivatives $^{50, 75}$. The marine crab lectin, which binds both 4-O-Ac- and 9-O-AcNeuNAc, agglutinates horse, rabbit, rat and mouse erythrocytes 65 . Limulin 29 and lectins from

Tab	le 3.	The	order	of	sugar	specificity	of	some	lectins
-----	-------	-----	-------	----	-------	-------------	----	------	---------

Lectin	Order of specificity	References
Carcinoscorpin	NeuNAc $(\alpha 2-6)$ Gal \cdot OH \gg NeuNAc $(\alpha 2-6)$ Gal $(\beta 1-4)$ Glc $>$ NeuNGc $>$ NeuNAc	27
Limulin	NeuNGc ($\alpha 2-3$) GalNAc > NeuNAc ($\alpha 2-6$) GalNAc > NeuNAc = NeuNAc	27
Achatinin _H	NeuNAc ($\alpha 2-3$) Gal ($\beta 1-4$) Gic > NeuNAc ($\alpha 2-6$) Gal \cdot OH > 9 - OAcNeuNAc > NeuNAc > NeuNAc	48
Slug lectin	NeuNAc > NeuNGc	52
	NeuNAc ($\alpha 2-3$) Gal = NeuNAc ($\alpha 2-6$) Gal > 9 – OAcNeuNAc ($\alpha 2-6$) Gal > NeuNGc ($\alpha 2-6$) Gal	63
Indian scorpion lectin	NeuNAc ($\alpha 2-3$) Gal ($\beta 1-4$) Glc = diNeuNAc ($\alpha 2-3$) Gal ($\beta 1-4$) Glc > NeuNAc > NeuNGc	3
Marine crab lectin	9 – OAcNeuNAc > 4 – OAcNeuNAc ≥ NeuNAc > NeuNGc	63
Lobster lectin	NeuNAc > NeuNGc > ManNAc > GlcN > GlcNAc	30
Elderberry bark lectin	NeuNAc ($\alpha 2-6$) Gal ($\beta 1-4$) GlcNAc ($\beta 1-3$) Gal ($\beta 1-4$) Glc > NeuNAc ($\alpha 2-6$) Gal ($\beta 1-4$) Glc > NeuNAc ($\alpha 2-6$) Gal ($\beta 1-4$) Glc OH \gg NeuNAc ($\alpha 2-3$) Gal ($\beta 1-4$) Glc > NeuNAc ($\alpha 2-3$) Gal ($\beta 1-3$) GlcNAc ($\beta 1-3$) Gal ($\beta 1-4$) Glc $\beta 1-4$) Glc > NeuNAc ($\alpha 2-3$) Gal ($\beta 1-3$) GlcNAc ($\beta 1-3$) Gal ($\beta 1-4$) Glc	76
Escherichia coli lectin	NeuNAc ($\alpha 2-3$) Gal ($\beta 1-4$) Glc > NeuNAc	81

the Indian scorpion³, the Japanese horseshoe crab^{81,82}, lobster^{32,33} and sea slug²⁹ agglutinate erythrocytes from many animals; they differ only in hemagglutination titers, probably because of their broad specificity for sialic acid derivatives.

A few sialic acid binding lectins bind to other sugars in addition to sialic acids. Multispecificity of limulin and carcinoscorpin is well documented²⁹. Carcinoscorpin binds to β -glycerophosphate²³, 2-keto-3-deoxy-octonate and lipopolysaccharides²⁴. Both limulin and carcinoscorpin bind phosphorylcholine at a site different from the sialic acid binding site²⁹. Lectins from the Indian horseshoe crab²⁹, the Indian scorpion³ and rat uterus¹⁸ bind to glucuronic acid. Wheat germ agglutinin binds to GlcNAc and its (β 1–4) linked oligomer^{28,87}. Elderberry bark lectin binds to D-galactose and its derivatives¹³.

Application

Lectins have been widely used for the detection, isolation and characterization of glycoconjugates using their characteristic carbohydrate binding properties. The lectins which bind specifically to sialic acids or oligosaccharide units which include sialic acid derivatives would provide useful tools for biochemical studies of sialoglycoconjugates, especially because of the importance of sialylation and desialylation in the regulation of glycoconjugate metabolism and cell-cell interaction^{49, 76}. Monoclonal antibodies raised against sialic acid containing oligosaccharides would also find similar applications^{27, 31, 86}.

The structural diversity and very limited availability of specific sialoglycoproteins on the cell membrane or in the interior have made the isolation of these molecules a formidable task. Immobilized lectins have been used successfully in affinity chromatographic techniques for the isolation of sialoglycoconjugates. Wheat germ agglutinin has been used to fractionate brain glycoproteins into several populations differing in glucosamine:mannose: sialic acid content³⁰. Immobilized elderberry bark lectin has been used for the fractionation of sialylated oligosaccharides, glycopeptides and glycoproteins⁸⁰. Maackia amurensis lectin, immobilized on sepharose, has been used to separate a mixture of the complex tri- and tetraantennary Asn-linked sialoglycopeptides 104. Immobilized carcinoscorpin has been reported to resolve the isoenzymes of alkaline phosphatase from sheep²⁵ and rat⁵⁶ brains.

Sialic acid binding lectins or monoclonal antibodies in conjugation with enzymes, biotin or heavy metals can be used in the cytochemical localization of sialoglycoconjugates by light or by electron microscopy ^{59, 73}. Limulin in conjugation with peroxidase or rhodamine has been used in the detection of sialoglycoconjugates in various cell types in rat pancreas ⁵⁹. Recently the elderberry bark lectin-gold technique has been used for the detection of NeuNAc($\alpha 2-6$)Gal/GalNAc sequences⁸⁵. Limax flavus

lectin was used to examine the distribution of sialic acid residues in the pancreas, liver and distal colon of rat by light and electron microscopy⁷³.

These lectins and antibodies are potentially useful in assaying various sialoglycoconjugates in biological fluids. A very sensitive lectin binding assay has been reported using carcinoscorpin and polyethylene glycol¹. Recently, influenza C virus agglutinin has been used in the quantitative determination of 9-O-acetylation in sialoglycoconjugates after the inactivation of its esterase activity 58. The marine crab lectin has been successfully used to identify an O-acetylsialylated ganglioside, a human melanoma antigen, which may be an important tumor marker for the detection and treatment of human melanoma⁶⁶. The narrow specificity of achatinin_H might make it useful in such analyses. Knowledge of the interaction and specificity of binding of the viral agglutinins to sialic acid residues on their receptors, obtained from crystallographic studies on the influenza virus, may aid in the design of drugs against those viruses ¹⁰⁵.

Conclusion

This article reviews a special class of lectins which bind sialic acids either in the free state or as carbohydrate moieties in biologically important cellular constituents. Apart from the extensively studied viral agglutinins, these lectins have been isolated from many invertebrate and a few plant sources. Such lectins may also be found in many of the higher vertebrates, if properly searched for. Of special interest are those having a narrow specificity for certain derivatives of sialic acids. These are of potential utility in probing the expression of specific sialic acid derivatives in cellular constituents during a number of important biological events such as differentiation, transformation and immunosuppression.

Though the structure of many sialoglycoconjugates has begun to be revealed, the biological roles of these lectins still remain largely speculative. Detailed studies would pave the way for an understanding of their function. We hope that this review will stimulate the search for new sialic acid binding lectins with more precise specificity from diverse sources. These might provide tools for the study of important biological events and could become very useful in the diagnosis of many diseases.

Acknowledgment. The authors extend their sincere thanks to Professor A. Neuberger, Westminster Medical School, London, and Dr H. V. Wyatt, Leeds University, U. K., for carefully correcting the manuscript.

- 2 Acton, R. T., Bennett, J. C., Evans, E. E., and Schrohenloher, R. E., Physical and chemical characterization of oyster hemagglutinin. J. biol. Chem. 244 (1969) 4128-4135.
- 3 Ahmed, H., Chatterjee, B. P., Kelm, S., and Schauer, R., Purification of a sialic acid specific lectin from the Indian scorpion (*Het-erometrus granulomanus*). Hoppe-Seyler's Z. physiol. Chem. 367 (1986) 501-506.

¹ Abidi, F. E., Bishayee, S., Bachhawat, B. K., and Bhadra, R., Lectin binding assay by polyethylene glycol 8000. Analyt. Biochem. 166 (1987) 257-266.

- 4 Allen, A. K., Neuberger, A., and Sharon, N., The purification, composition and specificity of wheat-germ agglutinin. Biochem. J. 131 (1973) 155-167.
- 5 Basu, S., Mandal, C., and Allen, K., Chemical modification studies of a unique sialic acid binding lectin from *Achatina fulica* snail. Biochem. J. 254 (1988) 195-202.
- 6 Basu, S., Sarkar, M., and Mandal, C., A single step purification of a sialic acid binding lectin (Achatinin_H) from *Achatina fulica* snail. Molec. cell. Biochem. 71 (1986) 149-157.
- 7 Barondes, S. H., Lectins: Their multiple endogenous cellular functions. A. Rev. Biochem. 50 (1981) 207-231.
- 8 Bernheimer, A. W., Hemagglutinin in caterpillar blood. Science 115 (1952) 150-151.
- 9 Bird, G. W. G., Discussion paper: Invertebrate agglutinin in general, Ann. N.Y. Acad. Sci. 234 (1974) 51-54.
- 10 Bishayee, S., and Dorai, T., Isolation and characterization of a sialic acid binding lectin (Carcinoscorpin) from Indian horseshoe crab *Carcinoscorpius rotunda cauda*. Biochim. biophys. Acta 623 (1980) 89-97.
- 11 Brain, P., and Grace, H. J., On the hemagglutinin of the snail Achatina granulata. Vox sang. 15 (1986) 297-299.
- 12 Bretting, H., Stanislawski, E., Jacobs, G., and Becker, W., Isolation and characterization of a lectin from the snail *Biomphalaria glabrata* and a study of its combining site. Biochim. biophys. Acta 749 (1983) 143–152.
- 13 Broewaert, W.F., Nsimba-Lubaki, M., Peeters, B., and Peumans, W. J., A lectin from elder (*Sambucus nigra* L.) bark. Biochem. J. 221 (1984) 163-169.
- 14 Brown, R., Almodovar, L. R., Bhatia, H. M., and Boyd, W. C., Blood group specific agglutinins in invertebrates. J. Immun. 100 (1968) 214-216.
- 15 Burness, A. T. H., Glycophorin and sialylated components as receptors for viruses, in: Receptors and Recognition: V8, Viruses Receptors: Part 2, Animal Viruses, pp. 63-84. Eds. K. Longer-Holm and L. Philipson. Chapman and Hall, New York 1981.
- 16 Campbell, P., Hartman, A. L., and Abel, C. A., Stimulation of B cells, but not T cells or thymocytes, by sialic acid specific lectin. Immunology 45 (1982) 155-162.
- 17 Cheresh, D. A., Varki, A. P., Varki, N. M., Stallcup, W. B., Levine, J., and Reisfeld, R. A., A monoclonal antibody recognizes an O-acylated sialic acid in a human melanoma associated ganglioside. J. biol. Chem. 259 (1984) 7453-7459.
- 18 Chowdhury, M., Sarkar, M., and Mandal, C., Identification and isolation of an agglutinin from uterus of rats. Biochem. biophys. Res. Commun. 130 (1985) 1301-1307.
- 19 Cohen, E., Recognition proteins, receptors and probes: invertebrates, in: Progress in Clinical and Biological Research, vol. 157, p. 207. Ed. E. Cohen. A. R. Liss Inc., New York 1984.
- 20 Cohen, E., Ildi, G. H. U., Brahmi, Z., and Minowada, J., The nature of cellular agglutinins of *Androctonus australis* (Saharan scorpion) serum. Dev. comp. Immun. 3 (1979) 429-440.
- 21 Cohen, E., Immunologic observations of the agglutinins of the hemolymph of *Limulus polyphemus* and *Birgus latro*. Trans. N.Y. Acad. Sci. 30 (1968) 427-443.
- 22 Dorai, D. T., Bachhawat, B. K., Bishayee, S., Kannan, K., and Rao, D. R., Further characterization of the sialic acid binding lectin from the horseshoe crab *Carcinoscorpius rotunda cauda*. Archs Biochem. Biophys. 209 (1981) 325–333.
- 23 Dorai, D. T., Mohon, S., Sirmal, S., and Bachhawat, B. K., On the multispecificity of Carcinoscorpin, the sialic acid binding lectin from the horseshoe crab *Carcinoscorpius rotunda cauda*. Recognition of glycerolphosphate in membrane teichoic acids. FEBS Lett. 148 (1982) 98-102.
- 24 Dorai, D. T., Sirmal, S., Mohon, S., Bachhawat, B. K., and Balganesh, T. S., Recognition of 2-keto-3-deoxy-octonate in bacterial cells and lipopolysaccharides by the sialic acid binding lectin from the horseshoe crab *Carcinoscorpius rotunda cauda*. Biochem. biophys. Res. Commun. 104 (1982) 141-147.
- 25 Dorai, D. T., Bachhawat, B. K., and Bishayee, S., Fractionation of sialoglycoproteins on an immobilized sialic acid binding lectin. Analyt. Biochem. 115 (1981) 130-137.
- 26 Etzler, M. E., Plant lectins: molecular and biological aspects. A. Rev. Plant Physiol. 36 (1985) 209-234.
- 27 Frosch, M., Gorgen, I., Boulnois, G. J., Timmis, K. N., and Bitter-Suermann, D., NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: Isolation of an IgG antibody to the polysaccharide capsules of *Escherichia coli* K1 and group B meningococci. Proc. natl Acad. Sci. USA 82 (1985) 1194-1198.

- 28 Goldstein, I. J., Hammarstrom, S., and Sundblad, G., Precipitation and carbohydrate binding specificity studies on wheat germ agglutinin. Biochim. biophys. Acta 405 (1975) 53-61.
- 29 Goldstein, I. J., and Poretz, R. D., Isolation, physicochemical characterization and carbohydrate binding specificity of lectins, in: The Lectins: Properties, Functions and Applications in Biology and Medicine, p. 35-244. Eds I. E. Liener, N. Sharon and I. J. Goldstein. Academic Press Inc., New York 1986.
- 30 Gombos, G., Morgan, I. G., Waehneldt, T. V., Vincenden, G., and Breckenridge, W. G., Glycoproteins of the synaptosomal plasma membrane. Adv. exp. Med. Biol. 25 (1971) 101-113.
- 31 Hakomori, S., Patterson, C. M., Nudelman, E., and Sekiguchi, K., A monoclonal antibody directed to N-acetylneuraminosyl 2-6 galactosyl residue in gangliosides and glycoproteins. J. biol. Chem. 258 (1983) 11 819-11 822.
- 32 Hall, J. L., and Rowlands, D. T. Jr, Heterogeneity of lobster agglutinins. II. Specificity of agglutinin erythrocyte binding. Biochemistry 13 (1974) 828-832.
- 33 Hall, J. L., and Rowlands, D. T. Jr, Heterogeneity of lobster agglutinins. I. Purification and physicochemical characterization. Biochemistry 13 (1974) 821-827.
- 34 Hapner, K. D., and Jermyn, M. A., Hemagglutinin activity in the hemolymph of *Teleogryllus commodus* (Walker) insect. Biochemistry 11 (1981) 287-296.
- 35 Hardy, S. W., Fletcher, T. C., and Olafseu, J. A., Aspects of cellular and humoral defence mechanisms in the Pacific oyster, *Crassostrea* gigas, in: Developmental Immunobiology, p. 59-66. Eds. J. B. Solomon and J. D. Horton. Elsevier/North Holland Biochemical Press, New York 1977.
- 36 Hardy, S. W., Fletcher, T. C., and Gerrie, L. M., Factors in hemolymph of the mussel *Mytilus edulis* L. of possible significance as defence mechanisms. Trans. Biochem. Soc. 4 (1976) 473-475.
- 37 Hardy, S. W., Grant, P. T., and Fletcher, T. C., A hemagglutinin in the tissue fluid of the Pacific oyster, *Crassostrea gigas* with specificity for sialic acid residues in glycoproteins. Experientia 33 (1977) 767-769.
- 38 Hartman, A. L., Campbell, P. A., and Abel, C. A., An improved method for the isolation of lobster lectins. Devl comp. Immun. 2 (1978) 617-626.
- 39 Holm, S. E., Bergholm, A. M., Wagner, B., and Wagner, M., A sialic acid specific lectin from *Cepaea hortensis* that promotes phagocytosis of a group-b, type-Ia, streptococcal strain. J. med. Microbiol. 19 (1985) 317-324.
- 40 Horowitz, M. I., Immunological aspects and lectins, sec 1: Immunological aspects, in: The Glycoconjugates, vol. II, Mammalian Glycoproteins, Glycolipids and Proteoglycans, pp. 387-425. Eds M. I. Horowitz and W. Pigman. Academic Press, New York 1978.
- 41 Iguchi, S. M. M., Momoi, T., Egawa, K., and Matsumoto, J. J., An N-acetylneuraminic acid specific lectin from the body surface mucus of the African giant snail. Comp. Biochem. Physiol. B; comp. Biochem. 81 (1985) 897-900.
- 42 Ishiyama, I., Takatsu, A., Gielen, W., and Uhlenbruck, G., An agglutinin from the sea snail *Dolabella* reacting with neuraminic acid containing structures. Hematologia 6 (1972) 109-112.
- 43 Khalap, S., Thompson, J. E., and Gold, E. R., Hemagglutination and hemagglutination inhibition reactions of extracts from snails and sponges. II. Hemagglutination inhibition tests with biological materials and some substances contained in them. Vox sang. 20 (1971) 150-173.
- 44 Kornfeld, S., and Kornfeld, R., Immunological aspects and lectins, sec. 2: Use of lectins in the study of mammalian glycoproteins, in: The Glycoconjugates, vol. II, Mammalian Glycoproteins, Glycolipids and Proteoglycans, pp. 437-451. Eds W. Horowitz and W. Pigman. Academic Press, New York 1978.
- 45 Kronis, K. A., and Craver, J. P., Wheat germ agglutinin dimers bind sialyloligosaccharides at four sites in solution: Proton nuclear magnetic resonance temperature studies at 360 MHz. Biochemistry 24 (1985) 826-833.
- 46 Kuik, J. A. V., Halbeek, H. V., Kamerling, J. P., and Vliegenhart, J. F. G., Primary structure of the low molecular weight carbohydrate chains of *Helix pomatia* α-hemocyanin. J. biol. Chem. 15 (1985) 13 984-13 988.
- 47 Lindahl, M., Brossmer, R., and Wadstrom, T., A sialic acid specific hemagglutinin on enterotoxigenic *Escherichia coli* binds to glycophorin from human erythrocytes, in: Lectins Biology, Biochemistry, Clinical Biochemistry, vol. 4, pp. 425-433. Eds T. C. BogHansen and J. Breborowicz. New York 1985.

48 Lis, H., and Sharon, N., Lectins as molecules and as tools. A. Rev. Biochem. 55 (1986) 35-67.

440

- 49 Lloyd, C. W., Sialic acid and the social behaviour of cells. Biol. Rev. 50 (1975) 325-350.
- 50 Mandal, C., and Basu, S., A unique specificity of a sialic acid binding lectin Achatinin_H, from the hemolymph of *Achatina fulica* snail. Biochem. biophys. Res. Commun. 148 (1987) 795-801.
- 51 Mandal, C., Basu, S., and Mandal, C., Physicochemical studies on Achatinin_H, a novel sialic acid binding lectin. Biochem. J. 257 (1988) 65-71.
- 52 Mandal, C., and Chowdhury, M., Blastogenesis of human and rat lymphocytes by a unique sialic acid binding lectin, in: 3rd Ann. Conf. Tissue Culture Assoc. India. Abst. No. FP10 (1987).
- 53 Marchalonis, J. J., and Edelman, G. M., Isolation and characterization of a hemagglutinin from *Limulus polyphemus*. J. molec. Biol. 32 (1968) 453-465.
- 54 Miller, R. L., Collawn, J. F. Jr, and Fish, W. W., Purification and macromolecular properties of sialic acid specific lectin from the slug *Limux flavus*. J. biol. Chem. 257 (1982) 7574-7580.
- 55 Mitra, D., Sarkar, M., and Allen, A. K., Further characterization of the cold agglutinin from the snail *Achatina fulica*. Biochem. J. 242 (1987) 331-338.
- 56 Mohan, S., Bishayee, S., and Bachhawat, B. K., Resolution of microheterogeneity in rat liver acid phosphatase using immobilised sialic acid binding lectin. Indian J. Biochem. Biophys. 18 (1981) 177-181.
- 57 Monsigny, M., Roche, A. C., Sene, C., Maget-Dana, R., and Delmolta, F. M., Sugar-lectin interactions: How does wheat germ agglutinin bind sialoglycoconjugates? Eur. J. Biochem. 104 (1980) 147-153.
- 58 Muchmore, E. A., and Varki, A., Selective inactivation of influenza C esterase: A probe for detecting 9-O-acetylated sialic acids. Science 236 (1987) 1293-1295.
- 59 Muresan, V., Iwanij, V., Smith, Z. D. J., and Jamieson, J. D., Purification and use of Limulin: A sialic acid specific lectin. J. Histochem. Cytochem. 30 (1982) 938-946.
- 60 Noguchi, H., On the multiplicity of the serum hemagglutinins of cold-blooded animals. Zentbl. Bakt. Parasitkde, I. Orig. 34 (1903) 286-288.
- 61 Nowak, T. P., and Barondes, S. H., Agglutinin from *Limulus polyphemus*; purification with formalinized horse erythrocytes as the affinity absorbent. Biochim. biophys. Acta 393 (1975) 115-123.
- 62 Pardoe, G. I., Uhlenbruck, G., and Bird, G. W. G., Studies on some heterophil receptors of the Burkitt EB₂ lymphoma cell. Immunology 18 (1970) 73-83.
- 63 Pistole, T. G., Naturally occurring bacterial agglutinin in the serum of the horseshoe crab, *Limulus polyphemus*. Dev. comp. Immun. 2 (1978) 65-76.
- 64 Popoli, M., and Mengano, A., A hemagglutinin specific for sialic acids in a rat brain synaptic vesicle-enriched fraction. Neurochem. Res. 13 (1988) 63-67.
- 65 Ravindranaths, M. H., Higa, H. H., Cooper, E. L., and Paulson, J. C., Purification and characterization of an O-acetylsialic acid specific lectin from a marine crab *Cancer antennarius*. J. biol. Chem. 260 (1985) 8850-8856.
- 66 Ravindranaths, M. H., Paulson, J. C., and Irie, R. F., Human melanoma antigen O-acetylated ganglioside GD₃ is recognized by *Cancer antennarius* lectin. J. biol. Chem. 263 (1988) 2079-2086.
- 67 Ram Pal, R., and Pyle, M., Evidence for mucin and sialic acid as receptors for *Pseudomonas aeruginosa* in the lower respiratory tract. Infect. Immun. 41 (1983) 339–344.
- 68 Rice, R. H., and Etzler, M. E., Chemical modification and hybridization of wheat germ agglutinin. Biochemistry 14 (1975) 4093-4099.
- 69 Roche, A. C., Maurizot, J., and Monsigny, M., Circular dichroism of Limulin: Limulus polyphemus lectin. FEBS Lett. 91 (1978) 233-236.
- 70 Roche, A. C., and Monsigny, M., Purification and properties of limulin lectin (agglutinin) from hemolymph of *Limulus polyphemus*. Biochim. biophys. Acta 371 (1974) 242-254.
- 71 Roche, A. C., and Monsigny, M., Limulin (*Limulus polyphemus* lectin): Isolation, physicochemical properties, sugar specificities and mitogenic activity, in: Biomedical Applications of the Horseshoe Crab (Limulidae), pp. 603-616. Ed. E. Cohen. A. R. Liss Inc., New York 1979.
- 72 Rosenberg, A., and Schengrund, C. L., Eds, Biological Roles of Sialic Acid. Plenum Press, New York 1976.
- 73 Roth, J., Lucoc, J. M., and Charest, P. M., Light and electron microscopic demonstration of sialic acid residues with the lectin from

Limux flavus – A cytochemical affinity technique with the use of fetuin-gold complexes. J. Histochem. Cytochem. 32 (1984) 1167–1176.

- 74 Schauer, R., Sialic acids as potential determinants on differentiation antigens. Biochem. Soc. Trans. II (1983) 270-271.
- 75 Schauer, R., Sialic acids and their role as biological masks. Trends biochem. Sci. 10 (1985) 357-360.
- 76 Schauer, R., Shukla, A. K., Schroder, C., and Muller, E., The antirecognition function of sialic acids: Studies with erythrocytes and macrophages. Pure appl. Chem. 56 (1984) 907-921.
- 77 Schauer, R., Veh, R. W., Sander, M., Corfield, A. P., and Weighadt, H., in: Structure and Functions of Gangliosides, pp. 283–294. Eds L. Sevenerholm, P. Mendel, P. F. Urban and H. Dreyfus. Plenum Press, New York 1980.
- 78 Sharon, N., and Lis, H., Lectins: Cell agglutinating and sugar specific proteins. Science 177 (1973) 949-959.
- 79 Shibuya, N., Goldstein, I. J., Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B., and Peumans, W. J., The elderberry (*Sambucus nigra* L.) bark lectin recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence. J. biol. Chem. 262 (1987) 1596-1601.
- 80 Shibuya, N., Goldstein, I. J., Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B., and Peumans, W. J., Fractionation of sialylated oligosaccharides, glycopeptides and glycoproteins on immobilized elderberry (*Sambucus nigra* L.) bark lectin. Archs Biochem. Biophys. 254 (1987) 1-8.
- 81 Shimizu, S., Ito, M., and Niwa, M., Lectins in the hemolymph of the Japanese horseshoe crab, *Tachypleus tridentatus*. Biochim. biophys. Acta 500 (1977) 71-79.
- 82 Shimishikura, F., and Sekiguchi, K., Agglutinins in the horseshoe crab hemolymph: Purification of a potent agglutinin of horse erythrocytes from the hemolymph of *Tachypleus tridentatus*, the Japanese horseshoe crab. J. Biochem. 93 (1983) 1539-1546.
- 83 Shukla, A. K., and Schauer, R., Fluorometric determination of unsubstituted and 9(8)-O-acetylated sialic acid in erythrocyte membrane. Hoppe-Seyler's Z. physiol. Chem. 363 (1982) 255-262.
- 84 Sjoberg, P.-O., Lindahl, M., Porath, J., and Wadstrom, T., Purification and characterization of CS2, a sialic acid specific haemagglutinin of enterotoxigenic *Escherichia coli*. Biochem. J. 255 (1988) 105– 111.
- 85 Taatjes, D. J., Roth, J., Peumans, W., and Goldstein, I. W., Elderberry bark lectin-gold technique for the detection of Neu5Ac(α2-6)Gal/ GalNAc sequences: Application and limitations. Histochem. J. 20 (1988) 478-490.
- 86 Tai, T., Sze, L., Kawashima, I., Saxton, R. E., and Irie, R. F., Monoclonal antibody detects monosialogangliosides having a sialic acid α2-3 galactosyl residue. J. biol. Chem. 262 (1987) 6803-6807.
- 87 Thomas, M. W., Walborg, E. F. Jr, and Jirgenson, B., Circular dichroism and saccharide-induced conformational transitions of wheat germ agglutinin. Archs Biochem. Biophys. 178 (1977) 625– 630.
- 88 Titani, K., Takio, K., Kuwada, M., Nitta, K., Sakakibara, F., Kawauchi, H., Takayanagi, G., and Hakomori, S., Amino acid sequence of sialic acid binding lectin from frog (*Rana catebeiana*) eggs. Biochemistry 26 (1987) 2189–2194.
- 89 Tsai, C.-M., Zopf, D. A., Yu, R. K., Wistar, R. Jr, and Ginsburg, V., A Waldenstrom macroglobulin that is both a cold agglutinin and cryoglobulin because it binds N-acetyl neuraminosyl residues. Proc. natl Acad. Sci. USA 74 (1977) 4591-4594.
- 90 Uhlenbruck, G., Sprenger, I., and Heggen, M., Vorkommen eines Neuraminsäure-haltigen Glykoproteins in der Colonflüssigkeit des Seeigels. Naturwissenschaften 57 (1970) 246-247.
- 91 Ulmer, A. J., Scholz, W., and Flad, H. D., Stimulation of colony formation and growth factor production of human T lymphocytes by wheat germ lectin. Immunology 47 (1982) 551-556.
- 92 Umetsu, K., Kosaka, S., and Suzuki, J., Purification and characterization of a lectin from the beetle *Allomyrina dichotoma*. J. Biochem. 95 (1984) 239-245.
- 93 Vanderwall, J., Canapbell, P. A., and Abel, C. A., Isolation of sialic acid specific lobster lectin (L Ag1) by affinity chromatography on Sepharose-colominic acid beads. Dev. comp. Immun. 5 (1981) 679– 684.
- 94 Vasta, G. R., Warr, G. W., and Marchalonis, J. J., Tunicate lectins: Distribution and specificity. Comp. Biochem. Physiol. 73B (1982) 887-900.
- 95 Vasta, G. R., Sullivan, J. T., Cheng, T. C., Marchalonis, J. J., and Warr, G. W., A cell membrane associated lectin of the oyster hemocyte. J. Invert. Path. 40 (1982) 367-377.

Research Articles

- 96 Vasta, G. R., and Cohen, E., The specificity of *Centruroides sculptu-ratus* Ewing (Arizona lethal scorpion) hemolymph agglutinin. Dev. comp. Immun. 6 (1982) 219-230.
- 97 Vasta, G. R., Ilodi, G. H. U., Cohen, E., and Brahmi, Z., A comparative study on the specificity of *Androctonus australis* (Saharan scorpion) and *Limulus polyphemus* (horseshoe crab) agglutinin. Dev. comp. Immun. 6 (1982) 625-639.
- 98 Vasta, G. R., and Cohen, E., Sialic acid specific lectins in the serum of American spiders of the genus *Aphonopelma*. Dev. comp. Immun. 8 (1984) 515-522.
- 99 Vasta, G. R., Warr, G. W., and Marchalonis, J. J., Serological characterization of humoral lectins from the fresh water prawn Macrobrachium rosenbergii. Dev. comp. Immun. 7 (1983) 13-20.
- 100 Vasta, G. R., and Cohen, E., Naturally occurring hemagglutinins in the hemolymph of scorpion *Paruroctonus mesaensis* Stahnke. Experientia 39 (1983) 721-722.
- 101 Vasta, G. R., and Cohen, E., Sialic acid binding lectins in whip scorpion (*Masticoproctus giganteus*) serum. J. Invert. Path. 43 (1984) 333-342.
- 102 Vasta, G. R., and Cohen, E., Characterization of the carbohydrate specificity of serum lectins from the scorpion *Hadrurus arizonensis* Stahnke. Comp. Biochem. Physiol. 77B (1984) 721-727.
- 103 Vasta, G. R., and Marchalonis, J. J., Cell Receptors and Cell Communication in Invertebrates. Ed. B. A. Cinader. New York Press, 1985.

- 104 Wang, W.-C., and Cummings, R. D., The immobilized leukoagglutinin from the seeds of *Maackia amurensis* binds with high affinity to complex type Asn-linked oligosaccharides containing terminal sialic acid linked $\alpha 2,3$ to penultimate galactose residue. J. biol. Chem. 263 (1988) 4576-4585.
- 105 Weis, W., Brown, J. H., Cusack, S., Paulson, J. C., Skehel, J. J., and Wiley, D. C., Structure of the influenza virus haemagglutinin complexed with its receptor sialic acid. Nature 333 (1988) 426-431.
- 106 Wright, C. S., Structural comparison of the two distinct sugar binding sites in wheat germ isolectin-II. J. molec. Biol. 178 (1984) 91-104.
- 107 Wright, R. K., and Cooper, E. L., Protochordate immunity. II. Diverse hemolymph lectin in the solitary tunicate *Style clava*. Comp. Biochem. Physiol. 79B (1984) 269-277.
- 108 Yeaton, R. W., Invertebrate lectins. I. Occurrence. Dev. comp. Immun. 5 (1981) 391-402.
- 109 Yeaton, R. W., Invertebrate lectins. II. Diversity of specificity, biological synthesis and function in recognition. Dev. comp. Immun. 5 (1981) 535-545.
- 110 Yen, S. E., Mansfield, J. M., and Wallace, J. H., The prickly lettuce agglutinins. I. Isolation from leaves of the prickly lettuce plant (*Lac-tuca scariole*). Int. Arch. Allerg. appl. Immun. 61 (1980) 32-39.

0014-4754/90/050433-09\$1.50 + 0.20/0 © Birkhäuser Verlag Basel, 1990

Research Articles

Mauthner cells in the medulla of the weakly electric fish Gymnotus carapo

O. Trujillo-Cenóz and C. Bertolotto

Division of Comparative Neuroanatomy, Instituto de Investigaciones Biológicas 'Clemente Estable', Avda Italia 3318, Montevideo (Uruguay)

Received 5 September 1989; accepted 1 November 1989

Summary. The medulla of the gymnotoid fish Gymnotus carapo contains two large neurons exhibiting all the characteristics of Mauthner cells (M-cells). Their presence was demonstrated by means of Golgi-like labeling with horseradish peroxidase. This is the first description of M-cells in a fish belonging to the order Gymnotiformes. *Key words*. Mauthner neurons; electric fish; HRP-labeling.

One of the most typical characteristics of the central nervous system (CNS) of teleosts and certain amphibians is the presence in the medulla of two large nerve cells whose thick axons extend all the way along the spinal cord. These two peculiar nerve fibers were discovered by Mauthner in 1859¹. Approximately thirty years later, Goronvitsch² found in the medulla of the sturgeon the cell bodies from which the pair of axons discovered by Mauthner originate. Physiological studies have demonstrated that excitation of a single Mauthner cell (M-cell) elicits the so-called Mauthner-reflex. The reflex consists of: a) a forceful contraction of the contralateral muscles of the trunk and tail, b) sudden movements of both eyeballs, c) contraction of both opercular muscles and d) synchronous movement of the lower jaw. As pointed out by Diamond³, this response resembles the startle reaction of a free-swimming fish, caused by mechanical or photic stimuli.

The morphology of the M-cell has been the subject of numerous investigations covering a variety of species $^{4-7}$. However, investigations on the presence of M-cells in the so-called 'weakly electric fish' seem to be very scarce. According to the lists provided by Zottoli⁷ in his review chapter, M-cells do occur in the African Mormyriformes. On the other hand, the important group of the South-American Gymnotiformes has hardly been investigated, with the exception of gymnotoid eels, which were included by Zottoli⁷ in the list of fish in which these peculiar neurons have not been found.

This report is concerned with the location and morphology of the M-cells in the weakly electric gymnotoid *Gymnotus carapo*. Interest in the identification of M-cells in weakly electric fish goes beyond the goal of adding new members to the list of species in which these peculiar neurons have been found. In all fish investigated, the dorso-lateral dendrites receive afferents from vestibular