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In the design of  discrete part shapes, the 
specification of tolerance constraints can 
have major consequences for product 
quality and cost. Traditional methods for 
tolerance analysis and synthesis are time- 
consuming, and have limited applicability. 
This paper presents the results of  research 
into the use of solid modeling technology 
for the automated solution of  tolerancing 
problems. A linear programming method 
is presented for the solution of tolerance 
analysis problems on a worst-case basis. 
A Monte Carlo method is presented for 
both worst-case and statistical tolerance 
analysis. Both methods automatically de- 
rive all necessary geometric relationships 
from a solid model of  the assembly. Exam- 
ple problems are solved using the experi- 
mental GEOTOL geometric design sys- 
tem. 
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1 Introduction 

When an engineer designs an assembly, he specifies 
the overall shape and dimensions of  each part. The 
part specification is often referred to as the "nomi-  
nal"  part. It is an idealization, since it is recognized 
that no possible manufacturing process is capable 
of producing the part exactly as specified, without 
variation. Therefore tolerances are also specified, 
which establish limits on the allowable variation. 
The tolerance constraints are intended to control 
part variation closely enough that any assembly 
of in-tolerance parts will satisfy the relevant design 
constraints. Thus the tolerance constraints provide 
an indirect means of enforcing the design con- 
straints. 
The assignment of  actual values to the tolerance 
limits has a major influence on the overall cost 
and quality of the assembly. If the tolerances are 
t o o "  tight" then the individual parts will cost more 
to make. If the tolerances are too " loose"  then 
an unacceptable percentage of assemblies may be 
rejected, or require rework. 
The process of allocating tolerances to an assembly 
is referred to as "tolerance synthesis." The process 
of  checking the tolerances of  verify that all design 
constraints will be met is referred to as "tolerance 
analysis." Traditional methods for tolerance anal- 
ysis and synthesis are time-consuming, and error 
prone. For complicated problems they are usually 
infeasible. 
Recently, there has been a growing interest in the 
use of solid modeling technology to provide a com- 
mon geometric data base for design, analysis, and 
manufacturing. Already solid modeling systems 
have been used to automate many engineering 
tasks. 
This paper gives results to date of a research pro- 
ject undertaken as a joint activity between Rensse- 
laer Polytechnic Institute and IBM, devoted to the 
automated solution of  tolerancing problems. The 
basic approach has been to use solid modeling 
technology to assess the effect of  each possible part 
geometric variation on the tolerance constraints 
and design constraints of  the assembly. Thus all 
required geometric relationships are automatically 
derived from a solid model. Automated methods 
for tolerance analysis based on linear program- 
ming and Monte Carlo procedures are presented 
here. These methods are illustrated using an experi- 
mental geometric design system, GEOTOL, devel- 
oped at RPI and at IBM. Automated methods for 
tolerance synthesis are presented in Turner [16]. 
Several previous attempts have been made to use 
a geometric model as a basis for automated toler- 
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ancing. Hillyard [8] outlined a proposal for au- 
tomated tolerance analysis. Work at MIT, such 
as Lin [11], and Light and Gossard [12], extended 
some of  Hillyard's ideas. Grossman [6] described 
a basic approach to tolerance analysis based on 
Monte  Carlo simulation. Requicha [15] gave a 
theory of  tolerances based on offset surfaces. None 
of  this work led to an operational capability for 
automated tolerance analysis or synthesis. Several 
packages [4], [17], [18], [1] were developed for toler- 
ance analysis, which however do not appear to 
make use of  a complete geometric model. Instead, 
it appears that the designer is required to identify 
the significant dimensions affecting to given design 
constraint, and to specify their relationships. Final- 
ly, there is a large body of  literature on tolerancing 
methods that are either entirely manual or com- 
puter extensions of  manual methods. Examples are  
Fortini [5], Bjorke [2], and Parkinson [13]. 

2 Definitions 

Much of  the conceptual confusion to be found in 
prior work on tolerances stems from a lack of  well- 
defined terminology. Apart  from the material on 
solution basis, the definitions given in this section 
are new to this work, and are intended to provide 
a unifying conceptual framework for discussion. 

2.1 Solution basis 

When universal interchangeability is an assembly 
requirement, tolerance problems must be solved 
on a worst-case basis. This means that all possible 
combinations of  in-tolerance parts must result in 
an assembly that satisfies the design constraints. 
However in most cases the likelihood of  a wbrst- 
case combination of  parts is very low. When toler- 
ance problems are solved on a statistical basis, 
manufacturing costs are reduced by loosening up 
the tolerances, and accepting a calculated risk that 
the design constraints may not be satisfied 100 per 
cent of  the time. By assuming a probability distri- 
bution for each toleranced measurement, it is pos- 
sible to determine the likelihood that the specified 
design limits will be exceeded. Effectively, a reject 
rate is determined for the assembly. A non-zero 
reject rate may be preferable to an increase in indi- 
vidual part manufacturing costs due to tighter tol- 
erances. Both the worst-case and the statistical ap- 
proaches are important in practice. 

2.2 Design variables 

The process of  assigning tolerances to an assembly 
of  parts begins with the establishment of  design 
constraints. A design constraint is a limit (or pair 
of  limits) that is explicitly specified by a designer 
over some aggregate geometric property of  an as- 
sembly. For  instance, the clearance between two 
parts in an assembly is an aggregate property de- 
termined by the individual part dimensions. Like- 
wise, the volume of  a container is an aggregate 
property determined by the dimensions of  the con- 
tainer. Design constraints specify acceptable limits 
for such aggregate properties. 1 If  an actual in- 
stance of  an assembly of  parts violates one of  these 
design constraints it will be unacceptable. 
A design variable will represent the variation from 
nominal of  such an aggregate property. The de- 
signer will be viewed as indirectly identifying one 
or more design variables, whenever a design con- 
straint is specified. The design constraint estab- 
lishes limits on the allowable value of  the design 
variable. 2 
For  any given instance of  the physical assembly 
of  parts, the constrained aggregate properties can 
be measured, and the value of  each design variable 
can be determined. An assembly will be considered 
"in-design" if all of  its design variables fall within 
the limits specified by the design constraints. 
Figure 1 shows a design variable called out on a 
simple part. Dt measures variations in the area 
of  the part. 

Fig. 1. Example of a design variable 

I)1 

1 In more restricted contexts some authors refer to design con- 
straints as "sum tolerances," or "assembly tolerances" 
2 The term "design variable" is sometimes used in the context 
of design optimization theory to refer to one of the parameters 
of a design, such as the value of a dimension, which may be 
treated as a variable for purposes of design optimization. That 
usage and the present usage are not related 
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2.3 Tolerance variables 

A tolerance constraint is a limit (or pair of  limits) 
that is explicitly specified by a designer over some 
one-dimensional geometric property of a single 
part. By implication, the toleranced property is as- 
sumed to be capable of direct control by the manu- 
facturing engineer. 3 For  instance, tolerances may 
be established on the position and diameter of  a 
cylindrical hole, or on the distance between two 
parallel planar faces. 
The tolerances assigned by the designer have no 
intrinsic significance. They are specified as an indi- 
rect means of  enforcing the design constraints. For 
instance, the clearance between two parts in an 
assembly can only be controlled by setting limits 
on the dimensions of each of  the individual parts. 
Likewise, the volume of  a container can only be 
controlled by setting limits on the dimensions of 
the container. 
A tolerance variable will represent the variation 
from nominal of  some toleranced property. As 
with design variables, the designer will be viewed 
as indirectly identifying one or more tolerance vari- 
ables whenever a tolerance constraint is specified. 
The tolerance specification establishes limits on the 
allowable values of  the tolerance variable. 
For any given instance of  the physical part, the 
toleranced property can be measured, and the 
value of the associated tolerance variable can be 
determined. A part will be considered "in-toler- 
ance" if all of  its tolerance variables fall within 
their tolerance limits. Tolerance analysis and syn- 
thesis procedures must assure that all (or most) 
combinations of  in-tolerance parts result in an in- 
design assembly. 
Figure 2 gives an example of  several tolerance vari- 
ables called out on a simple part. T: measures vari- 

T~ 

Ta 

Fig. 2. Example of several tolerance variables 

3 This definition corresponds to what  some authors refer to 
as a component tolerance 

ations in the distance of  the left vertex from the 
right edge. T2 measures variations in the angle be- 
tween two sides. /'3 measures variations in the po- 
sition of  a hole. (The nominal positon of the hole 
must be established with reference to datum fea- 
tures of the part, for instance two of  its perpendicu- 
lar sides. This is not shown.) 

2.4 Variational model 

If the nominal design model of a mechanical part 
(as embodied in a CAD system data base, for ex- 
ample) is compared with an actual instance of  the 
physical part, the nominal model may be recog- 
nized as an abstraction of  certain part geometric 
properties. This abstraction explicitly models cer- 
tain characteristics, while others are ignored. For 
the solution of tolerancing problems, instead of 
a single abstract model of a nominal part, it is 
necessary to model certain types of  part variations, 
thus defining a variational class of  part instances. 

2.5 Model variables 

A variational model will be constructed from the 
nominal model, by introducing specified types of  
variations. Each allowable variation will be repre- 
sented by a model variable. A model variable is 
a real-valued measure of the extent to which some 
elementary geometric property of a given part var- 
ies from nominal. The variational model will be 
comprised of  the nominal part model augmented 
by a specified collection of model variables. 
This paper will consider variations in part size, 
in relative orientation of part features, and in loca- 
tion of part features. 4 These variations are a suffi- 
cient characterization of actual manufactured 
parts for most purposes. 
There are many possible strategies for defining 
model variables. Figure 3 illustrates one approach. 
This figure shows a complete set of  model variables 
for a simple part, for a variational class comprising 
size, orientation, and position variations. In this 
example, the first ten model variables are paired 
about the outer boundary of the part. For exam- 

4 These, together with form variations, are the major  classes 
of variations addressed by the ANSI dimensioning and toler- 
ancing standard [3]. Considerations relative to form variations 
are presented in Turner  [16] 
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Fig. 3. Example of a set of model variables 

pie, M1 and M 6 induce variations in the coeffi- 
cients of  the line equation of  the top edge of  the 
part. M1 induces variations in the position of  the 
line, and M6 induces variations in the slope. The 
vertex coordinates are implicitly determined by the 
line intersections. M11 and M 1 2  induce variations 
in the position of  the circular feature, a n d  M13 
induces variations in its diameter. 
A given strategy for associating model variables 
with the nominal model effectively defines a varia- 
tional class. For any given element of  such a class, 
the values of  the tolerance variables and design 
variables may be computed. Thus, the tolerance 
variables and design variables are effectively func- 
tions of the model variables. 
While the tolerance variables and design variables 
are all functions of  the model variables, it is ulti- 
mately the functional dependence of  the design 
variables on the tolerance variables that is of  con- 
cern to the designer. These functional relationships 
are illustrated in Fig. 4. Note that the function la- 
beled h may not exist if insufficient tolerances are 
specified. 

Since all three types of  variables measure varia- 
tions from nominal, they all take on values of  zero 
for an assembly of nominal parts. 

2.6 Example 

Figure 5 shows an assembly consisting of  two rect- 
angular parts enclosed by a bracket. A design con- 
straint specifies that the clearance between the 
rightmost rectangular part, and the inner edge of  
the bracket should vary from nominal by no more 
than 0.3 mm. A design variable is associated with 
the variation in the clearance, and the design con- 
straint is expressed as: 

- -0 .3<D1 <0.3 

To enforce this constraint, tolerance limits of  
+_ 0.1 mm are applied to three of  the part dimen- 
sions. Tolerance variables are associated with the 
variations in these dimensions, and the tolerance 
constraints may be expressed as: 

-0 .1  < T1 _<0.1 
-0.1_< T2-<0.1 
-0.1_< T3-<0.1 

Note that all these variables measure only varia- 
tions from nominal - the nominal dimensions are 
not included. 
Model variables can be specified to establish a var- 
iational model for each of  the parts. To simplify 
the example, suppose that all form and orientation 
variations are disregarded (all edges remain either 
horizontal or vertical), and that only size variations 
acting in the horizontal direction are allowed. Fig- 
ure 6 shows a collection of  five model variables, 
which are sufficient to characterize the permitted 
variations. In this figure, the five model variables 
should be interpreted as follows. The left side of  

Design 
Var iab les  

T o l e r a n c e  
D . . . . .  h Var iab les  

' T 

M Model Var iab les  

Fig. 4. Summary of  relationships among the three variable 
types 

L Ta 

Fig. 5. A simple assembly 
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Fig. 6. Associated model variables 
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each part establishes a frame of reference for the 
part. Each model variable measures the variation 
from nominal of  one of the other sides of  its part 
relative to this frame of reference. Assigning a posi- 
tive value to a given model variable causes a trans- 
lation of  the corresponding side in the direction 
of the arrow. 
The tolerance and design variables may be ex- 
pressed as functions of the five model variables: 

T1 =M1 
T2 =M2 
T3= - -M3- -M4 

DI = - - M 1 - - M z - - M 3 - - M 4  

(Ms has no effect.)5 
By further restricting the problem, it is possible 
to use a graph to illustrate the relationships among 
these variables. Specifically, if all variations in the 
bracket are ignored, that is if M3, /144, and M5 
are all assumed equal to zero, then the remaining 
model variables, M1 and M2, may be treated as 
independent dimensions of a vector space. The tol- 
erance limits establish bounds on an "in-toler- 
ance" region of this space. Similarly, the design 
limits establish an "in-design" region. These 
bounds are shown in Fig. 7. If  all other variations 
are ignored, then there is a one-to-one correspon- 
dence between the points of  this vector space and 
the set of  all possible assembly instances. 
The in-tolerance region of the diagram is that por- 
tion of the vector space admitted by the tolerance 
constraints. So the point-set defined by the in-tol- 
erance region gives a mathematical representation 

5 As already explained, each of the three types of variables 
measures only the variation from nominal. Thus, for instance, 
the equation for D~ states that any increase in M~ M2 M3 
or M4 causes a decrease in D1 
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Fig. 7. Vector space of model variations 

of the tolerance specification. Vector space repre- 
sentations have been constructed for a variety of  
representative tolerance types (Turner [16]). 
Similarly, the in-design region gives a mathemati- 
cal representation of the design constraint. Since 
the in-tolerance region is contained within the in- 
design region, the tolerance limits are adequate to 
satisfy the design constraint on a worst-case basis. 

3 Tolerance analysis methods 

From a formal viewpoint the tolerance analysis 
problem is as follows: given a specification of  the 
tolerance constraints and design constraints for an 
assembly, find the relationship between the corre- 
sponding in-tolerance region and in-design region. 
For a worst-case tolerance analysis, the in-toler- 
ance region must fall entirely within the in-design 
region. For  a statistical tolerance analysis, a prob- 
ability distribution is assumed for the vector space 
of model variations. The probability associated 
with that portion of the in-tolerance region falling 
outside the in-design region is computed. This 
probability must not exceed a previously estab- 
lished limit. 
This section presents a linear programming meth- 
od and a Monte Carlo method for automated t o l -  
erance analysis. Both methods are constructive: 
first, values are assigned to the model variables 
and used to construct geometric models of  the cor- 
responding part instances; next, the parts assembly 
sequence is simulated to construct a model of  an 
assembly instance; finally, the values of  the toler- 
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Fig. 8. Function of constructive variational geometry 

ance variables and design variables are measured 
from the assembly instance. A constructive geo- 
metric design system with variational capabilities 
is used to perform these operations. Such a design 
system will be referred to as providing capabilities 
for "Constructive Variational Geometry" (CVG). 
The schematic given in Fig. 8 summarizes the CVG 
function. 
The GEOTOL geometric design system provides 
a working CVG capability. GEOTOL can generate 
model variations in the size, orientation, and posi- 
tion of part features. It supports a variety of both 
dimensional (plus-minus) tolerances, and the re- 
cently-developed ANSI geometric tolerances [3]. 
The implementation of the CVG function in the 
GEOTOL system is described in Turner [16]. 
The two methods presented in this section may 
be described as automatic. The designer must spec- 
ify the tolerance constraints and design constraints, 
but explicit functional expressions for the tolerance 
variables and design variables are not required. All 
necessary geometric relationships are derived from 
the geometric model without designer guidance. 

3.1 Tolerance analysis by 
optimization methods 

One approach to the solution of the worst-case 
tolerance analysis problem is to find the actual lim- 
its of variation of each design variable permitted 
by the specified tolerance constraints. The actual 
limits of each design variable must fall within the 
specified limits for that variable. 
The determination of the actual limits of  variatibn 
of a design variable may be expressed as a con- 
strained optimization problem. Figure 4 illustrated 
the functional dependency of design variables and 
tolerance variables on the model variables. In the 
terminology of Hillier and Lieberman [7], the mod- 
el variables may be viewed as the decision variables 
of an optimization problem. The tolerance limits 
define constraints on the tolerance variables, and 
hence on the model variables. The design variables 

MI 

in_~olerartee \ ~ / / C ~ % :  ~ 

Fig. 9. Tolerance analysis by optimization methods 

are considered one at a time, the goal being to 
find both the maximum and the minimum possible 
value for each design variable. The design variable 
is the objective function of the optimization prob- 
lem. Figure 9 illustrates this graphically. Once both 
extremes of a given design variable have been de- 
termined, they can be compared against the speci- 
fied limits. The tolerance specification is acceptable 
if and only if 

dkL<Dk=, <Dk=. gdku. (1) 

Here dkL and dku are the specified design limits 
on Dk while Dk ,, and Dkm,, are the actual limits 
of variation of~gk for the given tolerance limits. 
Dk is given by 

Dk =gk(M). (2) 

The constraints on the feasible region are given 
by the tolerance limits: 

t~L<T~<t~u i-----1, . . . ,m  

where 

T,=A(M). (3) 

3.2 Tolerance analysis by 
linear programming methods 

Since the tolerance constraints permit only small 
variations in the model variables, the design vari- 
ables and tolerance variables are usually approxi- 
mately linear. If this is the case, then Eqs. (2) and 
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(3) may be linearized. 6 (In the GEOTOL system 
these linearizations are obtained using numerical 
methods.) Thus the following equations are ob- 
tained: 

Dk = vDk" M (4) 

T, = v T,  " M .  (5) 

Using these equations, the tolerance analysis prob- 
lem may be solved using linear programming. 
After the linear programming problem has been 
solved, a sensitivity analysis can be performed to 
determine the relative contribution of  each of  the 
tolerances. 
If the tolerance variables and design variables are 
not linearizable, then it may be possible to apply 
nonlinear optimization methods. 

3.3 Tolerance analysis by the 
Monte Carlo method 

4. Statistics are collected. 
The above procedure is repeated for many itera- 
tions. The actual number of instances to run is 
determined to achieve a given level of  confidence 
in the results. The sample distribution of  the design 
variable can be used as a gauge of the stability 
of the results. 
It may perhaps be argued that for a large complex 
assembly, the dimensionality of the sample space 
is so great that a Monte Carlo analysis, even one 
based on a large number of assembly instances, 
does not carry a high degree of  reliability as a 
predictor of  actual manufacturing experience. Nev- 
ertheless a Monte Carlo analysis may act to focus 
attention on potential problem areas. Actually, in 
manufacturing practice, a prototype build-and-test 
run is often used for this purpose. The Monte 
Carlo method achieves the same end without the 
time and cost of  parts fabrication. 

The Monte Carlo method is applicable whether 
the design variables are linearizable or not. Either 
a worst-case or a statistical analysis may be per- 
formed. This method operates by generating a 
large number of assembly instances. Each instance 
corresponds to a point in the in-tolerance region. 
The instance is checked to determine whether it 
also falls in the in-design region. Linearizations 
are required for the tolerance variables, but the 
design variables are measured from the varianced 
model. Unlike the optimization methods, already 
discussed, the Monte Carlo method allows all of  
the specified design variables to be analyzed simul- 
taneously. 
At each iteration of the method, the following steps 
are performed: 
i. A point is selected within the in-tolerance re- 
gion. For  a worst-case analysis, this point should 
be at either the upper or lower limit of  as many 
tolerances as possible. Therefore, a c o r n e r - p o i n t  of  
the in-tolerance region is selected. For a statistical 
analysis, the selected point is statistically distrib- 
uted within the in-tolerance region. 
2. The model variables are set equal to the coordi- 
nates of  this point. 
3. The corresponding assembly instance is simu- 
lated, and the design variables are measured. 

6 Although these functions can be highly nonlinear, and will 
usually involve square roots, sines, and cosines, the tolerance 
constraints limit the functions to a small region about the nomi- 
nal, in which they are approximately linear 

4 GEOTOL implementation of CVG 

The preceding section mentioned the role of Con- 
structive Variational Geometry (CVG) in the toler- 
ance analysis methods: once values have been as- 
signed to the model variables, the CVG capability 
is used to evaluate the tolerance variables and de- 
sign variables. First, a varianced model is con- 
structed for each of the parts in the assembly. Next, 
the part  models are combined to form a varianced 
assembly model. Finally, the tolerance variables 
and design variables are measured from the var- 
lanced assembly model. 
The first step in this process is to apply the model 
variables to the individual parts. The GEOTOL 
system implements model variables corresponding 
to size, orientation, and position variations, in a 
manner similar to that suggested by Fig. 3. Size 
and orientation variations are applied as variations 
to the surface equations of the part faces. Position 
variations are applied to features of position. New 
edges and vertices are computed at the intersec- 
tions of the varianced faces. 
Once the model variables have been applied to the 
individual part models, the parts are assembled. 
To simulate the assembly process, a feature-based 
method is used to define the relative positions of 
the parts in the assembly. The GEOTOL system 
implements a positioning strategy in which each 
new part is positioned relative to a frame of refer- 
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ence established by existing part features. 7 The 
modeling of feature relationships is a recent inno- 
vation. Lieberman and Wesley [10], and Lee and 
Gossard [9] have also done work in this area. 

5 Examples 

Several examples will be used to illustrate the use 
of the GEOTOL system for the solution of toler- 
ance analysis problems by the linear programming 
and the Monte Carlo methods. The first example 
is a one-dimensional tolerance analysis problem 
that can also be solved by hand. However, in the 
second example, tolerances interact in all three di- 
mensions, and a hand solution might require ma.ny 
hours of laborious calculations. The third example 
illustrates the analysis of a larger problem from 
a real product. 

5.1 One-dimensional example 

The model shown in Fig. 10, represents an assem- 
bly consisting of a U-shaped part with two small 
rectangular parts stacked against the left side of 
the U. A design constraint (bottom) has been speci- 
fied for the clearance between the right side of the 
rightmost block, and the right side of the U-shape. 
Tolerances (top) have been specified for the perti- 
nent part dimensions. 
It is not necessary for the designer to specify any 
relationship between the given tolerance con- 
straints and the design constraint. In fact, there 
may be many other tolerance and design con- 
straints specified in addition to the ones shown 
here. The GEOTOL system will automatically de- 
termine which tolerance constraints have an influ- 
ence on each design constraint. 
When the variational class is limited to size varia- 
tions, the linear programming method immediately 
computes values of _+0.03 as the actual limits of 
variation of the design variable. 
When the Monte Carlo method is applied, there 
are only two worst-case possibilities for each of 
the toleranced measurements (upper and lower 
limits of size). Thus, there are 2 x 2 x 2 = 8 different 

7 Relative positioning is also used to position features of position; 
such as holes and bosses, within a single part. Feature position 
is defined relative to a datum frame of  reference using the method 
given in the ANSI geometric tolerancing standard [3] 

possible assembly instances. A worst-case toler- 
ance analysis shows that the design variable asso- 
ciated with the design constraint takes on values 
of -0.03, -0.01, +0.01, or +0.03 for these as- 
sembly instances. The results of the Monte Carlo 
analysis are shown in Fig. 11. The histogram 
shows the distribution of the design variable for 
the actual assembly instances sampled. The differ- 
ence between actual maximum and minimum 
values of the design variable is divided into equal 
intervals. The histogram shows the frequency with 
which actual values of the design variable fall with- 
in each interval. The dashed lines show the values 
of the specified design limits. 

1+0.01 

I~:0.01 

- -  3+0.01 

i 
7 

i+0.03 

Fig. 10. Simple one-dimensional  tolerance analysis 
problem 

Analysis of UI with Worst-Case distribution. 

Nominal = +1 Sample = 100 
Hi ~m = +0.03 In Rnge= 100 % 
L o w  Lim= -0.03 Mean = +0.002 

Std Dev = 0.01748 

f J l  

/ j j  

-0,03 

f J /  

I 

+0.03 

Fig. 11. Worst-case analysis o f  U-shape.  Size variations 
only 
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In addition to generating the individual parts, the 
G E O T O L  system must position each part in se- 
quence relative to its adjacent parts, using the actu- 
al part features as reference. 
The assembly can also be analyzed under statistical 
assumptions of  uniform or normal distributions 
for each toleranced part. Figures 12 and 13 give 
these results. For  both statistical analyses the sam- 
ple distribution is assumed to be normal, and plot- 
ted using the computed sample mean and standard 
deviation. 

Analysis of U1 with Uniform distribution. 

Nominal = +I Sample = I00 
Hi Lira = +0.03 In Rnge 100 % 
Low Lim = -0,03 Mean +0.00126 

Std Dev = 0.00728 

17_ 

-0.03 +0.03 

Fig. 12. Analysis of U-shape with assumed uniform 
distributions 

Analysis of U1 

Nominal = +i 
Hi Lim = +0.03 
Low Lim = -0,03 

26_ 

N 
-0.03 

with Normal distribution, 

Sample = 100 
In Rnge= 100 ~, 
Mean = -0,00043 
Std Dev = 0.00493 

r 
/ 

/ 

.4 

r 

J 

Fig. 13. Analysis of U-shape 
distributions 

+0.03 

with assumed normal 

1-0.01 1 - 3 + 0 0 0 9 5 5  

1+0.01-0. 

i 

/ 
1+0.0297+0.00975 

Fig. 14. Example of the effects of nonlinearities 

The latter analysis shows that under the assump- 
tion of  normal distributions, the tolerance limits 
might be relaxed considerably. 
When the variational class is extended to incorpor- 
ate orientation variations, nonlinearities become 
significant. When the linear programming algo- 
rithm is run with both size and orientation varia- 
tions enabled, the actual limits of  variation of  the 
design variable are found to be: 

Omi n ~-- -- 0.0307 
Dmax = + 0.0297. 

Figure 14 shows an instance drawn from this anal- 
ysis, illustrating one of  these extremes (variations 
are exaggerated). The numbers following the nomi- 
nal dimensions are the actual values of  the toler- 
anced measurements. Since nominally parallel 
faces need not be parallel in the varianced model, 
there are two values for some of the toleranced 
measurements - a low value, and a high value. 
Nonlinearities in the tolerance variables have al- 
lowed some of the tolerance limits to be exceeded. 
The Monte Carlo method gives similar results. 
It should be noted that this particular problem can 
also readily be solved by manual methods, since 
all of the measurements line up along a single di- 
mension. Indeed, the worst-case results are obvious 
by inspection. 

5.2 Three-dimensional example 

A simple three-dimensional example with some 
surprising subtleties is found in the cuboid shown 
in Fig. 15. The width, height, and depth have been 
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Fig. 15. Simple three-dimensional tolerance analysis 
problem 

4 - 0 . 0 0 1 9 6 - 0 . 0 0 2 0 5  

4 + 0 . 0 0 0 0 9 - 0 . 0 0 0 0 8  

Fig. 16. Illustration that original design was 
undertoleranced 

6.928+0.2285 

given equal dimensions, and 1% tolerances of  
+ 0.04. A design constraint has been specified on 
the distance between the two vertices at the end- 
points of  one of  the major diagonals. Design limits 
of  __+0.04 have been imposed. (To motivate the 
design constraint, take the cuboid as a design for 
a packing crate, and assume that a shaft is to be 
packed along the diagonal. The design constraint 
is intended to assure that the shaft will fit snugly.) 
I f  only size variations are generated, then the linear 
programming method gives values of  + 0.06928 as 
the actual worst-case limits of  the associated design 
variable. The Monte Carlo method gives the same 
results. These results can be verified by realizing 
that if all three dimensions are taken to their lower 
limits, that is, reduced by 1%, then the diagonal 
will also be reduced by 1%, or 0.06928 (similarly 
for the upper limits). It is clear that under worst- 
case assumptions, the tolerance limits on the three 
dimensions are too loose to satisfy the specified 
design constraint of  _ 0.04. 
If  orientation variations are generated as well as 
size variations, then the GEOTOL tolerance analy- 
sis exposes the fact that the design is actually is 
undertoleranced, and that there is no effective con- 
trol over the variation in the diagonal. As illustra- 
tion, Fig. 16 shows an instance of  the cube that 
satisfies all the stated size tolerances, but that ex- 
hibits a variation of  +0.2285 in the diagonal - 
over five times the specified design limit. Such vari- 
ation is possible because the size tolerances, as de- 
fined in the ANSI geometric tolerancing standard 
[3], do not control the variation in the angle formed 
by adjacent faces. So long as opposite faces remain 
approximately parallel, the part remains in-toler- 
ance. (The two-dimensional analog to such a part 

is rhomboid.) To establish control over the varia- 
tion in the diagonal, the designer must specify per- 
pendicularity tolerances between some of  the adja- 
cent faces. Therefore three perpendicularity toler- 
ances of  0.04 were added to the model, s The per- 
pendicularity tolerances are shown in Fig. 17. Now 
an analysis exploiting both size and orientation 
variations can be performed. The linear program- 
ming method gives worst-case limits of  

Dmi n : - 0.1374 
Dm,x = + 0.1397. 

The Monte Carlo method gives 

Dmin = - 0.1360 
Dmax= +0.1439. 

The discrepancy between the two methods is due 
to nonlinearities. 
So when perpendicularity tolerances were incorpo- 
rated and both size and orientation variations were 
modeled, the actual limits of  variation were found 
to be about twice the limits found earlier with only 
size variations modeled. In principle it would be 
possible for an engineer to work out a formula 
showing how variations in the three size dimen- 
sions and the three toleranced angles affect the di- 
agonal. Once such a formula had been worked out, 
it could be used to determine the limits of  varia- 

s Three perpendicularity tolerances are sufficient provided one 
tolerance applies in each dimension. However this allows some 
angles more freedom of variation than others. To ensure equal 
treatment, the other possible perpendicularity tolerances could 

. be specified. This illustrates a strength of the vector space treat- 
ment - additional tolerances simply provide additional con- 
straints on the in-tolerance region. Although in a traditional 
sense the model is overtoleranced, no difficulty arises 
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Fig. 17. Added perpendicularity tolerances 

tion. However, even for this simple problem, the 
development of such a formula is infeasible. In 
larger problems, even recognizing which dimen- 
sions affect a given design constraint can be diffi- 
cult. Therefore the ability to perform such an anal- 
ysis without the prior hand derivation of the requi- 
site geometric relationships is a significant benefit 
to the engineer. 

5.3 Example from engineering practice 

Figure 18 shows an example of  an assembly from 
an actual product. This is a (simplified) model of  
a bus bar assembly from the IBM 3090 system. 
The six bus bars conduct current from the system's 
power supplies to the electronics modules. The bus 
bars attach to a clamp (clamp base shown at left). 
In addition, there are assembly constraints repre- 
sented by the part  shown at right. (This part is 
a simplification, taking the place of a number of 
distinct mating parts.) The principal design con- 
straint for this assembly is that it assembles with- 
out interference. The assembly was modeled, and 
all specified tolerances were applied. A choice of  
strategies is available as to how to model the design 
constraint. One possibility would be to define a 
design constraint, with associated limits, for the 

c learance  between each hole-boss pair. But since 
all of  the fits in this particular assembly are clear- 
ance fits, it is possible to define a single design 
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Fig. 18. Bus bar assembly 

constraint on the overall fit of  the entire assembly. 
This gives rise to a binary design variable, which 
evaluates to 1 if all the parts assemble without 
interference and to 0 otherwise. 
Perpendicularity tolerances were entirely missing 
in the original part drawings. Thus, as the previous 
example showed, the design is undertoleranced, 
and at least three perpendicularity tolerances are 
required per part, to fully tolerance the design. In 
most cases, the omission of these tolerances is 
based on assumptions about process characteris- 
tics. For instance, four right angles are revealed 
by taking a cross-section of one of  the bus bars 
anywhere along its principal dimension. Variations 
in these angles have no effect on the design con- 
straint. It may be assumed that any reasonable 
manufacturing process will produce acceptable an- 
gles. But if angular variation is not constrained, 
GEOTOL detects an undertoleranced design, and 
will not proceed. Considering the frequency of  this 
type of situation in design practice, it would be 
helpful if the designer were able to specify a blan- 
ket angularity control to be used in the absence 
of an explicit tolerance specification. 9 
Despite the above remarks, the omission of  a per- 
pendicularity tolerance on the major bend in each 
of the bus bar parts appears to be an error. Varia- 
tion in this angle could have a significant effect 
on assemblability. A discussion with the designers 

9 Such a blanket tolerance should not be confused with the 
so-called "defaul t"  tolerance frequently used in current draft- 
ing practice. The default tolerance only applies to features that 
are explicitly dimensioned. That is, a default tolerance is an 
explicit tolerance applied indirectly through explicit dimensions 
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revealed that they had assumed sufficient flexibility 
to permit bending the bars at assembly time. 
Because of the above omissions, the analysis was 
run without orientation variations. A worst-case 
analysis of 100 instances showed that 100% assem- 
bled successfully. To fully validate the tolerance 
specifications, the missing perpendicularity toler- 
ance on the major bend should be supplied, and 
orientation variations in that direction should be 
enabled. 

5.4 Computer time used 

Theoretical results as to computational complexity 
are given in Turner [16]. However a summary of 
the computer times for the preceding examples is 
also instructive. For both the linear programming 
and the Monte Carlo methods, the analysis step 
is preceded by an initialization step in which linear- 
izations are computed for the design variables and 
tolerance variables. The following table shows the 
actual computer times used. These times were de- 
rived from the execution of the examples on a con- 
ventional uniprocessor machine (the IBM 4381). 

Example Initialization Linear Monte Carlo 
Programming (per instance) 

U-Shape 2.31 s 0.71 s 1.32 s 
(size only) 

Cuboid 1.83 s 1.69 s 0.81 s 
Bus Bars 5 min 33 s - 2 min' 12 s 

The per-instance execution time for the Monte 
Carlo analysis of the bus bar assembly is quite 
high. However as yet little has been done to opti- 
mize the performance. In addition, there is strong 
evidence that the algorithms can be structured to 
take advantage of vector processing computer ar- 
chitectures. 

6 Summary 

This paper has presented a unifying terminology 
for the interpretation of tolerance problems. Mod- 
el variables are used to represent a variational class 
of part instances. Tolerance variables and design 
variables are used to measure variations in quanti- 
ties constrained by the designer. A tolerance speci- 
fication may be expressed as an in-tolerance region 
in a vector space defined by the model variables. 
It was shown that the worst-case tolerance analysis 

problem may be formulated as an optimization 
problem and solved using linear programming. Al- 
ternately, a Monte Carlo method may be applied. 
The Monte Carlo method allows for nonlinear de- 
sign variables and supports statistical as well as 
worst-case analysis, but is generally more expen- 
sive than the linear programming method. Both 
methods may be described as automatic, since all 
requisite geometric relationships are derived with- 
out designer guidance. 
Principal areas for further research are as follows. 
First, significant nonlinearities can arise in toler- 
ance analysis problems. It appears that it may be 
possible to address these nonlinearities using the 
method of successive linear programs [14] or other 
nonlinear methods. Second, models for worst-case 
and statistical tolerance synthesis were developed 
in Turner [16]. It appears that these models can 
be solved using convex programming methods, but 
experience is needed. 
By contrast with the most mature areas of engi- 
neering analysis and synthesis, the automation of 
tolerancing problems is in its infancy. However, 
we believe this work has demonstrated the poten- 
tial for a comprehensive automated tolerancing ca- 
pability based on solid modeling technology, and 
has established promising directions for further 
work. 
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