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Abstract. In the present series of two papers we solve exactly Wilson's 
equations for a long-range effective hamiltonian. These equations arise when 
one seeks a fixed point of the Wilson's renormalization group transformations 
in the formulation of perturbation theory. The first paper has a general 
character. Wilson's renormalization transformation and its modifications are 
defined and the group property for them is established. Some topological 
aspects of the renormalization transformations are discussed. A space of 
"projection hamiltonians" is introduced and a theorem on the invariance of 
this space with respect to the renormalization transformations is proved. 

1. Introduction 

In the present work consisting of two papers we shall solve exactly the Wilson's 
renormalization group equations for an effective hamiltonian whose free part is 

const 
defined by long-range potential U ( x ) ~ - - - ~ x [ - q -  , [ x l~oo .  This hamiltonian is 

written as a formal series H = H  o + e l l  1 +e2H2 + ..., where e = a -  ~d  and d is the 
dimensiality. Each of the H i is an usual (not formal) finite-particle hamiltonian. H 0 
is a free long-range quadratic hamiltonian. Under the Wilson's renormalization 
group transformation the hamiltonian H transforms into another one 
I t ' = H  o +~H'  1 +e2H'2 + . . .  (which is also a formal series) every coefficient H'  i of 
which is computed via the coefficients H0, H 1 . . . . .  H~ of the original hamiltonian : 

H' i = Ri (H o, H 1 . . . . .  H~). 

The operators R~ have a rather complicated structure and are nonlinear in 
Ho, H a . . . . .  Hi_  1. By definition the effective hamiltonian is a fixed point of the 
renormalization group transformation and its coefficients satisfy the chain of 
equations 

H~ = Ri(Ho, H 1 . . . . .  Hi) .  (1) 
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The main results of our work is an exact construction of a non-trivial solution 
of this chain of equations. In particular the hamiltonians Ho, H 1 have in 
momentum space the form 

H o =  ~ ½1k[a-ala(k)l 2dak, 
N < A 

H 1 = u  1 ~ 5(k 1 + ... +k,~)a(k~). . .a(k4)dakl . . .ddk4, 
Ikl[ ..... Ikal<A 

where u 1 > 0  and : : is the Wick ordering with respect to free field with the 
hamiltonian H o. The following hamiltonians H,, i=  2, 3 .. . . .  have a more com- 
plicated structure and are defined in the main part of the work. 

The problem of finding solutions for the coefficients of the effective hamil- 
tonian was first formulated and discussed in [1] (see also [2-4]). 

Actually in [1] short range hamiltonians were considered and the expansion 
was carried out in the dimensiality parameter e' = 4 - d .  Undoubtedly there are 
many general features in the expansions in ~ = a -  ~ d and 5'= 4 - d .  The authors 
intend to consider e'-expansion and the connection between e- and e'-expansions in 
subsequent papers. Moreover it is noteworthy that in the present work we deal 
only with the case when the dimensiatity d is not divisible by 4. This restriction is 
essential and if d is a multiple of 4 or is close to such a number, the s-expansion has 
a more complicated nature. 

In [1] an iteration procedure was suggested for solving the chain of Eq. (1). 
The point is that the operator R~ can be written as 

R~(H o, H I . . . . .  H~) = DH~ + Ti(Ho, H 1 . . . . .  H~_ 1), 

where D is a linear operator and T~ does not depend on H i. So one can rewrite the 
Eq. (1) in the form 

(1- D)H i = Ti(tto, H ~, . .... H i -  1) 

and "solve" it : 

H ~ = ( 1 -  D) -  I T~(Ho, H1 . . . . .  H~_ t ) = (  I + D + D2 + ...) ~ (Ho,  H 1 . . . . .  H i _ l ) .  

Some details of the inversion of the operator ( 1 - D )  were analyzed in [1], but 
procedure described there seems too formal and in essence useless because it does 
not permit to investigate any property of the hamiltonians H~ (see also [2, 4]). 

The above formulae for the coefficients H o, H 1 are standard and well-known. 
An explicit expression for the coefficient H 2 was obtained in [3]. In this paper 
another renormalization group was used (Kadanoff's block RG), but this is 
unessential and an analogous expression can be obtained also for Wilson's 
renormalization group. The present work arises from the attempt to generalize the 
procedure used there in order to construct the hamiltonians H3, H 4 . . . . .  But direct 
generalization proved to be impossible in view of the fast increasing complexity of 
computations. All we could do in this way was to construct H 3. Therefore we went 
by another way and tried to guess the answer on the base of the explicit 
expressions for Hi ,  H 2, and H 3. After several unsuccessful attempts we managed 
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to do it. In the meantime however we went so far from the paper [3] that in essence 
the methods used in present work have little in common with those of [3]. 

When one solves the chain of Eq. (1) a very important question is which are the 
properties of the hamiltonians H i. Namely the solution of this chain of equations is 
not unique it no smoothness condition is required (see [3]). The smoothness 
condition is one of the three "analyticity postulates" formulated in [6] (other two 
postulates are connected with the absence in the effective hamiltonian of nonin- 
teger powers of the field o-(k) and with the transversality of the intersection of the 
initial family of hamiltonians with the stable separatrix of the renormalization 
group transformation ; the last condition is needed in the calculation of the critical 
exponents and does not concern us now). The essence of the smoothness condition 
is that any hamiltonian H i, i=  1, 2 . . . . .  is written as 

Hi = ~ S h~)(kl . . . . .  k,,)6(kI + " "  + km)a(kl)"" a(km) d'~dk, 
m 

where ,.mv~l,a(°(/~ . . . . .  .,kin) are smooth functions of the arguments kl, ,km~lR ~. This 
question is discussed in detail below. 

The procedure used by us for the effective hamiltonian construction is closely 
related with analytic renormalization (see [7-10]). Namely the main formula for H 
which is proved in the present work is 

H =  A.R. :exp(-  u(e)cp4):L~(l_x), 

where by ~0 4 we denote briefly the hamiltonian 

qo 4 = ~ a4(x)dax = ~ a(kl) . . ,  a(k4)6(k 1 + . . .  + k4)d'*ak 

and : :La(~_x) is the operation of connected Wick ordering with respect to the 
propagator 

- d ( 1  - X ) ( k )  = - I k l - °  +~(1 - x R ( k ) ) ,  

where zR(k) is the characteristic function of the ball {lkt <R} ; u(~)= ~ ufi; is a 
j = l  

formal numerical series and A.R. is a variant of analytic renormalization. The 
expression 

(-u(8))" 
:exp(-  u(~)cP4) :Lm - z) = n! :((P4)" :Lml-x) 

r t = l  

to which the operation A.R. is applied is written as a series of Feynman integrals 
with the propagator - A ( 1 -  x)(k). When e > 0 the theory with this propagator is 
super-renormalizable and only a finite number of Feynman diagrams with two 
external legs diverge. However when e = 0  the theory is not super-renormalizable 
but only renormalizable and an infinite number of divergent diagrams with two 
and four external legs arises. For e+0,  e>0,  these diagrams (more precisely the 
corresponding Feynman amplitudes) are expanded in Laurent series in e. The 
analytic renormalization A.R. is roughly speaking the substitution of negative 
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terms of the Laurent series in the Feynman amplitudes. The precise definition of 
the A.R. is followed by a very important condition of additivity of this operation 
(see [7, 9] and below). 

At first glance it is unexpected that, when solving the renormalization group 
equations in a finite region of momentum space, diagrams with ultraviolet 
divergencies appear. This fact becomes not so surprising if one takes the point of 
view that a scaling field in a finite region can be obtained by projection of a scaling 
field in the whole momentum space. The above formula for the effective 
hamiltonian realizes in some sense such projection. 

For the coefficients u l , u  2 . . . .  of the formal series u(e) we obtain a chain of 
numerical equations which permits us to find all these coefficients uniquely. Their 
concrete computation and the subsequent calculation of the critical exponents is a 
rather tedious work whose volume increases fast with the number of coefficients. 
In the present time there are many original papers and reviews devoted to 
computational problems of the t-expansions (see, e.g. [t1-16]). Long-range 
potentials were considered in [17-19]. Practically in all these works the critical 
exponents are sought avoiding the question of the existence of the effective 
hamiltonian, by means of the Callan-Symanzik equations. In this procedure the 
original dynamical Kadanoff-Wilson's picture of critical phenomena is put aside. 
Here we return to this original picture and as a first step of its realization we 
construct explicitly the effective hamiltonian (for long-range models). The second 
step is the construction of eigenvectors and eigenvalues of the linearized transfor- 
mation. In a paper in preparation one of us (M.D.M.) constructs the so-called 
relevant eigenvector and eigenfunction. 

We want to emphasize that the effective hamiltonian which we construct here 
is a formal series in e. Apparently this series diverges. A very attracting but 
apparently very difficult problem is the construction of a scaling translation 
invariant random field with a hamiltonian H = H(e) such that the hamiltonians 
H0, H1, H 2 . . . . .  found by us, are the coefficients of the expansion of the hamiltonian 
H(e) in asymptotique series in e. A similar problem has been solved in essence for 
hierarchical models (see [20, 21]). 

The set-up of the paper is the following. First we give definitions and some 
general results for scaling random fields. Next, in Sect. 3, we define the main object 
of our paper, the space of formal hamittonians, and introduce Wilson's re- 
normalization transformation as a map in this space. For convenience standard 
"physical" (non-rigorous) arguments are given which elucidate the definition of this 
transformation. After that, in Sect. 4 we define some generalizations of Wilson's 
renormalization transformation and in particular we introduce a smoothed 
transformation which preserves the smoothness properties of the hamilto- 
nians. In Sect. 5 the fact that the renormalization transformations form a one- 
parameter group is proved. The infinitesimal operator and some topological 
aspects of the renormalization transformations are considered briefly in Sect. 6. At 
last in Sect. 7 we introduce a space of so-called "projection hamiltonians" and 
derive a surprisingly simple formula for renormalization transformation in this 
space. It is noteworthy that the effective hamiltonian, which will be constructed in 
the second part of the work, is obtained by the procedure of analytic continuation 
of an projection hamiltonian. 



Equations of Renormalization Group.  I 239 

2. The Wilson's Renormalization Group for Random Fields 

Let a generalized random field P(a) in the d-dimensional ball f2= {kl[k[ <R} be 
given, i.e. a system of probability distributions P{(a, q~l), ---, (o-, q~m)} with the usual 
conditions of accordance (see [22]). Here ~o 1 =(pl(k) . . . . .  ~om= %dk) are arbitrary 
test functions in the space C~(Y2) of infinitely differentiable finite functions. 

Let us introduce the following operations on random fields. If P(a) is a 
generalized random field in the ball 2f2 = {k[]k[ < 2R}, 2 > 1, we denote by Sa, ~ the 
operator of restriction on the ball ~2, 

Sr~,~P = P[a" (1.1) 

If P(a) is a random field in £2 and a > 0 is a positive real number we define the 
scaling operator 

a 

R(~")P(a) =P(2  2 az-,) ,  (1.2) 

where (a~_ 1, ~0)= (a(2-lk), qo(k))= 2a(a(k), ~o(2k)) and P(2-(a/2)a~_ 1) is a generalized 
random field with probability distributions 

P { ( 2 - ( ~ / 2 ) a ~  - i ,  ' :P l  . . . . .  ( 2 -  (~/2)°-~ - I ,  q°m)} ' 

It is clear that R(~")P(a) is a generalized random field in the ball 2f2. 

Definition 1.1. The Wilson's renormalization transformation R(~Iz, 2 >  1, is a 
composition of the transformations R(~ ~) and Sa, z, 

R~I~= S~,~R(~)z " (1.3) 

It is easy to see that 

R(a) _ ~ l)(a) _ ~ , ( a ) ~  

where 2-  l f2 = {kllkl < 2-1R}. Moreover 

R~IzR~! = v  l?")v ~'(~) ~£2,2"*A ~f2,#*'# 

- -  ~ ~ l~(a)  l~ (a)  - -  K' t~ (a)  - -  l~(a)  
- -  ~ , ) . ~ ) f 2 , # * ~ .  ~. * ~ #  - -  ~ f ~ , ) . l z * ~ . ~ 4 ~  - -  * ' f 2 , A l ~  

so that the translbrmations ~'(") ' 2 > 1 }  form a one-parameter commutative 
semigroup of transformations. This semigroup was considered first by Wilson (see 
[1]). For  2<1  the transformations Se, z and R~)~, are not defined. But for R =  ~ ,  
i.e. when Y2=IR d, one can consider also 2<1.  In this case Sa, a is the identity 
operator and the transformations R(~)z=R(z ") form a group (see [23] where 
rigorous definitions are given and some limit distributions for 2--, oQ and 2--+0 are 
investigated). 

Definition t.2. A generalized random field is scaling invariant in ~2 if R(~IzP(a) 
= P(a) for all 2 => 1. 

Proposition 1.1. a) I f  P is scaling invariant in tR e then Pie is scaling invariant in ~2. 
b) I f  P is scaling invariant in f2 then R(z~)P is scaling invariant in 2E2 and its 

restriction on f2 coincides with P (if  2>= 1). 

c) I f  P is scaling invariant in f2 then lira R(x~)P is scaling invariant in IR d (over 

y =(c~(IR~))'). 
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All these statements are easily verified. Thus there is a natural one-to-one 
correspondence between scaling invariant fields in IR e and in any finite ball f2. 

Let us introduce the Fourier transform of the translation operator, 

t, : a(k)-;e/~ka(k), ,~IR d , 

the orthogonal transformation operator 

u~ : o(k)-.a(flk), ~eO(d),  

and the parity operator 

i : ~ ( k ) - .  - a ( k ) .  

Denote the conjugated operators in the space of generalized random field by T~, 
U~, and I respectively. A random field P(a) is called translation invariant if T,P(rr) 
=P(a)  for any c¢~]R a, isotropic if UaP(a)=P(a) for any fisO(d) and even if IP(a) 
= P(a). In this paper we are interested in translation invariant, isotropic, even, 
scaling invariant random fields. 

If is easy to describe all Gaussian fields possessing such properties. 

Proposition 1.2 [1, 23]. A generalized Gaussian random field with zero mean and 
binary correlation function (a(k)a(k ' ) )= Cb(k + k')[kl-~+aZ~(k), where xa(k) is the 
characteristic function of  the ball ~, is the unique translation invariant, isotropic, 
even, scaling invariant Gaussian field. 

3. The Wilson's Renormalization Group for Formal Hamiltonians 

Now we give another definition of the renormalization transformation. In this new 
"diagram" definition the renormalization transformation will be defined not on 
the space of random fields but on the space of formal hamiltonians. As a matter of 
fact this definition is always used in physical words (see [1, 4, 6] and others). 

A hamiltonian in the ball f2 = {k]lkl < R} is an expression of the form 

H(~)= E S ho,tkl .... ,km)~(k, +...+l,m)~G)...~(km)dmdk. (2.1) 
m = 1 1"~ m 

To give a hamiltonian is the same as to give the sequence of its coefficient functions 

h = (hi(k1) , h2(kl, k2) . . . .  ) 

on the subspaces ~ k/= 0, i.e. two sequences ~h(°~klt l J, ~ h(1)(k2t 1, k2), ...), i = 1, 2, define 
i = 1  

the same hamiltonian if 

ha) k /,(2) k .., . . . .  ( 1 . . . . .  km)lk~+...+k~=0="m ( 1," km)[k~+...+km=0, r e= l , 2 ,  

If all h i -  0 for i4= m, the hamiltonian H(o-) is called m-particle. If for some n, h i - 0 ,  
when i >  n, the hamiltonian H(o-) is called finite-particle. 

By YY", n = 0, 1, 2 . . . . .  o% we denote the space of finite-particle hamiltonians 
with coefficient functions h,n(k t . . . . .  km)e C"(g2~). A formal hamiltonian is a formal 
series in e, 

H = H  o + e l l  1 + ~ ; 2 H  2 + . . .  (2.2) 
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whose coefficients are finite-particle hamiltonians (see [3]). In what follows the 
coefficient H o will be fixed, 

H o =  y ½lkla-dla(k)12dek. (2.3) 
Ikt < R 

The hamiltonian H o corresponds to the Gaussian scaling invariant field with the 
propagator 

(a(k)  a(k')) = 6(k + k')Ikl-a + a,~R(k) (2.4) 

(see Proposition 1.1). 
The space of formal hamiltonians 

H' =ell1 - t "g2H2 q- . . .  

with H~e ~¢t ~" will be denoted by YYf", 

~ - ~  ,,= fro ~ yt~,, (2.5) 

where ~.~o is the space of the complex-valued formal series with zero free term. 
Wilson's renormalization transformation in the form in which we consider it, 

acts in the space of formal hamiltonians. As before it is a composition of two 
transformations, the scating ;~(z a) and the restriction 5ae,;. Let us introduce first the 
operator N(~") (otherwise named the operator of multiplicative renormalization, see 
[24]). 

Definition 2.1. Let a m-particle hamiltonian 

H =  S h(kl . . . .  ,k,,,)6(kl + . . .+km)r f f k i ) . . . a ( km)  d'~dk 
[ki[<R 

be given. Then 

I h(kl . . . . .  
Ikd<R 

• (2a/2a(2kl)). . .  (2a/2a(2km))dmak 
am 
- - - m d + d  

= 2  2 ~ h(2- ~k~ .. . . .  2-~k,,)cS(k~ + . . .+km)a(k l ) . . . a ( km)d"dk .  
Ikd < 2R 

In other words, ~a)  changes h(k 1 . . . . .  kin) into 2(am/2)-md+dh(). - l k  1 . . . . .  2 "  1kin). To 
the whole space of hamiltonians and to the space of formal hamiltonians the 
operator ~a)  is extended by linearity. 

In contrast to ~a) the restriction operator ~,~.  has a rather complicated 
structure and is defined with the help of a summation on Feynman graphs. Before 
giving a rigorous definition we represent a "physical" deduction of the formulae 
which are used in this definition (see [1, 4]). 

Suppose P is a random Gibbsian field in the ball 2g2 with hamiltonian H o + H'  
and let Po be a free field defined by the hamiltonian H o. The restriction operation 
consists in the computation of unconditional probability distributions in a 
subvolume. In other words we fix a configuration ao(k ) in the subvolume and 
compute the density of the probability distribution for this configuration given by 
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the Gibbsian measure in the whole volume. The density of the distribution "is 
represented" as the ratio of two partition functions, the conventional one with the 
fixed configuration o-o(k ) and the unconventional one: 

p(ao ) = Z(%) 

Writing the density in Gibbsian form, p(ao)= exp(H~(O-o) ), we have 

H'~(ao) = In Z(o-o)- In ft. 

For computation of the quantity lnZ(a0) one can use the well known formulae of 
the expansion in cumulants: 

lnZ(a0)= ~ I < H ' ,  . . . .  H'>cond.measure,  
n = l  " 

where the cumulants are taken with respect to the conditional free measure 
P0(" I%) with the fixed configuration %@) in the subvolume. The quantity ln~ 
does not depend on ao(k) and can be excluded from the hamiltonian H~. Thus 

H;~ = H', .... H )con& measure" (2.6) 
r t = l  

This formula is taken as a definition of the restriction operator in the space of 
formal hamiltonians. Remark that in a somewhat different but close situation 
(lattice spin models) this formula is proved rigorously in the high-temperature 
region (see [25]). 

In the particular case under consideration a Gaussian scaling invariant field 
with the hamiltonian H o is taken as a free field and all the cumulants 
<H', .... H'>~ond.measur e can be represented as sums on connected Feynman graphs 

with the propagators tkJ-°+a(Z~R(k)-zR(k)) (see [1, 4]). For H ' =  ~ e'H,, we set 
m = l  

by definition (tbr sake of brevity in this and in the subsequent formulae the words 
"cond. measure" are omitted) >c 

~ ~ H  
m y  • • • ~ m 

m = 1  

e'~ Z < .~ . . . . .  H,,,> , (2.7) = H c 

m = l  ml+.,.+mn=¢l'l 

<H,,~ . . . . .  Hm.> c= Z c J ~o(P) I ]  c4Pz)dP, (2.8) 
G I~E(G) 

where the summation goes over connected Feynman graphs G and J~(p) is the 
Feynman amplitude corresponding the graph G. In the present work we adhere to 
the system of notations of the Feynman diagram theory adopted at the school on 
renormalization theory (see [8]). For a more precise definition of the Feynman 
amplitudes :~(p) let us expand Hm in a sum of homogeneous hamiltonians : 

H m = ~ H,~,, 
r 

Hm~ = S h,~,(lq, ..., k,.)6(k~ +.. .  + k;)~r(k~).., a(k,)d'ak. 
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Then 

(Hml,...,Hm.) c= ~ (H .... , .... H .... )~, (2.9) 
rl,...,Pn 

where 

< H  . . . .  , . . . .  H . . . .  >C~--~2¢ S ~G(P )  H (o-(pl))dp,  (2 .10)  
G leE(G) 

the sum ~ going over the set N~(r 1 . . . . .  rn) of all connected graphs G with n 
G 

vertices such that exactly rj lines come from the j-th vertex 1. The Feynman 
amplitude of a graph G is defined by the integral 

~o(P)= ' (i~= l h,~jrj(k°))(~ (i~= l k~J))) 

[ I  (A(z;,R -- Z,)(kl)(~(k~ + k'l)dekldek'l), (2.11) 
l~L(G) 

where the propagator 

(Z~ - ZR) (k) = ]kl- ° + ~(Z~.~(k) - ZR(k)) (2.12) 

and each of the variables kl j) is redenoted as Pl if it corresponds to an external line 
1~ E(G) of the graph G and as k l (or k'l) if it corresponds to an end (an origin) of an 
internal line t~L(G). Performing the integration on the variables k; in (2.tl) we 
come to the usual expression 

~o(P)= S[ f i  hm~rj(k(J))] ~[ A(Z~R-ZR)(k,) 
j = 1 G leL(G) 

" H 5( 2 PI+ 2 kltdk, (2.13) 
vsV(G) \leStNv leStLv J 

where [iI~! hm~r~(k(1 J) . . . . .  k~))]a means the identification of the variables ( -  k;) and kt, 

I~L(G), in the product lzI hm;rj(k(J)). The multiplier 1~ d( ~ e l+  2 q, lkzl 
j= 1 v~V(G) VeStEe I~StLv / 

assures the equality to zero of the full momentum at any vertex v of the graph G. 
The quantities Gz, v~ V(G), l~L(G), define the incidence matrix of the graph G; 
Gz= - 1 if a line I comes in (from) a vertex v, G~=0 otherwise. Finally StEv and 
StLV are the external and internal parts of the star Sty of a vertex v~V(G). 
StEv(StLV) is the set of external (internal) lines which are incident to a given vertex 
V. 

The quantity ~ ( p )  is not defined for vacuum graphs G i.e. those with no 
external lines, due to redundant number of f-functions in the diagram integral. For 

1 In order to avoid writing combinatorial multipliers we consider Feynman graphs with enumerated 
vertices and ends of lines 
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Fig. 1 <55> 
example the graph shown in Fig. 1 leads to the integral 

SI f(kl)f(k2)6(kl + k2)6(kl + k2)dkl dk2 

having no sense. To avoid such graphs we introduce a rule of "vacuum 
forbidding". It consists in the fact that vacuum graphs are excluded from the 
expansion (2.8). Note that this rule is very natural because vacuum diagrams give 
only constant inputs in the hamiltonian H~. For a nonvacuum connected graph G 
we have 

~G(P)=~ (le~G) PO Fa (p)' 

where FG(p) is a piecewise continuous function. Let C*(IR me) be the smallest 
extension of the space of continuous functions C(IR rod) with the same topology 
which contains all the piecewise continuous functions and ~ *  be the correspond- 
ing space of hamiltonians. Then the Feynman amplitude ~a(p) of any connected 
nonvacuum Feynman graph G defines a hamiltonian 

HG=S~G(P) [I a(P~)dp~f ~*. 
lEE(G) 

Now we can introduce the restriction operator ~a,~- 

Definition 2.2. The action of the restriction operator ~ta,;. on a formal hamiltonian 
H' = gH 1 + e2H2 +... is defined by the formula 

~9~a,~(H ') = (expH')  c 

I ( H ' ,  .... H:) c, 
n = l ~ T  v ........ 

where (~t'~ ...,/4,') ~ is a formal hamiltonian which is computed by the formulae 

(2.7)-(2.13), the summation in (2.8) and (2.10) going over nonvacuum connected 
graphs G. The operator ~ra,a maps ~ , ~ "  into 

~ a f *  = J ~ ° ® ~  * , n=0,  1,2 . . . .  , oo, , .  

For the following calculations we need a proposition which in quantum field 
theory is named "theorem on exponent". 

Proposition 2.1. ("Theorem on exponent", see e.g. [43.) 

In (expH)  = (expH)  c 

or in diagram writing, 

In ~ ~ ~ ~G(P) 1~ a(p,)dp 
teE(G) 

= ~ t 
G IV(G)[ T~G(p) ~I a(Pz)dP 

• I ~ E ( G )  
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where in the LHS the summation goes over the set o f  all Feynman graphs with no 
vacuum connectivity components, includin9 empty 9raph, whereas in the RHS the 
summation goes only over the set o f  connected nonvacuum 9raphs (the empty 9raph 
does not enter in this sum). Remark  that IV(G)/is the number o f  vertices o f  the 9raph 
G. 

Now we give the main definition of this section. 

Definition 2.3. The Wilson's renormalization transformation in the space of formal 
hamiltonians is a composition of the scaling and restriction operators, 

¢2 (a) -3~, ~(a) (2.14) 

Remark.  It is easy to see that 

~(~) _ cf  ~(~) _ ~ )  cf (2 .15)  

Moreover let us introduce the operators ~--~, ~, ,  J .  Let h(kl, ..., kin) be the 
coefficient function of an m-particle hamiltonian. Then 

3-~ :h(k 1 . . . .  , km)-*e i(k'+ ""+k~")~h(kl . . . . .  km) , O~EIR d, 

q/~ :h(k I . . . .  , km)-* h(fi- l k ,  . . . . .  f l -  l km), fle O( d) , 

J :h(k, . . . .  , k m ) ~ ( -  1)mh(k~, ..., kin). 

Y= is a translation operator. Due to 

e~(k~+'"+k~)~h(kl . . . . .  km)la~ +... +k~= o = h(kl . . . . .  k,~)[k~ +.. +kin= O" 

~--~ coincides with the indentity operator, q/~ is an operator of orthogonal 
transformation in the space of hamiltonians and J is the parity operator. To the 
spaces of hamiltonians ~ "  and to the spaces of formal hamiltonians ~ f "  the 
operators Y~, q@ J are extended by linearity. 

Accordingly a (formal) hamiltonian H is called isotropic if ~ g z H = H  for any 
f ie O(d) and even if J H  = H. The last condition is equivalent to hm(k 1 . . . . .  kin) =-0 for 
odd m. 

4.  M o d i f i c a t i o n s  o f  the  R e n o r m a l i z a t i o n  T r a n s f o r m a t i o n  

Now we should like to make three essential remarks to the definition of the 
Wilson's renormalization transformations. The first one is concerned with the 
domain of definition of the coefficient functions of the hamiltonians under 
consideration. It is assumed usually that the arguments of the coefficient functions 
of an initial hamiltonian H'  vary in the ball f 2 = { k l l k l < R } .  However in the 
construction of the effective hamittonian it is convenient to think the whole space 
IR e as the domain of the coefficient functions. It is noteworthy that both 
approaches agree. Namely, if one restricts first the domain of definition of the 
coefficient functions from the whole space IR d to the ball f2 and applies then the 
renormalization transformation or, the other way round, applies first the re- 
normalization transtbrmation and restricts then the domain of definition, the 
result will be the same. Indeed, in the process of computing the diagram integrals 
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(2.11), the integration goes in fact over such a domain that each variable k~ varies 
in the ring R < k~ < 2R due to the fact that the propagator A(X~.R-- Ze) (k) is equal to 
zero outside of this ring. Therefore the values of the coefficient functions outside of 
the ball £2= {k[ Ikl <R} have no influence on the values of the diagram integrals. 

The second remark is connected with the introduction of a smoothed 
renormalization transformation. The point is that the propagator A(;(aR--ZR)(k) 
contains the characteristic functions X~R(k), ZR(k) and is not a smooth function. As 
a result the image of a smooth hamiltonian H'~ ~ , ~ o  under the renormalization 
transformation is not a smooth hamiltonian. This leads in the process of 
construction of the effective hamiltonian to the rise of irrelevant singularities 
which destroy the Wilson's analyticity postulate (see [6] and the Introduction). To 
get rid of these singularities we introduce a smoothed renormalization 
transformation. 

Consider a test function ;((k)~ C~°(lR e) depending only on jkl, z(k)= Zo(tkt), such 
that 

=0,  Ikl>R1, 

z(k) > 0 , < 1 ,  Rl>lkl>R o, 

=1 ,  Ro>ik[, 

where R1 > R 0 > 0  are some real numbers, with the additional requirement that 
z0(IkD is a nonincreasing function. Denote 

~(x~ - z) (/,) = I kl - "  + d(Z(k/2,) - z(k)).  (3.1) 

This function is a smoothing of the propagator A(X~R--ZR). When R~, RoaR, 
A(Z~- X) (k)~A(Z~R-)(.n) (k) (in various senses). 

For  convenience of notations we introduce an operator Sew which is a 
generalization of the operator in Definition 2.2: 

Sew(H') = (exp H ' ) ;  

~ 1  H' ,c  ,=1  ~-~( '  ' . . . , H ) ~ , ,  (3.2) 
n 

where (H' ,  .... H')~ is defined by the formulae (2.7)-(2.13) with the only difference 
that instead of the propagator A(Z2~R- ~(R)(k) a given function ~/2(k) is used. 

It is noteworthy that the formulae (2.7)-(2.11) have sense for non-positive 
functions ~p(k) too so the operator £~w is defined for an arbitrary function 
~(k)  E C ;  ° ( ~ ) .  

Definition3.1. A smoothed renormalization transformation is defined by the 
formula 

~(a) _ (,o ~(a) 

where the propagator A(Z ~-)0 is given in (3.1). 
The smoothed renormalization transformation maps a hamiltonian H' into 

re, -~(~) (H,~ The coefficient functions of the hamiltonian H z are another one , ,  z -  ~ox,xt-, J. 
computed in terms of the coefficient functions of the hamiltonian H'  with the help 
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of the diagram integrals (2.13) with the smoothed propagator A(Zz-)0 (k). So the 
smoothed renormalization transformation N(") preserves the smoothness of the Z,A 
coefficient functions. Thus 

('~) " ~  ~ ~ ~ (3.3) ~z,~.~*3ff ~ J f  . 

In the following we shall construct a smooth formal hamiltonian H * ~ H  ~ 
which is a fixed point of the smoothed renormalization transformation (see the 
Paper II). From the exact formulae for H* it will be seen that one can go to the 
limit )~(k)--,Ze(k) and obtain a fixed point of the nonsmoothed renormalization 
transformation ~(") However the limit hamiltonian will be only piecewise 
continuous and its coefficient functions will have singularities. These singularities 
are connected only with the jump of the characteristic function ZR(k) and have no 
special meaning. 

Another smoothed renormalization transformation was considered in [26]. In 
this paper Gaussian fixed points of the smoothed transformation were 
investigated. 

The third remark we want to make is about the group character of the 
renormalization transformations. The fact, that the renormalization transfor- 
mations of random fields form a one-parameter semi-group, follows almost 
immediately from the definition. Since we do not yet have relations between the 
renormalization transformations of random fields and those of formal hamil- 
tonians the fact, that the renormalization transformations satisfy the group 
property, needs a proof. 

Theorem 3.1. (~) ~ (a) __ (a) 

We shall give the proof of the theorem in the next section. Remark that as we 
have pointed out above the operator ~w is defined for arbitrary (in general not 
positive) function ~p. So the renormalization transformation ~(~ _ c~ ~(~) 
is defined for both 2 > 1  and 2<1.  Thus in contrast to the renormalization 
transformations of random fields, the ~ )~ ,  0 < 2 < ~ ,  form a one-parameter group 
(and not only semi-group) of transformations. 

5. The Wick Operation : : and the Renormalization Transformation 

Let a Gaussian field be given with zero mean and a binary correlation function 
G(k,k'). The Wick operation with respect to this Gaussian field transfers a 
monomial a(kO...a(km) into the Wick polynomial 

= H ( -  G))I-I (4.1) 
S ~(S) r i~S 

where ~ means summation over all subsets SC{1,.. . ,m} and ~_ means 
S ~(S) 

summation over all partitions ~ of the set S={1, . . . ,m}\S  into pairs (il,jl), 
(i2,J2) .. . . .  Instead of ~ ~ one can write as usual the sum ~ over all diagrams 

S ~(S) G 

with single vertex. It is convenient for us to modify a little the Wick operation. 
Namely in what follows we shall assume that in the ~ the summation goes over all 

S 
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non-empty subsets SC {1 ..... m}. In other words we throw away the free term from 
the Wick polynomial. 

For  an m-particle hamiltonian 

H(a) = ~ h(k 1 . . . .  , km)b(k 1 +...km)a(kl)...a(km)dmdk 

and an integrable propagator A(k) we set by definition 

:H(a):~ = ~ h(k 1 . . . . .  km)fi(k 1 +. . .  +km) :a(k0...a(k~): d 'ak 

= ~ h(k~ .... , k~)~(kl +.. .  + <) ~ ~ [I ( -  AG)~G~ + G)) 
S ~($) r 

• H a(k~) d~k= E ~ [hG, ..., <)3o ~ ( Z P~I 
]~S G \laE(G) / 

I~ (-A(k~)dakz) ~I (afp,)daP,), 
t~L(G) taG(G) 

where in ~, the summation goes over all nonvacuum graphs G with single vertex. 
G 

As a result :H(a):~ is a finite-particle hamiltonian. Similarly for a finite product of 
hamiltonians 

Hi(a) = ~ hj(k 1 . . . . .  km)~(k 1 +. . .  + k~)a(kl)...a(km)dmJ~k, j =  1 .. . . .  n, 

we define the Wick operation 

• .., mj:jG 

• I] 2 p,+ 2 
vEV(G) \I~StEv IeStLV / 

[ I  ( -A(k , ) )  1-[ a(Pt)dkdp (4.2) 
I~L(G) l~E(G) 

and the connected Wick operation 

kU)~] :H,(a)...H.(a):~= ~I hj(k(] ~, 
• . .~ mJ,]G 

v~V(G) \l~StEV leStLV 

[ I  (-A(kl))  [ I  a(Pl)dkdp. (4.3) 
t~L(G) leE(G) 

Here the same notations as in (2.13) are used. The difference between : :4 and : :~ 

lies in the sets over which the summations ~ and ~ go. The first set f~(m 1 . . . .  , m~) 
G G 

contains all the graphs G with no vacuum connectivity components such that 
exactly mj lines come from the j-th vertex, j =  1 . . . .  , n, the second one ~(m~ ... . .  m~) 
contains all the graphs from ~(m~ . . . .  ,m~) which have a single connectivity 
component. 

The connected Wick polynomial :Hl(a)...H,(a): ~ is a finite-particle hamil- 
tonian, the Wick polynomial :Ha(a)...H~(a):~ is a sum of products of finite-particle 
polynomials corresponding to the connectivity components of the graphs G. By 
linearity (with respect to each multiplier) the Wick operations are extended to 
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products  of  finite-particle and  formal  hami l ton ians  and, moreover ,  to finite sums 

of the form ~ H ~ . . . H %  where all H~eyY" or  all H~e ~z~J4~". 
r 

F o r  the Wick opera t ion  a simple formula  of  compos i t ion  takes place (see e.g. 
[-27, 28]): 

: : : ~ : ~ 2 = :  : ~ , + ~ .  (4.4) 

A p ropaga to r  A(k) of a Gauss ian  field has to satisfy the positivity proper ty ,  bu t  the 
formulae (4.1)-(4.3) have sense also for A(k) not  satisfying this property .  The rule of  
compos i t ion  of  Wick opera t ions  remains  the same. Indeed one can consider two 
families 

A~=tA~+(1-t)A'i, i = 1 , 2 ,  

of  p ropaga to r s  such tha t  A'~, i = 1, 2, are strictly positive as well A~, i = 1, 2, for small 
t > 0 (one can put  A'~ = IA~] + 1, i =  1, 2). Then the composi t ion  rule (4.4) is valid for 
small  t and  by  analytici ty it is cont inued to t = 1, i.e. to A~, i =  1, 2, which was to be 
shown. 

For  A(k)= - lp (k)  the RHSs  of (4.2), (4.3) are nothing else than ~ .}~,  ( • }~: 

:Ha(a) . . .H, (a)  :~_~ = <Hi(or ) . . . . .  H,(cr)>;, (4.5) 

:Hi (a ) . . .H , (a )  : _ ~ = <H~(a), ..., H.(~)>w. (4.6) 

These equalities permit  to write the renormal iza t ion  t rans format ion  ,~)~ with the 
help of  Wick opera t ions  : 

(~} - : e x p ( ~ ) H ) " ~  (4.7) ~ , ~ ( H )  . . . .  ~(~ _~), 

~ ) ~ ( H )  = In" e~,,~(~}H~ • (4.8) 

(Proposi t ion 2.1 is used). 
Let  us compute  N(") o~(~) We have 

,~t~(H) = : e x p H  :L~ = l n  : e x p H  : ~, 

so that  

~ , , 5 ~ 2 ( H )  = In : : e x p H : - t ~  : - ~  

= In : exp H :  _ ~, _ ~ = 5~to ~ + ~ ( H ) ,  

i.e. 

5P~1Y~2 = 5P~1 + ~ 2 . (4.9) 

Moreove r  we have the equalities 

~(a) o~(a) _ ~(~) (4.10) 

~to O2~(a) __ d/~(a) C4o ~-o;~ -~ox  0~,~,_,~ 0 f x ( k ) ~ ( 2 k ) ) ,  (4.11) 

which follow directly f rom the definitions of  the opera tors  5°~ and N~"). Hence  

~ ( a )  ~A~(a) __ ( ~  ~ ( a )  Cp ~ ( a )  

of. 
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Thus the renormalization transformations N ~  form a one-parameter group. The 
Theorem 3.1 is proved. 

6. The Infinitesimal Operator of the Renormalization Group 

In this section we shall consider briefly some topological questions connected with 
the renormalization group {N~)~}. Let us introduce a notion of convergence in the 
space of hamiltonians ~ ,~ .  As ~ is a linear space it is enough to define the 
convergence to zero. Namely we put h (") = (h(~ ~), h(~ ) . . . .  ) -~0= (0,0 . . . .  ), if 

(i) there exists N > 0  such that h~)-=0 for re>N; 
(ii) h~)~0 in the C~-topology. 
The notion of convergence in ~¢~ implies that in ~ - ~ .  

Proposition 5.1. For any 2 > 0  the operator Yl(~)~ is a (nonlinear) continuous 
infinitely differentiable in the sense of Ggtteaux (differentiability along any 
direction)mapping from ~ - ) f ~  to ~ ) f ~ .  Moreover the operator ~" )  is an entire 
function of the parameter a. 

Proof We have 

z , 2  - -  z l ( ; ( a - z ) ~ 2  " 

The operator 5°~( z -z) is determined by a chain of finite-dimensional nonlinear 
integral operators ~vith kernels, acting on the coefficient functions h,(k I . . . .  , k,) so 
5~(z~- z) is a continuous infinitely differentiable in the sense of Ggtteaux mapping 
from Y2/t ~°~ to ~ o .  The operator N~") is linear, 

where 

~ :h(k 1 .. . . .  k , )~2  (1 -")ah(2- lkl,  ..., 2 lk,) (5.2) 

is a homothety operator and 

~[a~ :h(kl  . . . . .  k~)--,,~a"h(kl . . . . .  k,) (5.3) 

is an operator of renormalization of spin variables. Both operators, 24~., ~ a )  are 
continuous and infinitely differentiable in the sense of Gfiteaux in Y J ¢ ~ .  Thus the 
operator 

~(~) -- 50 t~(~) ~ (5.4) 

is continuous and infinitely differentiable in ~ o .  Next the propagator 
A(Zx- )0 (k)= tk]-" + e(z(k/2)-Z(k)) is defined for all complex values a~ C and is an 
entire function of a. Differentiation by a of 5Pmz _z)(H ) is reduced to sums of 
differentiations of propagators on the lines of Feynman graphs. Hence 5D~(z _x) is 
differentiable in a in the whole complex plane, so that the operator 5~A(z~_X) 
depends analytically on a~ 112. The operator ~ does not depend on a and Jd[ ~) is 
evidently analytic in a. So N~"~ is analytic in a. The proposition is proved. Z , 2  
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The infinitesimal operator ~K of the renormalization group {N~)~} is defined as 

O~(a) - -  l 
¢<=  lim ~°x,~ ~ (5.5) 

z~l 2 - 1  ' 

where I is the identity operator. It follows easily from (5.4), that the limit (5.5) 
exists in the space Y W ~  and the operator ~/U is the sum of infinitesimal operators 
of the transformations ,9°a(z _z), j//[a) and ~fz, 

qU = qI/  s + ~H/" M + q< ra ' 

¢ g . S : H  = ( h l , h 2 ,  c, ")-- '<expH>ax'  ' (5.6) 

f g ,  M : h , (  k l . . . . .  k , )  --* nah , (  k 1 . . . .  , k ,)  , 

~r~:h.(kl .... ,k.)--, ~ (6, Vk,)h.(k~, ...,k.), 
i=1 

where <. >~'x' is defined by a summation on connected Feyman graphs with only 
one internal line to which the propagator Ay(k)=fkj -a+d+ lZ;(Ikl) corresponds. 
The infinitesimal operator 4///" was considered before in [29, 13 and in other papers, 
In force of the explicit formula (5.6) the operator ~K is continuous and infinitely 
differentiable in the sense of G~teaux in Nocg ~. 

Let H (°) =eH(~°)+~ZH(2°)+ . . . ~ .  By Proposition 5.1 the operator ~!Y~ is 
infinitely differentiable in , ~ - ~ .  Denote its differential at the point H (d; by 
D ~(") The operator D o~(-) is computed easily from the definition of the H(O)J~ )G A" H(o)J~Z,A 
transformation ~(a). 

D ~(~) - ~ n  50 ~{~) (5.7) 
H(O)J~X,A--\~'~(xa)H(°) A(ZA-- Z)/ A 

where 

(Dit(al.ffA(xx_z))H= ~ n____ < H ( 1 ) - ,  H , I )  ' H>;(xx_ X)" (5.g) 
n = l n !  , n 

6z(a) Then For  sake of brevity denote ,~m0,~x,;.n o~<~,) with H <°) = 0 by ~x,~" 

~{,) ; 4 -  (,) (5.9) 

Similarly one can compute the differential of the infinitesimal operator:  

Dmo ~/f" = ~¢/M + ~/K H + <. >~'x' + < H(°)' ">~'z'" 

In the general case the operators D m(") do not satisfy a group property (in this ~(o)~z,~ 
connection see [30]). But if H (°) is a fixed point of the renormalization transfor- 
mations then the operators Dmo)N~ ~ form a group of linear operators with 
infinitesimal operator Dm0)~//. In particular this takes place for H(°)=0:  the 
operators ~("), form a group with the infinitesimal operator D o ~ .  

7. The Renormalization Transformation for Projection Hamiltonians 

The renormalization transformation is defined by rather complicated formulae. 
These formulae are considerably simplified for a class of hamiltonians which we 
call "projection hamiltonians". The essence of the matter is clarified in the theorem 
stated below. This theorem enables us to introduce the following definition. 
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Let 

C~(IR e) = {f(x)E C°~(IRd)IVN > 0 ,  

sup y~ Ibef(x)l < co}. 
xe~d tN <N 

be the space of the functions which are bounded at infinity together with all their 
derivatives. Let 

;~fb ~ = {H = (h 1, h 2 . . . .  )E 5f~°°lhie C~ °, i = 1, 2 . . . .  }, 

~" ~tob °~ = { H = e H I + e2 H 2 + ...eaJ,g~a~[Hi~,gta~°, i= 1, 2 . . . .  },  

be the corresponding spaces of finite-particle and formal hamiltonians, 

Definition 6.1, A hamiltonian H e  J~ggg~ of the form 

H = :exp£ a :La(1 -z)= (exp £a)~(1 -z) 

1 2~ ~'°~(P) [ I  a(p~)dp, 
= Ya(1 -x)(~) = . ~  ~ G: Iv(G)l =. ~E(G) 

where A(1-x)(k)=[kI-"+d(1-z(k))  and ~ e Y ~  is called a projection hamil- 
tonian with generating hamiltonian £f. 

Remark that by Theorem 6.1 the projection hamittonian is defined when 
Rea > 2d. In Paper II we shall extend the domain of allowed values of a with the 
help of analytic continuation in a. 

Theorem 6.1. Let  Rea>2d.  Then 
(i) all diagram integrals in 

.c ex c _ H =  :exp£a._a( l_z)= ( p~g-e)~(l_x)-6Pa{l_x)(~*a ) 

are finite" 
(ii) H E ~  ; 
(iii) H depends analytically on the parameters a (which appears in the prop- 

agator A(1 - Z)) ; 

(iv) (,o _ :exp ~5~)£a ~z,~,(H) - :Lao -~) 

Remark. This theorem shows that in terms of Lf the renormalization transforma- 
tion for projection hamittonians is reduced to the application of the operator ~a). 

Proof. Let ~ =  ~ e'L, ,  L , = ( L , a , L , :  . . . .  ); consider a diagram integral in 
n=J. 

H =  :exp2f:La(l_x). It has the form 

M 

I ]  6(ZP,+Ze,~,k,) 1~ A ( 1 - z ) ( k , ) d k ,  
veV(G) leL(G) 
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where n=(n  I . . . . .  nM), J=(Jl . . . .  ,Ji), G is a connected nonvacuum graph. The 
functions L,,.j.,(kU"))~ C~, so that they are bounded. Therefore we have to verify 
the convergence of the integral only in the case when L,,,j~(k u")) =-const. By the 
"power counting theorem" (see [31]) for the convergence of the digram integral it 
suffices that the index 

indH = (Re a -  d)IL(H)t-  d(IL(H)[- [ V(H)t + 1) 

of any subgraph HC G be positive. But for Rea>2d,  

indH > d(t V(H)r - 1) > 0 

so the positivity condition is valid and the digram integral converges. Moreover 
with the help of the e-representation it is easy to show that the digram integral is 
uniformly bounded in p (see [7]). More precisely due to the inequality 

Ikl-"+a(1 - Z(k)) < C(tkl z + 1) (- a + ~)/2 

for some C > 0, we can estimate ff ,  js(P) by the corresponding Feynman amplitude 
with massive propagators (]k[2+l) (-~+a)/2 and after that estimate the latter 
amplitude with the help of the a-representation. 

Under differentiation by k the functions L,.,~,.(k u~")) remain bounded and the 
propagator A(1-z)(k) decreases at infinity somewhat faster. Thus the diagram 
integral remains finite after the differentiation by the variables Pz and Y,j~(p)e C~ 
which was to be proved in (i), (ii). 

Now the differentiation by a of an amplitude ~-,j~(p) is reduced to that of the 
propagators on the lines of the graph G. Under differentiation, the propagator 
A(1-  z)(k)=lkl-"+d(1-z(k))  changes only for a logarithmic multiplier, so by the 
same "power counting theorem" the Feynman amplitude remains finite for 
R e a >  2d after differentiation by a. Hence in this domain it is an analytic function 
of a, which was to be shown in (iii). 

We prove now (iv). We have 

= 

which was to be shown. Here we have used the commutation relation (4.t 1) and 
the composition formula (4.9). 
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