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Zinc, copper and selenium in reproduction 
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Abstract. Of the nine biological trace elements, zinc, copper and selenium are important in reproduction in males 
and females. Zinc content is high in the adult testis, and the prostate has a higher concentration of zinc than any 
other organ of the body. Zinc deficiency first impairs angiotensin converting enzyme (ACE) activity, and this in 
turn leads to depletion of testosterone and inhibition of spermatogenesis. Defects in spermatozoa are frequently 
observed in the zinc-deficient rat. Zinc is thought to help to extend the functional life span of the ejaculated 
spermatozoa. Zinc deficiency in the female can lead to such problems as impaired synthesis/secretion o-~ (FSH) and 
(LH), abnormal ovarian development, disruption of the estrous cycle, frequent abortion, a prolonged gestation 
period, teratogenicity, still-births, difficulty in parturition, pre-eclampsia, toxemia and low birth weights of infants. 
The level of testosterone in the male has been suggested to play a role in the severity of copper deficiency. 
Copper-deficient female rats are protected against mortality due to copper deficiency, and the protection has been 
suggested to be provided by estrogens, since estrogens alter the subcellular distribution of copper in the liver and 
increase plasma copper levels by inducing ceruloplasmin synthesis. The selenium content of male gonads increases 
during pubertal maturation. Selenium is localized in the mitochondrial capsule protein (MCP) of the midpiece. 
Maximal incorporation in MCP occurs at steps 7 and 12 of spermatogenesis and uptake decreases by step 15. 
Selenium deficiency in females results in infertility, abortions and retention of the placenta. The newborns from a 
selenium-deficient mother suffer from muscular weakness, but the concentration of selenium during pregnancy does 
not have any effect on the weight of the baby or length of pregnancy. The selenium requirements of a pregnant and 
lactating mother are increased as a result of selenium transport to the fetus via the placenta and to the infant.via 
breast milk. 
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Introduction 

Some inorganic substances such as iron (Fe), zinc (Zn), 
copper, (Cu), selenium (Se), molybdenum (Mo), man- 
ganese (Mn), chromium (Cr), cobalt (Co) and iodine 
(I) are known to be nutritionally essential and are 
needed in minuscule amounts every day for optimal 
health. They are usually referred to as biological trace 
elements. When living organisms migrated to the land 
from sea water in the course of evolution, they had to 
depend on the soil for biological trace elements. Geo- 
logical variations in the earth's crust as a result of 
glaciation, volcanic activity, erosion etc caused varia- 
tions in the distribution of these essential trace ele- 
ments. For example Australian soil is so poor in copper 
and zinc that plant growth may be inhibited. The 
Heilongjiang province of China, and Finland, are defi- 
cient in selenium and as a result multiple myocarditis - 
'Keshan disease' - is common. On the other hand, 
some other parts of the world such as Caracas 
(Venezuela) face the problem of toxic amounts of sele- 
nium. As food for humans comes through the soil- 
plant-animal food chain, the variations in the levels of 
essential trace elements cause some serious problems for 
human health. 

Zinc, copper and selenium in male reproduction 

Zinc 
Of the nine biological trace elements, zinc, copper and 
selenium are important in reproduction. Zinc has 
been extensively studied. Its deficiency leads to gonadal 
dysfunction 185,z~176 decreases testicular weight and 
causes shrinkage of seminiferous tubules 186,231,232,262, 
Several of the zinc deficiency states such as sickle cell 
anemia, chronic alcoholism, idiopathic male sterility, or 
toxic effects of di-(2-ethyl hexyl)phthalate (DEHP) or 
other phthalic acid esters (PAEs), cause atrophy of the 
testis and the atrophy is attributed to low availability or 
increased urinary excretion of zinc 47'93'96,193,203,205, Zinc 
deficiency is also linked to malignant growth in the 
testis 1~ Zinc content is high in the adult testis compared 
to immature animals or those in which the efferent duct 
is ligated TM. In men, the zinc concentration increases at 
puberty and reaches a maximum at the age of 34-40 
years of age when the functional activity of the organ is 
at its peak 291. Similarly in rats with a maldescended 
testicle, the ectopic testis has a decreased zinc content, 
whereas that of the other testicle is normaP ~ Zinc 
deficiency impairs the action of the Mullerian inhibitory 
factor which is essential for testicular differentiation 3~ 
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Angiotensin converting enzyme (ACE) is closely associ- 
ated with testicular development and sperm develop- 
ment62, 230, ~63 ACE is primarily localized in the germinal 
ceils and has very little activity in Leydig and Sertoli 
cells 279. The exact role of ACE is not yet clear but 
reduced ACE activity in the testis of zinc-deficient rats 
has been reported 222,272. It is believed that zinc defi- 
ciency first impairs ACE activity, and that in turn leads 
to depletion of testosterone and finally impairs sper- 
matogenesis 222. Although the probable site of action is 
believed to be primary spermatocytes, it has also been 
reported from Leydig cells, Sertoli cells and sperm 
heads2' 206,186,202, 226 

Zinc appears to be an indispensable element in repro- 
duction for another reason too 16. The gonads are the 
most rapidly growing tissues in the body and vital 
enzymes involved in nucleic acid and protein synthesis 
are zinc metalloenzymes 2~ 
The three cations zinc, calcium and magnesium stimu- 
late or inhibit progressive motility depending on the 
concentration of each 252. At high concentrations, these 
elements, individually or jointly, impair fertility in pa- 
tients with normal sperm density 267. On the other hand, 
Saito et al. 228 reported an increased sperm motility in 
the dog epididymis on addition of different concentra- 
tion of zinc to the culture media. Although a positive 
correlation between seminal fluid, zinc and sperm motil- 
ity and sperm density in asthenozoospermic men is 
reported 246 excessively high levels of this ion are related 
to defective motility in asthenozoospermia 44. Some of 
the important enzymes of spermatozoa are zinc metal- 
loenzymes and can thus become dysfunctional when 
zinc is deficient. One of these, sorbitol dehydrogenase 
(SoDH), utilizes sorbitol to provide spermatozoa with 
fructose for energy, so that SoDH activity is correlated 
to motility 69. Similarly LDH-X, another zinc metalloen- 
zyme, is also reported to have some relationship with 
sperm motility 82' 172.283, LDH-X deficiency leads to ab- 
normalities in the mitochondrial region of the mid- 
piece t69. In the spermatozoa of rats and bulls, in 
addition to being present in zinc metalloenzymes, zinc is 
thought to be bound to SH groups of cysteine amino 
acids of proteins of the outer dense fibers of the sperma- 
tozoon tail 8'9'4~ Mitochondrial disarray in sper- 
matids, acrosomal deformities, incomplete formation or 
disorganization of the axonemal complex and dense 
fibres of spermatozoa tail, and other defects such as 
decapitation, disorganization and redundant tail ele- 
ments with superfluous cytoplasm, have been frequently 
observed in zinc-deficient rats 72'277. Kvist 153 concluded 
from his in vitro experiments on human spermatozoa 
that one of the functions of zinc is to preserve the ability 
of the nuclear chromatin to undergo decondensation at 
the stage of male genome transfer, and zinc thus plays a 
crucial role in fertilization. The complete and non- 
delayed decondensation of the S-S  cross-linked sperm 

chromatin in the ooplasm is necessary for normal em- 
bryonic development. Spermatozoal zinc is suggested to 
protect an inherent capacity of decondensation, thereby 
helping to extend the functional life-span of the ejacu- 
lated sperm j 54, 255. The spermatozoon head accumulates 
a fourfold higher zinc concentration than seminal 
plasma, and the high-affinity zinc binding sites are 
present within the nuclear matrix. Zinc is related to the 
structural integrity of DNA, and prevents destruction of 
DNA by inhibiting degrading enzymes 57'184'2~ 

Further, an insufficient zinc level in the nucleus may 
destabilize the quaternary structure of chromatin, re- 
duce the DNA content of spermatozoa and thereby 
reduce their fertilizing capability 153-156,213. 
Zinc is also localized in the Golgi complex or secretory 
vesicles of interstitiotrophs (IT), folliculotrophs (FT) 
and lactotrophs (LT) of the pituitary gland. Thus it 
seems that the element plays an important role in the 
production and secretion of LH, FSH and prolactin, 
and these in turn regulate testosterone production. It is 
now well established that zinc deficiency depresses 
steroidogenesis 1~ Besides its effect on androgen 
metabolism, it interacts with steroid receptors and an- 
drogen binding protein 1,268. The earliest cytochemical 
changes occur in Leydig and Sertoli cells in mice after 
two weeks of zinc deficiency. At this stage, although the 
seminiferous tubules appear to be healthy, the Sertoli 
and Leydig cells accumulate a large number of choles- 
terol-rich spherical bodies that increases with duration 
of zinc deficiency and extend to the germ cells and 
lumen of the seminiferous tubules26L Cholesterol and 
neutral lipids are precursors of sex steroids. In zinc 
deficiency their uptake by the germinal and non-germi- 
nal cells of the testes does not seem to be affected, but 
probably the cells are incapable of converting them into 
sex steroids. This is thought to be the reason that there 
is a low level of serum testosterone, in spite of high 
serum LH and FSH levels, after LHRH administration 
to zinc-deficient rats 162. Since Sertoli cell hormone 
(SCH), formed by the metabolism of testosterone, trig- 
gers the formation of new cell lines in the testis, its 
insufficiency, because of defective metabolism of choles- 
terol, appears to be responsible for the arrest of sper- 
matogenesis262. 
Zinc deficiency in lower organisms, such as Euglena 
gracilis, alters the mRNA composition but does not 
change the translational capacity of the organism. 
Therefore, zinc-deficient organisms produce a smaller 
number of proteins as compared to organisms with 
adequate zinc 27~ Further, E. gracilis like any other 
eukaryote, produces three RNA polymerases, but zinc- 
deficient organisms are capable of producing only one 
type of mRNA, and that is of a different type from all 
the three normal ones 86. Similarly, zinc-deficient organ- 
isms have only H-1 and H-3 histone proteins, whereas 
organisms with adequate zinc have H2A, H2B and H4 
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in addition to H-1 and H-385. On the other hand, 
zinc-deficient organisms have arginine- and asparginine- 
rich polypeptides that vanish on supplementation with 
zinc. All these observations indicate that zinc has a 
selective role in gene expression 86. Whether the element 
has a similar selective role in the mammalian reproduc- 
tive tract is not known so far. DNA and RNA poly- 
merases of prokaryotes and eukaryotes are zinc 
metalloenzymes187, 247,286 

It is well recognized that hormone-induced transforma- 
tion of steroid receptor complexes causes them to bind 
to DNA. Attempts have been made to identify the 
acceptor sites to which the transformed receptors be- 
come attached TM. The interaction of the receptor with 
its ligand appears to be mediated through a pair of 'zinc 
fingers' located in the highly conserved C-region of all 
classes of receptors  63,84,95,1~ The zinc finger, the 
DNA binding domain, is represented several times in 
the protein and is composed of two cysteine residues 
and one histidine residue that wraps around a Zn ion in 
a finger-like fashion 21,1~176 Zinc finger proteins are a 
highly conserved class of eukaryotic nucleic acid bind- 
ing proteins 84,144 and regulate transcription 75,1~ 
The ZFY DNA domain (consisting of 13 zinc fingers 
and identified from studies of sex reversal in man) is 
located on the Y chromosome, and apparently encodes 
a transcription factor involved in spermatogene- 
sis31,70,145, 171,191,198,201,236,245. 

Microtubules, formed during cell division, are orga- 
nized through a polymerization of tubulin subunits in 
association with small amounts of other proteins and 
metal ions such as Z n  2+, Mg 2+, Mn 2+, and 
C02+ 34,99,115,116,118,161,195,278 In vitro studies have 

shown that tubulin binds to zinc although the number 
of binding sites and the strength of the binding have not 
been determined. Tubulin-associated proteins S100a 
and S 100b bind zinc TM 78. A high concentration of zinc is 
present in spermatozoa tail microtubules 189. 
The epididymis is an important male accessory organ 
and gives the spermatozoa the final functional integrity 
for fertilization 197. The concentration of zinc in the 
epididymis of pig, sheep and bull tends to be almost the 
same as is observed in the testis 22 but in rat it is about 
twice the amount 177. 65Zn uptake of the epididymis in the 
rat is 60% higher than that of the testis 35,282. Thus it 
contains a fairly high concentration of zinc, whose 
uptake and maintenance is directly related to the level of 
circulating testosterone 1~ Since the testicular output 
of testosterone is decreased in zinc-deficient animals, the 
epithelial cell height, and the weight of the epididymis, 
are also decreased 185,231,232,259 and the values are very 
similar to those after castration 48,55' 192. Healthy tubules 
of zinc-deficient rats exhibit variations in their cytochem- 
istry, such as an extraordinary accumulation of proteins, 
carbohydrates, general lipids, neutral lipids, phospho- 
lipids and cholesterol. Administration of testosterone 

propionate for 17 days to zinc-deficient rats reduced 
carbohydrate and protein to levels similar to those in 
zinc-supplemented controls 259. Several of the proteins 
essential for epididymal maturation of spermatozoa, 
secreted by the epididymis, are androgen-depen- 
dent7, 25, 26, 91,110. Since androgen synthesis and secretion 
is influenced by the availability of zinc, it is possible that 
the output of these proteins and eventually the matura- 
tion of spermatozoa may also be influenced. 
B6rtrand et al. 22 were the first to report the presence of 
zinc in the prostate, and the fact that this organ has a 
higher zinc content than any other organ of the human 
body. Of the dorsolateral and ventral lobes of the 
prostate, it is the dorsolateral lobe that has the highest 
concentration and uptake of zinc in rat, rabbit and 
man 35'177,282. Prostatic fluids are rich in acid phos- 
phatase. Zinc is known to influence the motility, viabil- 
ity and morphology 81 of spermatozoa, and a positive 
correlation between motility and seminal acid phos- 
phatase is reported in bull and m a n  66,133,170,227. Re- 
search indicates that the zinc and albumin secreted from 
the prostate form a complex that coats the sperm and 
thereby protects the cells 94. Prostatic zinc may have 
antibacterial activity because Trichomonas vaginalis is 
readily killed at the concentration of zinc that occurs in 
the prostatic fluid of healthy men 158. Seminal zinc levels 
are higher in the group of males with elevated acid 
phosphatase 269, which emphasizes the functional signifi- 
cance of zinc in the prostate gland. Prostatic epithelial 
cells accumulate large amounts of zinc in the nucleus, 
and the uptake studies indicate a specific zinc-binding 
component in the nuclear prostate. Earlier studies al- 
ready indicate a similar metal binding protein in the 
prostate cell cytosol, but whether the two are the same 
is yet to be evaluated I~176 
Zinc not only regulates in vitro uptake of androgens by 
the prostate, but also seems to control the intraeellular 
concentration of these steroids. The influence is mainly 
achieved by means of controlling the testosterone 
metabolic activity of the gland, which in turn is medi- 
ated by both a non-competitive inhibition of the bind- 
ing of testosterone to the 5c~-reductase enzyme and by a 
reduction in the formation of NADPH. Zinc has also 
been shown to inhibit the androgen receptor binding to 
the prostate cytosol and nucleus, and this is another 
major factor in the control of hormonal distribution 
between subcellular fractions. By analogy to other 
target tissues, this inhibition is probably due to the 
blocking of sulphydryl groups at the binding sites, but it 
could also be due to further blocking at the carboxy- 
lates, imidazoles and terminal amino groups and of 
peptides I~ Matusik et al. I76 clones two hormonally 
regulated dorsolateral prostate mRNAs: M-40 mRNA 
and RWB-mRNA. M-40mRNA encodes a zinc-binding 
protein responsible for zinc accumulation in the dorso- 
lateral prostate. 
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Copper 

It is well established that a trace amount of copper 
is needed for proper functioning of biological sys- 
tems, and it is essential in human nutri- 
tion 88"136'137'147'210'223'242'257 Copper is an important 

component of numerous metalloenzymes and metallo- 
proteins, so lack of copper leads to defects in the 
hemopoietic, cardiovascular, nervous, skeletal, integu- 
mentary, immune and reproductive systems. Of the sev- 
eral copper-metalloenzymes, cytochrome-c-oxidase and 
superoxide dismutase have been extensively studied in 
different organs, and the relative decline in each of these 
two enzymes in deficient animals is found to be organ 
specific209,2~ 7,212. The level of copper is decreased in the 
testis ef  rats fed low copper diets TM, and the level of 
testosterone in the male has been suggested to play a 
role in the severity of copper deficiency 89. The presence 
of testosterone could predispose male rats to the lethal 
effects of copper deficiency. Male rats, whether cas- 
trated or not, are anemic, exhibit heart hypertrophy and 
die when deficient in copper 89. Castration of the male 
reduced testosterone levels by 50%, and this reduction 
improved the copper deficiency anemia and delayed 
death by two weeks compared to intact males, thus it 
ameliorated the severity of the copper deficiency. How- 
ever, the protection was only temporary 89. There are 
sexual differences in the expression of copper-deficiency 
in rats ~9. If male rats are fed on a starch-based copper- 
deficient diet, the level of copper is similar to that of 
fructose-based copper deficiency, but they survive 9~ Fe- 
male rats, on the other hand, are protected against the 
fructose-induced mortality of copper deficiency 9~ Thus 
it has been concluded that unless fructose is fed to 
copper-deficient male rats, copper deficiency per se is 
not sufficient to produce anemia, heart hypertrophy, 
pathology and mortality 89. This is further supported by 
the fact that feeding a fructose-based copper-deficient 
diet to rats from weaning delays testicular development 
compared to that of rats fed a starch-based dieP 4a. 

Selenium 

A variety of malfunctions, such as heart disease and 
increased cancer risk, have been correlated with sele- 
nium deficiency. The biological function of selenium is 
as a cofactor of glutathione peroxidase, which protects 
the cell from damage by free radicals. Farm animals fed 
on selenium-deficient grasses exhibit poor growth and 
low fertility ~ 74. On the contrary, rats fed on a selenium- 
deficient diet reproduced normally, but the offspring 
were devoid of hair, grew more slowly and failed to 
reproduce. However, if their diet was supplemented 
with 0.1 ppm of selenium, hair coat, growth and repro- 
ductive capabilities were restored ~79. The selenium con- 
tent of male gonads increases considerably during 
pubertal maturation. The amount of selenium taken up 

by the testes accounts for about 5% of the amount 
deposited in muscles and liver, whereas before and after 
the pubertal period the selenium level is about 10% 18,J9. 
After several studies on rats, Behne et al. 19,2~ concluded 
that: 1) during insufficient selenium-intake the supply of 
the element to the testes has priority over the supply to 
other tissues; 2) the decrease in the testes' selenium 
content after hypophysectomy, and the subsequent rise 
after administration of either PMS or testosterone, indi- 
cates that hormones responsible for spermatogenesis are 
involved either directly or indirectly in the maintenance 
of the testicular selenium level; 3) stimulation with 
L H R H  or hCG results in a less marked increase in 
serum testosterone concentration in selenium-deficient 
animals, and 4) when animals are fed a selenium-defi- 
cient diet, the requirement of the testes is initially 
met by selenium transferred from other tissues, and 
unless and until these pools are depleted, the testicular 
level is not decreased. This led to authors to postu- 
late the involvement of selenium in the biosynthesis 
of testosterone 19'2~ Selenium-deficient rats also suffer 
from oligospermia, a decline in the ratio of motile to 
immotile spermatozoa, and increase in abnormal sper- 
matozoa. The abnormalities are confined to disorgani- 
zation of the mitochondrial sheath of the mid-piece, 
because of increased fragility and reduced stability of 
the mitochondrial sheath 38,41,276,288,289. Tracer studies 
with 75Se have demonstrated that selenium is localized 
in the mitochondrial capsule protein (MCP, mitochon- 
drial capsule - a specialization of the outer mitochon- 
drial membrane) of the mid-piece 28,3s,4~, 199.2oo. MCP is a 
cysteine- and proline-rich selenoprotein, where selenium 
occurs near the amino-terminal end. Isolated MCP re- 
tains the curved shape of sperm mitochondria, therefore 
it is suggested that it functions in organizing mitochon- 
dria into the helical sheath around the flagellum in the 
mid-piece of spermatozoa 2~176 SDS-PAGE studies indi- 
cate that it is composed of polypeptides of Mr 15000 to 
17000 that seem to have been derived from a precursor 
molecule of high molecular weight (Mr 47000 to 54000), 
available in the free form even to immature germ 
cells 37'39. Further, the maximum incorporation of sele- 
nium in MCP occurs at step 7 and step 12, and the 
uptake decreases by step 15 of spermatogenesis 37-39, 
whereas recent studies of Shih and Kleene 241 indicate 
that MCP mRNA is first detected in step 3 round 
spermatids and persists at high concentration until step 
16. This mRNA could not be detected even in low 
concentrations in pachytene primary spermatocytes 
from 18-day prepubertal mice, hence the authors con- 
cluded that its expression is probably restricted to hap- 
loid cells only 37-39. 
LH is known to control the secretion of testosterone 
from Leydig cells. It has been suggested that selenium- 
deficiency causes some changes in the LH receptors of 
Leydig cells and thus affects testosterone secretion ~7-2~ 
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Significantly higher 758e retentions are reported from the 
pituitary gland, the caput and corpus epididymis, and 
the bulbourethral and prostate 32,265 glands. Variations in 
epididymal selenium concentrations are attributed to 
variations in the spermatozoal concentrations in the 
epididymis 32'37,138,178. Willett et al. 285 demonstrated an 
association between low serum selenium levels and gas- 
trointestinal and prostate cancer. Although selenium has 
a definite role in the prevention of cancer, and several 
explanations have been put forward, the exact mecha- 
nism by which selenium inhibits the growth of tumor 
cells is not known iv. One of the suggested causes of 
prostate cancer is the high level of cadmium in the 
prostate 1~ and in vitro studies have demonstrated that 
cadmium stimulates the growth of human prostatic 
epithelium 28~ Selenium, by its interaction with cadmium, 
has a protecting effect against cadmium-induced toxic- 
ity 17'196'239. Also, selenium inhibits DNA, RNA and 
protein synthesis, and thus at non-toxic levels it could 
help in the inhibition of the growth of tumour cells sS. 

Zinc, copper and selenium in females 

Zinc deficiency in female reproduction; pregnancy, 
parturition and lactation 
Food, feeding habits and deficiency of trace elements 
can affect the fertility of a population, and was the main 
cause of a decline in fertility in Europe between 1875 
and 1913175 . During that period, Europeans mainly 
consumed roller-mill processed white bread and pota- 
toes that were deficient in zinc. Zinc deficiency, in 
females, leads to impaired synthesis/secretion of FSH 
and LH, abnormal ovarian development, disruption of 
the estrous cycle, frequent abortion, gross congenital 
malformation of fetuses (depending upon the reproduc- 
tive stage when the zinc deficiency sets in), a prolonged 
gestation period, teratogenic effects, still-births, and 
delayed and prolonged deliveries accompanied by ex- 
cessive bleeding, difficult parturition, uncoordinated 
uterine impulses or poor uterine activity, pre-eclampsia, 
toxemia and low birth weights of infants. Fluctuations 
of zinc and magnesium concentrations in a phase-re- 
lated fashion in plasma have been reported in normally 
menstruating women. Whether these changes are hor- 
monally mediated or reflect metabolic changes has not 
been worked out 68. Zinc-levels in women using oral 
contraceptive agents (OCAs) have been of concern since 
1968, when it was observed that women using OCAs 
had lower plasma zinc levels than women not using 
OCAs 2,24,54,112,119,207,208,274. On the other hand, King 143 

estimated that there was no increased endogenous zinc 
loss and the zinc-dependent functions were not compro- 
mised in OCA-users. However, OCA use may 1) alter 
post-absorptive utilization of zinc, 2) reduce circulating 
zinc, and 3) increase levels in some tissues or depress the 
release of the element from others, but there is no 

evidence to suggest that these changes alter the dietary 
zinc requirement 16. 
Taneja and Kaur 26~ working on virgin female mice 
fed on a zinc-deficient diet, observed mainly the I -VI  
type follicles rather than the VIII type, retardation of 
ovarian follicular growth with varying degrees of atre- 
sia, lack of preovulatory Graafian follicles, a reduced 
and shrunken corpus luteum and a fragmented zona 
pellucida and vitelline membrane. In addition, there was 
an excessive accumulation of coarse granules of phos- 
pholipids, triglycerides and cholesterol in the cells of the 
granulosa, theca interna and externa and interstitium. 
All these indicated cessation of oogenesis and ovulation. 
Similar abnormal ovarian development has been ob- 
served in zinc-deficient rhesus and bonnet monkeys 127. 
Zinc deficiency, even if it is marginal, has been re- 
ported to affect oocyte maturation by doubling the 
number of degenerating oocytes and increasing chromo- 
somal anomolies (hyperhaploidy and hypohaploidy) in 
metaphase II oocytes 279. This led the authors to suggest 
that for all preconceptional women special precautions 
are necessary to ensure a sufficient intake of zinc. Ma- 
ternal zinc deficiency may be a result of dietary inade- 
quacy, or may be secondary to a disease such as 
diabetes, and carries a substantial risk for the develop- 
ing offspring 279. 
The estrous cycle in zinc deficiency exhibited a gradual 
prolongation of duration of successive cycles, (espe- 
cially of proestrus and estrus). Prolonged proestrus and 
estrus are followed by diestrus and anestrus phases 
(after 6 weeks of zinc deficiency). Vaginal smears in the 
anestrus phase are comprised of leucocytes with a few 
isolated nucleated epithelial cells, whereas in the estrus 
phase non-nucleated cornified cells are altogether ab- 
sent103.129,261 Zinc may regulate events in the menstrual 
cycle through its association with the regulation of 
progesterone 1~ prolactin and opiate receptor binding 
in the CNS 146,165,253,264, Plasma zinc concentrations are 
high during mensus and the follicular phase, and then 
decline during the ovulation and luteal phases. This 
change in elemental concentration is correlated to 
1) hormonal changes or changes in the distribution of 
specific carrier protein 249, 2) variations in plasma albu- 
men 249, 3) regulation of the activity or binding of se- 
lected hormones 1~ and 4) interleukin-142. Since zinc 
is associated with immunological responses, Both preg- 
nant and non-pregnant women with low plasma zinc 
level suffer from vaginitis three times more frequently 
than those with a higher level of plasma zinc 79. Zinc- 
deficient mice exhibit decreased immunity that runs 
parallel to infection by Candida ablieans 229. 
Lowered serum zinc levels are related to risk factors 
during pregnancy, and labour complications. Signifi- 
cantly lower plasma zinc levels are reported in women 
experiencing hypertension and/or toxemia and hypoal- 
bumina of pregnancy 5,6,52,131'273, and supplementation 
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with zinc results in fewer complications 5,52,I9~ It is 
estimated that the total zinc needed during the last half 
of human pregnancy corresponds to 2.6 mg absorbed 
zinc/day, and this may need special adaptations such as 
1) an increase in zinc absorption, 2) reduced endoge- 
nous zinc loss, 3) redistribution of tissue zinc and 4) an 
efficient maternal-fetal zinc transfer for zinc utilization 
during pregnancy. A decline in circulating (serum/ 
plasma) zinc concentrations begins early in pregnancy 
and continues to term. It is associated with complica- 
tions in the antenatal period such as mild toxemia, 
vaginitis and post-dates, while the intrapartum period 
complications include a prolonged latent phase, a pro- 
tracted active phase and cervical and vaginal lacera- 
tions76.215 219. The elemental deficiency can also lead to 
congenital anomalies and hence Swanson and King 256 
and Lazebnik et al. 16~ suggested the screening of plasma 
zinc levels in patients so that incidences of dysfunctional 
labour pattern could be reduced. However, this decline 
is considered to be to some extent secondary to plasma 
volume expansion 131,132, plasma protein changes ~~ and 
hormonal effects 1~2. Jameson TM speculated that plasma 
volume expansion during pregnancy is more important 
than hormonal effects in decreasing the plasma zinc 
concentration. Romeu and Arola 224 are of the opinion 
that the maternal zinc stores are enough to supply the 
fetus during starvation, despite significant reductions in 
maternal reserves, whereas Jameson 132 pointed out that 
some pregnancy-related complications can be reduced 
by zinc sulphate therapy. Further, when a zinc-deficient 
woman becomes pregnant and is exposed to the nutri- 
tional demands of the fetus and to the influence of 
progesterone, she is likely to develop the manifestations 
of cadmium toxicity 53 or toxicity of lead, mercury and 
certain drugs and alcohols 132. Sheldon et al. 24~ suggested 
that decrease in concentration of zinc and magnesium is 
a normal physiological adjustment to pregnancy and 
that iron supplementation does not influence these 
changes. On the other hand, Lao et al. 159 suggested 
combined measurements of plasma and erythrocytic 
zinc and perhaps carbonic anhydrase concentration for 
management of complicated pregnancies, and stressed 
the importance of an adequate daily supply of zinc in 
pregnancy 8s. 
Zinc deficiency in early pregnancy, in rats, is also 
reported to produce abnormal blastocysts ~2s, in- 
creased rates of resorption and a high incidence of 
congenital malformation and teratogenicity, particu- 
larly fetal neural tube defects such as anence- 
phaly 2"9"49"73" 124" 126' 128' 135' 174' 230' 25~ . Further it is 

established that mice are much more sensitive to di- 
etary deficiency of zinc than are rats, and that during 
organogenesis in rats cellular deaths are probably re- 
sponsible for observed terata, whereas in mice it is 
necrosis which is probably responsible for dysmor- 
phologies 218. 

Pregnant women suffering from acrodennatitis en- 
teropathica (AE), an inborn error of zinc meta- 
bolism, exhibit high frequencies of fetal deaths and 
malformed infants, particularly with neural tube de- 
fects 1~3,126,129,~31,25~ The pathogenesis of AE is the re- 
sult of impaired intestinal zinc absorption, and the 
patients exhibit low serum lipid and arachidonic acid, 
increased IgA, and defective prostaglandin synthe- 
sis 113'166. Hambidge ~I3, and Lonnerdal et al. 166 recog- 
nized that AE can be treated by oral zinc 
supplementation. With zinc supplementation, AE 
women were able to maintain normal plasma zinc levels 
and had normal pregnancies and deliveries. Similarly, 
infants from diabetic females exhibit skeletal abnormal- 
ities 127, and immunological defects which persist for at 
least three generations 12 15. 
Zinc is thought to be related to some factors governing 
the length of gestation, since low zinc levels are reported 
in both preterm and post term deliveries 5,6, whereas in 
zinc-deficient rats, delayed and prolonged deliveries are 
accompanied by excessive bleeding, and the neonates 
and placenta are ignored 167. 
Zinc is known to be involved in the normal response to 
estrogen instructions. The successful transition from 
gestation to labour and delivery requires a carefully 
regulated and harmonized series of events. It requires 
the removal of progesterone and the achievement of 
estrogen dominance 164. The rapid formation and ap- 
pearance of gap junctions are believed to be a signifi- 
cant factor in the initiation and progress of parturition. 
One possible relationship between decreased zinc levels 
and prolonged gestation may be with the hormone- 
dependent formation of myometrial gap junctions. The 
appearance of gap junctions at term has been linked to 
the withdrawal of the inhibitory effect of progesterone 
and the increase in the stimulting impact of estrogen 167. 
Lytton and Bunce 167 observed that the uterine pressure 
cycle pattern was abnormal in zinc-deficient pregnant 
rats during oxytocin-induced labor. Both contractile 
synchrony and propagation appeared to be diminished 
and, in particular, the birth of individual pups was 
prolonged and accompanied by intense abdominal 
straining. The number and size of myometrial gap junc- 
tions increase enormously during the last 48 h before 
delivery, as the uterus comes under estrogen domi- 
nance 97'98. However, in zinc-deficient rats, the number 
of gap junctions detected were 49 or 39% of those in 
controls fed (ad libitum). It has been emphasized that 
this may contribute to the irregular and poorly synchro- 
nized uterine pressure cycle patterns and may indicate 
poor compliance of estrogen-controlled gene expres- 
sion 77. 

Prostaglandins are involved in the regulation of numer- 
ous physiological processes such as body temperature, 
blood pressure, platelet aggregation and parturition ~94. 
Luteolysis and induction of labour are mediated by 
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PGF2~ near term 163. Exogenous administration on day 
20 of gestation causes premature delivery on day 21 in 
female rats a54. There is an increase in the number of 
binding sites in the ovarian membrane of zinc-deficient 
pregnant rats ~~ This may be because of alterations in 
membrane composition which in turn may change re- 
ceptor function 43. Zinc deficiency causes alterations in 
fatty acids and phospholipids s1"61 and enhances lipid 
peroxidation 23,255. It is possible that membrane struc- 
tural changes associated with zinc deficiency interfere 
with PGF2~ receptor-mediated phase changes and con- 
sequently the luteolytic process. Thus the higher num- 
ber of binding sites may represent non-functional 
receptors leading to longer gestation period. 
Maternal zinc is related to low birth weights. Women 
given supplementary zinc showed a lower frequency of 
pregnancy complications and of low-birth-weight babies 
than women without the supplement 157'~81,244. Birth 
weight, crown-rump and femur length of male new- 
borns are reported to be reduced in male newborns as 
compared to female newborns from zinc-deficient rhe- 
sus monkey 126. Other abnormalities of newborn mon- 
keys of low birth weights included osteoporotic effects 
and a wide epiphysis ~27. 
The process of lactation is nutrient-demanding, and 
therefore nutritional requirements of lactating mothers 
are usually very high. In lactation, the maternal body 
probably has an enhanced and efficient mechanism for 
the absorption of trace elements and their utilization in 
milk synthesis. The adequacy of lactation is indexed by 
the growth of the infant, and the occurrence of low 
plasma trace-element levels during lactation tends to 
suggest that milk biosynthesis has priority in the distri- 
bution of trace elements. Zinc requirements are rela- 
tively high in very young infants and decrease with 
growth. The marked decrease in human milk zinc con- 
centration, as lactation progresses, thus does not in- 
evitably result in suboptimal zinc intake. Rather, this 
pattern may represent a control mechanism for zinc 
secretion by the mammary gland, which meets the in- 
fant's need without imposing an unnecessary burden on 
maternal zinc status 46'59' 149 On the other hand, Donan- 
gelo 7a observed slightly lower total zinc concentrations 
and a lower in vitro availability of serum zinc in moth- 
ers nursing newborns which did not maintain adequate 
weights in the first months of life, and concluded that 
the zinc status of the mother can affect the adequacy of 
zinc supply and limit the rate of growth of exclusively 
breast-fed infants. 

Copper deficiency in female reproduction; pregnancy 
and infant abnormalities 
Copper-deficient female rats are protected against mor- 
tality resulting from copper deficiency 9~ It has been 
suggested that this protection is provided by the pres- 
ence of endogenous estrogens, as estrogens have been 

shown to alter the subcellular distribution of copper in 
liver, and increase plasma copper levels by inducing the 
synthesis of ceruloplasmin 45,a26,233. However, even 
ovariectomized females are protected against the sever- 
ity of copper deficiency. Although in ovariectomized 
females total plasma estrogen is reduced by 48%, this 
has no effect on the symptoms of copper deficiency. 
Thus, whether the females are ovariectomized or intact, 
they are not susceptible to severe copper deficiency. 
Estrogens do increase ceruloplasmin levels in females, 
but in copper deficiency the incorporation of copper 
into ceruloplasmin is inhibited, and possibly the levels 
of estrogen in intact prepubertal females are too low to 
stimulate ceruloplasmin activity 45,89. Increases in the 
serum copper and ceruloplasmin levels of female rats 
and other animals with estrogen treatment are clear, 
and depend upon the duration of hormonal treat- 
ment56, 60, 83, 92,117,182,183,274, 290 The increases occurred at 

the expense of hepatic copper and were not due to 
increased intestinal absorption, so prolonged estrogen 
treatment leads to an alteration in the distribution of 
copper. Copper is also known to affect the level of 
norepinephrine and dopamine in brain by synthesis 
and/or release of neurotransmitters 212. Thus, elevated 
copper levels in the brains of females taking oral contra- 
ceptives might alter brain amine levels, thereby causihg 
physiological and behavioral changes, as observed in a 
number of cases 87. That copper requirements may be 
sex-dependent is further revealed by studies in men and 
postmenopausal women. Males have abnormally high 
levels of circulating triglycerides and fatty acid if fed on 
a fructose-based copper-deficient diet, but this response 
is absent in females of reproductive age 9~ 
The growth of the fetus imposes a severe drain on the 
essential metal homeostasis of the maternal organisms. 
The demands of the conceptus for nutrients grow enor- 
mously towards the completion of its development at 
the end of gestation 111. Copper is not significantly with- 
drawn from maternal storage tissues such as liver dur- 
ing pregnancy, despite the fact that important secretions 
of this metal in fetal organs are supplied from maternal 
stores. The transient increase in plasma copper level 
observed during mid-pregnancy of rats is caused by 
increased food consumption and increased intestinal 
absorption of copper, and not directly by pregnancy, as 
the needs of fetus are low at this stage 55'74'125'173. This 
results in increased copper deposition in the maternal 
tissues that is later on used for fetal and postnatal 
development 284. 
Infants completely dependent upon parenteral nutrition, 
without supplementation of copper, develop hypo- 
chromic normocytic anemia, neutropenia and skeletal 
abnormalities in association with profound hypo- 
cupremia 14~ and these abnormalities responded well to 
oral copper supplementation 242. Hypomyelination is also 
reported in pups of copper-deficient rat dams TM. 



Reviews Experientia 50 (1994), Birkh/iuser Verlag, CH-4010 Basel/Switzerland 633 

Menke's disease, a human X-chromosome linked disor- 
der characterized by mental retardation and peculiar 
hair, is related to abnormal copper metabolism. The 
patients have low liver copper and plasma ceruloplas- 
rain levels. The disorder is a result of a mutation on the 
X-chromosome close to band q-1365,122. This mutation 
is expressed in all cells, resulting in altered copper 
homeostasis. Low levels of copper induce metalloth- 
ionein in some organs and make copper unavailable for 
other cuproenzymes. The overproduction in Menke's 
cells is likely to be due to the deficiency or absence of a 
copper regulatory factor. This putative factor would 
normally fix copper in the liver as it enters from the 
portal blood en route to ceruloplasmin synthesis. 
Changes in this disease are similar to those observed in 
nutritional copper deficiency 64. Abnormal cells prevent 
copper from reaching functional sites and children die 
in most cases before the age of three years, mainly from 
bronchopneumonia. 
Wilson's disease is an autosomal recessive disorder in 
which copper accumulates in liver and secondarily in 
other organs. Serum ceruloplasmin levels are usually 
below normal. The molecular basis of this disease is not 
known. An elevated liver copper level, urinary copper 

:excretion and low ceruloplasmin levels are good indica- 
tors of the disease 23s. 
Other human mutations leading to alterations in copper 
metabolism are 1) albinism (congenital loss of activity 
of tyrosinase, a cuproenzyme); 2) Down's syndrome 
(overproduction of Cu-Zn SoDM27); 3) cytochrome-c- 
oxidase deficiency 284 and 4) Cutis-laxa (X-linked, de- 
fects in cross linking of collagen due to decreased lysyl 
oxidase activity) 36. 
Various mutations related to copper metabolism have 
also been reported in mice. An X-chromosome linked 
disorder analogous to Menke's disease of human beings 
is reported in mice, and the pups die when two weeks 
old unless copper is administered at day 7 of postnatal 
life 123. Similarly an analogy to the Cutis laxa mutation 
of humans is also found in mice. Other mutants are 
dappled, tortoise-shell, viable brindled, and toxic milk. 
Toxic milk mutants accumulate copper in the liver and 
produce milk deficient in copper, and the milk is there- 
fore toxic to suckling pups 2I~. 

Selenium deficiency, female reproduction, pregnancy and 
lactation 
Selenium deficiency in females results in infertility, 
abortion and retained placenta, and the newborns from 
selenium-deficient mothers suffer from muscular weak- 
ndess 3,120, 234, 237,258, 281. Neither the age of the mother, her 

parity, smoking, iron supplementation, toxemia of preg- 
nancy, abortive ovum or early uterine contractions are 
reported to have any effect on selenium concentration 
during pregnancy, nor does the concentration of sele- 
nium during pregnancy have any effect on the weight of 

the baby or the length of pregnancy 4,33. However, the 
selenium requirement of pregnant and lactating mothers 
is increased as a result of selenium transport to the fetus 
via the placenta and to the infant via the breast 
milk 121,1s2,248. The level of selenium in human milk is 
strongly affected by maternal intake and status 151,ls2. 
The level of the element in cow's milk is one half of that 
found in human milk of unsupplemented women living 
in the same area 24s. That is the reason why Keshan's 
disease, an endemic cardiomyopathy, affects predomi- 
nantly young children and women of child-bearing age 
in selenium-deficient areas like Heilongjiang province of 
the Peoples Republic of China I21,~51'~52,248. Colostrum 
and transitional milk have a higher selenium concen- 
tration than mature milk 24s. Most of the selenium in 
human milk is protein-bound, and at least some se- 
lenoproteins have been detected in dialyzed milk sam- 
ples following molecular sieve chromatography 188. 
Selenium requirements of infants and young children are 
high due to their rapid growth. The erythrocyte and 
plasma GSH-Px activities, as well as serum selenium 
concentration, are lower in newborns than in their 
mothers and other adults, and newborns are therefore at 
risk of becoming severely selenium-deficient if main- 
tained on a commercial infusion solution with low sele- 
nium. Hence, a continuous monitoring of selenium 
status and supplementation, if necessary, has been rec- 
ommended ~52,~8~ Studies of TPN infants given 
supplements such as sodium selenite and L ( + )  se- 
lenomethionine revealed that selenite-Se rapidly normal- 
izes plasma GSH-Px but is not retained as well as is 
selenomethionine-Se 275. The selenium content of mature 
human milk ranges between 10-20 lag/litre, and consid- 
ering an average milk requirement of at least 750 ml/day 
at 3 months of age, an exclusively breast-fed infant 
would get approximately 8-15 lag selenium per day. 
Since the present 'safe and adequate' intake range for the 
0 -6  month-old infant ranges between 10 and 40 lag/day, 
it seems likely that the intake of certain infant popula- 
tions, for example those from selenium-poor areas e.g. in 
China and New Zealand, will be below the recommended 
limits especially if they are exclusively breast fed ~s~ 
Selenium levels of human milk can effectively be in- 
creased by supplements of 100 lag selenium/day as yeast 
selenium whereas maternal supplementation with 
100 lag/selenium/day as selenite was less effective in in- 
creasing milk selenium concentration ~5~ Kumpu- 
lainen 15~ suggested the supplementation of infant 
formulas to provide 10 lag selenium/day, or supplemen- 
tation of fertilizers with selenite (which was shown in 
experiments in Finland to lead to a 10-fold increase in 
selenium contents), to ensure an adequate supply of 
selenium to lactating mothers and their infants. 
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